EP0821281A1 - Radiation curable toner particles - Google Patents

Radiation curable toner particles Download PDF

Info

Publication number
EP0821281A1
EP0821281A1 EP97201977A EP97201977A EP0821281A1 EP 0821281 A1 EP0821281 A1 EP 0821281A1 EP 97201977 A EP97201977 A EP 97201977A EP 97201977 A EP97201977 A EP 97201977A EP 0821281 A1 EP0821281 A1 EP 0821281A1
Authority
EP
European Patent Office
Prior art keywords
toner particles
toner
substrate
image
radiation curable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97201977A
Other languages
German (de)
French (fr)
Other versions
EP0821281B1 (en
Inventor
Stefaan De Meutter
Serge Tavernier
Danny Van Wunsel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xeikon Manufacturing NV
Original Assignee
Agfa Gevaert NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert NV filed Critical Agfa Gevaert NV
Priority to EP19970201977 priority Critical patent/EP0821281B1/en
Publication of EP0821281A1 publication Critical patent/EP0821281A1/en
Application granted granted Critical
Publication of EP0821281B1 publication Critical patent/EP0821281B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/09Colouring agents for toner particles
    • G03G9/0926Colouring agents for toner particles characterised by physical or chemical properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08793Crosslinked polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08795Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their chemical properties, e.g. acidity, molecular weight, sensitivity to reactants

Definitions

  • the present invention relates to toner particles comprising radiation curable compounds. It relates also to a method for producing toner images, wherein the toner images are highly resistant to wear.
  • a latent image is formed that is developed by attraction of so called toner particles. Afterwards the developed latent image (toner image) is transferred to a final substrate and fused to this substrate. In DEP the so called toner particles are imagewise deposited directly on a final substrate and fused to this substrate.
  • Toner particles are basically polymeric particles comprising a polymeric resin as main component and various ingredients mixed with said toner resin. Apart from colourless toners, which are used e.g. for finishing function, the toner particles comprise at least one black and/or colouring substances, e.g., coloured pigment.
  • the toner particles can be present in a liquid or in a dry developer composition.
  • the images are built up by application of particulate marking elements in multiple, superimposed layers onto the substrate.
  • the problems associated with multiple, superimposed layers of particulate marking particles that are in one way or another fixed on a substrate are manifold, not only with respect to image quality but also with respect to image stability and with respect to mechanical issues.
  • EP-A 471 894, EP-A 554 981, US 4,828,950 and US 4,885,603 it has been disclosed to apply a layer of transparent toner particles on top of the toner image to provide better resistance to physical damage.
  • a capsule toner having a core comprising a polymerizable compound, a polymerization initiator and other normal toner ingredients.
  • the core is surrounded by a hard shell that breaks during the fixing step.
  • the polymerizable compound is polymerized, in this particular disclosure, by low energy visible light.
  • toner particles comprising a radiation curable compound, characterised in that said radiation curable compound having a Tg ⁇ 35 °C.
  • toner particles to be used in electrostatographic printing apparatus have preferably a quite high mechanical strength in order to be able to withstand the mechanical influences (pressure, friction, etc) in the printing apparatus before and during development, it is important to preserve the mechanical strength of the toner particles.
  • the radiation curable compound to be incorporated in toner particles according to this invention, comprises an oligomeric or polymeric compound instead of only monomeric compounds.
  • a monomeric compound may be present in the mixture of radiation curable compounds, as long as the mixture of radiation curable compounds (i.e. a radiation curable composition) itself has a Tg ⁇ 35 °C.
  • the oligomeric or polymeric radiation curable compounds have a Tg ⁇ 35 °C, preferably the Tg is larger than 40 °C.
  • the radiation curable composition or compound can be added to the toner particles in addition to a toner resin and other toner ingredients. Due to the oligomeric or polymeric nature of the radiation curable compounds these compounds can also be used as sole toner resin.
  • toner particles according to the present invention can be coloured (i.e. comprise a pigment or a dye) the toner particles of the present invention are especially useful when they are intended to form a clear finish layer on top of a toner image. When the clear toner particles according to the present invention are used to provide a clear finish layer on top of the image, an image with very even gloss is obtained.
  • the word “clear” means herein not giving, in a wavelength range extending from 400 to 700 nm, a visible diffuse density, said visible diffuse density being defined as less than 15 % light reduction integrated over that wavelength range.
  • An "image on a substrate” is, in the context of this invention, meant to include a substrate carrying human readable or/and machine readable text, a substrate carrying figures, a substrate carrying pictures (both coloured and monochromatic) as well as a substrate carrying a combination of at least two of the above.
  • a clear finish layer can be useful on any toner image, but is especially useful when it is applied on top of a toner image showing different thickness in the image are mostly toner images made up by the overlay of several layers of different types of toner particles (e.g.
  • Said clear finish layer can be produced by depositing said clear toner particles by an image-wise depositing step, a non-image-wise depositing step or a counter-image-wise depositing step. It is preferred that said clear toner particles are deposited either non-image wise (i.e. in a uniform layer over the whole surface of the substrate, having toner particles or not) or counter-image-wise. Counter-image-wise means that a thicker fixed clear finish layer is present in the lower thickness areas of the image and a thinner fixed clear finish layer is present in the higher thickness areas of the image.
  • the image comprises both text and e.g. full-colour pictures
  • the radiation curable groups are preferably curable by UV-light.
  • Very useful radiation curable polymeric compounds, in toner particles for use in the present invention are UV curable solid epoxy resins with Tg ⁇ 35 °C as disclosed in EP-A 667 381.
  • solid compositions (I) are described containing
  • UV curable resins for incorporation in toner particles are powders based on unsaturated polyesters and polyurethaneacrylates
  • a typical example of such a polymeric UV curable system is available through Hoechts High Chem, Hoechts-Sara Pero (Mi) Italy.
  • Such a system comprises a solid unsaturated polyester resin under trade name ALFTALAT VAN 1743, having a Tg ⁇ 52 °C and an urethane adduct with acrylic functional groups under trade name ADDITOL 03546, having a Tg ⁇ 47 °C.
  • ALFTALAT VAN 1743 having a Tg ⁇ 52 °C
  • an urethane adduct with acrylic functional groups under trade name ADDITOL 03546, having a Tg ⁇ 47 °C.
  • the properties of this system have be described in European Coating Journal n° 9/95 606-608 (1995).
  • non-acrylate binder systems are useful in the present invention, e.g. a powder composed of a mixture of an unsaturated polyester resin in which maleic acid or fumaric acid is incorporated and a polyurethane containing a vinylether.
  • a binder system has been developed by DSM resins of the Netherlands and the properties thereof have been described in European Coating Journal n° 3/96 115-117 (1996).
  • a photoinitiator is present.
  • Very useful initiators are sulphonium salts as e.g. triarylsulphonium salts, triarylsulphoniumhexafluorophosphate, benzophenones, etc.
  • Typical very useful photoinitiators in the context of this invention are, e.g., 2-hydroxy-2-methyl-1-phenyl-propan-1-one, compound I, a mixture of compound I and compound II and compound III :
  • the initiator photoinitiator
  • the pair radiation curable compound and initiator in various combinations :
  • the toner particles according to the present invention may comprise the radiation curable resins (radiation curable compounds or compositions) that preferably are UV-curable resins as sole toner resin, or the radiation curable resins may be mixed with other toner resins. In that case all toner resins, known in the art are useful for the production of toner particles according to this invention.
  • the resins mixed with the radiation curable resins can be polycondensation polymers (e.g. polyesters, polyamides, co(polyester/polyamides), etc), epoxy resins, addition polymers or mixtures thereof.
  • the toner particles not only comprise a compound carrying a radiation curable group, but further comprise a reactive group RGA being a member selected from the group consisting of epoxy groups, aldehyde groups, hydroxyl groups, carboxyl groups, mercapto groups, amino groups and amide groups.
  • the toner particles can comprise e.g. a toner resin selected from the group described in table 1 or an epoxy resin and a UV curable solid resin (composition) with Tg ⁇ 35 °C.
  • Chemical structure AV HV Tg Mn Mw 1. Polyester resin of terephthalic acid, ethyleneglycol and DIANOL 22 3 31.1 62 3.6 10 2. Polyester resin of fumaric acid and DIANOL 33 17 5.2 55 4.4 12 3.
  • DIANOL 22 is a trade name of AKZO CHEMIE of the Netherlands for bis-ethoxylated 2,2-bis(4-hydroxyphenyl)propane.
  • DIANOL 33 is a trade name of AKZO CHEMIE of the Netherlands for bis-propoxylated 2,2-bis(4-hydroxyphenyl)propane.
  • the toner particles comprise further reactive groups RGA
  • a substrate comprising a reactive group RGB, being a member selected from the group consisting of epoxy groups, aldehyde groups, hydroxyl groups, carboxyl groups, mercapto groups, amino groups and amide groups and being chosen such as to form a reaction pair with said reactive groups RGA.
  • RGB reactive group
  • This embodiment has the advantage that the resins comprised in the fixed image can be not only radiation cured but also thermally cross-linked and chemically attached to the substrate by chemical bonds.
  • the substrate comprises reactive groups RGB and the toner particles comprise not only radiation curable compounds having a Tg ⁇ 35 °C, but also reactive groups RGA
  • catalysers are e.g. acids (both organic and anorganic) and tertiary amines.
  • Very suitable catalysers are p-toluenesulfonic acid, trimethylamine and triethylamine.
  • Toner particles according to the present invention can be prepared by any method known in the art.
  • This toner particles can be prepared by melt kneading the toner ingredients (e.g. toner resin, charge control agent, pigment, etc) and said radiation curable compounds. After the melt kneading the mixture is cooled and the solidified mass is pulverized and milled and the resulting particles classified. Also the "emulsion polymerisation” and “polymer emulsion” techniques for toner preparation can be used to prepare toner particles according to this invention.
  • emulsion polymerization a water-immiscible polymerizable liquid is sheared to form small droplets emulsified in an aqueous solution, and the polymerization of the monomer droplets takes place in the presence of an emulsifying agent; such a technique is described e.g. in US P 2,932,629, US P 4,148,741, US P 4,314,932 and EP-A 255 716.
  • Toner particles useful in this invention can have an average volume diameter between 1 and 50 ⁇ m, preferably between 3 and 20 ⁇ m. When the toner particles are intended for use in colour imaging, it is preferred that the volume average diameter is between 3 and 10 ⁇ m, most preferred between 3 and 8 ⁇ m.
  • the particle size distribution of said toner particles can be of any type.
  • Gaussian or normal particle size distribution either by number or volume, with a coefficient of variability (standard deviation divided by the average) ( ⁇ ) smaller than 0.5, more preferably of 0.3.
  • Toner particles useful in this invention, can comprise any normal toner ingredient e.g. charge control agents, pigments both coloured and black, anorganic fillers, anti-slip agents, waxes, etc.
  • charge control agents, pigments and other additives useful in toner particles, to be used in a toner composition according to the present invention can be found in e.g. EP-A 601 235.
  • the toner particles can be used as mono-component developers, both as a magnetic and as a non-magnetic mono-component developer.
  • the toner particles can be use din a multi-component developer wherein both magnetic carrier particles and toner particles are present.
  • the toner particles can be negatively charged as well as positively charged.
  • the present invention also includes a method for forming a toner image on a substrate comprising the steps of :
  • the radiation curing can proceed on line, e.g, in the fusing station itself of an electrostatographic apparatus or in a station immediately adjacent to said fusing station.
  • the radiation curing can proceed off-line in a separate apparatus wherein the fused layer of toner particles is heated again and irradiated with curing rays. It is important that the radiation (UV-) curing proceeds on the molten toner particles and while the toner receiving layer has some fluidity.
  • said radiation curing proceeds at a temperature that preferably is at most 150 °, most preferably at most 120 °C. Therefore it is preferred to use toner particles, comprising a radiation curable compound having a Tg ⁇ 35 °C, that have a meltviscosity at 120 °C between 50 and 2000 Pas, preferably between 100 and 1000 Pas.
  • meltviscosities mentioned herein are measured in a RHEOMETRICS dynamic rheometer, RVEM-200 (One Possumtown Road, Piscataway, NJ 08854 USA).
  • the viscosity measurement is carried out at a sample temperature of 120 °C.
  • the sample having a weight of 0.75 g is applied in the measuring gap (about 1.5 mm) between two parallel plates of 20 mm diameter one of which is oscillating about its vertical axis at 100 rad/sec and amplitude of 10 -3 radians.
  • the fluidity of the toner receiving layer at the temperatures mentioned above can be increased by incorporating waxes or "heat solvents” also called “thermal solvents” or “thermosolvents”in the toner receiving layer on the substrate.
  • heat solvent in this invention is meant a non-hydrolysable organic material which is in solid state at temperatures below 50 °C but becomes on heating above that temperature a plasticizer for the binder of the layer wherein they are incorporated.
  • plasticizer for the binder of the layer wherein they are incorporated.
  • Useful for that purpose are a polyethylene glycol having a mean molecular weight in the range of 1,500 to 20,000 described in US-P 3,347,675.
  • Said toner receiving layer may further comprise a binding agent or mixture of binding agents, also stabilizers, toning agents, antistatic agents, spacing particles (both polymeric or anorganic).
  • the toner receiving layer may contain other additives such as free fatty acids, antistatic agents, e.g. non-ionic antistatic agents including a fluorocarbon group as e.g. in F 3 C(CF 2 ) 6 CONH(CH 2 CH 2 O)-H, ultraviolet light absorbing compounds, white light reflecting and/or ultraviolet radiation reflecting pigments, and/or optical brightening agents.
  • Said step of depositing said clear toner particles can be an image-wise depositing step, a non-image-wise depositing step or a counter-image-wise depositing step, as described above.
  • a step of depositing clear toner particles on the image is included, it is within the scope of this invention, although all toner particles may comprise a radiation curable resin, sufficient that only said clear toner particle comprise a radiation curable resin with Tg ⁇ 35 °C.
  • the present invention also includes an apparatus for forming toner images on a substrate comprising :
  • toner particles comprising a UV-curable resin and thus the means for radiation curing the toner particles comprise are means for UV-curing ( UV-light emitters as e.g. UV lamps).
  • UV-light emitters as e.g. UV lamps.
  • said means for fusing said toner images emit infrared radiation (are infra-red radiators) and said means for UV curing (e.g. one or more UV emitting lamps as, e.g. high pressure mercury lamps) are installed immediately after said fusing means so that the UV curing proceed on the still molten toner image.
  • a combination of infra-red radiators (the means for fusing the toner particles) and UV emitting lamps (the means for radiation curing) in a single station (a fixing/curing station), so that the fusing and the radiation curing proceed simultaneously, is also a desirable design feature of an apparatus according to this invention.
  • the apparatus according to the present invention can comprise if so desired, more than one fixing/curing station.
  • the UV emitting means are preferably UV radiators with a capacity (an intensity) between 20 W/cm and 150 W/cm.
  • the means for image-wise depositing toner particles can, in apparatus according to this invention, be direct electrostatic printing means (DEP), wherein charged toner particles are attracted to the substrate by an electrical field and the toner flow modulated by a printhead structure comprising printing apertures and control electrodes.
  • Said means for image-wise depositing toner particles can also be toner depositing means wherein first a latent image is formed.
  • said means for image-wise depositing toner particles comprise :
  • Said latent image may be a magnetic latent image that is developed by magnetic toner particles (magnetography) or, preferably, an electrostatic latent image.
  • an electrostatic latent image is preferably an electrophotographic latent image and the means for producing a latent image are in this invention preferably light emitting means, e.g., light emitting diodes or lasers and said latent image bearing member comprises preferably a photoconductor.
  • the solidified mass was pulverized and milled using an ALPINE Fliessbettarnastrahlmühle type 100AFG (tradename) and further classified using an ALPINE multiplex zig-zag classifier type 100MZR (tradename).
  • the average particle size of the separated toner was measured by Coulter Counter model Multisizer (tradename) was found to be 8.0 ⁇ m by volume.
  • the toner particles were mixed with 0.5 % of hydrophobic colloidal silica particles (BET-value 130 m 2 /g).
  • the preparation of the Yellow toner was repeated, but instead of 2 parts SICOECHTGELB PY13, 2 parts of CABOT REGAL 400 (carbon black, trade name of the Cabot Corp. High Street 125, Boston, U.S.A.) were used.
  • the four toners, Y, M, C and K had a meltviscosity at 120 ° C of 250 Pas (measured as described above at a frequency of 16 Hz.
  • the solidified mass was pulverized and milled using an ALPINE Fliessbettarnastrahlmühle type 100AFG (tradename) and further classified using an ALPINE multiplex zig-zag classifier type 100MZR (tradename).
  • the average particle size of the separated toner was measured by Coulter Counter model Multisizer (tradename) was found to be 8.0 ⁇ m by volume.
  • the clear toner CT had a meltviscosity at 120 °C of 195 Pas.
  • the toner particles were mixed with 0.3 % of hydrophobic colloidal silica particles (BET-value 130 m 2 /g).
  • Each of the above prepared toners were used to form carrier-toner developers by mixing said mixture of toner particles and colloidal silica in a 4 % ratio with silicone-coated Cu-Zn ferrite carrier particles having an average diameter of 55 ⁇ m.
  • Full colour toner images were produced using a commercial CHROMAPRESS (a trade name of Agfa-Gevaert NV, Mortsel, Belgium). The images were covered with a layer of clear toner such that 0.9 mg/cm 2 clear toner was present. The fusing took place with radiant heat (a IR-lamp) at 120 °C and the fused tone layer was immediately, without cooling irradiated with a UV-lamp for 0.5 sec with a high pressure mercury lamp and intensity of 80 W/cm. A second image without UV-curing was also produced. The resistance of both images against solvents was tested by rubbing the image 10 consecutive times with a cloth soaked with MEK (methylethyleketone). The UV-cured image, whereas the non-cured image disappeared after rubbing once.
  • CHROMAPRESS a trade name of Agfa-Gevaert NV, Mortsel, Belgium.
  • the UV-cured image showed an even high gloss of more than 90 % when measured under an angle of 60 ° with a gloss measuring device (MINOLTA MULTI-GLOSS 268, trade name of Minolta, Osaka, Japan).

Abstract

Toner particles comprising a toner resin are provided, characterised in that the toner resin comprises a radiation curable resin having a Tg ≥ 35 °C.
The radiation curable resin is preferably a UV-curable resin and is a member selected from the group consisting of unsaturated polyester/polyurethaneacrylate mixture and unsaturated polyester/polyurethane-vinylether mixture. A method and an apparatus for forming radiation cured toner images are also provided.

Description

1. Field of the invention.
The present invention relates to toner particles comprising radiation curable compounds. It relates also to a method for producing toner images, wherein the toner images are highly resistant to wear.
2. Background of the Invention
In imaging methods as e.g. electro(photo)graphy, magnetography, ionography, etc. a latent image is formed that is developed by attraction of so called toner particles. Afterwards the developed latent image (toner image) is transferred to a final substrate and fused to this substrate. In DEP the so called toner particles are imagewise deposited directly on a final substrate and fused to this substrate.
Toner particles are basically polymeric particles comprising a polymeric resin as main component and various ingredients mixed with said toner resin. Apart from colourless toners, which are used e.g. for finishing function, the toner particles comprise at least one black and/or colouring substances, e.g., coloured pigment.
In the different imaging methods, described above, the toner particles can be present in a liquid or in a dry developer composition.
In most cases the use of dry developer compositions is preferred. The main advantage of using a dry developer composition resides in the absence of the need to eliminate the liquid phase after development. The avoidance of the need to evacuate (mainly organic) liquids is desirable both from an economical standpoint and from an ecological standpoint.
However, in all techniques using dry particulate material to form an image, the images are built up by application of particulate marking elements in multiple, superimposed layers onto the substrate. The problems associated with multiple, superimposed layers of particulate marking particles that are in one way or another fixed on a substrate are manifold, not only with respect to image quality but also with respect to image stability and with respect to mechanical issues.
In, e.g. EP-A 471 894, EP-A 554 981, US 4,828,950 and US 4,885,603, it has been disclosed to apply a layer of transparent toner particles on top of the toner image to provide better resistance to physical damage.
In, e.g., US 3,723,114 the problem of storage properties of fused toner images is addressed, the main problem being the fact that the toner images can, depending on the storage conditions, become tacky after storage. The problem is solved by using in the toner resin a substantial portion of thermosetting polymers.
The use of photo-curable toners has been suggested in, e.g., US 5,470,683 to produce toner images having better weather resistance. In that application, a capsule toner is provided having a core comprising a polymerizable compound, a polymerization initiator and other normal toner ingredients. The core is surrounded by a hard shell that breaks during the fixing step. After the fixing step the polymerizable compound is polymerized, in this particular disclosure, by low energy visible light. Although following the teachings of these disclosures leads to the production of toner layers that are not easily damaged, the nature of the solutions itself limits the variety of resins that can be used in the manufacturing of the toner. Therefore further improvements along the lines of the disclosures referred to above are desirable.
3. Objects and Summary of the Invention
It is an object of the invention to provide a method for producing toner images that are very resistant to external physical influences.
It is a further object of the invention to provide a method for forming toner images wherein said toner image is very resistant to the influence of common organic solvents.
It is a further object of the invention to provide a method for producing toner images that are very weather resistant.
It is a still further object of the invention to provide a method for producing toner images that are very resistant to external physical influences and that exhibit an even gloss.
Further objects and advantages of the present invention will become evident from the detailed description hereinafter.
The objects of this invention are realized by providing toner particles comprising a radiation curable compound, characterised in that said radiation curable compound having a Tg ≥ 35 °C.
4. Detailed Description of the Invention.
Since toner particles to be used in electrostatographic printing apparatus have preferably a quite high mechanical strength in order to be able to withstand the mechanical influences (pressure, friction, etc) in the printing apparatus before and during development, it is important to preserve the mechanical strength of the toner particles.
Therefore it is preferred that the radiation curable compound, to be incorporated in toner particles according to this invention, comprises an oligomeric or polymeric compound instead of only monomeric compounds. A monomeric compound may be present in the mixture of radiation curable compounds, as long as the mixture of radiation curable compounds (i.e. a radiation curable composition) itself has a Tg ≥ 35 °C. The oligomeric or polymeric radiation curable compounds have a Tg ≥ 35 °C, preferably the Tg is larger than 40 °C.
The radiation curable composition or compound can be added to the toner particles in addition to a toner resin and other toner ingredients. Due to the oligomeric or polymeric nature of the radiation curable compounds these compounds can also be used as sole toner resin. Although toner particles according to the present invention can be coloured (i.e. comprise a pigment or a dye) the toner particles of the present invention are especially useful when they are intended to form a clear finish layer on top of a toner image. When the clear toner particles according to the present invention are used to provide a clear finish layer on top of the image, an image with very even gloss is obtained. The word "clear" means herein not giving, in a wavelength range extending from 400 to 700 nm, a visible diffuse density, said visible diffuse density being defined as less than 15 % light reduction integrated over that wavelength range. An "image on a substrate" is, in the context of this invention, meant to include a substrate carrying human readable or/and machine readable text, a substrate carrying figures, a substrate carrying pictures (both coloured and monochromatic) as well as a substrate carrying a combination of at least two of the above.
A clear finish layer can be useful on any toner image, but is especially useful when it is applied on top of a toner image showing different thickness in the image are mostly toner images made up by the overlay of several layers of different types of toner particles (e.g. in full colour toner images or in a black and white (monochrome) image with extended tonal range as disclosed in European Application 95202768, filed on October 13, 1995). In such images a relief structure is present. Said clear finish layer can be produced by depositing said clear toner particles by an image-wise depositing step, a non-image-wise depositing step or a counter-image-wise depositing step. It is preferred that said clear toner particles are deposited either non-image wise (i.e. in a uniform layer over the whole surface of the substrate, having toner particles or not) or counter-image-wise. Counter-image-wise means that a thicker fixed clear finish layer is present in the lower thickness areas of the image and a thinner fixed clear finish layer is present in the higher thickness areas of the image.
When the image comprises both text and e.g. full-colour pictures, it may be beneficial to deposit said clear toner particles, according to this invention and comprising a radiation curable compound, only on the surface of the full-colour pictures and not over the text portions. In such a way glossy pictures are combined with less glossy text.
Although electron beam curable compounds can be used in the present invention, the radiation curable groups are preferably curable by UV-light.
Very useful radiation curable polymeric compounds, in toner particles for use in the present invention are UV curable solid epoxy resins with Tg ≥ 35 °C as disclosed in EP-A 667 381. In this application solid compositions (I) are described containing
  • (a) a solid, oligomeric, cationically polymerisable polyglycidyl ether or ester (II), or a mixture of (II) with a liquid or crystalline monomeric mono-, di- or poly-epoxy resin, or a mixture of (II) with a cyclic acetal, where (II) have a Tg of above 35 deg.C,
  • (b) a multifunctional nucleophilic chain transfer agent,
  • (c) 0.05-3 wt.% photoinitiator for cationic polymerisation (with respect to the amount of a), and
  • (d) optionally normal additives for coating powders.
  • These compositions (I) are melted together and the cooled mixture is milled. The exemplified compositions have a Tg between 65 and more than 115 °C.
    Other useful UV curable resins for incorporation in toner particles, according to this invention, are powders based on unsaturated polyesters and polyurethaneacrylates, a typical example of such a polymeric UV curable system is available through Hoechts High Chem, Hoechts-Sara Pero (Mi) Italy. Such a system comprises a solid unsaturated polyester resin under trade name ALFTALAT VAN 1743, having a Tg ≥ 52 °C and an urethane adduct with acrylic functional groups under trade name ADDITOL 03546, having a Tg ≥ 47 °C. The properties of this system have be described in European Coating Journal n° 9/95 606-608 (1995). Also non-acrylate binder systems are useful in the present invention, e.g. a powder composed of a mixture of an unsaturated polyester resin in which maleic acid or fumaric acid is incorporated and a polyurethane containing a vinylether. Such a binder system has been developed by DSM resins of the Netherlands and the properties thereof have been described in European Coating Journal n° 3/96 115-117 (1996).
    For the UV curing to proceed it is necessary that a photoinitiator is present. Very useful initiators are sulphonium salts as e.g. triarylsulphonium salts, triarylsulphoniumhexafluorophosphate, benzophenones, etc. Typical very useful photoinitiators in the context of this invention, are, e.g., 2-hydroxy-2-methyl-1-phenyl-propan-1-one, compound I, a mixture of compound I and compound II and compound III :
    Figure 00050001
    Figure 00060001
    The initiator (photoinitiator) is preferably incorporated in the toner particles together with the UV curable system.
    It is, however, also possible, within the scope of the invention, to have the pair radiation curable compound and initiator in various combinations :
  • i) both a UV-curable compound (or a mixture of UV-curable compounds) and a photoinitiator (or mixture of photoinitiators) are only incorporated in the toner particles, not in the substrate,
  • ii) both a UV-curable compound (or a mixture of UV-curable compounds) and a photoinitiator (or mixture of photoinitiators) are in incorporated in the toner particles, and a UV-curable compound (or a mixture of UV-curable compounds) is incorporated in the substrate,
  • iii) a UV curable compound (or a mixture of UV-curable compounds) is incorporated in the toner particles and both a UV-curable compound (or a mixture of UV-curable compounds) and a photoinitiator (or mixture of photoinitiators) are incorporated in the substrate,
  • iv) a UV curable compound (or a mixture of UV-curable compounds) is incorporated in the toner particles and a photoinitiator (or mixture of photoinitiators) is incorporated in the substrate. When the photoinitiator and/or the UV curable compound are incorporated in the substrate, it is preferred that the substrate comprises a toner receiving layer.
  • The toner particles according to the present invention may comprise the radiation curable resins (radiation curable compounds or compositions) that preferably are UV-curable resins as sole toner resin, or the radiation curable resins may be mixed with other toner resins. In that case all toner resins, known in the art are useful for the production of toner particles according to this invention. The resins mixed with the radiation curable resins can be polycondensation polymers (e.g. polyesters, polyamides, co(polyester/polyamides), etc), epoxy resins, addition polymers or mixtures thereof.
    It may be beneficial that the toner particles not only comprise a compound carrying a radiation curable group, but further comprise a reactive group RGA being a member selected from the group consisting of epoxy groups, aldehyde groups, hydroxyl groups, carboxyl groups, mercapto groups, amino groups and amide groups. In this case the toner particles can comprise e.g. a toner resin selected from the group described in table 1 or an epoxy resin and a UV curable solid resin (composition) with Tg ≥ 35 °C.
    Chemical structure AV HV Tg Mn Mw
    1. Polyester resin of terephthalic acid, ethyleneglycol and DIANOL 22 3 31.1 62 3.6 10
    2. Polyester resin of fumaric acid and DIANOL 33 17 5.2 55 4.4 12
    3. Polyester resin of terephthalic acid, isophthalic acid and DIANOL 22 and ethyleneglycol 18 20.9 60 4 18
    4. Copoly(styrene-butylacrylate-butylmethacrylate-stearylmethacrylate-methacrylic acid) (65/5/21/5/4) 12 0 58 6 108
    5. Copoly(styrene-butylmethacrylate-acrylic acid) (80/15/5) 5 0 63 5.5 180
    6. Polyester resin of DIANOL 33/DIANOL 22, terephthalic acid and trimellitic acid 30 50 65 2.0 14
    7. Co(Styrene/n-butylmethacrylate), diCOOH terminated (65/35) 15 0 48 2.1 10
    DIANOL 22 is a trade name of AKZO CHEMIE of the Netherlands for bis-ethoxylated 2,2-bis(4-hydroxyphenyl)propane.
    DIANOL 33 is a trade name of AKZO CHEMIE of the Netherlands for bis-propoxylated 2,2-bis(4-hydroxyphenyl)propane.
    In this embodiment of the invention, where the toner particles comprise further reactive groups RGA, it is preferred to use a substrate comprising a reactive group RGB, being a member selected from the group consisting of epoxy groups, aldehyde groups, hydroxyl groups, carboxyl groups, mercapto groups, amino groups and amide groups and being chosen such as to form a reaction pair with said reactive groups RGA. This embodiment has the advantage that the resins comprised in the fixed image can be not only radiation cured but also thermally cross-linked and chemically attached to the substrate by chemical bonds.
    In the embodiment wherein the substrate comprises reactive groups RGB and the toner particles comprise not only radiation curable compounds having a Tg ≥ 35 °C, but also reactive groups RGA, it is preferred to add catalysers, speeding up the reaction between reactive groups RGA and RGB, to either the toner particle, the substrate or to both. These catalysers are e.g. acids (both organic and anorganic) and tertiary amines. Very suitable catalysers are p-toluenesulfonic acid, trimethylamine and triethylamine.
    Toner particles according to the present invention can be prepared by any method known in the art. This toner particles can be prepared by melt kneading the toner ingredients (e.g. toner resin, charge control agent, pigment, etc) and said radiation curable compounds. After the melt kneading the mixture is cooled and the solidified mass is pulverized and milled and the resulting particles classified. Also the "emulsion polymerisation" and "polymer emulsion" techniques for toner preparation can be used to prepare toner particles according to this invention. In the "emulsion polymerization" technique a water-immiscible polymerizable liquid is sheared to form small droplets emulsified in an aqueous solution, and the polymerization of the monomer droplets takes place in the presence of an emulsifying agent; such a technique is described e.g. in US P 2,932,629, US P 4,148,741, US P 4,314,932 and EP-A 255 716. In the "polymer emulsion" technique, a pre-formed polymer is dissolved in an appropriate organic solvent that is immiscible with water, the resulting solution is dispersed in an aqueous medium that contains a stabilizer, the organic solvent is evaporated and the resulting particles are dried; such a technique is described in, e.g., US P 4,833,060.
    Toner particles useful in this invention can have an average volume diameter between 1 and 50 µm, preferably between 3 and 20 µm. When the toner particles are intended for use in colour imaging, it is preferred that the volume average diameter is between 3 and 10 µm, most preferred between 3 and 8 µm. The particle size distribution of said toner particles can be of any type. It is however preferred to have an essentially (some negative or positive skewness can be tolerated, although a positive skewness, giving less smaller particles than an unskewed distribution, is preferred) Gaussian or normal particle size distribution, either by number or volume, with a coefficient of variability (standard deviation divided by the average) (ν) smaller than 0.5, more preferably of 0.3.
    Toner particles, useful in this invention, can comprise any normal toner ingredient e.g. charge control agents, pigments both coloured and black, anorganic fillers, anti-slip agents, waxes, etc. A description of charge control agents, pigments and other additives useful in toner particles, to be used in a toner composition according to the present invention, can be found in e.g. EP-A 601 235.
    The toner particles can be used as mono-component developers, both as a magnetic and as a non-magnetic mono-component developer. The toner particles can be use din a multi-component developer wherein both magnetic carrier particles and toner particles are present. The toner particles can be negatively charged as well as positively charged.
    The present invention also includes a method for forming a toner image on a substrate comprising the steps of :
  • i) image-wise depositing toner particles comprising a radiation curable resin having a Tg ≥ 35 °C on said substrate,
  • ii) fusing said toner particles on said substrate and
  • iii) radiation curing said fused toner particles.
  • The present invention further includes a method for forming a toner image on a substrate comprising the steps of :
    • i) image-wise depositing toner particles on a substrate,
    • ii) depositing clear toner particles, comprising a radiation curable resin having a Tg ≥ 35 °C on top of said image-wise deposited toner particles,
    • iii) fusing said toner particles on said substrate and
    • iv) radiation curing said fused toner particles.
    The radiation curing can proceed on line, e.g, in the fusing station itself of an electrostatographic apparatus or in a station immediately adjacent to said fusing station.
    The radiation curing can proceed off-line in a separate apparatus wherein the fused layer of toner particles is heated again and irradiated with curing rays. It is important that the radiation (UV-) curing proceeds on the molten toner particles and while the toner receiving layer has some fluidity. Preferably said radiation curing proceeds at a temperature that preferably is at most 150 °, most preferably at most 120 °C. Therefore it is preferred to use toner particles, comprising a radiation curable compound having a Tg ≥ 35 °C, that have a meltviscosity at 120 °C between 50 and 2000 Pas, preferably between 100 and 1000 Pas. All meltviscosities mentioned herein are measured in a RHEOMETRICS dynamic rheometer, RVEM-200 (One Possumtown Road, Piscataway, NJ 08854 USA). The viscosity measurement is carried out at a sample temperature of 120 °C. The sample having a weight of 0.75 g is applied in the measuring gap (about 1.5 mm) between two parallel plates of 20 mm diameter one of which is oscillating about its vertical axis at 100 rad/sec and amplitude of 10-3 radians. The fluidity of the toner receiving layer at the temperatures mentioned above can be increased by incorporating waxes or "heat solvents" also called "thermal solvents" or "thermosolvents"in the toner receiving layer on the substrate.
    By the term "heat solvent" in this invention is meant a non-hydrolysable organic material which is in solid state at temperatures below 50 °C but becomes on heating above that temperature a plasticizer for the binder of the layer wherein they are incorporated. Useful for that purpose are a polyethylene glycol having a mean molecular weight in the range of 1,500 to 20,000 described in US-P 3,347,675. Further are mentioned compounds such as urea, methyl sulfonamide and ethylene carbonate being heat solvents described in US-P 3,667,959, and compounds such as tetrahydro-thiophene-1,1-dioxide, methyl anisate and 1,10-decanediol being described as heat solvents in Research Disclosure, December 1976, (item 15027) pages 26-28. Still other examples of heat solvents have been described in US-P 3,438,776, and 4,740,446, and in published EP-A 0 119 615 and 0 122 512 and DE-A 3 339 810.
    Said toner receiving layer may further comprise a binding agent or mixture of binding agents, also stabilizers, toning agents, antistatic agents, spacing particles (both polymeric or anorganic). In addition to said ingredients the toner receiving layer may contain other additives such as free fatty acids, antistatic agents, e.g. non-ionic antistatic agents including a fluorocarbon group as e.g. in F3C(CF2)6CONH(CH2CH2O)-H, ultraviolet light absorbing compounds, white light reflecting and/or ultraviolet radiation reflecting pigments, and/or optical brightening agents.
    Said step of depositing said clear toner particles can be an image-wise depositing step, a non-image-wise depositing step or a counter-image-wise depositing step, as described above.
    In a method wherein additionally to the step of image-wise depositing toner particles on a substrate, a step of depositing clear toner particles on the image is included, it is within the scope of this invention, although all toner particles may comprise a radiation curable resin, sufficient that only said clear toner particle comprise a radiation curable resin with Tg ≥ 35 °C.
    The present invention also includes an apparatus for forming toner images on a substrate comprising :
  • i) means for image-wise depositing toner particles comprising a radiation curable resin having a Tg ≥ 35 °C on a substrate,
  • ii) means for fusing said toner particles on said substrate characterised in that it further comprises means for on-line radiation curing said fused toner particles.
  • The present invention further includes an apparatus for forming a toner image on a substrate comprising the steps of :
    • i) means for image-wise depositing toner particles on said substrate,
    • ii) means for depositing clear toner particles, comprising a radiation curable resin having a Tg ≥ 35 °C on top of said image-wise deposited toner particles,
    • iii) means for fusing said toner particles on said substrate characterised in that it further comprises means for on-line radiation curing said fused toner particles.
    Said means for fusing said toner particles to the substrate can be any means known in the art, the means for fusing toner particles according to this invention can be contact (e.g. hot-pressure rollers) or non-contact means. In an apparatus according to the present invention, however, the fusing means it is preferred to be mainly, preferably exclusively, non-contact means. Non-contact fusing means according to this invention can include a variety of embodiments, such as : (1) an oven heating process in which heat is applied to the toner image by hot air over a wide portion of the support sheet, (2) a radiant heating process in which heat is supplied by infrared and/or visible light absorbed in the toner, the light source being e.g. an infrared lamp or flash lamp. According to a particular embodiment of "non-contact" fusing the heat reaches the non-fixed toner image through its substrate by contacting the support at its side remote from the toner image with a hot body, e.g., a hot metallic roller. In the present invention, non-contact fusing by radiant heat, e.g., infrared radiation (IR-radiation), is preferred.
    In a apparatus according to the present invention it is preferred to use toner particles comprising a UV-curable resin and thus the means for radiation curing the toner particles comprise are means for UV-curing ( UV-light emitters as e.g. UV lamps). In an apparatus according to the present invention, it is preferred that the radiation curing proceeds on-line. Therefore it is preferred that said means for fusing said toner images emit infrared radiation (are infra-red radiators) and said means for UV curing (e.g. one or more UV emitting lamps as, e.g. high pressure mercury lamps) are installed immediately after said fusing means so that the UV curing proceed on the still molten toner image. A combination of infra-red radiators (the means for fusing the toner particles) and UV emitting lamps (the means for radiation curing) in a single station (a fixing/curing station), so that the fusing and the radiation curing proceed simultaneously, is also a desirable design feature of an apparatus according to this invention. The apparatus according to the present invention can comprise if so desired, more than one fixing/curing station. The UV emitting means are preferably UV radiators with a capacity (an intensity) between 20 W/cm and 150 W/cm.
    The means for image-wise depositing toner particles can, in apparatus according to this invention, be direct electrostatic printing means (DEP), wherein charged toner particles are attracted to the substrate by an electrical field and the toner flow modulated by a printhead structure comprising printing apertures and control electrodes.
    Said means for image-wise depositing toner particles can also be toner depositing means wherein first a latent image is formed. In such an apparatus, within the scope of the present invention, said means for image-wise depositing toner particles) comprise :
    • means for producing a latent image on a latent image bearing member,
    • means for developing said latent image by the deposition of said toner particles, forming a developed image and
    • means for transferring said developed image on said substrate.
    Said latent image may be a magnetic latent image that is developed by magnetic toner particles (magnetography) or, preferably, an electrostatic latent image. Such an electrostatic latent image is preferably an electrophotographic latent image and the means for producing a latent image are in this invention preferably light emitting means, e.g., light emitting diodes or lasers and said latent image bearing member comprises preferably a photoconductor.
    EXAMPLE 1. Preparation of the toner particles and the developers Yellow toner (Y)
    49 parts of a polyester with acid value AV of 17 mg KOH/g (number 2 of Table 1) and 49 parts of a polyester with AV of 18 mg KOH/g (number 3 of Table 1) were melt-blended for 30 minutes at 110 °C in a laboratory kneader with 2 parts of SICOECHTGELB D 1355 DD (Colour Index PY 13, trade name of BASF AG, Germany).
    After cooling the solidified mass was pulverized and milled using an ALPINE Fliessbettgegenstrahlmühle type 100AFG (tradename) and further classified using an ALPINE multiplex zig-zag classifier type 100MZR (tradename). The average particle size of the separated toner was measured by Coulter Counter model Multisizer (tradename) was found to be 8.0 µm by volume.
    To improve the flowability of the toner mass the toner particles were mixed with 0.5 % of hydrophobic colloidal silica particles (BET-value 130 m2/g).
    Magenta Toner (M)
    The preparation of the Yellow toner was repeated, but instead of 2 parts SICOECHTGELB PY13, 2 parts of PERMANENT CARMIN FFB 02 (Colour Index PR146, tradename of Hoechst AG, Germany) were used.
    Cyan toner (C)
    The preparation of the Yellow toner was repeated, but instead of 2 parts SICOECHTGELB PY13, 2 parts of HELIOGEN BLAU D7072DD (Colour Index PB15:3, trade name of BASF AG, Germany) were used.
    Black toner (K)
    The preparation of the Yellow toner was repeated, but instead of 2 parts SICOECHTGELB PY13, 2 parts of CABOT REGAL 400 (carbon black, trade name of the Cabot Corp. High Street 125, Boston, U.S.A.) were used.
    The four toners, Y, M, C and K had a meltviscosity at 120 ° C of 250 Pas (measured as described above at a frequency of 16 Hz.
    Clear toner (CT)
    68 parts of solid unsaturated polyester resin having a Tg ≥ 45 °C available from Hoechst High Chem, Hoechts-Sara, Pero (Mi) Italy under trade name ALFTALAT VAN 1743, 29 parts of an aliphatic urethane adduct with acrylic functional groups, having a Tg ≥ 52 °C, available from Hoechst High Chem, Hoechts-Sara, Pero (Mi) Italy under trade name ADDITOL 03546 and 3 parts of
    Figure 00140001
    available from Ciba-Ceigy, Basel, Switserland under tradename IRGACURE 651 were melt-blended for 30 minutes at 110 °C in a laboratory kneader.
    After cooling the solidified mass was pulverized and milled using an ALPINE Fliessbettgegenstrahlmühle type 100AFG (tradename) and further classified using an ALPINE multiplex zig-zag classifier type 100MZR (tradename). The average particle size of the separated toner was measured by Coulter Counter model Multisizer (tradename) was found to be 8.0 µm by volume. The clear toner CT had a meltviscosity at 120 °C of 195 Pas.
    To improve the flowability of the toner mass the toner particles were mixed with 0.3 % of hydrophobic colloidal silica particles (BET-value 130 m2/g).
    Developers
    Each of the above prepared toners were used to form carrier-toner developers by mixing said mixture of toner particles and colloidal silica in a 4 % ratio with silicone-coated Cu-Zn ferrite carrier particles having an average diameter of 55 µm.
    2. Printing Example
    Full colour toner images were produced using a commercial CHROMAPRESS (a trade name of Agfa-Gevaert NV, Mortsel, Belgium). The images were covered with a layer of clear toner such that 0.9 mg/cm2 clear toner was present.
    The fusing took place with radiant heat (a IR-lamp) at 120 °C and the fused tone layer was immediately, without cooling irradiated with a UV-lamp for 0.5 sec with a high pressure mercury lamp and intensity of 80 W/cm.
    A second image without UV-curing was also produced.
    The resistance of both images against solvents was tested by rubbing the image 10 consecutive times with a cloth soaked with MEK (methylethyleketone). The UV-cured image, whereas the non-cured image disappeared after rubbing once.
    The UV-cured image showed an even high gloss of more than 90 % when measured under an angle of 60 ° with a gloss measuring device (MINOLTA MULTI-GLOSS 268, trade name of Minolta, Osaka, Japan).

    Claims (10)

    1. Toner particles comprising a toner resin characterised in that said toner further comprises a radiation curable compound having a Tg ≥ 35 °C.
    2. Toner particles according to claim 1, wherein said toner resin is a radiation curable resin having a Tg ≥ 35 °C.
    3. Toner particles according to claim 1 or 2, wherein said radiation curable compound is an UV-curable resin and said toner particles further comprise a photoinitiator.
    4. Toner particles according to claim 3, wherein said UV-curable resin is a member selected from the group consisting of unsaturated polyester/polyurethaneacrylate mixture and unsaturated polyester/polyurethane-vinylether mixture.
    5. Toner particles according to claim 3 or 4, wherein said photoinitiator is a member selected from the group of triarylsulphonium salts, triarylsulphoniumhexafluorophosphate, benzophenones, 2-hydroxy-2-methyl-1-phenyl-propan-1-one,
      Figure 00160001
      Figure 00170001
    6. Toner particles according to any of claims 1 to 5, wherein said toner particles are clear toner particles.
    7. A method for forming a toner image on a substrate comprising the steps of :
      i) image-wise depositing toner particles comprising a radiation curable resin having a Tg ≥ 35 °C on said substrate,
      ii) fusing said toner particles on said substrate and
      iii) radiation curing said fused toner particles.
    8. A method for forming a toner image on a substrate comprising the steps of :
      i) image-wise depositing toner particles on a substrate,
      ii) depositing clear toner particles, comprising a radiation curable resin having a Tg ≥ 35 °C on top of said image-wise deposited toner particles,
      iii) fusing said toner particles on said substrate and
      iv) radiation curing said fused toner particles.
    9. An apparatus for forming toner images on a substrate comprising :
      i) means for image-wise depositing toner particles comprising a radiation curable resin having a Tg ≥ 35 °C on a substrate,
      ii) means, comprising infra-read radiators, for fusing said toner particles on said substrate and
      iii) means, comprising UV-light emitters, for on-line radiation curing said fused toner particles.
    10. An apparatus according to claim 9, wherein said apparatus comprises a fixing/curing station wherein said means for fusing said toner particles and said means for radiation curing are combined.
    EP19970201977 1996-07-26 1997-06-27 Method for forming a toner image on an image receiving substrate using UV curable particles Expired - Lifetime EP0821281B1 (en)

    Priority Applications (1)

    Application Number Priority Date Filing Date Title
    EP19970201977 EP0821281B1 (en) 1996-07-26 1997-06-27 Method for forming a toner image on an image receiving substrate using UV curable particles

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    EP96202126 1996-07-26
    EP96202126 1996-07-26
    EP19970201977 EP0821281B1 (en) 1996-07-26 1997-06-27 Method for forming a toner image on an image receiving substrate using UV curable particles

    Publications (2)

    Publication Number Publication Date
    EP0821281A1 true EP0821281A1 (en) 1998-01-28
    EP0821281B1 EP0821281B1 (en) 2003-05-07

    Family

    ID=26143043

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP19970201977 Expired - Lifetime EP0821281B1 (en) 1996-07-26 1997-06-27 Method for forming a toner image on an image receiving substrate using UV curable particles

    Country Status (1)

    Country Link
    EP (1) EP0821281B1 (en)

    Cited By (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2001001201A1 (en) * 1999-06-28 2001-01-04 Schott Glas Method for applying a coating to a surface of a material
    WO2001001202A1 (en) * 1999-06-28 2001-01-04 Schott Glas Coating material and method for producing a coating material
    US6461782B1 (en) 1998-03-11 2002-10-08 Sanyo Chemical Industries, Ltd. Toner and method for image formation
    EP1341048A1 (en) * 2002-02-28 2003-09-03 Xerox Corporation Curing processes
    EP1437628A1 (en) * 2003-01-07 2004-07-14 Xeikon International N.V. UV curable toner particles and toners and developers comprising these
    WO2005109110A1 (en) * 2004-05-10 2005-11-17 Hewlett-Packard Development Company L.P. Uv protective layer for printed inks
    WO2005116778A1 (en) * 2004-05-26 2005-12-08 Punch Graphix International N.V. Radiation curable toner composition
    EP1610186A2 (en) * 2004-06-25 2005-12-28 Xerox Corporation Electron beam curable toners and processes thereof
    EP1793281A1 (en) * 2005-11-30 2007-06-06 Xerox Corporation Toner composition and method
    EP1959304A3 (en) * 2007-02-16 2009-09-09 Xerox Corporation Curable Toner Compositions and Processes
    JP2013057868A (en) * 2011-09-09 2013-03-28 Fuji Xerox Co Ltd Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, and image forming apparatus

    Citations (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0250139A2 (en) * 1986-06-11 1987-12-23 Kao Corporation Electrophotographic developer
    WO1989009433A1 (en) * 1988-03-23 1989-10-05 Olin Corporation Electrostatic method for multicolor imaging from a single toner bath
    EP0344308A1 (en) * 1987-11-06 1989-12-06 MITSUI TOATSU CHEMICALS, Inc. Resin for toner and toner containing same
    US5212526A (en) * 1991-11-27 1993-05-18 Xerox Corporation Process and apparatus for transferring and fusing an image to a recording medium
    EP0601235A1 (en) * 1992-12-07 1994-06-15 Agfa-Gevaert N.V. Toner composition suited for fixing by non-contact fusing
    EP0667381A2 (en) * 1994-02-09 1995-08-16 Ciba-Geigy Ag Ultraviolet curable solid epoxy resin compositions
    US5466556A (en) * 1993-05-14 1995-11-14 Brother Kogyo Kabushiki Kaisha Photosensitive microencapsulated toner

    Patent Citations (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0250139A2 (en) * 1986-06-11 1987-12-23 Kao Corporation Electrophotographic developer
    EP0344308A1 (en) * 1987-11-06 1989-12-06 MITSUI TOATSU CHEMICALS, Inc. Resin for toner and toner containing same
    WO1989009433A1 (en) * 1988-03-23 1989-10-05 Olin Corporation Electrostatic method for multicolor imaging from a single toner bath
    US5212526A (en) * 1991-11-27 1993-05-18 Xerox Corporation Process and apparatus for transferring and fusing an image to a recording medium
    EP0601235A1 (en) * 1992-12-07 1994-06-15 Agfa-Gevaert N.V. Toner composition suited for fixing by non-contact fusing
    US5466556A (en) * 1993-05-14 1995-11-14 Brother Kogyo Kabushiki Kaisha Photosensitive microencapsulated toner
    EP0667381A2 (en) * 1994-02-09 1995-08-16 Ciba-Geigy Ag Ultraviolet curable solid epoxy resin compositions

    Cited By (15)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6461782B1 (en) 1998-03-11 2002-10-08 Sanyo Chemical Industries, Ltd. Toner and method for image formation
    WO2001001201A1 (en) * 1999-06-28 2001-01-04 Schott Glas Method for applying a coating to a surface of a material
    WO2001001202A1 (en) * 1999-06-28 2001-01-04 Schott Glas Coating material and method for producing a coating material
    EP1341048A1 (en) * 2002-02-28 2003-09-03 Xerox Corporation Curing processes
    EP1437628A1 (en) * 2003-01-07 2004-07-14 Xeikon International N.V. UV curable toner particles and toners and developers comprising these
    WO2005109110A1 (en) * 2004-05-10 2005-11-17 Hewlett-Packard Development Company L.P. Uv protective layer for printed inks
    WO2005116778A1 (en) * 2004-05-26 2005-12-08 Punch Graphix International N.V. Radiation curable toner composition
    EP1610186A2 (en) * 2004-06-25 2005-12-28 Xerox Corporation Electron beam curable toners and processes thereof
    EP1610186A3 (en) * 2004-06-25 2008-07-23 Xerox Corporation Electron beam curable toners and processes thereof
    EP1793281A1 (en) * 2005-11-30 2007-06-06 Xerox Corporation Toner composition and method
    US7494755B2 (en) 2005-11-30 2009-02-24 Xerox Corporation Toner composition and method
    US7695879B2 (en) 2005-11-30 2010-04-13 Xerox Corporation Toner composition and method
    EP1959304A3 (en) * 2007-02-16 2009-09-09 Xerox Corporation Curable Toner Compositions and Processes
    US8039187B2 (en) 2007-02-16 2011-10-18 Xerox Corporation Curable toner compositions and processes
    JP2013057868A (en) * 2011-09-09 2013-03-28 Fuji Xerox Co Ltd Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, and image forming apparatus

    Also Published As

    Publication number Publication date
    EP0821281B1 (en) 2003-05-07

    Similar Documents

    Publication Publication Date Title
    US5905012A (en) Radiation curable toner particles
    EP1930780B1 (en) Rounded radiation curable toner and method for fusing and curing the same
    US4931370A (en) Color toner composition for developing electrostatic images
    JP4937115B2 (en) Radiation curable toner composition
    US8455166B2 (en) UV curable toner with improved scratch resistance
    US7208257B2 (en) Electron beam curable toners and processes thereof
    EP0821281B1 (en) Method for forming a toner image on an image receiving substrate using UV curable particles
    JP3764809B2 (en) Radiation curable toner particles
    US8843049B2 (en) Electrophotographic image forming method
    US5837406A (en) Toner image resistant to scratching
    BRPI0703902B1 (en) process for reproduction of micr or non-micr electrostatic magnetic images of two independent latent electrostatic images
    US5888689A (en) Method for producing cross-linked fixed toner images
    EP0823670A1 (en) Toner image with on top of it a radiation cured layer
    EP1437628A1 (en) UV curable toner particles and toners and developers comprising these
    US5837416A (en) Toner particles comprising specified polymeric beads in the bulk of the toner particles
    JPH07219266A (en) Formation method of picture
    EP0801333A2 (en) Toner composition
    EP0821280A1 (en) Method for producing cross-linked fixed toner images
    JPH07104505A (en) Dry-type electrostatic copying toner particle
    JP3945199B2 (en) Toner for electrostatic latent image development, developer and image forming method
    JPH1078675A (en) Crosslinked and fixed toner image forming method
    US5905006A (en) Toner image resistant to cracking
    EP0810482B1 (en) A toner image resistant to scratching
    EP0811887B1 (en) Toner particles comprising specified polymeric beads in the bulk of the toner particles
    JP3134059B2 (en) Scratch resistant toner image

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    Kind code of ref document: A1

    Designated state(s): BE DE FR GB

    17P Request for examination filed

    Effective date: 19980728

    RBV Designated contracting states (corrected)

    Designated state(s): BE DE FR GB

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: XEIKON NV

    17Q First examination report despatched

    Effective date: 20010220

    RTI1 Title (correction)

    Free format text: METHOD FOR FORMING A TONER IMAGE ON AN IMAGE RECEIVING SUBSTRATE USING UV CURABLE PARTICLES

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    RTI1 Title (correction)

    Free format text: METHOD FOR FORMING A TONER IMAGE ON AN IMAGE RECEIVING SUBSTRATE USING UV CURABLE PARTICLES

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: XEIKON INTERNATIONAL N.V.

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): BE DE FR GB

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030507

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    REF Corresponds to:

    Ref document number: 69721655

    Country of ref document: DE

    Date of ref document: 20030612

    Kind code of ref document: P

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040210

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20140619

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20150619

    Year of fee payment: 19

    Ref country code: GB

    Payment date: 20150618

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20160229

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150630

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 69721655

    Country of ref document: DE

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20160627

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170103

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160627