EP0754072A1 - A device for local drug delivery and methods for using the same - Google Patents

A device for local drug delivery and methods for using the same

Info

Publication number
EP0754072A1
EP0754072A1 EP95910886A EP95910886A EP0754072A1 EP 0754072 A1 EP0754072 A1 EP 0754072A1 EP 95910886 A EP95910886 A EP 95910886A EP 95910886 A EP95910886 A EP 95910886A EP 0754072 A1 EP0754072 A1 EP 0754072A1
Authority
EP
European Patent Office
Prior art keywords
substance
dehvery
lumen
tube
segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95910886A
Other languages
German (de)
French (fr)
Other versions
EP0754072A4 (en
EP0754072B1 (en
Inventor
Stephen R. Hanson
Neal A. Scott
Spencer B. King, Iii
Laurence A. Harker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Emory University
Original Assignee
Emory University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emory University filed Critical Emory University
Priority to DK95910886T priority Critical patent/DK0754072T3/en
Publication of EP0754072A1 publication Critical patent/EP0754072A1/en
Publication of EP0754072A4 publication Critical patent/EP0754072A4/en
Application granted granted Critical
Publication of EP0754072B1 publication Critical patent/EP0754072B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/064Blood vessels with special features to facilitate anastomotic coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0068Static characteristics of the catheter tip, e.g. shape, atraumatic tip, curved tip or tip structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0102Insertion or introduction using an inner stiffening member, e.g. stylet or push-rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0067Means for introducing or releasing pharmaceutical products into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M2025/0063Catheters; Hollow probes characterised by structural features having means, e.g. stylets, mandrils, rods or wires to reinforce or adjust temporarily the stiffness, column strength or pushability of catheters which are already inserted into the human body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M25/0041Catheters; Hollow probes characterised by the form of the tubing pre-formed, e.g. specially adapted to fit with the anatomy of body channels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0068Static characteristics of the catheter tip, e.g. shape, atraumatic tip, curved tip or tip structure
    • A61M25/007Side holes, e.g. their profiles or arrangements; Provisions to keep side holes unblocked

Definitions

  • This invention relates to a device for the local delivery of a substance into a natural tissue conduit to a predetermined site, e.g., a blood vessel, and to methods of therapy utilizing the device.
  • the invention relates to local delivery of a drug into the boundary layer of fluid flowing through a natural tissue conduit, thereby reducing the amount of drug needed to achieve a therapeutic concentration at a predetermined site, such as, e.g., an angioplasty site.
  • Graft failure is often associated with the inherent thrombogenicity of the blood contacting surface of the prosthetic device and with the body's own repair mechanisms which can lead to progressive stenotic occlusion due to neointimal fibrosis and hyperplasia.
  • Systemic therapy aimed at preventing coagulation and thrombosis locally at the graft site is often complicated by bleeding at other sites.
  • systemic treatment with growth mediators or chemotherapeutic agents can produce a hyperplastic or hypoplastic response in tissue not specifically targeted.
  • administration of vasodilators can produce systemic hypotension.
  • PTCA Percutaneous transluminal coronary angioplasty
  • Other PTCA catheters contain perforations in the wall of the PTCA balloon for infusion of drugs such as the Wolinsky catheter or the balloon within a balloon design seen in U.S. Patent No. 5,049,132.
  • These catheters often disrupt blood flow and reduce distal tissue perfusion.
  • Other catheters such as the Stack perfusion catheter and the catheter embodied in U.S. Patent No. 5,181,971 were designed to facilitate drug delivery without disrupting distal tissue perfusion.
  • the present invention satisfies the need to provide localized therapy to targeted tissues by providing a means to locally deliver a substance into any natural tissue conduit of the mammalian body and thereby provide localized therapy to targeted tissues.
  • Alternate embodiments of the invention can be utilized to provide local drug delivery to a predetermined site in any conduit, including but not limited to, lymphatic vessels, bile ducts, ureters, the intestinal tract, and the respiratory tree.
  • a transitional cell carcinoma of the bladder can be effectively treated with chemotherapeutic agents by insertion of the device of the present invention into a ureter and administering the appropriate drug.
  • Substances delivered into the boundary layer of fluid flowing through the tissue conduit greatly reduce the amount of the substance needed to achieve a therapeutic result at the target treatment area.
  • the drug delivery device is a low profile, indwelling infusion catheter comprised of a specially designed substance delivery segment for delivery of a substance to a predetermined site within a natural tissue conduit in the mammalian body.
  • the substance delivery segment allows for direct delivery of a substance, e.g., a drug, to the boundary layer of fluid flowing through the conduit without disrupting normal fluid flow through the conduit.
  • thrombus formation can be prevented at a coronary angioplasty site by delivering small amounts of an anticoagulant directly to the PTCA site utilizing the methods of and devices of the invention.
  • the present invention also provides a device for local delivery of a drug to a graft site comprised of a vascular graft with a porous portion and a reservoir for the drug attached to the external surface of the graft and overlying the porous portion such that the interior of the reservoir is in fluid communication with the luminal, blood flow contacting surface of the vascular graft via the porous portion wherein a drug placed in the reservoir is delivered to the luminal surface of the graft.
  • the present invention also provides a vascular patch constructed in like fashion.
  • One embodiment of the present invention provides a tubing attached to and in communication with the reservoir such that the reservoir can be refilled with drug or the drug changed as therapeutic needs change.
  • Another embodiment of the invention further comprises a pump connected to the tubing to deliver drug to the reservoir and to maintain a desired pressure within the reservoir.
  • the present invention also provides methods for treating or preventing, including but not limited to, coagulation, thrombus formation, fibrosis and restenosis associated with vascular prosthetic devices.
  • FIG. 1 is a perspective view of the first embodiment of the present invention showing the local drug delivery device as a catheter.
  • FIG. 2 is a longitudinal cross-sectional view of the first embodiment showing a guidewire inserted in the lumen of the catheter.
  • FIG. 3 is a cross-sectional view of the catheter taken along lines 3-3 in FIG. 2.
  • FIG. 4 shows a perspective view of the first embodiment deployed at a stenotic lesion in an artery with the substance delivery segment in the third position.
  • FIG. 6 is a cross-sectional view of the first embodiment taken along lines 6-6 in FIG. 4 showing one possible location of the substance delivery holes.
  • FIG. 7 is a cross-sectional view of the first embodiment taken along lines 7-7 in FIG. 5 depicting a second possible location of the substance delivery holes.
  • FIG. 8 is a cross-sectional view of the first embodiment depicting a third possible location of the substance delivery holes.
  • FIG. 9 is a longitudinal cross-sectional view of the second embodiment of the present invention showing the local drug delivery device as a catheter having a guidewire inserted in the first lumen of the catheter.
  • FIG. 10 is a cross-sectional view of the second embodiment taken along lines 10-10 in FIG. 9 showing one possible configuration of the first and second lumens.
  • FIG. 11 is a cross-sectional view of the second embodiment depicting a second possible configuration of the first and second lumens.
  • FIG. 12 is a cross-sectional view of the second embodiment taken along approximately the same position as lines 10-10 in Fig. 9 depicting a third possible configuration of the first and second lumens.
  • FIG. 13 is a perspective view of the third embodiment of the present invention.
  • FIG. 14 is a cross-sectional view of the fourth embodiment of the present invention.
  • FIG. 15 is a graph showing thrombus inhibition on a DACRON® graft by administration of PPACK in a baboon ex vivo shunt model via conventional systemic intravenous and local infusion routes after 30 minutes of blood exposure.
  • FIG. 16 is a graph showing inhibition of platelet deposition on a DACRON® graft by local infusion of PPACK in a baboon ex vivo shunt model over 30 minutes post blood exposure using the devices described herein.
  • the present invention provides a device for the local delivery of a substance at a predetermined site in a natural tissue conduit in the mammalian body.
  • natural tissue conduit means any area of the mammalian body which functions to transport substances and includes, but is not limited to, e.g., blood vessels of the cardiovascular system (arteries and veins), vessels of the lymphatic system, the intestinal tract (esophagus, stomach, the small and large intestines, and colon), the portal- caval system of the liver, the gall bladder and bile duct, the urinary system (ureters, bladder and urethra), the respiratory system (trachea, bronchi, and bronchioles), and ducts and ductules connecting endocrine organs to other areas of the body.
  • the devices of the present invention can be used in any mammal or in any animal in which natural tissue conduits are found.
  • the devices described herein can also be referred to interchangeably as "catheters" and are designed for intraluminal (e.g., endovascular) use in the natural tissue conduits of the mammalian body described above.
  • the phrase "predetermined site” can mean any site within, or accessible by the natural tissue conduit.
  • the predetermined site can be the site where the substance delivery segment of the device is deployed (positioned) within the conduit and can include diseased as well as healthy sections of the conduit.
  • the predetermined site can be proximal (upstream) of a diseased segment of the natural tissue conduit.
  • the predetermined site can be a site selected for deployment of the substance delivery segment which allows treatment of a target treatment area or organ distal (downstream) of the deployment site which is accessible for therapy via a fluid flowing through the conduit.
  • the phrase "predetermined site” can also refer to the location within the lumen of the conduit (relative to the cross-sectional diameter thereof) at which a substance is delivered into the lumen of the conduit
  • the predetermined site can be the boundary layer of a fluid flowing through the conduit.
  • the "boundary layer” typically comprises an annular ring at the fluid-conduit interface which occupies only about 5% of the conduit cross- sectional area.
  • target treatment area is meant to include any area intended to receive a beneficial or therapeutic effect of a substance administered by the devices described herein.
  • the target treatment area can be a stenotic lesion in a blood vessel, a developing thrombus, a PTCA site, a localized tumor or the like.
  • the first embodiment of the device 10 comprises an elongated flexible tube 12 of a preselected length and diameter.
  • the length and the diameter of the tube 12 will vary, of course depending upon the size of the conduit and the distance between the point of entry therein and the predetermined site where the device 10 is to be deployed.
  • a typical length for a catheter designed for intracardiac deployment via the femoral artery in a human adult can be between about 80 and 200 cm long with an inside tube diameter of between about 1.0 and 4.5 mm
  • a catheter designed for use in the proximal urethra of an adult male would be between about 5 and 40 cm long and about .1 and 3.0 mm in diameter.
  • the tube 12 has a body portion 11, an internal surface 13, an external surface 14, a proximal end 16, and an opposite distal end 18.
  • a lumen 20 extends longitudinally through the tube 12 interconnecting the proximal and distal ends 16,18.
  • the proximal end 16 defines an opening 17 and the distal end 18 defines an opening 19 into the lumen 20 of the tube 12.
  • the tube 12 has a substance delivery segment 22 adjacent the distal end 18 which defines a plurality of substance delivery holes 24 through the external surface 14 of the tube 12 which are in fluid communication with the lumen 20 of the tube 12.
  • a substance e.g., a fluid 25 containing a drug
  • the substance introducing means 35 shown in FIGS. 1-2 comprises an infusion port 36 which is in fluid communication with the lumen 20 of the tube 12 adjacent the proximal end 16 thereof.
  • the lumen 38 of the infusion port 36 is integrally formed with the lumen 20 of the tube 12 in a branched configuration.
  • the external surface 14 of the tube 12 is contiguous with the external surface 40 of the infusion port 36 and the internal surface 13 of the tube 12 is contiguous with the internal surface 39 of the infusion port 36.
  • the lumen 38 of the infusion port 36 opens into a conically shaped female receptacle 42.
  • the female receptacle 42 is designed to removably receive therein a complimentary shaped male plug 44 having a central lumen (not shown) which aligns coaxially with the lumen 38 of the infusion port 36 forming a fluid tight junction.
  • the central lumen of the male plug 44 is in fluid communication with a remote fluid source (not shown) via a tube 46, the lumen (not shown) of which is coaxially aligned with the central lumen of the male plug 44 and lumen 38 of infusion port 36.
  • a fluid 25 containing a desired substance e.g., a drug
  • a desired substance e.g., a drug
  • the substance containing fluid 25 can pass through the introducing means 35, through the lumen 20, through the substance delivery holes 24 to a predetermined site within a natural tissue conduit (not shown).
  • the fluid 25 can be introduced into the device 10 by any of a number of other possible means.
  • the fluid 25 can be introduced directly into the opening 17 defined by the proximal end 16 of the tube 12.
  • the infusion port 36 can have any of a number of possible configurations for connection of the remote substance source including, but not limited to, luer lock connectors, snaplock connectors, injection sites, and valved connectors.
  • the substance delivery holes 24 can also be configured in any of a variety of shapes. In the embodiment shown in FIGS. 1-2, the substance delivery holes 24 are round, however, they can also be configured as slit openings through the external surface 14 of the tube 12 which normally remain closed unless fluid 25 is being infused therethrough.
  • the substance delivery holes 24 can also be configured as rectangular openings.
  • the substance delivery segment 22 is moveable among at least three positions but is normally at rest in a first or rest position which has a first shape (as shown in FIG. 1).
  • the first shape of the substance delivery segment 22 comprises a plurality of spiral turns about the longitudinal axis of the device 10 such that the substance delivery segment 22 forms a hollow coil.
  • the substance delivery segment 22 can be made to assume a second position wherein it has a second shape which is substantially linear (as shown in FIG. 2).
  • a moving means 26 must be applied to the substance delivery segment 22 to cause movement thereof from the first to the second position.
  • substantially linear is meant that the substance delivery segment 22 can assume the linear configuration of the flexible guidewire 28 (or stylette shown in FIG. 14) which is inserted into the lumen 20 of the tube 12.
  • the substance delivery segment 22 tends to return to the first position, it exerts a force upon the guidewire 28, such that the uncoiled substance delivery segment 22 takes on a wavy appearance when positioned over the guidewire 28.
  • the guidewire 28 must be flexible yet of sufficient stiffness to maintain the substance delivery segment 22 in the second position.
  • the substance delivery segment 22 is maintained in the second position by the moving means 26 which comprises a guidewire 28 having a distal tip 30 which has been inserted into the opening 17 in the proximal end 16 of the tube 12, through the lumen 20, and through the opening 19 of the distal end 18.
  • the guidewire 28 has a first portion 32 which terminates into an upwardly directed second portion 34 which, in turn, terminates into the distal tip 30.
  • the resulting angled attitude of the guidewire tip 30 relative to the longitudinal axis of the tube 12 can be used to direct the device 10 during placement of the substance delivery segment 22 at the predetermined site, e.g., into a branch or bifurcation of an artery or vein.
  • the substance delivery segment 22 tends to return to the first, rest (memory) position when the moving means 26 is no longer applied thereto.
  • the substance delivery segment 22 Upon deployment within a conduit, the substance delivery segment 22 will typically move to a third or operative position which is intermediate the first and second positions as is shown in FIGS. 4-5.
  • the third shape of the substance delivery segment 22 is substantially similar to the hollow coiled configuration of the first shape (shown in FIG. 1).
  • the diameter of the hollow coil can be the same or slightly less than the diameter of the hollow coil when the substance delivery segment 22 is in the first position.
  • the substance delivery holes 24 are aligned in the virtually the same orientation in the first and third positions.
  • the substance delivery segment 22 assumes the third position when the moving means 26 is no longer applied thereto, such that the substance delivery segment 22 is capable of exerting a force against the luminal surface 48 of the natural tissue conduit 50, the force being sufficient to anchor the substance delivery segment 22 at the predetermined site within the lumen 49 of the natural tissue conduit 50.
  • the force exerted against the luminal surface 48 is sufficiently great enough to hold the substance delivery segment 22 in a stationary position within the lumen 50 after withdrawal of the guidewire 28, however the force is not so great as to damage the luminal surface 48 of the conduit 50.
  • the proximal end 16 and distal end 18 of the tube 12 define openings 17, 19 into the lumen 20 of the tube 12.
  • the openings 17, 19 defined by the proximal and distal ends 16, 18 of the tube 12 are moveable between a closed position (not shown) which forms a fluid tight seal of the internal surface 13 at each end 16, 18 and an open position which allows a guidewire 28 to pass through the openings 17, 19.
  • the body portion 11 of the tube 12 forms a thickened annulus 37 at the distal end 18.
  • the opening 19 defined by the distal end 18 at the thickened annulus 37 assumes the normally closed position and forms a fluid tight seal of the internal surfaces 13 which overlie the annulus 37 so that a fluid 25 infused through the device 10 will be delivered into the boundary layer of fluid flowing through the lumen 49 of the natural tissue conduit 50 (i.e., the layer of fluid flow adjacent the luminal surface 48 of the conduit 50).
  • the body portion 11 of the tube 12 is also thickened at the proximal end 16 to form a neck 23 which also remains in a normally closed position when the guidewire is not inserted therethrough thereby forming a fluid tight seal of internal surface 13 which overlies the neck 23.
  • the openings 17, 19 defined by the proximal and distal ends 16, 18 can be designed to remain in an open configuration or either one of the openings 17, 19 can move between open and closed positions as described above.
  • proximal opening 17 of the tube 12 is funnel or conically shaped to allow for easy insertion of the guidewire 28 into the lumen 20.
  • the body portion 11 of the tube 12 flares into a conical shape proximal to the neck 23 thereby increasing the diameter of the internal surface 13 at the proximal end 16.
  • the substance delivery holes 22 can be positioned on the substance delivery segment 22 at any of a number of preselected locations on the hollow coil formed by the substance delivery segment 22 when it is in the third or deployed position within the lumen 49 of the natural tissue conduit 50.
  • the preselected location can be at any of a number of possible configurations on the substance delivery segment 22.
  • the substance delivery holes 24a (shown in FIG. 6) can be positioned so as to be juxtaposed to the luminal surface 48 of the conduit 50 such that a fluid 25 delivered therethrough directly contacts the luminal surface 48 of the tissue conduit 50 so that the fluid 25 is delivered directly into the wall of the conduit 50.
  • the devices described herein can be utilized to locally deliver drugs directly into the lesion in an artery created by PTCA.
  • the preselected location of the substance delivery holes 24b (shown in FIG. 7) can be such that the holes 24b are adjacent to the luminal surface 48 of the conduit 50 such that a fluid 25 delivered therethrough is delivered into the lumen 49 of the natural tissue conduit 50 adjacent the luminal surface 48 thereof.
  • the preselected location of the substance delivery holes 24c (shown in FIG. 8) can also be such that the holes are opposite a portion of the external surface 14 of the substance delivery segment 22 which contacts the luminal surface 48 of the conduit 50 so that a fluid 25 delivered therethrough is delivered into the lumen 49 of the natural tissue conduit 50.
  • the delivery of a fluid 25 through the substance delivery holes 24b- c places the substance into the boundary layer of fluid flow through the natural tissue conduit 50.
  • FIGS. 9-12 depict a second embodiment of the invention which can also be utilized for the local delivery of a substance to a predetermined site within a natural tissue conduit within the mammalian body.
  • the device 110 is similar to the device shown in FIGS. 1-8 except that it further comprises two separate lumens 120, 121 within the tube 112, a first lumen 120 for the passage of a guidewire 128 therethrough, and a second lumen 121 for substance delivery.
  • the device 110 comprises an elongated flexible tube 112 of a preselected length and diameter.
  • the preselected length and diameter of the devices described herein can vary depending upon a variety of factors.
  • the tube 112 has an external surface 114, a proximal end 116, an opposite distal end 118, and a first lumen 120 extending longitudinally therethrough interconnecting the proximal and distal ends 116, 118.
  • the tube 112 has a substance delivery segment 122 adjacent the distal end 118 which defines a plurality of substance delivery holes 124 through the external surface 114 of the tube 112.
  • An infusion port 136 is located adjacent the proximal end 116 of the tube 112.
  • a second lumen 121 is located within the body of the tube 112 which interconnects the infusion port 136 with the substance delivery holes 124.
  • a layer of tubing material 115 having first and second surfaces 152, 154 separates the first and second lumens 120, 121 along the longitudinal axis of the tube 112.
  • the second lumen 121 is defined laterally by the internal surface 113 of the tube 112 and medially by the second surface 154 of the tubing material 115.
  • the second lumen 121 does not extend the entire length of the tube 112, rather it terminates distally at a point 127 where surfaces 113 and 154 meet and proximally at a second point 129 where surfaces 113 and 154 meet.
  • the proximal and distal ends 116, 118 of the tube 112 are integrally formed and contiguous with the body portion 111 of the tube 112 and the internal tubing material 115 thereby forming a fluid tight seal of the proximal and distal ends of the second lumen 121 at points 127 and 129.
  • the second lumen 121 is in fluid communication with the substance delivery holes 124 and the infusion port 136 such that a substance, e.g., a fluid 125 containing a drug, can be delivered through the infusion port 136, the second lumen 121, and the substance delivery holes 124 to a predetermined site in a natural tissue conduit (not shown).
  • a substance e.g., a fluid 125 containing a drug
  • FIG. 10 is a cross-sectional view of the embodiment shown in FIG. 9 taken along lines 10-10 in FIG. 9.
  • the tubing material 115 has a first surface 152 which defines the first lumen 120 along the longitudinal axis of the tube 112.
  • the second surface 154 of the tubing material 115 defines the medial luminal surface of the second lumen 121 and the internal surface 113 of the tube 112 defines the lateral luminal surface of the second lumen 121.
  • the guidewire 128 is shown within the first lumen 120 of the tube 112.
  • FIGS. 11-12 show cross-sections of two other possible configurations. In FIG.
  • the internal tubing material 115 bifurcates the tube 112 such that the first and second surfaces 152, 154 of the tubing material 115 form medial surfaces for the first and second lumens 120, 121 respectively.
  • the internal surface 113 of the tube forms the lateral surfaces of the first and second lumens 120, 121.
  • the internal tubing material 115 and the external portion of the tube 112 are integrally formed into a single contiguous unit.
  • the guidewire 128 is shown within the first lumen 120.
  • the first lumen 121 can be eccentrically placed as shown in FIG. 12.
  • the proximal and distal ends 116, 118 further define openings 117, 119 in the first lumen 120.
  • the body portion 111 of the tube 112 forms a thickened annulus 137 at the distal end 118.
  • the body portion 111 of the tube 112 at the proximal end 116 is also thickened to form a neck 123.
  • the openings 117, 119 are moveable between a closed position (not shown) which forms a fluid tight seal of the first surface 152 of the first lumen 120 at each end 116, 118 and an open position which allows a guidewire 128 to pass through the openings 117, 119.
  • the opening 119 defined by the distal end 118 forms a fluid tight seal thereof.
  • the openings 117, 119 defined by the proximal and distal ends 116, 118 can be designed to remain in an open configuration or either one of the openings 117, 119 can move between open and closed positions.
  • the proximal opening 117 at the proximal end 116 of the tube 112 is funnel or conically shaped to allow for easy insertion of the guidewire 128 into the lumen 120.
  • the body portion 111 of the tube 112 flares into a conical shape proximal to the neck 123, thereby increasing the diameter of the first surface 152 of the first lumen 120 at the proximal end 116.
  • the substance delivery segment 122 is moveable among at least three positions: a first or resting position wherein it has a first shape (similar to the embodiment shown in FIG. 1); a second position wherein it has a second shape (as shown in FIG. 2); and a third or operative position operative position wherein it has a third shape (similar to the embodiment shown in FIGS. 4-5). The third position is intermediate the first and second positions.
  • the substance delivery segment 122 moves among the first, second and third positions in the same manner as the substance delivery segment shown in FIGS. 1, 2, 4 and 5 and previously described.
  • the substance delivery segment 122 is maintained in the second position by a moving means 126 which comprises a guidewire 128 having a distal tip 130 which has been inserted into the opening 117 at the proximal end 116 of the tube 112, through the first lumen 120, and out of the opening 119 at the distal end 118 thereof.
  • the guidewire 128 has a first portion 132 which terminates into an upwardly directed second portion 134 which, in turn, terminates in the distal tip 130.
  • the resulting angled attitude of the guidewire tip 130 relative to the longitudinal axis of the tube 112 can be used to direct the device 110 during placement of the substance delivery segment 122 at the predetermined site, e.g., into a branch of a bronchus, such as into a bronchiole.
  • a fluid 125 e.g., containing a substance such as a drug, can be infused through the substance delivery holes 124 by introducing the substance into the lumen 120 of the tube 112 for delivery into the natural tissue conduit via an introducing means 135 located adjacent the proximal end 116 of the tube 112.
  • the substance introducing means 135 shown in FIG. 9 comprises an infusion port 136 which is in fluid communication with the second lumen 121 of the tube 112 adjacent the proximal end 116 thereof.
  • the lumen 138 of the substance introducing means 135 is integrally formed with the second lumen 121 of the tube 112 in a branched configuration.
  • the external surface 114 of the tube 112 is contiguous with the external surface 140 of the infusion port 136.
  • the lumen 138 of the infusion port 136 opens into a conically shaped female receptacle 142.
  • the female receptacle 142 is designed to removably receive therein a complimentary shaped male plug 144 having a central lumen (not shown) which aligns coaxially with the lumen 138 of the infusion port 136 forming a fluid tight junction.
  • the central lumen of the male plug 144 is in fluid communication with a remote fluid source (not shown) via a tube 146, the lumen (not shown) of which is coaxially aligned with the central lumen (not shown) of the male plug 144.
  • a fluid 125 can be introduced into the second lumen 121 of the tube 112 by connecting the female receptacle 142 of the infusion port 136 to the complimentary male plug 142 of a remote fluid source and infusing the fluid 125 into the second lumen 121 by pumping, injecting, or utilizing gravity flow.
  • the present invention also provides alternative third and fourth embodiments of the drug delivery devices described herein (e.g., the embodiment shown in FIGS. 1-2) wherein the body portion 211 at the distal end 218 of the tube 212 forms a fluid tight seal of the lumen 220 of the tube 212 and the device 210 further comprises a guidewire 228 having a distal tip 230 which is mounted in the body portion 211 of the tube 212 at the distal end 218 thereof.
  • the guidewire 228 can also be mounted on the external surface 214 of the body portion 211 at the distal end 218 of the tube 212.
  • the guidewire 228 has an anchoring portion 233 with shoulders 231 which terminate into the first portion 232.
  • the anchoring portion 233 of the guidewire 228 is cast or molded into the distal end 218 of the body portion 211 of the tube 212.
  • the shape of the anchoring portion 229 can be selected from among many shapes and is not limited to the embodiment shown in FIG. 14.
  • the anchoring portion 233 is integrally formed with the first portion 232 which extends distally from the distal end 218 along the longitudinal axis of the tube 212 and terminates into an upwardly directed portion 234.
  • the upwardly directed portion 234 terminates in the distal tip 230.
  • the total length of the guidewire 228 can vary but is preferably about 4-5 cm.
  • the resulting angled configuration of the guidewire 228 can be used to direct the device 210 during placement of the substance delivery segment 222 within the lumen of the natural tissue conduit (not shown).
  • the embodiment of the device 210 shown in FIG. 13 also comprises an opening 260 through the external surface 214 of the tube 212 which is in fluid communication with the lumen 220 of the tube 212 such that at least a portion of a fluid 225 delivered into the lumen 220 of the tube 212 can pass into the natural tissue conduit through said opening 260.
  • a catheter i.e., any of the various embodiments of the devices described herein
  • a drug such as an anticoagulant to an angioplasty site in a coronary artery
  • a catheter designed for delivery of a drug such as an anticoagulant to an angioplasty site in a coronary artery can also include at least one opening 260 proximal to the substance delivery segment 222 for infusion of a small amount of the drug into the bloodstream just proximal to the substance delivery segment 222.
  • This opening 260 can be used to prevent platelet deposition, coagulation and thrombus formation from occurring on the surfaces of the catheter proximal to the substance delivery segment 222.
  • the opening 260 can be located at any point on the tube 212 between the substance delivery segment 222 and the proximal end 216 but is preferably located between about 0.2 and 40 cm proximal to the substance delivery segment 222.
  • the device 210 can have more than one openings 260 and the opening(s) 260 can be selected from among a variety of shapes including, but not limited to circular, rectangular, or of a slit configuration similar to the substance delivery holes described herein. As described for the first embodiment shown in FIGS. 1-8, the substance delivery segment 222 of FIGS.
  • 13-14 can be made to assume the second position and second shape which is substantially linear (as shown in FIG. 2). This allows the device 210 to easily traverse the lumen of a natural tissue conduit and reach the predetermined delivery site.
  • a moving means 226 must be applied to the substance delivery segment 222 to cause movement thereof from the first to the second position.
  • a stylette 239 having a distal tip 256 is inserted into the lumen 220 of the tube 212 and is passed through the substance delivery segment 222 so that the distal tip 256 is adjacent the distal end 218 of the tube 212.
  • the stylette 239 must be flexible to allow the device 210 mounted thereon to maneuver within the lumen of the tissue conduit, yet be of sufficient stiffness to maintain the substance delivery segment 222 in the second position during delivery to the predetermined site. It is also contemplated that the guidewire configuration and stylette of the alternative embodiment described above and shown in FIGS. 13-14 can be utilized in the embodiment shown in FIG. 9 in which the tube 112 comprises two lumens 120, 121.
  • the devices described herein can be fabricated from any resilient biocompatible material including, but not limited to, materials selected from the group consisting of polymer, synthetic rubber, natural rubber, metal and plastic or combinations thereof by methods known in the art.
  • the devices constructed from polymers or rubber can be molded or cast as a single element and can be cast such that the substance delivery segment (e.g, the substance delivery segment 22 shown in FIG. 1) is pre-fo ⁇ ned into the first shape such that the substance delivery segment normally rests in the first (or memory) position.
  • the polymers contemplated for use in fabrication of the devices of the invention can be either biodegradable or non-biodegradable polymers or combinations thereof.
  • suitable non-biodegradable polymers include, e.g., polyurethane, polyethylene, polyethylene terephthalate, polytetrafluoroethylene, ethylene vinyl acetate, polyimid, and nylon.
  • suitable biodegradable polymers include, polylactic acid and polyglycolic acid.
  • Suitable metals for construction of the devices described herein include, but are not limited to, metals selected from the group consisting of stainless steel, and tantalum, platinum and nitinol.
  • the substance delivery segment 22 (see FIGS. 1-5) is constructed from nitinol (nickel/titanium alloy) such that the nitinol in the substance delivery segment 22 is normally in the first position (i.e., the rest or memory position) as shown in FIG. 1 when the device is at room temperature, e.g., about 23-25 °C.
  • the substance delivery segment 22 can be made to assume the second position (wherein the second shape of the substance delivery segment 22 is substantially linear) by exposing the nitinol to a fluid having a temperature of between about 40-65 °C but preferably about 55 °C.
  • the substance delivery segment 22 is exposed to the heated fluid by infusing the heated fluid through the lumen 20 of the tube 12 either through the infusion port 36 or through the opening 17 at the proximal end 16 of the tube 12.
  • Suitable fluids which can be utilized to irrigate the nitinol substance delivery segment include, but are not limited to, fluids selected from the group consisting of ringer's solution, lactated ringer's solution, 5% dextrose solution, 10% dextrose solution, normal saline solution, Vz normal saline solution, 5% dextrose and V2 normal saline solution, and sterile water. These fluids also serve as examples of the fluids which can be utilized to cany a substance to the predetermined site by infusion through the devices as described herein. It is contemplated, however, that the guidewire 28 of FIGS.
  • 1-5 and 9 can be utilized as the moving means 26 and inserted through into the lumen 20 of the nitinol substance delivery segment 22 to assist in placement of the substance delivery segment 20 at the predetermined site within the lumen of the tissue conduit.
  • an alternative fifth embodiment of the invention provides a semi-permeable membrane 58 covering the external surface 14 of the substance delivery segment 22 and the substance delivery holes 24 defined therein.
  • the semi-permeable membrane 58 can be constructed from any biodegradable or non-biodegradable polymer including the examples of polymers previously discussed herein.
  • the delivery of a substance through the substance delivery holes 24 to the predetermined site can occur at a preselected rate through the semi-permeable membrane 58.
  • the preselected rate will very depending upon the permeability of the semi-permeable membrane 58 for the substance of choice and upon the pressure of the infused fluid which is applied to the upstream side of the membrane.
  • the preselected rate can be any flow rate but will typically be between about 0.01 and 1.0 ml/minute.
  • the devices described herein specifically provide a means for locally delivering a substance to the boundary layer of fluid flowing through a conduit into which they are deployed.
  • the devices described herein can be utilized to provide local drug delivery by utilizing arterial blood flow for prevention or treatment of any disease or condition distal to the site of arterial implantation of the device.
  • the devices of the present invention include, but are not limited to, local drug delivery to treat cancer or to maintain perfusion of tissue or organ transplants while the body establishes revascularization of the subject tissue, to prevent restenosis of a PTCA repair or to prevent platelet deposition, coagulation or thrombus formation on a prosthetic device implanted into the cardiovascular system.
  • the devices described herein are utilized in the cardiovascular system, local delivery of substances is achieved at the predetermined site without disrupting perfusion of tissues distal to the infusion site.
  • the present invention provides a method for providing local delivery of a substance to a predetermined site in a natural conduit in the mammalian body, comprising placing a substance delivery device in the lumen of the natural tissue conduit adjacent the predetermined site, the device being in a first position; and delivering the substance to the predetermined site through the substance delivery device wherein the device is in a second position without interrupting the flow of a fluid through the conduit.
  • the predetermined site is the boundary layer of fluid flowing through the natural tissue conduit and the device is selected from among the devices described herein.
  • one example of a method for providing local delivery of a substance to a predetermined site in a natural conduit in the mammalian body comprises the steps of: a) introducing the device 10 into the lumen 49 of the natural tissue conduit 50, the device 10 having been premounted on a guidewire 28 having a distal tip 30, wherein the guidewire 28 passes through the lumen 20 of the tube 12 such that the distal tip 30 of the guidewire 28 is adjacent the distal end 18 of the tube 12; b) advancing the guidewire 28 and premounted device 10 within the lumen 49 of the conduit 50 until the distal tip 30 of the guidewire 28 reaches the predetermined site; c) removing the guidewire 28 from the lumen 20 of the tube 12 thereby allowing the substance delivery segment 22 to assume the third position at the predetermined delivery site (as shown in FIGS.
  • substance i.e., a fluid 25 containing the substance
  • an alternative method for providing local delivery of the substances described herein to a predetermined site in a natural conduit in the mammalian body comprises the steps of: a) introducing a guidewire 28 having a proximal tip (not shown) and an opposite distal tip 30 into the lumen 49 of the natural tissue conduit 50 and advancing the distal tip 30 to the predetermined site, the proximal tip (not shown) remaining external of the body; b) inserting the proximal tip (not shown) of the guidewire 28 into the distal opening 17 of the lumen 20 of the device 10 and threading the device 10 over the guidewire 28 until the distal end 18 reaches the distal tip 30 of the guidewire 28, thereby causing the substance delivery segment 22 to be located adjacent the predetermined site; c) removing the guidewire 28 from the lumen 20 of the tube 12 thereby allowing the substance delivery segment 22 to assume the third position adjacent the predetermined delivery site; d) delivering the substance (i.e., a fluid 25
  • the substance delivery segment 22 of the device 10 is comprised of nitinol and the method further comprises, after the delivering step, the steps of: a) exposing the nitinol substance delivery segment 22 to a fluid having a temperature of between about 45 °C and 60 °C, thereby causing the substance delivery segment 22 to move from the third position to the second position; and b) removing the device 10 from the natural tissue conduit 50.
  • the substance delivered by the devices described herein can be any substance, including any drug, and the device can be used for local delivery of such substances to prevent or treat a variety of disease syndromes or to promote or enhance desired activity within the body.
  • the substance can be an anticoagulant, including but not limited to, heparin, hirudin, hirulog, hirugen, activated and non-activated protein C, synthetic or naturally occurring antagonists of thrombin, and Factor Xa, or other activated or non-activated coagulation protease inhibitors and coagulation factors, e.g., FIX, FVIII, FV, FVIIa and tissue factor.
  • the devices described herein can also be utilized to deliver a substance which inhibits platelet deposition and thrombus formation or promotes thrombolysis and thrombus dissolution.
  • a substance which inhibits platelet deposition and thrombus formation or promotes thrombolysis and thrombus dissolution include, but are not limited to, plasmin, tissue plasminogen activator (tPA), urokinase (UK), single chain prourokinase (scuPA), streptokinase, prostaglandins, cyclooxygenase inhibitors, phosphodiesterase inhibitors, thromboxane synthetase inhibitors; antagonists of glycoprotein receptors including (GP) Ib,GP Ilb/IIIa, antagonists of collagen receptors, and antagonists of platelet thrombin receptors.
  • tPA tissue plasminogen activator
  • scuPA single chain prourokinase
  • streptokinase prostaglandins
  • the substances delivered by the devices of the present invention can directly affect platelet metabolic function.
  • examples of such substances include, but are not limited to, prostaglandins, cyclooxygenase inhibitors, phosphodiesterase or thromboxane synthetase inhibitors, inhibitors of calcium transport, or elevators of cyclic adenosine monophosphate (cyclic AMP).
  • the devices of the invention can deliver a substance which prevents restenosis of a blood vessel
  • substances include, but are not limited to, a growth factor, a growth factor inhibitor, growth factor receptor antagonist, transcriptional repressor, translational repressor, antisense DNA, antisense RNA, replication inhibitor, inhibitory antibodies, antibodies directed against growth factors or their receptors, bifunctional molecules comprising a growth factor and a cytotoxin, and bifunctional molecules comprising an antibody and a cytotoxin.
  • the substance delivered by the devices of the present invention can also be a vasodilator, such as nitroglycerin, nitroprusside or other nitric oxide liberators.
  • the vasodilator can also include other suitable vasoactive agents such as beta receptor blocking drugs, inhibitors of intra-cellular calcium transport, prostaglandins, thromboxane antagonists, and the like.
  • the local drug delivery devices of the present invention can be utilized as the device which is placed into the natural tissue conduit in the methods of local drug delivery described above.
  • the methods of local drug delivery of the present invention can be utilized to deliver any substance into any natural tissue conduit in the mammalian body.
  • the methods described herein are meant to include any substance or drug which can be placed in the lumen of the devices described herein.
  • Certain other embodiments of the invention include methods for locally delivering a substance into a natural tissue conduit in the mammalian body wherein the substances are those substances and drugs previously described herein for preventing or treating restenosis, inhibiting platelet deposition and thrombus formation, promoting thrombolysis, or affecting vascular tone. It is also contemplated that the vasodilators and anticoagulants described herein can be utilized in the methods described above.
  • the methods for predicting downstream concentration of substances administered by the methods and devices of the present invention
  • one skilled in the art can determine suitable dosage requirements and treatment regimens for any substance to be delivered to the predetermined site. Dosages and regimens will vary, of course, depending upon the tissue targeted for therapy and upon the particular drug utilized.
  • the substances for preventing or treating restenosis, inhibiting platelet deposition, and thrombus formation and the vasodilators and anticoagulants described herein can be utilized in the methods for local drug delivery taught herein in amounts determined by the methods taught in the examples and by other optimization procedures known in the art.
  • One embodiment of the present invention provides a method for locally delivering a substance into a natural tissue conduit wherein the substance inhibits platelet deposition and thrombus formation on a prosthetic cardiovascular device which has been implanted in the cardiovascular system of a subject.
  • prosthetic cardiovascular device includes, but is not limited to, devices such as tubular synthetic grafts, extracorporeal circuits, artificial kidneys, ventricular assist devices, total heart prostheses or oxygenators.
  • the method can include, but is not limited to, any of the substances which inhibit platelet deposition and thrombus formation described herein.
  • the devices and methods of therapy described herein achieve very high drug concentrations locally while minimizing total drug requirements and circulating drug levels, therefore allowing for the efficient use of agents which are available in limited amounts or which could produce side effects.
  • the examples contained herein provide: 1) a theoretical analysis of the convective diffusion problem for the local infusion flow geometry; 2) in vitro studies with measurements of boundary layer drug concentrations distal to infusion sites; and 3) results of studies conducted utilizing a baboon ex vivo shunt system and the local delivery devices of the present invention to block distal thrombus formation.
  • the analysis predicts that when the drug-containing buffer is infused through the wall of the device described herein at a low rate (0.05-0.1 ml/min), then the wall concentration of drug at 1-5 cm downstream will be 10-20% of the drug concentration in the infusate, i.e., infused materials are diluted 80—90%, but achieve wall concentrations 200 times greater than would be obtained by infusing drug uniformly over the entire tube cross section. Infused material is confined to a very thin boundary layer (approximately 250 microns thick) along the tube wall. Wall drug concentration is therefore determined by the volume and concentration of drug infused.
  • the device utilized in the i vitro studies consisted of a short length (approximately 2 cm) of a standard expanded TEFLON® vascular graft (GORE-TEX®, 30 ⁇ internodal distance) having an inner diameter of 4.0 mm.
  • the preferred range of internodal distance can range from about 10 ⁇ to 90 ⁇ .
  • a silicone rubber cuff-reservoir was placed around the graft for infusion of agents through the graft wall, which, therefor, can enter the flow stream only at the portion of the reservoir overlying the graft interface.
  • Evan's blue dye was infused (0.05-0.1 ml min) with water flow through the device (30 ml/min) scaled for the viscosity difference between water and blood to simulate 100 ml/min blood flow.
  • Dye entered the lumenal space uniformly, around the entire graft circumference.
  • Dye sampling was performed using collection cuffs placed 1—3 cm downstream. Concentration values, obtained by colorimetric analysis, were within 10% of those predicted theoretically (presumably since the experimental flow conditions were not theoretically perfect). Nonetheless, the excellent agreement between theory and experiment confirmed that the theoretical analysis of boundary flow characteristics was accurate.
  • a local drug delivery device as described herein and provided by the present invention was inserted into the lumen of an extension segment of a baboon femoral arteriovenous shunt and the substance delivery segment was placed 2— 3 cm proximal to a segment of highly thrombogenic DACRON® vascular graft material. Blood flow through the extension segment was regulated at 100 ml/min, a value typical of those found in the carotid and iliac arteries of approximately 10 kg baboons.
  • the agent infused was the antithrombin D-Phe-Pro-Arg chloromethyl ketone (PPACK).
  • PPACK antithrombin D-Phe-Pro-Arg chloromethyl ketone
  • PPACK was mixed with isotonic saline which was infused at a concentration of 0.1 ⁇ g/min.
  • Total platelet deposition was measured over 30 minutes of blood exposure as determined by Indium-platelet imaging.
  • a dose-response curve for local and intravenous (i.v.) administration was virtually coincident for the PPACK infusion.
  • i.v. intravenous
  • These data imply only that the shape of the i.v. and local infusion dose-response curves for each agent are similar.
  • These data also allow determination of the relative efficiency of i.v. vs. local drug administration.
  • the local dose requirement of PPACK for inhibiting platelet thrombus formation was reduced approximately 400— fold (for local infusion vs.
  • I.V. infusion of PPACK at 45 ⁇ g/kg-min into 10 kg baboons having a plasma volume of -500 ml blocks thrombus formation and produces steady-state plasma levels of > 1 / tg ml with an apparent in vivo half life of PPACK of about 2.5 minutes (S.R. Hanson, et al, Proc NatlAcad Sci USA, 85:3184-3188, (1988)).
  • the boundary layer into which effectively all drug is concentrated 2— 3 cm downstream comprises an annular ring at the blood- vessel interface occupying only about 5% of the tube cross-sectional area.
  • total effective drug requirements at that area will be remarkably small.
  • PDGF-BB platelet derived growth factor
  • the dosage and treatment regimen for local delivery of the substance utilizing the devices of the present invention can be predicted. Further, while the pharmacokinetics of many agents may be complex, these issues are irrelevant for agents having half lives less than several hours, since drug recirculation will contribute very little to the boundary layer drug levels. These data indicate that the methods of the present invention have the advantage of providing local drug levels in known quantities to good approximation to target tissues.
  • an indwelling catheter 10 of the type shown in FIG. 1 having a substance delivery segment 22 was positioned in the lumen of the ex vivo extension segment approximately 2-3 cm proximal to the target delivery site (i.e the DACRON® graft) as is similarly depicted in FIG. 5 which shows the substance delivery segment 22 deployed proximal to an area of arterial stenosis.
  • the coiled configuration of the substance delivery segment 22 and position of the substance delivery holes 24 provided for delivery of infused PPACK directly into the boundary layer of blood flowing through the ex vivo shunt proximal to the DACRON® graft.
  • the PPACK was iirfused through the infusion port 36, through the lumen 20 of the tube 12, through the substance delivery holes 24, and into the lumen of the ex vivo shunt (not shown).
  • Infusion of PPACK at a rate of 1 ⁇ g/min effectively reduced thrombus formation on the DACRON® graft by 90% as compared to controls at 30 minutes of blood exposure. (See, FIG.
  • Platelet deposition on the DACRON® graft surface was measured over 30 minutes in ex vivo shunts in two groups.
  • the graft surface in one group of 3 animals was treated with local delivery of PPACK by infusion utilizing the indwelling catheters described herein at a rate of 1 ⁇ g/min.
  • This data was compared to a second group consisting of 21 control animals (see, FIG. 16).
  • Platelet deposition was measured as previously described using m Idium-platelet imaging. Platelets accumulated on the surface of the DACRON® graft in a exponential fashion in the control (untreated) animals. Treated animals (PPACK 1 ⁇ g/min), however, showed a 90% reduction in (or inhibition of) platelet deposition over 30 minutes.

Abstract

A device for the local delivery of a substance into a natural tissue conduit in the mammalian body. The device has a substance delivery segment which provides a means for locally delivering a substance into the boundary layer of fluid flowing through the conduit without disrupting the fluid flow therethrough. For example, an indwelling catheter is provided for endovascular delivery of a substance locally to a targeted treatment area. Also provided are methods of locally delivering a substance into a natural tissue conduit in the mammalian body utilizing the device of the present invention.

Description

A DEVICE FOR LOCAL DRUG DELIVERY AND METHODS FOR USING THE SAME
This invention was made with government support under Grant Number HL 31469 awarded by the National Institutes of Health. The Government has certain rights in the invention.
CROSSREFERENCETORELATEDAPPLICATION
This application is a continuation-in-part of now pending U. S.
Serial No. 08/046,622 filed on April 14, 1993, the contents of which are incorporated herein by reference.
FIELD OF THE INVENTION
This invention relates to a device for the local delivery of a substance into a natural tissue conduit to a predetermined site, e.g., a blood vessel, and to methods of therapy utilizing the device. In particular, the invention relates to local delivery of a drug into the boundary layer of fluid flowing through a natural tissue conduit, thereby reducing the amount of drug needed to achieve a therapeutic concentration at a predetermined site, such as, e.g., an angioplasty site.
BACKGROUND OF THE INVENTION
One of the most complex and difficult problems that has plagued the medical profession and pharmaceutical industry for decades is the problem of achieving a therapeutic concentration of a drug locally at a target site within the body without producing unwanted systemic side effects. Parenteral or oral therapy of substances directed at treating disease in a particular internal organ must often be given in amounts dependent upon achieving critical systemic blood levels that can produce devastating side effects at other areas in the body. A prime example of a situation where local therapy is needed with drugs that also produce unwanted systemic side effects is the prevention of complications following the placement of a cardiovascular prosthetic device such as a prosthetic vascular graft, patch, or stent used to repair a damaged vessel.
Graft failure is often associated with the inherent thrombogenicity of the blood contacting surface of the prosthetic device and with the body's own repair mechanisms which can lead to progressive stenotic occlusion due to neointimal fibrosis and hyperplasia. Systemic therapy aimed at preventing coagulation and thrombosis locally at the graft site is often complicated by bleeding at other sites. Likewise, systemic treatment with growth mediators or chemotherapeutic agents can produce a hyperplastic or hypoplastic response in tissue not specifically targeted. Similarly, administration of vasodilators can produce systemic hypotension.
There have been many attempts to render the vascular grafts themselves less thrombogenic, e.g., by coating the luminal surface of the graft with non-thrombogenic polymers (U.S. Patent No. 4,687,482), cells (U.S. Patent No. 5,037,378) or with anticoagulant drugs in a polymer coating (PCT Application WO 91/12279). Although these attempts have improved the success associated with graft placement, complications with clotting, thrombosis, and restenosis, especially that seen due to fibroplasia and smooth muscle proliferation, still abound.
Likewise, there have been many attempts to effectuate local drug delivery via endovascular means. Percutaneous transluminal coronary angioplasty (PTCA) balloon dilation catheters have been designed with coatings of drugs on the external surface of the balloon (e.g., U.S. Patent Nos. 5,102,402 and 5,199,951). Other PTCA catheters contain perforations in the wall of the PTCA balloon for infusion of drugs such as the Wolinsky catheter or the balloon within a balloon design seen in U.S. Patent No. 5,049,132. These catheters, however, often disrupt blood flow and reduce distal tissue perfusion. Other catheters such as the Stack perfusion catheter and the catheter embodied in U.S. Patent No. 5,181,971 were designed to facilitate drug delivery without disrupting distal tissue perfusion. These devices, however, are limited in their clinical applications, are bully, and cannot be anchored in the vessel proximal to the targeted treatment area or utilized in non-vascular applications.
Therefore, there exists a need in the art for a means and a method of providing local therapy which can sustain high local concentrations of therapeutic drugs at a predetermined site, e.g., a site of vessel repair, without producing unwanted systemic side effects. There especially exists a need to provide minimal concentrations of therapeutic agents directly to the boundary layer of blood flow near the vessel wall just proximal to a targeted treatment area which greatly reduces the amount of drug needed to achieve a therapeutic result.
There also exists a need to provide effective local therapy for treatment of cancer and other diseases in many areas of the body such that the chemotherapy can be localized to targeted tissues, thereby preventing unwanted systemic side effects from systemic administration.
SUMMARY OF THE INVENTION
The present invention satisfies the need to provide localized therapy to targeted tissues by providing a means to locally deliver a substance into any natural tissue conduit of the mammalian body and thereby provide localized therapy to targeted tissues. Alternate embodiments of the invention can be utilized to provide local drug delivery to a predetermined site in any conduit, including but not limited to, lymphatic vessels, bile ducts, ureters, the intestinal tract, and the respiratory tree. For example, a transitional cell carcinoma of the bladder can be effectively treated with chemotherapeutic agents by insertion of the device of the present invention into a ureter and administering the appropriate drug. Substances delivered into the boundary layer of fluid flowing through the tissue conduit (near the vessel wall) greatly reduce the amount of the substance needed to achieve a therapeutic result at the target treatment area.
In one embodiment, the drug delivery device is a low profile, indwelling infusion catheter comprised of a specially designed substance delivery segment for delivery of a substance to a predetermined site within a natural tissue conduit in the mammalian body. The substance delivery segment allows for direct delivery of a substance, e.g., a drug, to the boundary layer of fluid flowing through the conduit without disrupting normal fluid flow through the conduit.
Also provided are methods for locally delivering a substance to a predetermined site within a natural tissue conduit. For example, thrombus formation can be prevented at a coronary angioplasty site by delivering small amounts of an anticoagulant directly to the PTCA site utilizing the methods of and devices of the invention.
The present invention also provides a device for local delivery of a drug to a graft site comprised of a vascular graft with a porous portion and a reservoir for the drug attached to the external surface of the graft and overlying the porous portion such that the interior of the reservoir is in fluid communication with the luminal, blood flow contacting surface of the vascular graft via the porous portion wherein a drug placed in the reservoir is delivered to the luminal surface of the graft. The present invention also provides a vascular patch constructed in like fashion. One embodiment of the present invention, provides a tubing attached to and in communication with the reservoir such that the reservoir can be refilled with drug or the drug changed as therapeutic needs change. Another embodiment of the invention further comprises a pump connected to the tubing to deliver drug to the reservoir and to maintain a desired pressure within the reservoir. The present invention also provides methods for treating or preventing, including but not limited to, coagulation, thrombus formation, fibrosis and restenosis associated with vascular prosthetic devices.
BRIEF DESCRIPTION OF THE FIGURES OF THE DRAWINGS
FIG. 1 is a perspective view of the first embodiment of the present invention showing the local drug delivery device as a catheter.
FIG. 2 is a longitudinal cross-sectional view of the first embodiment showing a guidewire inserted in the lumen of the catheter.
FIG. 3 is a cross-sectional view of the catheter taken along lines 3-3 in FIG. 2.
FIG. 4 shows a perspective view of the first embodiment deployed at a stenotic lesion in an artery with the substance delivery segment in the third position.
FIG. 5 shows a perspective view of the first embodiment deployed at a predetermined site proximal to a stenotic lesion in an artery with the substance delivery segment in the third position.
FIG. 6 is a cross-sectional view of the first embodiment taken along lines 6-6 in FIG. 4 showing one possible location of the substance delivery holes.
FIG. 7 is a cross-sectional view of the first embodiment taken along lines 7-7 in FIG. 5 depicting a second possible location of the substance delivery holes.
FIG. 8 is a cross-sectional view of the first embodiment depicting a third possible location of the substance delivery holes. FIG. 9 is a longitudinal cross-sectional view of the second embodiment of the present invention showing the local drug delivery device as a catheter having a guidewire inserted in the first lumen of the catheter.
FIG. 10 is a cross-sectional view of the second embodiment taken along lines 10-10 in FIG. 9 showing one possible configuration of the first and second lumens.
FIG. 11 is a cross-sectional view of the second embodiment depicting a second possible configuration of the first and second lumens.
FIG. 12 is a cross-sectional view of the second embodiment taken along approximately the same position as lines 10-10 in Fig. 9 depicting a third possible configuration of the first and second lumens.
FIG. 13 is a perspective view of the third embodiment of the present invention.
FIG. 14 is a cross-sectional view of the fourth embodiment of the present invention.
FIG. 15 is a graph showing thrombus inhibition on a DACRON® graft by administration of PPACK in a baboon ex vivo shunt model via conventional systemic intravenous and local infusion routes after 30 minutes of blood exposure.
FIG. 16 is a graph showing inhibition of platelet deposition on a DACRON® graft by local infusion of PPACK in a baboon ex vivo shunt model over 30 minutes post blood exposure using the devices described herein. DETAILED DESCRIPTION OF THE ILLUSTRATIVE EMBODIMENTS
The present invention may be understood more readily by reference to the following detailed description of specific embodiments and the Examples and Figures included therein.
As used in the claims, "a" can mean one or more.
The present invention provides a device for the local delivery of a substance at a predetermined site in a natural tissue conduit in the mammalian body. The phrase "natural tissue conduit" as used herein means any area of the mammalian body which functions to transport substances and includes, but is not limited to, e.g., blood vessels of the cardiovascular system (arteries and veins), vessels of the lymphatic system, the intestinal tract (esophagus, stomach, the small and large intestines, and colon), the portal- caval system of the liver, the gall bladder and bile duct, the urinary system (ureters, bladder and urethra), the respiratory system (trachea, bronchi, and bronchioles), and ducts and ductules connecting endocrine organs to other areas of the body. The devices of the present invention can be used in any mammal or in any animal in which natural tissue conduits are found.
The devices described herein can also be referred to interchangeably as "catheters" and are designed for intraluminal (e.g., endovascular) use in the natural tissue conduits of the mammalian body described above.
As used herein, the phrase "predetermined site" can mean any site within, or accessible by the natural tissue conduit. The predetermined site can be the site where the substance delivery segment of the device is deployed (positioned) within the conduit and can include diseased as well as healthy sections of the conduit. The predetermined site can be proximal (upstream) of a diseased segment of the natural tissue conduit. In particular, the predetermined site can be a site selected for deployment of the substance delivery segment which allows treatment of a target treatment area or organ distal (downstream) of the deployment site which is accessible for therapy via a fluid flowing through the conduit.
Depending upon the context in which used, the phrase "predetermined site" can also refer to the location within the lumen of the conduit (relative to the cross-sectional diameter thereof) at which a substance is delivered into the lumen of the conduit For example, the predetermined site can be the boundary layer of a fluid flowing through the conduit. As used herein, the "boundary layer" typically comprises an annular ring at the fluid-conduit interface which occupies only about 5% of the conduit cross- sectional area.
The phrase "target treatment area" is meant to include any area intended to receive a beneficial or therapeutic effect of a substance administered by the devices described herein. For example, the target treatment area can be a stenotic lesion in a blood vessel, a developing thrombus, a PTCA site, a localized tumor or the like.
Referring now to the FIGS. 1-8, the first embodiment of the device 10 comprises an elongated flexible tube 12 of a preselected length and diameter. The length and the diameter of the tube 12 will vary, of course depending upon the size of the conduit and the distance between the point of entry therein and the predetermined site where the device 10 is to be deployed. For example, a typical length for a catheter designed for intracardiac deployment via the femoral artery in a human adult can be between about 80 and 200 cm long with an inside tube diameter of between about 1.0 and 4.5 mm, whereas a catheter designed for use in the proximal urethra of an adult male would be between about 5 and 40 cm long and about .1 and 3.0 mm in diameter.
In the device 10 shown in FIGS. 1-2, the tube 12 has a body portion 11, an internal surface 13, an external surface 14, a proximal end 16, and an opposite distal end 18. A lumen 20 extends longitudinally through the tube 12 interconnecting the proximal and distal ends 16,18. The proximal end 16 defines an opening 17 and the distal end 18 defines an opening 19 into the lumen 20 of the tube 12. The tube 12 has a substance delivery segment 22 adjacent the distal end 18 which defines a plurality of substance delivery holes 24 through the external surface 14 of the tube 12 which are in fluid communication with the lumen 20 of the tube 12.
A substance, e.g., a fluid 25 containing a drug, can be infused through the substance delivery holes 24 by introducing the substance into the lumen 20 of the tube 12 for delivery into the natural tissue conduit via an introducing means 35 located adjacent the proximal end 16 of the tube 12. The substance introducing means 35 shown in FIGS. 1-2 comprises an infusion port 36 which is in fluid communication with the lumen 20 of the tube 12 adjacent the proximal end 16 thereof. In the embodiment shown in FIG. 2, the lumen 38 of the infusion port 36 is integrally formed with the lumen 20 of the tube 12 in a branched configuration. The external surface 14 of the tube 12 is contiguous with the external surface 40 of the infusion port 36 and the internal surface 13 of the tube 12 is contiguous with the internal surface 39 of the infusion port 36. The lumen 38 of the infusion port 36 opens into a conically shaped female receptacle 42. The female receptacle 42 is designed to removably receive therein a complimentary shaped male plug 44 having a central lumen (not shown) which aligns coaxially with the lumen 38 of the infusion port 36 forming a fluid tight junction. The central lumen of the male plug 44 is in fluid communication with a remote fluid source (not shown) via a tube 46, the lumen (not shown) of which is coaxially aligned with the central lumen of the male plug 44 and lumen 38 of infusion port 36.
As shown in FIG. 2, a fluid 25 containing a desired substance, e.g., a drug, can be introduced into the lumen 20 of the tube 12 by connecting the female receptacle 42 of the infusion port 36 to the complimentary male plug 42 of a remote fluid source and infusing the fluid 25 into the lumen 20 by pumping, injecting, or utilizing gravity flow. Therefore, the substance containing fluid 25 can pass through the introducing means 35, through the lumen 20, through the substance delivery holes 24 to a predetermined site within a natural tissue conduit (not shown).
As the skilled artisan can appreciate, the fluid 25 can be introduced into the device 10 by any of a number of other possible means. Alternatively, for example, the fluid 25 can be introduced directly into the opening 17 defined by the proximal end 16 of the tube 12. Likewise, the infusion port 36 can have any of a number of possible configurations for connection of the remote substance source including, but not limited to, luer lock connectors, snaplock connectors, injection sites, and valved connectors. The substance delivery holes 24 can also be configured in any of a variety of shapes. In the embodiment shown in FIGS. 1-2, the substance delivery holes 24 are round, however, they can also be configured as slit openings through the external surface 14 of the tube 12 which normally remain closed unless fluid 25 is being infused therethrough. The substance delivery holes 24 can also be configured as rectangular openings.
As shown in FIGS. 1-5, the substance delivery segment 22 is moveable among at least three positions but is normally at rest in a first or rest position which has a first shape (as shown in FIG. 1). The first shape of the substance delivery segment 22 comprises a plurality of spiral turns about the longitudinal axis of the device 10 such that the substance delivery segment 22 forms a hollow coil.
In order for the substance delivery segment 22 to easily traverse the lumen 49 of a natural tissue conduit 50 (such as a blood vessel) and reach the predetermined delivery site, the substance delivery segment 22 can be made to assume a second position wherein it has a second shape which is substantially linear (as shown in FIG. 2). A moving means 26 must be applied to the substance delivery segment 22 to cause movement thereof from the first to the second position. By "substantially linear", is meant that the substance delivery segment 22 can assume the linear configuration of the flexible guidewire 28 (or stylette shown in FIG. 14) which is inserted into the lumen 20 of the tube 12. Because the substance delivery segment 22 tends to return to the first position, it exerts a force upon the guidewire 28, such that the uncoiled substance delivery segment 22 takes on a wavy appearance when positioned over the guidewire 28. The guidewire 28 must be flexible yet of sufficient stiffness to maintain the substance delivery segment 22 in the second position.
In the embodiment shown in FIG. 2, the substance delivery segment 22 is maintained in the second position by the moving means 26 which comprises a guidewire 28 having a distal tip 30 which has been inserted into the opening 17 in the proximal end 16 of the tube 12, through the lumen 20, and through the opening 19 of the distal end 18. The guidewire 28 has a first portion 32 which terminates into an upwardly directed second portion 34 which, in turn, terminates into the distal tip 30. The resulting angled attitude of the guidewire tip 30 relative to the longitudinal axis of the tube 12 can be used to direct the device 10 during placement of the substance delivery segment 22 at the predetermined site, e.g., into a branch or bifurcation of an artery or vein. Referring now to FIGS. 4-5, the substance delivery segment 22 tends to return to the first, rest (memory) position when the moving means 26 is no longer applied thereto. Upon deployment within a conduit, the substance delivery segment 22 will typically move to a third or operative position which is intermediate the first and second positions as is shown in FIGS. 4-5. The third shape of the substance delivery segment 22 is substantially similar to the hollow coiled configuration of the first shape (shown in FIG. 1). In the third position, the diameter of the hollow coil can be the same or slightly less than the diameter of the hollow coil when the substance delivery segment 22 is in the first position. Moreover, the substance delivery holes 24 are aligned in the virtually the same orientation in the first and third positions. As stated, the substance delivery segment 22 assumes the third position when the moving means 26 is no longer applied thereto, such that the substance delivery segment 22 is capable of exerting a force against the luminal surface 48 of the natural tissue conduit 50, the force being sufficient to anchor the substance delivery segment 22 at the predetermined site within the lumen 49 of the natural tissue conduit 50. The force exerted against the luminal surface 48 is sufficiently great enough to hold the substance delivery segment 22 in a stationary position within the lumen 50 after withdrawal of the guidewire 28, however the force is not so great as to damage the luminal surface 48 of the conduit 50.
Referring to FIG. 2, the proximal end 16 and distal end 18 of the tube 12 define openings 17, 19 into the lumen 20 of the tube 12. In the embodiment shown in FIG. 2, the openings 17, 19 defined by the proximal and distal ends 16, 18 of the tube 12 are moveable between a closed position (not shown) which forms a fluid tight seal of the internal surface 13 at each end 16, 18 and an open position which allows a guidewire 28 to pass through the openings 17, 19. The body portion 11 of the tube 12 forms a thickened annulus 37 at the distal end 18. When the guidewire 28 is partially withdrawn from the substance delivery segment 22 as is shown in FIGS. 4-5, the opening 19 defined by the distal end 18 at the thickened annulus 37 assumes the normally closed position and forms a fluid tight seal of the internal surfaces 13 which overlie the annulus 37 so that a fluid 25 infused through the device 10 will be delivered into the boundary layer of fluid flowing through the lumen 49 of the natural tissue conduit 50 (i.e., the layer of fluid flow adjacent the luminal surface 48 of the conduit 50). The body portion 11 of the tube 12 is also thickened at the proximal end 16 to form a neck 23 which also remains in a normally closed position when the guidewire is not inserted therethrough thereby forming a fluid tight seal of internal surface 13 which overlies the neck 23. Alternatively, the openings 17, 19 defined by the proximal and distal ends 16, 18 can be designed to remain in an open configuration or either one of the openings 17, 19 can move between open and closed positions as described above.
In the embodiment shown in FIG. 2, proximal opening 17 of the tube 12 is funnel or conically shaped to allow for easy insertion of the guidewire 28 into the lumen 20. The body portion 11 of the tube 12 flares into a conical shape proximal to the neck 23 thereby increasing the diameter of the internal surface 13 at the proximal end 16.
Referring now to FIGS. 6-8, the substance delivery holes 22 can be positioned on the substance delivery segment 22 at any of a number of preselected locations on the hollow coil formed by the substance delivery segment 22 when it is in the third or deployed position within the lumen 49 of the natural tissue conduit 50. The preselected location can be at any of a number of possible configurations on the substance delivery segment 22. For example, the substance delivery holes 24a (shown in FIG. 6) can be positioned so as to be juxtaposed to the luminal surface 48 of the conduit 50 such that a fluid 25 delivered therethrough directly contacts the luminal surface 48 of the tissue conduit 50 so that the fluid 25 is delivered directly into the wall of the conduit 50. For example, the devices described herein can be utilized to locally deliver drugs directly into the lesion in an artery created by PTCA. Alternatively, the preselected location of the substance delivery holes 24b (shown in FIG. 7) can be such that the holes 24b are adjacent to the luminal surface 48 of the conduit 50 such that a fluid 25 delivered therethrough is delivered into the lumen 49 of the natural tissue conduit 50 adjacent the luminal surface 48 thereof. The preselected location of the substance delivery holes 24c (shown in FIG. 8) can also be such that the holes are opposite a portion of the external surface 14 of the substance delivery segment 22 which contacts the luminal surface 48 of the conduit 50 so that a fluid 25 delivered therethrough is delivered into the lumen 49 of the natural tissue conduit 50. In each of the configurations described in FIGS. 7-8, the delivery of a fluid 25 through the substance delivery holes 24b- c places the substance into the boundary layer of fluid flow through the natural tissue conduit 50.
FIGS. 9-12 depict a second embodiment of the invention which can also be utilized for the local delivery of a substance to a predetermined site within a natural tissue conduit within the mammalian body. The device 110 is similar to the device shown in FIGS. 1-8 except that it further comprises two separate lumens 120, 121 within the tube 112, a first lumen 120 for the passage of a guidewire 128 therethrough, and a second lumen 121 for substance delivery. In particular, the device 110 comprises an elongated flexible tube 112 of a preselected length and diameter. As previously stated, the preselected length and diameter of the devices described herein can vary depending upon a variety of factors. The tube 112 has an external surface 114, a proximal end 116, an opposite distal end 118, and a first lumen 120 extending longitudinally therethrough interconnecting the proximal and distal ends 116, 118.
The tube 112 has a substance delivery segment 122 adjacent the distal end 118 which defines a plurality of substance delivery holes 124 through the external surface 114 of the tube 112. An infusion port 136 is located adjacent the proximal end 116 of the tube 112. A second lumen 121 is located within the body of the tube 112 which interconnects the infusion port 136 with the substance delivery holes 124. A layer of tubing material 115 having first and second surfaces 152, 154 separates the first and second lumens 120, 121 along the longitudinal axis of the tube 112. The second lumen 121 is defined laterally by the internal surface 113 of the tube 112 and medially by the second surface 154 of the tubing material 115.
The second lumen 121 does not extend the entire length of the tube 112, rather it terminates distally at a point 127 where surfaces 113 and 154 meet and proximally at a second point 129 where surfaces 113 and 154 meet. The proximal and distal ends 116, 118 of the tube 112 are integrally formed and contiguous with the body portion 111 of the tube 112 and the internal tubing material 115 thereby forming a fluid tight seal of the proximal and distal ends of the second lumen 121 at points 127 and 129. The second lumen 121, however, is in fluid communication with the substance delivery holes 124 and the infusion port 136 such that a substance, e.g., a fluid 125 containing a drug, can be delivered through the infusion port 136, the second lumen 121, and the substance delivery holes 124 to a predetermined site in a natural tissue conduit (not shown).
FIG. 10 is a cross-sectional view of the embodiment shown in FIG. 9 taken along lines 10-10 in FIG. 9. The tubing material 115 has a first surface 152 which defines the first lumen 120 along the longitudinal axis of the tube 112. The second surface 154 of the tubing material 115 defines the medial luminal surface of the second lumen 121 and the internal surface 113 of the tube 112 defines the lateral luminal surface of the second lumen 121. The guidewire 128 is shown within the first lumen 120 of the tube 112. One can appreciate the many other possible configurations of the of the first lumen 120 relative to the second lumen 121. FIGS. 11-12, for example, show cross-sections of two other possible configurations. In FIG. 11, the internal tubing material 115 bifurcates the tube 112 such that the first and second surfaces 152, 154 of the tubing material 115 form medial surfaces for the first and second lumens 120, 121 respectively. The internal surface 113 of the tube forms the lateral surfaces of the first and second lumens 120, 121. The internal tubing material 115 and the external portion of the tube 112 are integrally formed into a single contiguous unit. The guidewire 128 is shown within the first lumen 120. Alternatively, the first lumen 121 can be eccentrically placed as shown in FIG. 12.
Referring again to FIG. 9, the proximal and distal ends 116, 118 further define openings 117, 119 in the first lumen 120. The body portion 111 of the tube 112 forms a thickened annulus 137 at the distal end 118. The body portion 111 of the tube 112 at the proximal end 116 is also thickened to form a neck 123. As described for FIG. 2, the openings 117, 119 are moveable between a closed position (not shown) which forms a fluid tight seal of the first surface 152 of the first lumen 120 at each end 116, 118 and an open position which allows a guidewire 128 to pass through the openings 117, 119. When the guidewire 128 is partially withdrawn from the substance delivery segment 122, the opening 119 defined by the distal end 118 forms a fluid tight seal thereof. Alternatively, the openings 117, 119 defined by the proximal and distal ends 116, 118 can be designed to remain in an open configuration or either one of the openings 117, 119 can move between open and closed positions.
In the embodiment shown in FIG. 9, the proximal opening 117 at the proximal end 116 of the tube 112 is funnel or conically shaped to allow for easy insertion of the guidewire 128 into the lumen 120. The body portion 111 of the tube 112 flares into a conical shape proximal to the neck 123, thereby increasing the diameter of the first surface 152 of the first lumen 120 at the proximal end 116. As was described for the first embodiment, the substance delivery segment 122 is moveable among at least three positions: a first or resting position wherein it has a first shape (similar to the embodiment shown in FIG. 1); a second position wherein it has a second shape (as shown in FIG. 2); and a third or operative position operative position wherein it has a third shape (similar to the embodiment shown in FIGS. 4-5). The third position is intermediate the first and second positions.
In the embodiment shown in FIG. 9, the substance delivery segment 122 moves among the first, second and third positions in the same manner as the substance delivery segment shown in FIGS. 1, 2, 4 and 5 and previously described. However, the substance delivery segment 122 is maintained in the second position by a moving means 126 which comprises a guidewire 128 having a distal tip 130 which has been inserted into the opening 117 at the proximal end 116 of the tube 112, through the first lumen 120, and out of the opening 119 at the distal end 118 thereof. The guidewire 128 has a first portion 132 which terminates into an upwardly directed second portion 134 which, in turn, terminates in the distal tip 130. The resulting angled attitude of the guidewire tip 130 relative to the longitudinal axis of the tube 112 can be used to direct the device 110 during placement of the substance delivery segment 122 at the predetermined site, e.g., into a branch of a bronchus, such as into a bronchiole.
A fluid 125, e.g., containing a substance such as a drug, can be infused through the substance delivery holes 124 by introducing the substance into the lumen 120 of the tube 112 for delivery into the natural tissue conduit via an introducing means 135 located adjacent the proximal end 116 of the tube 112. The substance introducing means 135 shown in FIG. 9 comprises an infusion port 136 which is in fluid communication with the second lumen 121 of the tube 112 adjacent the proximal end 116 thereof. The lumen 138 of the substance introducing means 135 is integrally formed with the second lumen 121 of the tube 112 in a branched configuration. The external surface 114 of the tube 112 is contiguous with the external surface 140 of the infusion port 136. The lumen 138 of the infusion port 136 opens into a conically shaped female receptacle 142. The female receptacle 142 is designed to removably receive therein a complimentary shaped male plug 144 having a central lumen (not shown) which aligns coaxially with the lumen 138 of the infusion port 136 forming a fluid tight junction. The central lumen of the male plug 144 is in fluid communication with a remote fluid source (not shown) via a tube 146, the lumen (not shown) of which is coaxially aligned with the central lumen (not shown) of the male plug 144.
As shown in FIG. 9 (and similarly previously described for the embodiment shown in FIG. 2), a fluid 125 can be introduced into the second lumen 121 of the tube 112 by connecting the female receptacle 142 of the infusion port 136 to the complimentary male plug 142 of a remote fluid source and infusing the fluid 125 into the second lumen 121 by pumping, injecting, or utilizing gravity flow.
Referring now to FIGS. 13-14, the present invention also provides alternative third and fourth embodiments of the drug delivery devices described herein (e.g., the embodiment shown in FIGS. 1-2) wherein the body portion 211 at the distal end 218 of the tube 212 forms a fluid tight seal of the lumen 220 of the tube 212 and the device 210 further comprises a guidewire 228 having a distal tip 230 which is mounted in the body portion 211 of the tube 212 at the distal end 218 thereof. The guidewire 228 can also be mounted on the external surface 214 of the body portion 211 at the distal end 218 of the tube 212. In the embodiment shown, the guidewire 228 has an anchoring portion 233 with shoulders 231 which terminate into the first portion 232. The anchoring portion 233 of the guidewire 228 is cast or molded into the distal end 218 of the body portion 211 of the tube 212. The shape of the anchoring portion 229 can be selected from among many shapes and is not limited to the embodiment shown in FIG. 14. The anchoring portion 233 is integrally formed with the first portion 232 which extends distally from the distal end 218 along the longitudinal axis of the tube 212 and terminates into an upwardly directed portion 234. The upwardly directed portion 234 terminates in the distal tip 230. The total length of the guidewire 228 can vary but is preferably about 4-5 cm. The resulting angled configuration of the guidewire 228 can be used to direct the device 210 during placement of the substance delivery segment 222 within the lumen of the natural tissue conduit (not shown).
The embodiment of the device 210 shown in FIG. 13 also comprises an opening 260 through the external surface 214 of the tube 212 which is in fluid communication with the lumen 220 of the tube 212 such that at least a portion of a fluid 225 delivered into the lumen 220 of the tube 212 can pass into the natural tissue conduit through said opening 260. For example, a catheter (i.e., any of the various embodiments of the devices described herein) designed for delivery of a drug such as an anticoagulant to an angioplasty site in a coronary artery can also include at least one opening 260 proximal to the substance delivery segment 222 for infusion of a small amount of the drug into the bloodstream just proximal to the substance delivery segment 222. This opening 260 can be used to prevent platelet deposition, coagulation and thrombus formation from occurring on the surfaces of the catheter proximal to the substance delivery segment 222. The opening 260 can be located at any point on the tube 212 between the substance delivery segment 222 and the proximal end 216 but is preferably located between about 0.2 and 40 cm proximal to the substance delivery segment 222. Additionally, the device 210 can have more than one openings 260 and the opening(s) 260 can be selected from among a variety of shapes including, but not limited to circular, rectangular, or of a slit configuration similar to the substance delivery holes described herein. As described for the first embodiment shown in FIGS. 1-8, the substance delivery segment 222 of FIGS. 13-14 can be made to assume the second position and second shape which is substantially linear (as shown in FIG. 2). This allows the device 210 to easily traverse the lumen of a natural tissue conduit and reach the predetermined delivery site. A moving means 226 must be applied to the substance delivery segment 222 to cause movement thereof from the first to the second position. A stylette 239 having a distal tip 256 is inserted into the lumen 220 of the tube 212 and is passed through the substance delivery segment 222 so that the distal tip 256 is adjacent the distal end 218 of the tube 212. The stylette 239 must be flexible to allow the device 210 mounted thereon to maneuver within the lumen of the tissue conduit, yet be of sufficient stiffness to maintain the substance delivery segment 222 in the second position during delivery to the predetermined site. It is also contemplated that the guidewire configuration and stylette of the alternative embodiment described above and shown in FIGS. 13-14 can be utilized in the embodiment shown in FIG. 9 in which the tube 112 comprises two lumens 120, 121.
The devices described herein can be fabricated from any resilient biocompatible material including, but not limited to, materials selected from the group consisting of polymer, synthetic rubber, natural rubber, metal and plastic or combinations thereof by methods known in the art. In general, the devices constructed from polymers or rubber can be molded or cast as a single element and can be cast such that the substance delivery segment (e.g, the substance delivery segment 22 shown in FIG. 1) is pre-foπned into the first shape such that the substance delivery segment normally rests in the first (or memory) position.
The polymers contemplated for use in fabrication of the devices of the invention can be either biodegradable or non-biodegradable polymers or combinations thereof. Examples of suitable non-biodegradable polymers include, e.g., polyurethane, polyethylene, polyethylene terephthalate, polytetrafluoroethylene, ethylene vinyl acetate, polyimid, and nylon. Examples of suitable biodegradable polymers include, polylactic acid and polyglycolic acid.
Suitable metals for construction of the devices described herein include, but are not limited to, metals selected from the group consisting of stainless steel, and tantalum, platinum and nitinol. In a presently preferred embodiment, the substance delivery segment 22 (see FIGS. 1-5) is constructed from nitinol (nickel/titanium alloy) such that the nitinol in the substance delivery segment 22 is normally in the first position (i.e., the rest or memory position) as shown in FIG. 1 when the device is at room temperature, e.g., about 23-25 °C. The substance delivery segment 22 can be made to assume the second position (wherein the second shape of the substance delivery segment 22 is substantially linear) by exposing the nitinol to a fluid having a temperature of between about 40-65 °C but preferably about 55 °C.
Exposing the nitinol to a fluid heated to such temperatures causes the metal to expand and straighten so that the substance delivery segment 22 moves from the first position to the second position. The heated fluid therefore can serve as a moving means instead of the guidewires 28 or stylettes 229 previously described. Typically, the substance delivery segment 22 is exposed to the heated fluid by infusing the heated fluid through the lumen 20 of the tube 12 either through the infusion port 36 or through the opening 17 at the proximal end 16 of the tube 12. Suitable fluids which can be utilized to irrigate the nitinol substance delivery segment include, but are not limited to, fluids selected from the group consisting of ringer's solution, lactated ringer's solution, 5% dextrose solution, 10% dextrose solution, normal saline solution, Vz normal saline solution, 5% dextrose and V2 normal saline solution, and sterile water. These fluids also serve as examples of the fluids which can be utilized to cany a substance to the predetermined site by infusion through the devices as described herein. It is contemplated, however, that the guidewire 28 of FIGS. 1-5 and 9 (or the stylette 239 shown in FIGS 13-14) can be utilized as the moving means 26 and inserted through into the lumen 20 of the nitinol substance delivery segment 22 to assist in placement of the substance delivery segment 20 at the predetermined site within the lumen of the tissue conduit.
Referring again to FIG. 3, an alternative fifth embodiment of the invention provides a semi-permeable membrane 58 covering the external surface 14 of the substance delivery segment 22 and the substance delivery holes 24 defined therein. The semi-permeable membrane 58 can be constructed from any biodegradable or non-biodegradable polymer including the examples of polymers previously discussed herein.
The delivery of a substance through the substance delivery holes 24 to the predetermined site can occur at a preselected rate through the semi-permeable membrane 58. The preselected rate will very depending upon the permeability of the semi-permeable membrane 58 for the substance of choice and upon the pressure of the infused fluid which is applied to the upstream side of the membrane. The preselected rate can be any flow rate but will typically be between about 0.01 and 1.0 ml/minute.
The devices described herein specifically provide a means for locally delivering a substance to the boundary layer of fluid flowing through a conduit into which they are deployed. For example, the devices described herein can be utilized to provide local drug delivery by utilizing arterial blood flow for prevention or treatment of any disease or condition distal to the site of arterial implantation of the device. Particular examples where the devices of the present invention can be utilized include, but are not limited to, local drug delivery to treat cancer or to maintain perfusion of tissue or organ transplants while the body establishes revascularization of the subject tissue, to prevent restenosis of a PTCA repair or to prevent platelet deposition, coagulation or thrombus formation on a prosthetic device implanted into the cardiovascular system. When the devices described herein are utilized in the cardiovascular system, local delivery of substances is achieved at the predetermined site without disrupting perfusion of tissues distal to the infusion site.
In particular, the present invention provides a method for providing local delivery of a substance to a predetermined site in a natural conduit in the mammalian body, comprising placing a substance delivery device in the lumen of the natural tissue conduit adjacent the predetermined site, the device being in a first position; and delivering the substance to the predetermined site through the substance delivery device wherein the device is in a second position without interrupting the flow of a fluid through the conduit. In a preferred embodiment, the predetermined site is the boundary layer of fluid flowing through the natural tissue conduit and the device is selected from among the devices described herein.
Referring to FIGS. 1-5, one example of a method for providing local delivery of a substance to a predetermined site in a natural conduit in the mammalian body (e.g., an artery) comprises the steps of: a) introducing the device 10 into the lumen 49 of the natural tissue conduit 50, the device 10 having been premounted on a guidewire 28 having a distal tip 30, wherein the guidewire 28 passes through the lumen 20 of the tube 12 such that the distal tip 30 of the guidewire 28 is adjacent the distal end 18 of the tube 12; b) advancing the guidewire 28 and premounted device 10 within the lumen 49 of the conduit 50 until the distal tip 30 of the guidewire 28 reaches the predetermined site; c) removing the guidewire 28 from the lumen 20 of the tube 12 thereby allowing the substance delivery segment 22 to assume the third position at the predetermined delivery site (as shown in FIGS. 4-5); d) delivering the substance (i.e., a fluid 25 containing the substance) to the predetermined site by infusing the fluid 25 through the substance introducing means 35 (infusion port 36), through the lumen 20 of the tube 12 and through the substance delivery holes 24 such that the fluid 25 containing the substance is delivered to the predetermined site.
Still referring to FIGS. 1-5, an alternative method for providing local delivery of the substances described herein to a predetermined site in a natural conduit in the mammalian body, comprises the steps of: a) introducing a guidewire 28 having a proximal tip (not shown) and an opposite distal tip 30 into the lumen 49 of the natural tissue conduit 50 and advancing the distal tip 30 to the predetermined site, the proximal tip (not shown) remaining external of the body; b) inserting the proximal tip (not shown) of the guidewire 28 into the distal opening 17 of the lumen 20 of the device 10 and threading the device 10 over the guidewire 28 until the distal end 18 reaches the distal tip 30 of the guidewire 28, thereby causing the substance delivery segment 22 to be located adjacent the predetermined site; c) removing the guidewire 28 from the lumen 20 of the tube 12 thereby allowing the substance delivery segment 22 to assume the third position adjacent the predetermined delivery site; d) delivering the substance (i.e., a fluid 25 containing the substance) to the predetermined site by infusing the fluid 25 through the substance introducing means 35, through the lumen 20 of the tube 12 and through the substance delivery holes 24 such that the fluid 25 containing the substance is delivered to the predetermined site. In one embodiment of the methods described above, the substance delivery segment 22 of the device 10 is comprised of nitinol and the method further comprises, after the delivering step, the steps of: a) exposing the nitinol substance delivery segment 22 to a fluid having a temperature of between about 45 °C and 60 °C, thereby causing the substance delivery segment 22 to move from the third position to the second position; and b) removing the device 10 from the natural tissue conduit 50.
As contemplated by the present invention, the substance delivered by the devices described herein can be any substance, including any drug, and the device can be used for local delivery of such substances to prevent or treat a variety of disease syndromes or to promote or enhance desired activity within the body. For example, the substance can be an anticoagulant, including but not limited to, heparin, hirudin, hirulog, hirugen, activated and non-activated protein C, synthetic or naturally occurring antagonists of thrombin, and Factor Xa, or other activated or non-activated coagulation protease inhibitors and coagulation factors, e.g., FIX, FVIII, FV, FVIIa and tissue factor.
The devices described herein can also be utilized to deliver a substance which inhibits platelet deposition and thrombus formation or promotes thrombolysis and thrombus dissolution. Examples of such substances include, but are not limited to, plasmin, tissue plasminogen activator (tPA), urokinase (UK), single chain prourokinase (scuPA), streptokinase, prostaglandins, cyclooxygenase inhibitors, phosphodiesterase inhibitors, thromboxane synthetase inhibitors; antagonists of glycoprotein receptors including (GP) Ib,GP Ilb/IIIa, antagonists of collagen receptors, and antagonists of platelet thrombin receptors. Alternatively, the substances delivered by the devices of the present invention can directly affect platelet metabolic function. Examples of such substances include, but are not limited to, prostaglandins, cyclooxygenase inhibitors, phosphodiesterase or thromboxane synthetase inhibitors, inhibitors of calcium transport, or elevators of cyclic adenosine monophosphate (cyclic AMP).
It is also contemplated that the devices of the invention can deliver a substance which prevents restenosis of a blood vessel Examples of such substances include, but are not limited to, a growth factor, a growth factor inhibitor, growth factor receptor antagonist, transcriptional repressor, translational repressor, antisense DNA, antisense RNA, replication inhibitor, inhibitory antibodies, antibodies directed against growth factors or their receptors, bifunctional molecules comprising a growth factor and a cytotoxin, and bifunctional molecules comprising an antibody and a cytotoxin.
The substance delivered by the devices of the present invention can also be a vasodilator, such as nitroglycerin, nitroprusside or other nitric oxide liberators. The vasodilator can also include other suitable vasoactive agents such as beta receptor blocking drugs, inhibitors of intra-cellular calcium transport, prostaglandins, thromboxane antagonists, and the like.
The local drug delivery devices of the present invention can be utilized as the device which is placed into the natural tissue conduit in the methods of local drug delivery described above. The methods of local drug delivery of the present invention can be utilized to deliver any substance into any natural tissue conduit in the mammalian body. The methods described herein are meant to include any substance or drug which can be placed in the lumen of the devices described herein. Certain other embodiments of the invention include methods for locally delivering a substance into a natural tissue conduit in the mammalian body wherein the substances are those substances and drugs previously described herein for preventing or treating restenosis, inhibiting platelet deposition and thrombus formation, promoting thrombolysis, or affecting vascular tone. It is also contemplated that the vasodilators and anticoagulants described herein can be utilized in the methods described above.
Utilizing the methods for predicting downstream concentration of substances (administered by the methods and devices of the present invention) that are taught in the examples, one skilled in the art can determine suitable dosage requirements and treatment regimens for any substance to be delivered to the predetermined site. Dosages and regimens will vary, of course, depending upon the tissue targeted for therapy and upon the particular drug utilized. In particular, the substances for preventing or treating restenosis, inhibiting platelet deposition, and thrombus formation and the vasodilators and anticoagulants described herein can be utilized in the methods for local drug delivery taught herein in amounts determined by the methods taught in the examples and by other optimization procedures known in the art.
One embodiment of the present invention provides a method for locally delivering a substance into a natural tissue conduit wherein the substance inhibits platelet deposition and thrombus formation on a prosthetic cardiovascular device which has been implanted in the cardiovascular system of a subject. The phrase "prosthetic cardiovascular device" includes, but is not limited to, devices such as tubular synthetic grafts, extracorporeal circuits, artificial kidneys, ventricular assist devices, total heart prostheses or oxygenators. As one skilled in the art can appreciate, the method can include, but is not limited to, any of the substances which inhibit platelet deposition and thrombus formation described herein. The devices and methods of therapy described herein achieve very high drug concentrations locally while minimizing total drug requirements and circulating drug levels, therefore allowing for the efficient use of agents which are available in limited amounts or which could produce side effects. The examples contained herein provide: 1) a theoretical analysis of the convective diffusion problem for the local infusion flow geometry; 2) in vitro studies with measurements of boundary layer drug concentrations distal to infusion sites; and 3) results of studies conducted utilizing a baboon ex vivo shunt system and the local delivery devices of the present invention to block distal thrombus formation.
The examples specifically show that:
1. In typical usage situations drug concentration at the boundary layer of blood near the vessel wall are about 200 times greater than the average drug concentration (averaged over the entire vessel cross section).
2. Local administration of antithrombotic agents reduces total dose requirements (vs. intravenous therapy) by nearly 3 orders of magnitude for agents having short in vivo half lives, e.g.,
PPACK antithrombin(D-Phe-Pro-Arg chloromethyl ketone).
The following examples document the reproducibility and efficiency of the methods of therapy and the devices described herein.
EXAMPLES
Throughout this application, various publications are referenced. The disclosures of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention pertains. I. Theoretical analysis. The theoretical problem of predicting downstream wall or boundary layer concentrations of material infused through the luminal wall of a 4mm i.d. tube having 100 ml/min luminal blood flow, typical of medium-sized and coronary arteries has been solved by the present invention. In brief, a supercomputer was used to numerically solve the 2-dimensional Navier-Stokes and species conservation equations using a finite volume element program (Fluent, Inc., Lebanon, NH). The analysis predicts that when the drug-containing buffer is infused through the wall of the device described herein at a low rate (0.05-0.1 ml/min), then the wall concentration of drug at 1-5 cm downstream will be 10-20% of the drug concentration in the infusate, i.e., infused materials are diluted 80—90%, but achieve wall concentrations 200 times greater than would be obtained by infusing drug uniformly over the entire tube cross section. Infused material is confined to a very thin boundary layer (approximately 250 microns thick) along the tube wall. Wall drug concentration is therefore determined by the volume and concentration of drug infused. Since at higher infusion rates (> 1 ml/min) it is possible to nearly saturate the distal vessel wall with infusate, we chose in subsequent experimental studies to infuse highly concentrated reagents at a low rate (0.05—0.1 ml/min) to avoid significant buffer dilution of blood at the vessel wall.
IL In vitro studies demonstrating boundary layer flow characteristics. In brief, the device utilized in the i vitro studies consisted of a short length (approximately 2 cm) of a standard expanded TEFLON® vascular graft (GORE-TEX®, 30 μ internodal distance) having an inner diameter of 4.0 mm. Likewise, for grafts of this type, the preferred range of internodal distance, a measure of porosity, can range from about 10 μ to 90 μ.
A silicone rubber cuff-reservoir was placed around the graft for infusion of agents through the graft wall, which, therefor, can enter the flow stream only at the portion of the reservoir overlying the graft interface. To study this system in vitro, Evan's blue dye was infused (0.05-0.1 ml min) with water flow through the device (30 ml/min) scaled for the viscosity difference between water and blood to simulate 100 ml/min blood flow. Dye entered the lumenal space uniformly, around the entire graft circumference. Dye sampling was performed using collection cuffs placed 1—3 cm downstream. Concentration values, obtained by colorimetric analysis, were within 10% of those predicted theoretically (presumably since the experimental flow conditions were not theoretically perfect). Nonetheless, the excellent agreement between theory and experiment confirmed that the theoretical analysis of boundary flow characteristics was accurate.
EQ. Ex vivo studies with arteriovenous shunts. To document the efficiency of this boundary layer method of local drug delivery, a local drug delivery device as described herein and provided by the present invention was inserted into the lumen of an extension segment of a baboon femoral arteriovenous shunt and the substance delivery segment was placed 2— 3 cm proximal to a segment of highly thrombogenic DACRON® vascular graft material. Blood flow through the extension segment was regulated at 100 ml/min, a value typical of those found in the carotid and iliac arteries of approximately 10 kg baboons. The baboon ev vivo shunt model of DACRON® graft thrombosis, and its usefulness for assessing the effects of antithrombotic therapy, has been described previously (See, e.g., S.R. Hanson, et al., Arteriosclerosis, 5:595-603, (1985); S.R. Hanson, et al, / Clin Invest, 81:149-158, (1988); A. Gruber, et al., Blood, 73:639-642, (1989); A. Gruber, et al., Circulation, 84:2454-2462, (1991); and W.C. Krupski, et al, Surgery 112:433-440, (1992)).
The agent infused was the antithrombin D-Phe-Pro-Arg chloromethyl ketone (PPACK). This agent was chosen since we have previously studied its effects following intravenous infusion in the same thrombosis model, thereby allowing comparison with the local delivery approach. (See, eg., S.R. Hanson, et al., Proc NatlAcad Sci USA, 85:3184- 3188, (1988); A.B. Kelly, et al., Blood, 77:1006-1012, (1991); and S.R. Hanson, et al., Thrombosis and Hemostasis, 65(6):813, (1991)).
PPACK was mixed with isotonic saline which was infused at a concentration of 0.1 μg/min. Total platelet deposition was measured over 30 minutes of blood exposure as determined by Indium-platelet imaging. A dose-response curve for local and intravenous (i.v.) administration was virtually coincident for the PPACK infusion. These data imply only that the shape of the i.v. and local infusion dose-response curves for each agent are similar. These data also allow determination of the relative efficiency of i.v. vs. local drug administration. Thus, utilizing the optimization procedures taught herein, the local dose requirement of PPACK for inhibiting platelet thrombus formation was reduced approximately 400— fold (for local infusion vs. systemic i.v. therapy) over 30 minutes of blood exposure (see, FIG. 15). Similarly, laws of first-order clearance kinetics predict that, when agents are infused by the local route, local boundary layer drug concentrations will exceed systemic circulating levels by the same factors (i.e., by 400— fold for PPACK at the 30 minute blood exposure level). This method for predicting dosage requirements can be utilized for other substances to determine an appropriate treatment regimen.
I.V. infusion of PPACK at 45 μg/kg-min into 10 kg baboons having a plasma volume of -500 ml blocks thrombus formation and produces steady-state plasma levels of > 1 /tg ml with an apparent in vivo half life of PPACK of about 2.5 minutes (S.R. Hanson, et al, Proc NatlAcad Sci USA, 85:3184-3188, (1988)). The theoretical and in vitro studies (in the optimization procedures discussed herein) predict that in the shunt study, infusion of PPACK solution (5 μg/ml) at a rate of 0.1 ml/min should achieve a wall concentration of 1-2 μg/ml (i.e., 60-80% dilution of infusate), which is essentially that plasma level previously shown to effectively block thrombus formation in the i.v. infusion studies. These data with PPACK therefore denote that the infused material is effectively concentrated in a boundary layer that occupies only approximately 5% of the cross section of a 4 mm i.d. tube having a total flow of 100 ml/min.
In summary, the boundary layer into which effectively all drug is concentrated 2— 3 cm downstream comprises an annular ring at the blood- vessel interface occupying only about 5% of the tube cross-sectional area. Thus, total effective drug requirements at that area will be remarkably small. For example, to maintain local PDGF-BB (platelet derived growth factor) levels at 10 ng ml, we would infuse PDGF solution (100 ng/ml at 0.05 ml/min (i.e., 90% dilution of infusate) or approximately 7 μg per day, a remarkably small requirement for treatment of larger animals.
Therefore, where standard therapeutic levels are known for a substance administered by conventional i.v. (systemic) therapy, the dosage and treatment regimen for local delivery of the substance utilizing the devices of the present invention can be predicted. Further, while the pharmacokinetics of many agents may be complex, these issues are irrelevant for agents having half lives less than several hours, since drug recirculation will contribute very little to the boundary layer drug levels. These data indicate that the methods of the present invention have the advantage of providing local drug levels in known quantities to good approximation to target tissues.
IV. Comparison of substance delivery routes. Three approaches for delivery of PPACK to the surface of a thrombogenic DACRON® graft implanted in an ec vivo baboon artero-venous (a-v) shunt were evaluated for their effectiveness at reducing thrombus formation and platelet deposition after 30 minutes of blood exposure to the graft. Blood flow through the ex vivo a-v shunt was controlled at 100 ml min for each administration. DACRON® grafts are known to actively thrombose if even a portion of the thrombogenic DACRON® surface is exposed to blood flow (See, A. Gruder, et al., Blood, 23 :639-642 (1989)). Intravenous systemic administration of PPACK at 400 μg/min was necessary to reduce platelet deposition on the DACRON® graft by 90% at 30 minutes of blood exposure (See, FIG. 15).
Local infusion into the boundary layer of blood flow 2-3 cm proximal to the thrombogenic DACRON® graft was accomplished utilizing the model described in Example II above. A local delivery concentration of 0.5 μg/min at 30 minutes of blood exposure was necessary to reduce platelet deposition on the DACRON® graft by 90% (See, FIG. 15).
Local infusion into the boundary layer of blood flow 2-3 cm proximal to the DACRON® graft was also achieved by placement of a local drug delivery device as described herein within the lumen of the ex vivo shunt. Briefly, an indwelling catheter 10 of the type shown in FIG. 1 having a substance delivery segment 22 was positioned in the lumen of the ex vivo extension segment approximately 2-3 cm proximal to the target delivery site (i.e the DACRON® graft) as is similarly depicted in FIG. 5 which shows the substance delivery segment 22 deployed proximal to an area of arterial stenosis. The coiled configuration of the substance delivery segment 22 and position of the substance delivery holes 24 provided for delivery of infused PPACK directly into the boundary layer of blood flowing through the ex vivo shunt proximal to the DACRON® graft. The PPACK was iirfused through the infusion port 36, through the lumen 20 of the tube 12, through the substance delivery holes 24, and into the lumen of the ex vivo shunt (not shown). Infusion of PPACK at a rate of 1 μg/min effectively reduced thrombus formation on the DACRON® graft by 90% as compared to controls at 30 minutes of blood exposure. (See, FIG. 15) Platelet deposition on the DACRON® graft surface was measured over 30 minutes in ex vivo shunts in two groups. The graft surface in one group of 3 animals was treated with local delivery of PPACK by infusion utilizing the indwelling catheters described herein at a rate of 1 μg/min. This data was compared to a second group consisting of 21 control animals (see, FIG. 16). Platelet deposition was measured as previously described using m Idium-platelet imaging. Platelets accumulated on the surface of the DACRON® graft in a exponential fashion in the control (untreated) animals. Treated animals (PPACK 1 μg/min), however, showed a 90% reduction in (or inhibition of) platelet deposition over 30 minutes.
These data indicate that the indwelling local delivery catheters provided by the present invention show excellent correlation to the boundary flow data as predicted in the theoretical analysis (Example I) and demonstrated in the in vitro local delivery data (Example II). Moreover, the catheter infusion approach reduced the therapeutic ding requirement by a factor of at least 400 times that required by conventional intravenous systemic administration.
Although the present process has been described with reference to specific details of certain embodiments thereof, it is not intended that such details should be regarded as limitations upon the scope of the invention except as and to the extent that they are included in the accompanying claims.

Claims

What is claimed is:
1. A device for the local dehvery of a substance at a predetermined site in a natural tissue conduit in the mammalian body, the conduit having a luminal surface defining a lumen, comprising: a) an elongated flexible tube of a preselected length and diameter having an external surface, a proximal end, an opposite distal end, and a lumen extending longitudinally therethrough interconnecting the proximal and distal ends with the proximal end defining an opening therethrough, the tube having a substance dehvery segment adjacent the distal end and defining a plurality of substance dehvery holes through the external surface which are in fluid communication with the lumen of the tube, the substance dehvery segment being moveable among a first rest position wherein it has a first shape, a second position wherein it has a second shape, and a third operative position wherein it has a third shape, the third position being intermediate the first and second positions; b) means for moving the substance dehvery segment from its first position to its second position, the substance dehvery segment tending to return to the first position when the moving means is no longer applied to the substance dehvery segment; and c) means for introducing the substance into the lumen of the tube for dehvery into the natural tissue conduit.
2. The device of claim 1, wherein the substance dehvery segment assumes the third position when the moving means is no longer applied thereto, such that the substance dehvery segment is capable of exerting a force against the luminal surface of the conduit in the third position sufficient to anchor the substance dehvery segment at the predetermined site within the lumen of a natural tissue conduit.
3. The device of claim 1, wherein the first shape comprises a plurality of spiral turns of the substance dehvery segment about the longitudinal axis of the device such that the substance dehvery segment forms a hollow coil and the substance dehvery holes are at a preselected location on the coil.
4. The device of claim 3, wherein the preselected location of the substance dehvery holes is that the holes are juxtaposed to the luminal surface of the conduit such that a substance delivered therethrough directly contacts the luminal surface of the tissue conduit
5. The device of claim 3, wherein the preselected location of the substance dehvery holes is that the holes are adjacent to the luminal surface of the conduit such that a substance delivered therethrough is delivered into the natural tissue conduit adjacent the luminal surface thereof.
6. The device of claim 3, wherein the preselected location of the substance dehvery holes is that the holes are opposite a portion of the external surface of the substance dehvery segment which contacts the luminal surface of the conduit such that a substance delivered therethrough is dehvered into the boundary layer of a fluid flowing through the lumen of the natural tissue conduit.
7. The device of claim 1, wherein the distal end of the tube further defines an opening therethrough which is in fluid communication with the lumen of the tube and the opening defined by the proximal end thereof.
8. The device of claim 7, wherein the substance dehvery segment is substantially linear in the second position and the moving means comprises a guidewire having a distal tip which is removably insertable into the proximal opening of the lumen of the tube and through the opening of the distal end thereof, the guidewire being sufficiently stiff to maintain the substance dehvery segment in the second position, thereby allowing deployment of the substance dehvery segment through the conduit to the predetermined site.
9. The device of claim 1, wherein the proximal opening of the lumen of the tube is moveable between a closed position which forms a fluid tight seal and an open position which allows a guidewire to pass therethrough.
10. The device of claim 7, wherein the distal opening of the lumen of the tube is moveable between a closed position which forms a fluid tight seal and an open position which allows a guidewire to pass therethrough.
11. The device of claim 1, wherein the distal end of the tube forms a fluid tight seal of the lumen of the tube and the device further comprises a guidewire having a distal tip and a proximal anchoring end, the guidewire being mounted in the tube at the distal end thereof for guiding the tube through the lumen of the natural tissue conduit to the predetermined site.
12. The device of claim 11, wherein the substance dehvery segment is substantially linear in the second position and the moving means comprises a stylette having a distal tip which is removably insertable into the proximal opening of the lumen of the tube, through the lumen of the tube to the distal end thereof, the stylette being sufficiently stiff to maintain the substance dehvery segment in the second position, thereby allowing deployment of the substance dehvery segment through the conduit to the predetermined site.
13. The device of claim 1, wherein the substance dehvery segment is comprised of a resihent biocompatible material selected from the group consisting of polymer, synthetic rubber, natural rubber, metal and plastic preformed to into the first shape such that the substance dehvery segment normally rests in the first position.
14. The device of claim 13, wherein the material is a non- biodegradable polymer selected from the group consisting of polyurethane, polyethylene, polyethylene terephthalate, polytetrafluoroethylene, ethylene vinyl acetate, polyimid, and nylon.
15. The device of claim 13, wherein the material is a biodegradable polymer selected from the group consisting of polylactic acid and polyglycolic acid.
16. The device claim 13, wherein the material is a metal selected from the group consisting of stainless steel, and tantalum, platinum and nitinol.
17. The device claim 16, wherein the metal is nitinol and wherein the moving means comprises exposing the nitinol to a fluid having a temperature of between about 40-65 °C.
18. The device claim 17, wherein the metal is nitinol and wherein the moving means comprises exposing the nitinol to a fluid having a temperature of about 55 °C.
19. The device claim 17, wherein the fluid is selected from the group consisting of ringer's solution, lactated ringer's solution, 5% dextrose solution, 10% dextrose solution, normal saline solution, Yι normal saline solution, 5% dextrose and Yi normal saline solution, and sterile water.
20. The device of claim 1, further comprising a semi-permeable membrane covering the external surface of the substance dehvery segment and the substance dehvery holes defined therein such that dehvery of a substance through the substance dehvery holes to the predetermined site occurs at a preselected rate.
21. The device of claim 20, wherein the semi-permeable membrane is comprised of a biocompatible material selected from the group consisting of a biodegradable polymer and a non-biodegradable polymer.
22. The device of claim 21, wherein the semi-permeable membrane is a non-biodegradable polymer selected from the group consisting of polytetrafluoroethylene, ethylene vinyl acetate, polyethylene, and polyethylene terephthalate.
23. The device of claim 20, wherein the substance is a fluid and the preselected rate is between about 0.01 and 1.0 ml/minute.
24. The device of claim 1, wherein the substance introducing means comprises an infusion port attached to the tube adjacent the proximal end which is in fluid communication with the lumen of the tube such that a substance can be dehvered through the port and into the lumen of the natural tissue conduit.
25. The device of claim 1, further comprising at least one opening through the external surface of the tube which is in fluid communication with the lumen of the tube, the opening being located between the substance dehvery segment and the proximal end of the tube such that at least a portion of a substance dehvered into the lumen of the tube can pass into the natural tissue conduit through said opening.
26. The device of claim 1, wherein the conduit is a blood vessel.
27. The device of claim 1, wherein the substance is a drug.
28. A device for the local dehvery of a substance at a predetermined site in a natural tissue conduit in the mammalian body, the conduit having a luminal surface defining a lumen, comprising: a) an elongated flexible tube of a preselected length and diameter having an external surface, a proximal end, an opposite distal end, and a first lumen extending longitudinally therethrough interconnecting the proximal and distal ends with the proximal end defining an opening in the first lumen, the tube having a substance dehvery segment adjacent the distal end and defining a plurality of substance dehvery holes through the external surface, an infusion port located adjacent the proximal end of the tube, and a second lumen within the tube interconnecting the infusion port with the substance dehvery holes so that a substance can be dehvered through the infusion port, the second lumen, and the substance dehvery holes to the predetermined site, the substance dehvery segment being moveable among a first rest position wherein it has a first shape, a second position wherein it has a second shape, and a third operative position wherein it has a third shape, the third position being intermediate the first and second positions; and b) means for moving the substance dehvery segment from its first position to its second position, the substance dehvery segment tending to return to the first position when the moving means is no longer applied to the substance dehvery segment.
29. The device of claim 28, wherein the substance dehvery segment assumes the third position when the moving means is no longer applied thereto, such that the substance dehvery segment is capable of exerting a force against the luminal surface of the conduit in the third position sufficient to anchor the substance dehvery segment at the predetermined site within the lumen of a natural tissue conduit.
30. The device of claim 28, wherein the first shape comprises a plurality of spiral turns of the substance dehvery segment about the longitudinal axis of the device such that the substance dehvery segment forms a hollow coil and the substance dehvery holes are at a preselected location on the coil.
31. The device of claim 30, wherein the preselected location of the substance dehvery holes is that the holes are juxtaposed to the luminal surface of the conduit such that a substance dehvered therethrough directly contacts the luminal surface of the tissue conduit.
32. The device of claim 30, wherein the preselected location of the substance dehvery holes is that the holes are adjacent to the luminal surface of the conduit such that a substance dehvered therethrough is dehvered into the natural tissue conduit adjacent the luminal surface thereof.
33. The device of claim 30, wherein the preselected location of the substance dehvery holes is that the holes are opposite a portion of the external surface of the substance dehvery segment which contacts the luminal surface of the conduit such that a substance dehvered therethrough is dehvered into the boundary layer of a fluid flowing through the lumen of the natural tissue conduit.
34. The device of claim 28, wherein the distal end of the tube further defines an opening therethrough which is in fluid communication with the first lumen of the tube and the opening defined by the proximal end thereof.
35. The device of claim 34, wherein the substance dehvery segment is substantially linear in the second position and the moving means comprises a guidewire having a distal tip which is removably insertable into the proximal opening of the first lumen of the tube and through the opening of the distal end thereof, the guidewire being sufficiently stiff to maintain the substance dehvery segment in the second position, thereby allowing deployment of the substance dehvery segment through the conduit to the predetermined site.
36. The device of claim 28, wherein the proximal opening of the first lumen of the tube is moveable between a closed position which forms a fluid tight seal and an open position which allows the guidewire to pass therethrough.
37. The device of claim 34, wherein the distal opening of the first lumen of the tube is moveable between a closed position which forms a fluid tight seal and an open position which allows the guidewire to pass therethrough.
38. The device of claim 28, wherein the distal end of the tube forms a fluid tight seal of the lumen of the tube and the device further comprises a guidewire having a distal tip and a proximal anchoring end, the guidewire being mounted in the tube at the distal end thereof for guiding the tube through the lumen of the natural tissue conduit to the predetermined site.
39. The device of claim 38, wherein the substance dehvery segment is substantially linear in the second position and the moving means comprises a stylette having a distal tip which is removably insertable into the proximal opening of the lumen of the tube, through the lumen of the tube to the distal end thereof, the stylette being sufficiently stiff to maintain the substance dehvery segment in the second position, thereby allowing deployment of the substance dehvery segment through the conduit to the predetermined site.
40. The device of claim 28, wherein the substance dehvery segment is comprised of a resihent biocompatible material selected from the group consisting of polymer, synthetic rubber, natural rubber, metal and plastic preformed to into the first shape such that the substance dehvery segment normally rests in the first position.
41. The device of claim 40, wherein the material is a non- biodegradable polymer selected from the group consisting of polyurethane, polyethylene, polyethylene terephthalate, polytetrafluoroethylene, ethylene vinyl acetate, polyimide and nylon.
42. The device of claim 40, wherein the material is a biodegradable polymer selected from the group consisting of polylactic acid and polyglycolic acid.
43. The device claim 40, wherein the material is a metal selected from the group consisting of stainless steel, and tantalum, platinum and nitinol.
44. The device claim 43, wherein the metal is nitinol and wherein the moving means comprises exposing the nitinol to a fluid having a temperature of between about 40-65 °C.
45. The device claim 44, wherein the metal is nitinol and wherein the moving means comprises exposing the nitinol to a fluid having a temperature of about 55 °C.
46. The device claim 44, wherein the fluid is selected from the group consisting of ringer's solution, lactated ringer's solution, 5% dextrose solution, 10% dextrose solution, normal saline solution, Yi normal saline solution, 5% dextrose and Yi normal saline solution, and sterile water.
47. The device of claim 28, further comprising a semi- permeable membrane covering the external surface of the substance dehvery segment and the substance dehvery holes defined therein such that dehvery of a substance through the substance dehvery holes to the predetermined site occurs at a preselected rate.
48. The device of claim 47, wherein the semi-permeable membrane is comprised of a biocompatible material selected from the group consisting of a biodegradable polymer and a non-biodegradable polymer.
49. The device of claim 47, wherein the semi-permeable membrane is a non-biodegradable polymer selected from the group consisting of polytetrafluoroethylene, ethylene vinyl acetate, polyethylene, and polyethylene terephthalate.
50. The device of claim 47, wherein the substance is a fluid and the preselected rate is between about 0.01 and 1.0 ml/minute.
51. The device of claim 28, wherein the substance introducing means comprises an infusion port attached to the tube adjacent the proximal end which is in fluid communication with the lumen of the tube such that a substance can be dehvered tlirough the port and into the lumen of the natural tissue conduit.
52. The device of claim 28, further comprising at least one opening through the external surface of the tube which is in fluid communication with the lumen of the tube, the opening being located between the substance dehvery segment and the proximal end of the tube such that a portion of a substance dehvered into the lumen of the tube passes into the natural tissue conduit through said opening.
53. The device of claim 28, wherein the conduit is a blood vessel.
54. The device of claim 28, wherein the substance is a drug.
55. A method for providing local dehvery of a substance to a predetermined site in a natural conduit in the mammahan body, the conduit having a luminal surface defining a lumen, comprising the steps of: a) placing a substance dehvery device in the lumen of the natural tissue conduit adjacent the predetermined site, the device being in a first position; and b) delivering a substance to the predetermined site via the substance dehvery device wherein the device is in a second position without interrupting the flow of a fluid through the conduit.
56. The method of claim 55, wherein the substance dehvery device is the device of claim 1.
57. The method of claim 55, wherein the predetermined site is the boundary layer of fluid flowing through the natural tissue conduit.
58. The method of claim 55, wherein the predetermined site is the boundary layer of fluid flowing through the natural tissue conduit upstream of a target treatment area.
59. The method of claim 55, wherein the natural tissue conduit is a blood vessel.
60. The method of claim 55, wherein the substance is a drug.
61. The method of claim 55, wherein the substance is an anticoagulant.
62. The method of claim 61, wherein the anticoagulant is selected from the group consisting of heparin, hirudin, hirulog, hirugen, activated and non-activated protein C, synthetic antagonists of thrombin, Factor Vila, Factor Xa and activated and non-activated coagulation factors.
63. The method of claim 55, wherein the substance antagonizes platelet deposition and thrombus formation.
64. The method of claim 63, wherein the substance is selected from the group consisting of: plasmin, tissue plasminogen activator (tPA), urokinase (UK), single chain prourokinase (scuPA), streptokinase; prostaglandins, cyclooxygenase inhibitors, phosphodiesterase inhibitors, thromboxane synthetase inhibitors; antagonists of glycoprotein receptors including (GP) Ib,GP Ilb/IIIa, antagonists of collagen receptors, and antagonists of platelet thrombin receptors.
65. The method of claim 55, wherein the substance affects platelet metabohc function.
66. The method of claim 65, wherein the substance is selected from the group consisting of prostaglandins, cyclooxygenase inhibitors, phosphodiesterase inhibitors, thromboxane inhibitors, inhibitors of calcium transport, and cyclic AMP agonists.
67. The method of claim 55, wherein the substance prevents restenosis in a blood vessel.
68. The method of claim 67, wherein the substance is selected from the group consisting of a growth factor, a growth factor inhibitor, growth factor receptor antagonist, transcriptional repressor, translational repressor, antisense DNA, antisense RNA, repUcation inhibitor, inhibitory antibodies, antibodies directed against growth factors, bifunctional molecules comprising a growth factor and a cytotoxin, and bifunctional molecules comprising an antibody and a cytotoxin.
69. The method of claim 55, wherein the substance is a vasodilator.
70. The method of claim 69, wherein the substance is selected from the group consisting of nitroglycerin, nitroprusside, agents which liberate nitric oxide, and agents which inhibit calcium transport.
EP95910886A 1994-01-28 1995-01-27 A device for local drug delivery Expired - Lifetime EP0754072B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DK95910886T DK0754072T3 (en) 1994-01-28 1995-01-27 Device for local administration of a drug

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/188,248 US5523092A (en) 1993-04-14 1994-01-28 Device for local drug delivery and methods for using the same
US188248 1994-01-28
PCT/US1995/001080 WO1995020416A1 (en) 1994-01-28 1995-01-27 A device for local drug delivery and methods for using the same

Publications (3)

Publication Number Publication Date
EP0754072A1 true EP0754072A1 (en) 1997-01-22
EP0754072A4 EP0754072A4 (en) 1998-01-14
EP0754072B1 EP0754072B1 (en) 2005-06-01

Family

ID=22692364

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95910886A Expired - Lifetime EP0754072B1 (en) 1994-01-28 1995-01-27 A device for local drug delivery

Country Status (11)

Country Link
US (2) US5523092A (en)
EP (1) EP0754072B1 (en)
JP (1) JPH10500028A (en)
AT (1) ATE296660T1 (en)
AU (1) AU682582B2 (en)
CA (1) CA2182201A1 (en)
DE (1) DE69534245T2 (en)
DK (1) DK0754072T3 (en)
ES (1) ES2243934T3 (en)
PT (1) PT754072E (en)
WO (1) WO1995020416A1 (en)

Families Citing this family (525)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811447A (en) 1993-01-28 1998-09-22 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US6515009B1 (en) 1991-09-27 2003-02-04 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US5985307A (en) 1993-04-14 1999-11-16 Emory University Device and method for non-occlusive localized drug delivery
US5891108A (en) * 1994-09-12 1999-04-06 Cordis Corporation Drug delivery stent
US6231600B1 (en) 1995-02-22 2001-05-15 Scimed Life Systems, Inc. Stents with hybrid coating for medical devices
US6558798B2 (en) 1995-02-22 2003-05-06 Scimed Life Systems, Inc. Hydrophilic coating and substrates coated therewith having enhanced durability and lubricity
US6451047B2 (en) 1995-03-10 2002-09-17 Impra, Inc. Encapsulated intraluminal stent-graft and methods of making same
US6579314B1 (en) * 1995-03-10 2003-06-17 C.R. Bard, Inc. Covered stent with encapsulated ends
US6264684B1 (en) 1995-03-10 2001-07-24 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Helically supported graft
US6743198B1 (en) * 1995-03-20 2004-06-01 Conticare Medical, Inc. Self-cleansing bladder drainage device
US6099562A (en) * 1996-06-13 2000-08-08 Schneider (Usa) Inc. Drug coating with topcoat
US6322548B1 (en) 1995-05-10 2001-11-27 Eclipse Surgical Technologies Delivery catheter system for heart chamber
US5779673A (en) * 1995-06-26 1998-07-14 Focal, Inc. Devices and methods for application of intraluminal photopolymerized gels
US6283951B1 (en) * 1996-10-11 2001-09-04 Transvascular, Inc. Systems and methods for delivering drugs to selected locations within the body
US6302875B1 (en) 1996-10-11 2001-10-16 Transvascular, Inc. Catheters and related devices for forming passageways between blood vessels or other anatomical structures
US5603694A (en) * 1995-10-17 1997-02-18 Brown; Joe E. Infusion coil apparatus and method for delivering fluid-based agents intravascularly
US6346510B1 (en) 1995-10-23 2002-02-12 The Children's Medical Center Corporation Therapeutic antiangiogenic endostatin compositions
US6402736B1 (en) * 1996-02-16 2002-06-11 Joe E. Brown Apparatus and method for filtering intravascular fluids and for delivering diagnostic and therapeutic agents
SG64340A1 (en) * 1996-02-27 1999-04-27 Inst Of Systems Science Nation Curved surgical instruments and methods of mapping a curved path for stereotactic surgery
US6783543B2 (en) * 2000-06-05 2004-08-31 Scimed Life Systems, Inc. Intravascular stent with increasing coating retaining capacity
AU737078C (en) 1996-05-24 2002-05-02 Angiotech Pharmaceuticals, Inc. Compositions and methods for treating or preventing diseases of body passageways
US6190402B1 (en) * 1996-06-21 2001-02-20 Musc Foundation For Research Development Insitu formable and self-forming intravascular flow modifier (IFM) and IFM assembly for deployment of same
US5797887A (en) * 1996-08-27 1998-08-25 Novovasc Llc Medical device with a surface adapted for exposure to a blood stream which is coated with a polymer containing a nitrosyl-containing organo-metallic compound which releases nitric oxide from the coating to mediate platelet aggregation
US5944701A (en) * 1996-10-03 1999-08-31 Dubrul; William R. Self coiling catheter
US7341598B2 (en) * 1999-01-13 2008-03-11 Boston Scientific Scimed, Inc. Stent with protruding branch portion for bifurcated vessels
US6379334B1 (en) * 1997-02-10 2002-04-30 Essex Technology, Inc. Rotate advance catheterization system
CA2280729A1 (en) * 1997-02-14 1998-08-20 Joe E. Brown Coil apparatus and method for delivering diagnostic and therapeutic agents intravascularly
JP3274384B2 (en) * 1997-03-31 2002-04-15 株式会社パイオラックス Indwelling catheter and its insertion device
US5865815A (en) * 1997-04-25 1999-02-02 Contimed, Inc. Prostatic obstruction relief catheter
IT1293973B1 (en) * 1997-08-13 1999-03-15 Sorin Biomedica Cardio Spa ELEMENT FOR ANCHORING OF INSTALLATION DEVICES IN SITU.
US6012034A (en) * 1997-08-18 2000-01-04 Becton, Dickinson And Company System and method for selecting an intravenous device
US20020055717A1 (en) * 1997-10-20 2002-05-09 Philippe Poncet Fluid-based agent delivery device with self-expanding delivery element
US6168570B1 (en) 1997-12-05 2001-01-02 Micrus Corporation Micro-strand cable with enhanced radiopacity
US6241691B1 (en) 1997-12-05 2001-06-05 Micrus Corporation Coated superelastic stent
US6159165A (en) * 1997-12-05 2000-12-12 Micrus Corporation Three dimensional spherical micro-coils manufactured from radiopaque nickel-titanium microstrand
US6358229B1 (en) * 1998-02-17 2002-03-19 Conticare Medical, Inc. Urinary drain
US7208010B2 (en) 2000-10-16 2007-04-24 Conor Medsystems, Inc. Expandable medical device for delivery of beneficial agent
US7208011B2 (en) 2001-08-20 2007-04-24 Conor Medsystems, Inc. Implantable medical device with drug filled holes
US6241762B1 (en) 1998-03-30 2001-06-05 Conor Medsystems, Inc. Expandable medical device with ductile hinges
US6296622B1 (en) 1998-12-21 2001-10-02 Micrus Corporation Endoluminal device delivery system using axially recovering shape memory material
US6500149B2 (en) 1998-08-31 2002-12-31 Deepak Gandhi Apparatus for deployment of micro-coil using a catheter
US6478773B1 (en) * 1998-12-21 2002-11-12 Micrus Corporation Apparatus for deployment of micro-coil using a catheter
US6358276B1 (en) * 1998-09-30 2002-03-19 Impra, Inc. Fluid containing endoluminal stent
US6375648B1 (en) * 1998-10-02 2002-04-23 Misonix Incorporated Infiltration cannula with teflon coated outer surface
US6048332A (en) * 1998-10-09 2000-04-11 Ave Connaught Dimpled porous infusion balloon
US6293967B1 (en) 1998-10-29 2001-09-25 Conor Medsystems, Inc. Expandable medical device with ductile hinges
US6214042B1 (en) * 1998-11-10 2001-04-10 Precision Vascular Systems, Inc. Micro-machined stent for vessels, body ducts and the like
US6413273B1 (en) 1998-11-25 2002-07-02 Israel Aircraft Industries Ltd. Method and system for temporarily supporting a tubular organ
US6258118B1 (en) 1998-11-25 2001-07-10 Israel Aircraft Industries Ltd. Removable support device
US6348067B1 (en) * 1998-11-25 2002-02-19 Israel Aircraft Industries Ltd. Method and system with shape memory heating apparatus for temporarily supporting a tubular organ
US6835185B2 (en) 1998-12-21 2004-12-28 Micrus Corporation Intravascular device deployment mechanism incorporating mechanical detachment
JP3524788B2 (en) 1998-12-24 2004-05-10 株式会社パイオラックス Indwelling catheter for administration of anticancer drugs
US6398803B1 (en) 1999-02-02 2002-06-04 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Partial encapsulation of stents
US6419692B1 (en) 1999-02-03 2002-07-16 Scimed Life Systems, Inc. Surface protection method for stents and balloon catheters for drug delivery
US6398758B1 (en) * 1999-02-16 2002-06-04 Stephen C. Jacobsen Medicament delivery system
US20010041870A1 (en) * 1999-03-09 2001-11-15 Edward M. Gillis Implantable device for access to a treatment site
US6702811B2 (en) 1999-04-05 2004-03-09 Medtronic, Inc. Ablation catheter assembly with radially decreasing helix and method of use
US6514236B1 (en) 1999-04-23 2003-02-04 Alexander A. Stratienko Method for treating a cardiovascular condition
US6245045B1 (en) 1999-04-23 2001-06-12 Alexander Andrew Stratienko Combination sheath and catheter for cardiovascular use
US6595959B1 (en) 1999-04-23 2003-07-22 Alexander A. Stratienko Cardiovascular sheath/catheter
US6156373A (en) * 1999-05-03 2000-12-05 Scimed Life Systems, Inc. Medical device coating methods and devices
US6290673B1 (en) * 1999-05-20 2001-09-18 Conor Medsystems, Inc. Expandable medical device delivery system and method
US6478778B1 (en) * 1999-05-28 2002-11-12 Precision Vascular Systems, Inc. Apparatus for delivering fluids to blood vessels, body cavities, and the like
AU763980B2 (en) * 1999-06-16 2003-08-07 Medi-Tech Co., Ltd. Catheter
US6368315B1 (en) * 1999-06-23 2002-04-09 Durect Corporation Composite drug delivery catheter
US6258121B1 (en) 1999-07-02 2001-07-10 Scimed Life Systems, Inc. Stent coating
US6494862B1 (en) * 1999-07-13 2002-12-17 Advanced Cardiovascular Systems, Inc. Substance delivery apparatus and a method of delivering a therapeutic substance to an anatomical passageway
US6283947B1 (en) 1999-07-13 2001-09-04 Advanced Cardiovascular Systems, Inc. Local drug delivery injection catheter
US6350253B1 (en) * 1999-07-19 2002-02-26 I-Flow Corporation Catheter for uniform delivery of medication
US7004923B2 (en) * 1999-07-19 2006-02-28 I-Flow Corporation Catheter for uniform delivery of medication
US7452353B2 (en) * 1999-07-19 2008-11-18 I-Flow Corporation Catheter for uniform delivery of medication
US7510550B2 (en) * 1999-07-19 2009-03-31 I-Flow Corporation Catheter for uniform delivery of medication
US7547302B2 (en) * 1999-07-19 2009-06-16 I-Flow Corporation Anti-microbial catheter
BR0014141A (en) * 1999-08-25 2002-07-16 Univ Georgetown Application system for therapy comprising hollow bulbs, preferably metallic ones, and their use
AU7720100A (en) 1999-09-27 2001-04-30 Essex Technology, Inc. Rotate-to-advance catheterization system
JP2003510135A (en) 1999-09-29 2003-03-18 スターリング メディヴェイションズ インコーポレイテッド Reusable pharmaceutical injection device
US6596235B2 (en) 1999-09-30 2003-07-22 Therox, Inc. Method for blood oxygenation
US7544500B2 (en) 1999-11-13 2009-06-09 Talecris Biotherapeutics, Inc. Process for the production of a reversibly inactive acidified plasmin composition
CA2391488C (en) 1999-11-22 2012-04-03 Boston Scientific Limited Loop structures for supporting diagnostic and therapeutic elements in contact with body tissue
US7897140B2 (en) * 1999-12-23 2011-03-01 Health Research, Inc. Multi DTPA conjugated tetrapyrollic compounds for phototherapeutic contrast agents
US7670327B2 (en) * 2000-01-20 2010-03-02 Regents Of The University Of Minnesota Catheter systems for delivery of agents and related method thereof
US6663613B1 (en) * 2000-01-25 2003-12-16 Bacchus Vascular, Inc. System and methods for clot dissolution
US6929633B2 (en) 2000-01-25 2005-08-16 Bacchus Vascular, Inc. Apparatus and methods for clot dissolution
US7740637B2 (en) 2000-02-09 2010-06-22 Micrus Endovascular Corporation Apparatus and method for deployment of a therapeutic device using a catheter
US6613082B2 (en) 2000-03-13 2003-09-02 Jun Yang Stent having cover with drug delivery capability
US6379382B1 (en) 2000-03-13 2002-04-30 Jun Yang Stent having cover with drug delivery capability
US7805188B2 (en) * 2000-03-24 2010-09-28 Micor, Inc. Anesthesia conduction catheter for delivery of electrical stimulus
AU2001250969A1 (en) 2000-03-24 2001-10-03 Stephen Brushey Anesthesia conduction catheter
AU2001253479A1 (en) * 2000-04-13 2001-10-30 Sts Biopolymers, Inc. Targeted therapeutic agent release devices and methods of making and using the same
US8236048B2 (en) 2000-05-12 2012-08-07 Cordis Corporation Drug/drug delivery systems for the prevention and treatment of vascular disease
US20040243097A1 (en) * 2000-05-12 2004-12-02 Robert Falotico Antiproliferative drug and delivery device
US20050002986A1 (en) * 2000-05-12 2005-01-06 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US6776796B2 (en) 2000-05-12 2004-08-17 Cordis Corportation Antiinflammatory drug and delivery device
EP2111829B1 (en) * 2000-06-05 2011-01-19 Boston Scientific Limited Intravascular stent with increasing coating retaining capacity
US6685672B1 (en) * 2000-07-13 2004-02-03 Edwards Lifesciences Corporation Multi-balloon drug delivery catheter for angiogenesis
EP1322235B2 (en) 2000-09-29 2010-08-11 Cordis Corporation Coated medical devices
US20020111590A1 (en) * 2000-09-29 2002-08-15 Davila Luis A. Medical devices, drug coatings and methods for maintaining the drug coatings thereon
US20020051730A1 (en) * 2000-09-29 2002-05-02 Stanko Bodnar Coated medical devices and sterilization thereof
US7261735B2 (en) * 2001-05-07 2007-08-28 Cordis Corporation Local drug delivery devices and methods for maintaining the drug coatings thereon
US6764507B2 (en) 2000-10-16 2004-07-20 Conor Medsystems, Inc. Expandable medical device with improved spatial distribution
WO2002032347A2 (en) 2000-10-16 2002-04-25 Conor Medsystems, Inc. Expandable medical device for delivery of beneficial agent
US6692458B2 (en) 2000-12-19 2004-02-17 Edwards Lifesciences Corporation Intra-pericardial drug delivery device with multiple balloons and method for angiogenesis
US20040073294A1 (en) * 2002-09-20 2004-04-15 Conor Medsystems, Inc. Method and apparatus for loading a beneficial agent into an expandable medical device
US6964680B2 (en) * 2001-02-05 2005-11-15 Conor Medsystems, Inc. Expandable medical device with tapered hinge
US7771468B2 (en) * 2001-03-16 2010-08-10 Angiotech Biocoatings Corp. Medicated stent having multi-layer polymer coating
US6719804B2 (en) * 2001-04-02 2004-04-13 Scimed Life Systems, Inc. Medical stent and related methods
DE10131152B4 (en) * 2001-04-30 2004-05-27 Nutricia Healthcare S.A. Medical balloon button system
DE60202677T2 (en) * 2001-05-25 2005-12-29 Medtronic, Inc., Minneapolis IMPLANTABLE MEDICAL DEVICE WITH CONTROLLED RELEASE OF GASIFICOUS MEDICINES
US8252040B2 (en) 2001-07-20 2012-08-28 Microvention, Inc. Aneurysm treatment device and method of use
US6629969B2 (en) * 2001-07-26 2003-10-07 Durect Corporation Catheter for modification of agent formulation
US7364565B2 (en) * 2001-07-27 2008-04-29 Ramot At Tel Aviv University Ltd. Controlled enzymatic removal and retrieval of cells
US7842083B2 (en) 2001-08-20 2010-11-30 Innovational Holdings, Llc. Expandable medical device with improved spatial distribution
US7056338B2 (en) 2003-03-28 2006-06-06 Conor Medsystems, Inc. Therapeutic agent delivery device with controlled therapeutic agent release rates
US7195640B2 (en) * 2001-09-25 2007-03-27 Cordis Corporation Coated medical devices for the treatment of vulnerable plaque
US7108701B2 (en) * 2001-09-28 2006-09-19 Ethicon, Inc. Drug releasing anastomosis devices and methods for treating anastomotic sites
US20030065377A1 (en) * 2001-09-28 2003-04-03 Davila Luis A. Coated medical devices
US20030065345A1 (en) * 2001-09-28 2003-04-03 Kevin Weadock Anastomosis devices and methods for treating anastomotic sites
US6620202B2 (en) 2001-10-16 2003-09-16 Scimed Life Systems, Inc. Medical stent with variable coil and related methods
WO2003032916A2 (en) * 2001-10-16 2003-04-24 Structural Bioinformatics Inc. Organosulfur inhibitors of tyrosine phosphatases
US6936040B2 (en) * 2001-10-29 2005-08-30 Medtronic, Inc. Method and apparatus for endovenous pacing lead
US7438710B2 (en) * 2001-11-07 2008-10-21 Anderson Kent D Distal protection device with local drug infusion by physician to maintain patency
US7041139B2 (en) 2001-12-11 2006-05-09 Boston Scientific Scimed, Inc. Ureteral stents and related methods
CN100393323C (en) * 2002-02-13 2008-06-11 贝思·伊斯雷尔·迪科尼斯医药中心 Methods of treating vascular disease
US8506647B2 (en) * 2002-02-14 2013-08-13 Boston Scientific Scimed, Inc. System for maintaining body canal patency
US8328877B2 (en) 2002-03-19 2012-12-11 Boston Scientific Scimed, Inc. Stent retention element and related methods
US20030191453A1 (en) * 2002-04-03 2003-10-09 Velez Omar E. Catheter assembly
US9636174B2 (en) 2002-04-08 2017-05-02 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US8774913B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for intravasculary-induced neuromodulation
US7653438B2 (en) 2002-04-08 2010-01-26 Ardian, Inc. Methods and apparatus for renal neuromodulation
US7853333B2 (en) 2002-04-08 2010-12-14 Ardian, Inc. Methods and apparatus for multi-vessel renal neuromodulation
US20140018880A1 (en) 2002-04-08 2014-01-16 Medtronic Ardian Luxembourg S.A.R.L. Methods for monopolar renal neuromodulation
US8150519B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods and apparatus for bilateral renal neuromodulation
US7617005B2 (en) 2002-04-08 2009-11-10 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US20080213331A1 (en) 2002-04-08 2008-09-04 Ardian, Inc. Methods and devices for renal nerve blocking
US20070129761A1 (en) 2002-04-08 2007-06-07 Ardian, Inc. Methods for treating heart arrhythmia
US20070135875A1 (en) 2002-04-08 2007-06-14 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
AU2003226366A1 (en) 2002-04-15 2003-11-03 Beth Israel Deaconess Medical Center Use of heme oxygenase-1 and products of heme degradation
US7122048B2 (en) * 2002-05-03 2006-10-17 Scimed Life Systems, Inc. Hypotube endoluminal device
US8829198B2 (en) * 2007-10-31 2014-09-09 Proteotech Inc Compounds, compositions and methods for the treatment of beta-amyloid diseases and synucleinopathies
PL375161A1 (en) * 2002-06-21 2005-11-28 University Of Pittsburgh Of The Commonwealth System Of Higher Education Pharmaceutical use of nitric oxide, heme oxygenase-1 and products of heme degradation
AU2003248747A1 (en) 2002-06-27 2004-01-19 Health Research, Inc. Fluorinated chlorin and bacteriochlorin photosensitizers for photodynamic therapy
EP2036908A3 (en) * 2002-07-02 2009-05-13 Health Research, INC. Efficient synthesis of pyropheophorbide a derivates
AU2003256540B2 (en) 2002-07-12 2008-12-11 Cook Medical Technologies Llc Coated medical device
JP3887588B2 (en) * 2002-08-30 2007-02-28 株式会社リガク Stress measurement method by X-ray diffraction
US20040127976A1 (en) * 2002-09-20 2004-07-01 Conor Medsystems, Inc. Method and apparatus for loading a beneficial agent into an expandable medical device
US20040059228A1 (en) * 2002-09-23 2004-03-25 Scimed Life Systems, Inc. Systems and methods for flushing catheters
US7918819B2 (en) * 2002-11-15 2011-04-05 Health & Human Services - NIH Variable curve catheter
JP5596896B2 (en) 2003-03-28 2014-09-24 イノヴェイショナル・ホールディングズ・エルエルシー Method of forming an implantable medical device having a beneficial agent concentration gradient
WO2004099158A1 (en) * 2003-04-30 2004-11-18 Ricerca Biosciences, Llc. Monocyclic diazodioxide based bcl-2 protein antagonists
WO2004099162A1 (en) * 2003-04-30 2004-11-18 Ricerca Biosciences, Llc. Polycyclic diazodioxide-based bcl-2 protein antagonist
JP4824549B2 (en) 2003-05-02 2011-11-30 サーモディクス,インコーポレイティド Controlled release bioactive substance delivery device
WO2004110350A2 (en) * 2003-05-14 2004-12-23 Torreypines Therapeutics, Inc. Compouds and uses thereof in modulating amyloid beta
US20090227647A1 (en) * 2008-03-05 2009-09-10 Thomas Lake Compounds, Compositions and Methods for the Treatment of Islet Amyloid Polypeptide (IAPP) Accumulation in Diabetes
US8916598B2 (en) 2003-05-30 2014-12-23 Proteotech Inc Compounds, compositions, and methods for the treatment of β-amyloid diseases and synucleinopathies
US20040249364A1 (en) * 2003-06-03 2004-12-09 Ilya Kaploun Device and method for dispensing medication to tissue lining a body cavity
US7169179B2 (en) * 2003-06-05 2007-01-30 Conor Medsystems, Inc. Drug delivery device and method for bi-directional drug delivery
US20040260271A1 (en) * 2003-06-18 2004-12-23 Huyser Richard F. Extended fenestration catheter with internal coil and method of making the same
US7057100B2 (en) * 2003-06-26 2006-06-06 The J.C. Robinson Seed Co. Inbred corn line W23129
US7785653B2 (en) 2003-09-22 2010-08-31 Innovational Holdings Llc Method and apparatus for loading a beneficial agent into an expandable medical device
US20050101938A1 (en) * 2003-11-06 2005-05-12 Leiboff Arnold R. Guidewire for use in colonic irrigation
WO2005090370A1 (en) 2004-02-05 2005-09-29 The Regents Of The University Of California Pharmacologically active agents containing esterified phosphonates and methods for use thereof
JP2007538103A (en) 2004-05-20 2007-12-27 ザ スクリップス リサーチ インスティテュート Transthyretin stabilization
JP5054524B2 (en) 2004-06-08 2012-10-24 アドバンスド ステント テクノロジーズ, インコーポレイテッド Stent with protruding branch for branch pipe
WO2006009876A2 (en) * 2004-06-17 2006-01-26 Cengent Therapeutics, Inc. Trisubstituted nitrogen modulators of tyrosine phosphatases
EP1786421A2 (en) * 2004-07-09 2007-05-23 Cengent Therapeutics, Inc. Oxygen/nitrogen heterocycle inhibitors of tyrosine phosphatases
FR2873016B1 (en) * 2004-07-15 2006-09-29 Pierre Marcel Bourgogne ARTIFICIAL VASCULAR PROSTHESES THAT PERMANENTLY DELIVER ACTIVE PRODUCTS WHICH PREVENT ALL STENOSIS, THROMBOSIS, CELL PROLIFERATION, ETC .. PERMANENT EASY ACCESS FOR ANY INTERVENTION
EP1778652A2 (en) * 2004-08-20 2007-05-02 EntreMed, Inc. Compositions and methods comprising proteinase activated receptor antagonists
EP1841749A1 (en) * 2004-09-02 2007-10-10 Metabasis Therapeutics, Inc. Derivatives of thiazole and thiadiazole inhibitors of tyrosine phosphatases
AU2005287137B2 (en) 2004-09-17 2012-03-22 Foldrx Pharmaceuticals, Inc. Compounds, compositions and methods of inhibiting a-synuclein toxicity
US20060067889A1 (en) * 2004-09-27 2006-03-30 Light Sciences Corporation Singlet oxygen photosensitizers activated by target binding enhancing the selectivity of targeted PDT agents
US20080140187A1 (en) * 2004-10-15 2008-06-12 Krause Arthur A Anti-clotting, anti-microbial, anti-inflammatory medical stent
WO2006063199A2 (en) 2004-12-09 2006-06-15 The Foundry, Inc. Aortic valve repair
US8983582B2 (en) 2004-12-20 2015-03-17 Advanced Cardiovascular Systems, Inc. Methods and apparatuses for positioning within an internal channel
EP1861133B1 (en) 2005-02-28 2012-11-21 Spirus Medical Inc. Rotate-to-advance catheterization system
WO2006137953A1 (en) 2005-04-01 2006-12-28 The Regents Of The Univerisity Of California Phosphono-pent-2-en-1-yl nucleosides and analogs
WO2006130217A2 (en) * 2005-04-01 2006-12-07 The Regents Of The University Of California Substituted phosphate esters of nucleoside phosphonates
US20060229573A1 (en) * 2005-04-08 2006-10-12 Mckinley Medical L.L.L.P. Adjustable infusion catheter
US8235942B2 (en) 2005-05-04 2012-08-07 Olympus Endo Technology America Inc. Rotate-to-advance catheterization system
US8317678B2 (en) 2005-05-04 2012-11-27 Olympus Endo Technology America Inc. Rotate-to-advance catheterization system
US8343040B2 (en) 2005-05-04 2013-01-01 Olympus Endo Technology America Inc. Rotate-to-advance catheterization system
US8414477B2 (en) 2005-05-04 2013-04-09 Olympus Endo Technology America Inc. Rotate-to-advance catheterization system
US7780650B2 (en) 2005-05-04 2010-08-24 Spirus Medical, Inc. Rotate-to-advance catheterization system
US7396366B2 (en) 2005-05-11 2008-07-08 Boston Scientific Scimed, Inc. Ureteral stent with conforming retention structure
WO2007002109A2 (en) * 2005-06-20 2007-01-04 The Regents Of The University Of California Multidentate pyrone-derived chelators for medicinal imaging and chelation
US9162033B2 (en) * 2005-06-27 2015-10-20 Cook Medical Technologies Llc Dilator for performing a percutaneous medical procedure
US20070031611A1 (en) * 2005-08-04 2007-02-08 Babaev Eilaz P Ultrasound medical stent coating method and device
US9101949B2 (en) * 2005-08-04 2015-08-11 Eilaz Babaev Ultrasonic atomization and/or seperation system
CA2618349C (en) * 2005-08-11 2016-05-31 Massachusetts Institute Of Technology Intravesical drug delivery device and method
US7896539B2 (en) * 2005-08-16 2011-03-01 Bacoustics, Llc Ultrasound apparatus and methods for mixing liquids and coating stents
US8492428B2 (en) * 2005-09-20 2013-07-23 Mayo Foundation For Medical Education And Research Small-molecule botulinum toxin inhibitors
US7540881B2 (en) * 2005-12-22 2009-06-02 Boston Scientific Scimed, Inc. Bifurcation stent pattern
WO2007076160A2 (en) * 2005-12-28 2007-07-05 Acidophil Llc C-10 carbamates of taxanes
US8435229B2 (en) 2006-02-28 2013-05-07 Olympus Endo Technology America Inc. Rotate-to-advance catheterization system
US8574220B2 (en) 2006-02-28 2013-11-05 Olympus Endo Technology America Inc. Rotate-to-advance catheterization system
PL2383271T3 (en) * 2006-03-13 2013-12-31 Kyorin Seiyaku Kk Aminoquinolones as GSK-3 Inhibitors
CA2647543A1 (en) * 2006-03-29 2007-11-08 Foldrx Pharmaceuticals, Inc. Inhibition of alpha-synuclein toxicity
EP2015841A4 (en) * 2006-04-27 2010-06-23 St Jude Medical Implantable medical device with releasing compound
SG170032A1 (en) 2006-08-28 2011-04-29 Kyowa Hakko Kirin Co Ltd Antagonistic human light-specific human monoclonal antibodies
US7547323B2 (en) * 2006-08-29 2009-06-16 Sinexus, Inc. Stent for irrigation and delivery of medication
PT2066662E (en) 2006-09-21 2013-02-13 Kyorin Seiyaku Kk Serine hydrolase inhibitors
WO2008042311A1 (en) * 2006-09-28 2008-04-10 Nmt Medical. Inc. Perforated expandable implant recovery sheath
US7951191B2 (en) * 2006-10-10 2011-05-31 Boston Scientific Scimed, Inc. Bifurcated stent with entire circumferential petal
US20080140176A1 (en) * 2006-10-18 2008-06-12 Krause Arthur A Medical stent and devices for localized treatment of disease
JP2010507585A (en) 2006-10-19 2010-03-11 オースペックス・ファーマシューティカルズ・インコーポレイテッド Substituted indole
US8287519B2 (en) * 2006-10-27 2012-10-16 Smith Tech Innovations, Llc Self-cleansing bladder drainage catheter
WO2008057604A2 (en) * 2006-11-08 2008-05-15 The Regents Of The University Of California Small molecule therapeutics, syntheses of analogues and derivatives and methods of use
US7842082B2 (en) * 2006-11-16 2010-11-30 Boston Scientific Scimed, Inc. Bifurcated stent
US20080140008A1 (en) * 2006-12-06 2008-06-12 Medtronic, Inc. Intrathecal catheter
US20080142616A1 (en) * 2006-12-15 2008-06-19 Bacoustics Llc Method of Producing a Directed Spray
WO2008077103A1 (en) 2006-12-19 2008-06-26 Auspex Pharmaceuticals, Inc. Preperation and utility of ccr5 inhibitors
JP2010513530A (en) * 2006-12-22 2010-04-30 エンサイシブ・ファーマシューティカルズ・インコーポレイテッド C3A receptor modulator and method of use thereof
WO2008106167A1 (en) * 2007-02-28 2008-09-04 Conatus Pharmaceuticals, Inc. Combination therapy comprising matrix metalloproteinase inhibitors and caspase inhibitors for the treatment of liver diseases
PT2144604E (en) * 2007-02-28 2011-10-19 Conatus Pharmaceuticals Inc Methods for the treatment of chronic viral hepatitis c using ro 113-0830
PL2125698T3 (en) 2007-03-15 2017-03-31 Auspex Pharmaceuticals, Inc. DEUTERATED d9-VENLAFAXINE
CN104069567A (en) 2007-03-19 2014-10-01 茵苏莱恩医药有限公司 Drug delivery device
US8622991B2 (en) 2007-03-19 2014-01-07 Insuline Medical Ltd. Method and device for drug delivery
US9220837B2 (en) 2007-03-19 2015-12-29 Insuline Medical Ltd. Method and device for drug delivery
US8398576B2 (en) * 2007-04-02 2013-03-19 University of Pittsburgh—of the Commonwealth System of Higher Education Removal of contrast agents from blood
US7892776B2 (en) 2007-05-04 2011-02-22 The Regents Of The University Of California Screening assay to identify modulators of protein kinase A
US20080281291A1 (en) * 2007-05-07 2008-11-13 Claude Tihon Drainage/irrigation urethral catheter
US8870755B2 (en) 2007-05-18 2014-10-28 Olympus Endo Technology America Inc. Rotate-to-advance catheterization system
US20120149985A1 (en) * 2007-05-18 2012-06-14 Frassica James J Rotate-to-advance catheterization system
US8721711B2 (en) * 2007-06-20 2014-05-13 Oregon Health & Science University Graft having microporous membrane for uniform fluid infusion
CA2704920C (en) 2007-06-25 2016-08-16 Microvention, Inc. Self-expanding prosthesis
US9402973B2 (en) 2007-07-06 2016-08-02 Vital 5, Llc Constrained fluid delivery device
EP2170062A4 (en) * 2007-07-12 2010-12-29 Tragara Pharmaceuticals Inc Methods and compositions for the treatment of cancer, tumors, and tumor-related disorders
US7753285B2 (en) 2007-07-13 2010-07-13 Bacoustics, Llc Echoing ultrasound atomization and/or mixing system
US7780095B2 (en) 2007-07-13 2010-08-24 Bacoustics, Llc Ultrasound pumping apparatus
EP2203458B1 (en) * 2007-09-11 2011-11-02 Kyorin Pharmaceutical Co., Ltd. Cyanoaminoquinolones as gsk-3 inhibitors
US8476261B2 (en) 2007-09-12 2013-07-02 Kyorin Pharmaceutical Co., Ltd. Spirocyclic aminoquinolones as GSK-3 inhibitors
US7959669B2 (en) * 2007-09-12 2011-06-14 Boston Scientific Scimed, Inc. Bifurcated stent with open ended side branch support
US8100855B2 (en) * 2007-09-17 2012-01-24 Abbott Cardiovascular Systems, Inc. Methods and devices for eluting agents to a vessel
US20090076591A1 (en) * 2007-09-19 2009-03-19 Boston Scientific Scimed, Inc. Stent Design Allowing Extended Release of Drug and/or Enhanced Adhesion of Polymer to OD Surface
US20090264421A1 (en) * 2007-10-05 2009-10-22 Bible Keith C Methods and Compositions for Treating Cancer
JP5476515B2 (en) * 2007-10-09 2014-04-23 ユニヴェルシテ・パリ・デカルト Device for administering cells
SG186008A1 (en) 2007-11-21 2012-12-28 Pharmaxis Ltd Haloallylamine inhibitors of ssao/vap-1 and uses therefor
US7833266B2 (en) 2007-11-28 2010-11-16 Boston Scientific Scimed, Inc. Bifurcated stent with drug wells for specific ostial, carina, and side branch treatment
BRPI0820800B8 (en) * 2007-12-11 2021-06-22 Massachusetts Inst Technology implantable medical device for controlled drug release
WO2009079388A2 (en) * 2007-12-14 2009-06-25 Oregon Health & Science University Drug delivery cuff
US8409133B2 (en) 2007-12-18 2013-04-02 Insuline Medical Ltd. Drug delivery device with sensor for closed-loop operation
US8277501B2 (en) * 2007-12-21 2012-10-02 Boston Scientific Scimed, Inc. Bi-stable bifurcated stent petal geometry
WO2009105699A1 (en) 2008-02-22 2009-08-27 Endologix, Inc. Design and method of placement of a graft or graft system
US8196279B2 (en) 2008-02-27 2012-06-12 C. R. Bard, Inc. Stent-graft covering process
PT2268623E (en) 2008-03-17 2015-09-17 Ambit Biosciences Corp Quinazoline derivatives as raf kinase modulators and methods of use thereof
US20090240318A1 (en) * 2008-03-19 2009-09-24 Boston Scientific Scimed, Inc. Stent expansion column, strut and connector slit design
US20090275918A1 (en) * 2008-05-01 2009-11-05 Stemcor Systems, Inc. Pancreatic delivery catheter
US8932340B2 (en) * 2008-05-29 2015-01-13 Boston Scientific Scimed, Inc. Bifurcated stent and delivery system
US8617863B2 (en) 2008-06-04 2013-12-31 Grifols Therapeutics Inc. Composition, method, and kit for preparing plasmin
CN102176931B (en) 2008-08-09 2015-03-04 麻省理工学院 Implantable drug delivery device and methods of treating male genitourinary and surrounding tissues
US20110070154A1 (en) * 2008-08-13 2011-03-24 Hyde Roderick A Artificial cells
CN101658533A (en) * 2008-08-29 2010-03-03 首都医科大学宣武医院 Delivery of stem cells of antitumor medicament
WO2010030728A2 (en) * 2008-09-12 2010-03-18 Boston Scientific Scimed, Inc. Devices and systems for delivery of therapeutic agents to body lumens
WO2010036541A1 (en) * 2008-09-24 2010-04-01 Cook Incorporated Catheter system having variable stiffness
WO2010041084A1 (en) * 2008-10-09 2010-04-15 Plethora Solutions Ltd Medical device
WO2010059364A2 (en) * 2008-10-30 2010-05-27 Epitek, Inc. Method and apparatus for sub-xiphoid delivery of therapeutic agents
EP2355758A2 (en) 2008-11-07 2011-08-17 Insuline Medical Ltd. Device and method for drug delivery
WO2010088450A2 (en) 2009-01-30 2010-08-05 Celladon Corporation Methods for treating diseases associated with the modulation of serca
US8568793B2 (en) 2009-02-11 2013-10-29 Hope Medical Enterprises, Inc. Sodium nitrite-containing pharmaceutical compositions
PT2401267E (en) 2009-02-27 2014-04-10 Ambit Biosciences Corp Jak kinase modulating quinazoline derivatives and their use in methods
US9206410B2 (en) 2009-03-03 2015-12-08 Grifols Therapeutics Inc. Compositions, methods and kits for preparing plasminogen and plasmin prepared therefrom
US8193372B2 (en) 2009-03-04 2012-06-05 Idenix Pharmaceuticals, Inc. Phosphothiophene and phosphothiazole HCV polymerase inhibitors
MX2011009413A (en) 2009-03-11 2011-10-21 Ambit Biosciences Corp Combination of an indazolylaminopyrrolotriazine and taxane for cancer treatment.
CN102421784B (en) * 2009-03-11 2015-09-30 杏林制药株式会社 As the 7-cycloalkyl amino quinolone of GSK-3 inhibitor
WO2010110686A1 (en) 2009-03-27 2010-09-30 Pathway Therapeutics Limited Pyrimidinyl and 1,3,5 triazinyl benzimidazoles and their use in cancer therapy
RU2011143359A (en) 2009-03-27 2013-05-10 Патвэй Терапьютикс, Инк. PRIMIDINYL- AND 1,3,5-TRIAZINYLBENZIMIDAZOLSULFONAMIDES AND THEIR APPLICATION IN CANCER THERAPY
CA2758985A1 (en) 2009-04-22 2010-10-28 Axikin Pharmaceuticals, Inc. 2,5-disubstituted arylsulfonamide ccr3 antagonists
NZ620074A (en) 2009-04-22 2015-09-25 Axikin Pharmaceuticals Inc 2,5-disubstituted arylsulfonamide ccr3 antagonists
MX2011011141A (en) 2009-04-22 2012-02-13 Axikin Pharmaceuticals Inc Arylsulfonamide ccr3 antagonists.
EP2429452B1 (en) 2009-04-28 2020-01-15 Endologix, Inc. Endoluminal prosthesis system
US20100292641A1 (en) * 2009-05-15 2010-11-18 Bandula Wijay Targeted drug delivery device and method
ES2401007T3 (en) 2009-06-26 2013-04-16 Taris Biomedical, Inc. Implantable drug delivery devices and manufacturing procedures thereof
WO2011003870A2 (en) 2009-07-06 2011-01-13 Creabilis S.A. Mini-pegylated corticosteroids, compositions including same, and methods of making and using same
TW201105662A (en) 2009-07-07 2011-02-16 Pathway Therapeutics Ltd Pyrimidinyl and 1,3,5-triazinyl benzimidazoles and their use in cancer therapy
PT2451435T (en) 2009-07-08 2018-01-15 Hope Medical Entpr Inc D B A Hope Pharmaceuticals Sodium thiosulfate-containing pharmaceutical compositions
US20110022026A1 (en) 2009-07-21 2011-01-27 Lake Region Manufacturing, Inc. d/b/a Lake Region Medical. Inc. Methods and Devices for Delivering Drugs Using Drug-Delivery or Drug-Coated Guidewires
US8404728B2 (en) 2009-07-30 2013-03-26 Mayo Foundation For Medical Education And Research Small-molecule botulinum toxin inhibitors
JP2013501068A (en) 2009-08-05 2013-01-10 アイディニックス ファーマシューティカルズ インコーポレイテッド Macrocyclic serine protease inhibitor
KR20120059558A (en) 2009-08-19 2012-06-08 암비트 바이오사이언시즈 코포레이션 Biaryl compounds and methods of use thereof
US9017312B2 (en) 2009-09-10 2015-04-28 Taris Biomedical Llc Implantable device for controlled drug delivery
TW201120037A (en) 2009-10-26 2011-06-16 Sunesis Pharmaceuticals Inc Compounds and methods for treatment of cancer
WO2011056764A1 (en) 2009-11-05 2011-05-12 Ambit Biosciences Corp. Isotopically enriched or fluorinated imidazo[2,1-b][1,3]benzothiazoles
WO2011057214A2 (en) 2009-11-09 2011-05-12 Neurogenetic Pharmaceuticals, Inc. Gamma-secretase modulatory compounds, methods for identifying same, and uses therefor
WO2011069002A1 (en) 2009-12-02 2011-06-09 Alquest Therapeutics, Inc. Organoselenium compounds and uses thereof
JP2013514982A (en) 2009-12-18 2013-05-02 イデニク プハルマセウティカルス,インコーポレイテッド 5,5-condensed arylene or heteroarylene hepatitis C virus inhibitor
EP2515654A4 (en) * 2009-12-23 2013-04-24 Map Pharmaceuticals Inc Novel ergoline analogs
WO2011094890A1 (en) 2010-02-02 2011-08-11 Argusina Inc. Phenylalanine derivatives and their use as non-peptide glp-1 receptor modulators
DK2542542T3 (en) 2010-03-02 2015-07-20 Axikin Pharmaceuticals Inc ISOTOPIC ENRICHED ARYL SULPHONAMIDE CCR3 ANTAGONISTS
WO2011112689A2 (en) 2010-03-11 2011-09-15 Ambit Biosciences Corp. Saltz of an indazolylpyrrolotriazine
AR080770A1 (en) 2010-03-17 2012-05-09 Axikin Pharmaceuticals Inc PIPERIDINSULFONAMIDS MODULATORS OF THE ACTIVITY OF XCC3 RECEPTORS, PHARMACEUTICAL COMPOSITIONS CONTAINING THEMSELVES AND USE OF THE SAME IN THE TREATMENT OF RESPIRATORY PATHOLOGIES, SUCH AS ASTHMA, AMONG OTHER.
WO2011140177A1 (en) * 2010-05-05 2011-11-10 Cook Medical Technologies Llc Intraluminal treatment apparatus, wire guide and treatment fluid delivery method
WO2011140186A1 (en) 2010-05-05 2011-11-10 Cook Medical Technologies Llc Treatment fluid delivery method, and turbulator for promoting uptake of a treatment agent
US9265913B2 (en) 2010-09-22 2016-02-23 Vital 5, Llc Catheter assembly
WO2011150201A2 (en) 2010-05-27 2011-12-01 Ambit Biosciences Corporation Azolyl amide compounds and methods of use thereof
WO2011150198A1 (en) 2010-05-27 2011-12-01 Ambit Biosciences Corporation Azolyl urea compounds and methods of use thereof
JP6019015B2 (en) 2010-06-01 2016-11-02 ビオトヘルイク, インコーポレイテッド Method for treating hematological malignancies using 6-cyclohexyl-1-hydroxy-4-methyl-2 (1H) -pyridone
CN103038216A (en) 2010-06-01 2013-04-10 拜欧赛里克斯公司 Hydroxypyridone derivatives, pharmaceutical compositions thereof, and their therapeutic use for treating proliferative diseases
CN103108868B (en) 2010-06-07 2015-11-25 诺沃梅迪科斯有限公司 Furyl compounds and uses thereof
WO2011163636A2 (en) 2010-06-24 2011-12-29 The Regents Of The University Of California Compounds and uses thereof in modulating levels of various amyloid beta peptide alloforms
EP2595615A1 (en) 2010-07-19 2013-05-29 Summa Health System Vitamin c and chromium-free vitamin k, and compositions thereof for treating an nfkb-mediated condition or disease
WO2012030917A1 (en) 2010-09-01 2012-03-08 Ambit Biosciences Corporation An optically active pyrazolylaminoquinazoline, and pharmaceutical compositions and methods of use thereof
US20130317045A1 (en) 2010-09-01 2013-11-28 Ambit Biosciences Corporation Thienopyridine and thienopyrimidine compounds and methods of use thereof
US20130303533A1 (en) 2010-09-01 2013-11-14 Ambit Biosciences Corporation Azolopyridine and azolopyrimidine compounds and methods of use thereof
US20130296363A1 (en) 2010-09-01 2013-11-07 Ambit Biosciences Corporation Quinoline and isoquinoline derivatives for use as jak modulators
EP2611793A1 (en) 2010-09-01 2013-07-10 Ambit Biosciences Corporation 2-cycloquinazoline derivatives and methods of use thereof
EP2611789A1 (en) 2010-09-01 2013-07-10 Ambit Biosciences Corporation Quinazoline compounds and methods of use thereof
US20130225614A1 (en) 2010-09-01 2013-08-29 Ambit Biosciences Corporation 4-azolylaminoquinazoline derivatives and methods of use thereof
ES2619850T3 (en) 2010-09-01 2017-06-27 Ambit Biosciences Corporation Hydrobromide salts of a pyrazolilaminoquinazoline
WO2012030918A1 (en) 2010-09-01 2012-03-08 Ambit Biosciences Corporation Adenosine a3 receptor modulating compounds and methods of use thereof
US20130225578A1 (en) 2010-09-01 2013-08-29 Ambit Biosciences Corporation 7-cyclylquinazoline derivatives and methods of use thereof
US9446224B2 (en) 2010-09-22 2016-09-20 Vital 5, L.L.C. Barrier catheter
WO2012044641A1 (en) 2010-09-29 2012-04-05 Pathway Therapeutics Inc. 1,3,5-triazinyl benzimidazole sulfonamides and their use in cancer therapy
IT1402059B1 (en) * 2010-09-29 2013-08-28 Rand Srl WEARABLE SYSTEM TO CARRY OUT PURIFYING THERAPIES OF ORGANIC FLUIDS WITH THE USE OF EXTRACORPY CIRCUITS
EP2627635A1 (en) 2010-10-11 2013-08-21 Axikin Pharmaceuticals, Inc. Salts of arylsulfonamide ccr3 antagonists
TWI556849B (en) 2010-10-21 2016-11-11 美敦力阿福盧森堡公司 Catheter apparatus for renal neuromodulation
BR112013010000A2 (en) 2010-10-25 2017-10-24 Medtronic Ardian Luxembourg catheter apparatus
EP2635241B1 (en) 2010-11-02 2019-02-20 Endologix, Inc. Apparatus for placement of a graft or graft system
US20140079686A1 (en) 2010-12-06 2014-03-20 Shikha P. Barman Methods For Treating Baldness And Promoting Hair Growth
WO2012080050A1 (en) 2010-12-14 2012-06-21 F. Hoffmann-La Roche Ag Solid forms of a phenoxybenzenesulfonyl compound
CA2823783C (en) 2011-01-10 2023-03-21 Taris Biomedical, Inc. Lidocaine regimen for the use of sustained treatment of bladder pain and irritative voiding
EP2668210B1 (en) 2011-01-26 2020-06-17 Celldex Therapeutics, Inc. Anti-kit antibodies and uses thereof
US10052459B2 (en) * 2011-01-28 2018-08-21 Cook Medical Technologies Llc Catheter assembly and method
CN103338753A (en) 2011-01-31 2013-10-02 细胞基因公司 Pharmaceutical compositions of cytidine analogs and methods of use thereof
CN103379902B (en) 2011-02-04 2015-11-25 塔里斯生物医药公司 For the implantable device of the Co ntrolled release of low solubility drug
US9353100B2 (en) 2011-02-10 2016-05-31 Idenix Pharmaceuticals Llc Macrocyclic serine protease inhibitors, pharmaceutical compositions thereof, and their use for treating HCV infections
SG193982A1 (en) 2011-03-28 2013-11-29 Mei Pharma Inc (alpha- substituted aralkylamino and heteroarylalkylamino) pyrimidinyl and 1,3,5 -triazinyl benzimidazoles, pharmaceutical compositions containing them, and these compounds for use in treating proliferative diseases
EP2691388A1 (en) 2011-03-28 2014-02-05 MEI Pharma, Inc. (fused ring arylamino and heterocyclylamino) pyrimidynyl and 1,3,5-triazinyl benzimidazoles, pharmaceutical compositions thereof, and their use in treating proliferative diseases
JP2014509648A (en) 2011-03-28 2014-04-21 メイ プハルマ,インコーポレーテッド (Α-Substituted cycloalkylamino and heterocyclylamino) pyrimidinyl and 1,3,5-triazinylbenzimidazoles, pharmaceutical compositions thereof, and their use in the treatment of proliferative diseases
US20120252721A1 (en) 2011-03-31 2012-10-04 Idenix Pharmaceuticals, Inc. Methods for treating drug-resistant hepatitis c virus infection with a 5,5-fused arylene or heteroarylene hepatitis c virus inhibitor
EP2694135B1 (en) * 2011-04-05 2021-06-16 PharmaSens AG Dermally affixed device for intravenous access
JP5759615B2 (en) 2011-04-08 2015-08-05 コヴィディエン リミテッド パートナーシップ Iontophoretic catheter system and method for renal sympathetic denervation and iontophoretic drug delivery
JP5938095B2 (en) * 2011-04-20 2016-06-22 キナメッド・インコーポレーテッド Shapeable passers for surgical cables or sutures
JP2014517076A (en) 2011-06-23 2014-07-17 マップ・ファーマシューティカルズ・インコーポレイテッド Novel fluoroergoline analogues
CN103702707B (en) * 2011-08-08 2016-03-30 奥林巴斯株式会社 Treatment tool
WO2013037482A1 (en) 2011-09-15 2013-03-21 Phenex Pharmaceuticals Ag Farnesoid x receptor agonists for cancer treatment and prevention
USD679804S1 (en) 2011-09-22 2013-04-09 Vital 5, Llc Catheter
US20130085468A1 (en) * 2011-10-03 2013-04-04 Yuri Buydenok Catheter with body wall separator
RU2648997C2 (en) 2011-10-14 2018-03-29 Эмбит Байосайенсиз Корпорейшн Heterocyclic compounds and methods of their use
CA2859173A1 (en) 2011-12-19 2013-06-27 Map Pharmaceuticals, Inc. Novel iso-ergoline derivatives
AU2012355983A1 (en) 2011-12-21 2015-01-22 Map Pharmaceuticals, Inc. Novel neuromodulatory compounds
WO2013130600A1 (en) 2012-02-29 2013-09-06 Ambit Biosciences Corporation Solid forms comprising optically active pyrazolylaminoquinazoline, compositions thereof, and uses therewith
US8916555B2 (en) 2012-03-16 2014-12-23 Axikin Pharmaceuticals, Inc. 3,5-diaminopyrazole kinase inhibitors
US9044581B2 (en) * 2012-03-19 2015-06-02 Cook Medical Technologies Llc Medical devices, methods, and kits for delivering medication to a bodily passage
US10258791B2 (en) 2012-04-27 2019-04-16 Medtronic Ardian Luxembourg S.A.R.L. Catheter assemblies for neuromodulation proximate a bifurcation of a renal artery and associated systems and methods
MX360634B (en) 2012-05-02 2018-11-12 Boehringer Ingelheim Int Substituted 3-haloallylamine inhibitors of ssao and uses thereof.
US8888773B2 (en) 2012-05-11 2014-11-18 Medtronic Ardian Luxembourg S.A.R.L. Multi-electrode catheter assemblies for renal neuromodulation and associated systems and methods
US9732038B2 (en) 2012-06-14 2017-08-15 Mayo Foundation For Medical Education And Research Pyrazole derivatives as inhibitors of STAT3
US9381326B2 (en) 2012-06-15 2016-07-05 W. L. Gore & Associates, Inc. Vascular occlusion and drug delivery devices, systems, and methods
US9012640B2 (en) 2012-06-22 2015-04-21 Map Pharmaceuticals, Inc. Cabergoline derivatives
NZ630363A (en) 2012-07-25 2018-09-28 Celldex Therapeutics Inc Anti-kit antibodies and uses thereof
US9074186B2 (en) 2012-08-15 2015-07-07 Boston Medical Center Corporation Production of red blood cells and platelets from stem cells
AU2013312420A1 (en) 2012-09-07 2015-02-26 Axikin Pharmaceuticals, Inc. Isotopically enriched arylsulfonamide CCR3 antagonists
WO2014055647A1 (en) 2012-10-03 2014-04-10 Mei Pharma, Inc. (sulfinyl and sulfonyl benzimidazolyl) pyrimidines and triazines, pharmaceutical compositions thereof, and their use for treating proliferative diseases
US9044575B2 (en) 2012-10-22 2015-06-02 Medtronic Adrian Luxembourg S.a.r.l. Catheters with enhanced flexibility and associated devices, systems, and methods
US20150272924A1 (en) 2012-11-08 2015-10-01 Summa Health System Vitamin c, vitamin k, a polyphenol, and combinations thereof for wound healing
US9095321B2 (en) 2012-11-21 2015-08-04 Medtronic Ardian Luxembourg S.A.R.L. Cryotherapeutic devices having integral multi-helical balloons and methods of making the same
EP2925718B1 (en) 2012-11-30 2018-08-01 Novomedix, LLC Substituted biaryl sulfonamides and the use thereof
EP3581227B1 (en) 2012-12-07 2024-02-28 AWAIR, Inc. System for reducing local discomfort
US9169214B2 (en) 2012-12-21 2015-10-27 The Board Of Trustees Of The Leland Stanford Junior University Compounds and compositions that bind and stabilize transthyretin and their use for inhibiting transthyretin amyloidosis and protein-protein interactions
CA2895829A1 (en) 2012-12-21 2014-06-26 Map Pharmaceuticals, Inc. Novel methysergide derivatives
EP2943188A1 (en) 2013-01-11 2015-11-18 Mayo Foundation for Medical Education and Research Vitamins c and k for treating polycystic diseases
AU2014207836B2 (en) * 2013-01-15 2018-06-14 A.V. Medical Technologies, Ltd. Infusion catheter with guidewire valving
WO2014126870A1 (en) * 2013-02-12 2014-08-21 Gary Keeling Body cavity drainage device and methods for using the same
EP2968296B1 (en) 2013-03-12 2020-09-02 The Regents of the University of California Gamma-secretase modulators
US9179974B2 (en) 2013-03-15 2015-11-10 Medtronic Ardian Luxembourg S.A.R.L. Helical push wire electrode
RU2666684C2 (en) 2013-03-15 2018-09-11 ТАРИС Биомедикал ЛЛК Device for drugs delivery with the drug permeable and the drugs delivery method
EP2996754B1 (en) 2013-05-18 2023-04-26 Medtronic Ardian Luxembourg S.à.r.l. Neuromodulation catheters with shafts for enhanced flexibility and control and associated devices and systems
KR101548046B1 (en) * 2013-06-05 2015-09-04 이근호 Catheter with an anti-infection structure for infant
AU2014274660B2 (en) 2013-06-06 2019-05-16 Pierre Fabre Médicament Anti-C10orf54 antibodies and uses thereof
CN113413393A (en) 2013-08-19 2021-09-21 塔里斯生物医药公司 Multi-unit drug delivery device and method
WO2015031613A1 (en) 2013-08-30 2015-03-05 Ambit Biosciences Corporation Biaryl acetamide compounds and methods of use thereof
US20150073515A1 (en) 2013-09-09 2015-03-12 Medtronic Ardian Luxembourg S.a.r.I. Neuromodulation Catheter Devices and Systems Having Energy Delivering Thermocouple Assemblies and Associated Methods
NZ631142A (en) 2013-09-18 2016-03-31 Axikin Pharmaceuticals Inc Pharmaceutically acceptable salts of 3,5-diaminopyrazole kinase inhibitors
US20160229866A1 (en) 2013-09-20 2016-08-11 Idenix Pharmaceuticals Inc. Hepatitis c virus inhibitors
US10517892B2 (en) 2013-10-22 2019-12-31 Medtronic Minimed, Inc. Methods and systems for inhibiting foreign-body responses in diabetic patients
CN105979996B (en) 2014-01-08 2020-08-07 爱威医疗科技有限公司 Apparatus and method for imaging and treating blood vessels
WO2015113034A1 (en) 2014-01-27 2015-07-30 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation catheters having jacketed neuromodulation elements and related devices, systems, and methods
JP2017510328A (en) * 2014-02-11 2017-04-13 オール ケイプ ガイナコロジー エルエルシー Endosite cannula
US10272117B2 (en) 2014-02-24 2019-04-30 Celgene Corporation Methods of using an activator of cereblon for neural cell expansion and the treatment of central nervous system disorders
GB201403775D0 (en) 2014-03-04 2014-04-16 Kymab Ltd Antibodies, uses & methods
US20170066779A1 (en) 2014-03-05 2017-03-09 Idenix Pharmaceuticals Llc Solid forms of a flaviviridae virus inhibitor compound and salts thereof
CA2943220C (en) 2014-03-20 2024-01-16 Capella Therapeutics, Inc. Benzimidazole derivatives as erbb tyrosine kinase inhibitors for the treatment of cancer
CN106661027B (en) 2014-03-20 2019-12-24 卡佩拉医疗公司 Benzimidazole derivatives as ERBB tyrosine kinase inhibitors for the treatment of cancer
JP2017513600A (en) 2014-04-24 2017-06-01 メドトロニック アーディアン ルクセンブルク ソシエテ ア レスポンサビリテ リミテ Nerve adjustment catheter with braided shaft and related systems and methods
EP3444011A1 (en) 2014-05-12 2019-02-20 Conatus Pharmaceuticals, Inc. Treatment of the complications of chronic liver disease with emricasan
EP3145568B1 (en) 2014-05-18 2019-07-03 Cook Medical Technologies LLC Device to reduce discomfort in the upper airway
NZ726513A (en) 2014-05-28 2023-07-28 Memorial Sloan Kettering Cancer Center Anti-gitr antibodies and methods of use thereof
US9527815B2 (en) 2014-06-18 2016-12-27 Biotheryx, Inc. Hydroxypyridone derivatives, pharmaceutical compositions thereof, and their therapeutic use for treating inflammatory, neurodegenerative, or immune-mediated diseases
US9499514B2 (en) 2014-07-11 2016-11-22 Celgene Corporation Antiproliferative compounds and methods of use thereof
JP6543342B2 (en) 2014-08-14 2019-07-10 アルハマドシャー,マモウン,エム. Conjugation of a pharmaceutically active agent with a transthyretin ligand via a regulatable linker to extend serum half life
CN106999593A (en) 2014-09-12 2017-08-01 妥必徕疗治公司 Sai Nikeweiluo combination treatments for treatment of fibrosis
EP3209658A1 (en) 2014-10-24 2017-08-30 Biogen MA Inc. Diterpenoid derivatives and methods of use thereof
CA2966423C (en) 2014-10-31 2023-10-24 The General Hospital Corporation Potent gamma-secretase modulators
WO2016094837A2 (en) 2014-12-11 2016-06-16 Igenica Biotherapeutics, Inc. Anti-c10orf54 antibodies and uses thereof
JP7211703B2 (en) 2014-12-22 2023-01-24 ザ ロックフェラー ユニバーシティー Anti-MERTK agonist antibody and use thereof
EA032473B1 (en) 2014-12-23 2019-05-31 Аксикин Фармасьютикалз, Инк. 3,5-diaminopyrazole kinase inhibitors
BR112017015510A2 (en) 2015-01-20 2018-01-30 Xoc Pharmaceuticals Inc compound of formula (i), method of treatment and / or prevention, d2 receptor agonizing method in one individual, d3 receptor antagonizing method in one individual, 5-ht1d receptor agonizing method in one individual, 5-ht1a receptor agonization in one individual, selective 5-ht1d receptor agonizing method instead of 5-ht1b receptor in one individual, 5-ht2c re-receptor selective agonizing method instead of 5-ht2a or 5 receptor -ht2b in one individual, method of 5-ht2c receptor agonization in one individual, method of providing functional antagonist activity at 5-ht2b receptor or 5-ht7 receptor, and, method of providing functional antagonist activity at adrenergic receptors in one individual
CN107428745A (en) 2015-01-20 2017-12-01 Xoc制药股份有限公司 Ergoline compound and application thereof
CN107428749B (en) 2015-01-28 2020-07-24 上海复旦张江生物医药股份有限公司 Substituted imidazo [1,2- α ] pyridin-2-ylamine compounds, pharmaceutical compositions and methods of use thereof
DE112016001013T5 (en) 2015-03-03 2017-12-21 Kymab Limited ANTIBODIES, USES AND METHODS
WO2016172704A1 (en) 2015-04-23 2016-10-27 Taris Biomedical Llc Drug delivery devices with drug-permeable component and methods
MA44594B1 (en) 2015-05-29 2020-09-30 Memorial Sloan Kettering Cancer Center Anti-ctla-4 Antibodies and Methods of Use thereof
WO2016210180A2 (en) 2015-06-23 2016-12-29 Neurocrine Biosciences, Inc. Vmat2 inhibitors for treating neurological diseases or disorders
US11129737B2 (en) 2015-06-30 2021-09-28 Endologix Llc Locking assembly for coupling guidewire to delivery system
US11229771B2 (en) 2015-07-20 2022-01-25 Roivios Limited Percutaneous ureteral catheter
US10918827B2 (en) 2015-07-20 2021-02-16 Strataca Systems Limited Catheter device and method for inducing negative pressure in a patient's bladder
RU2720403C2 (en) 2015-07-20 2020-04-29 Стратака Системз Лимитед, Мт Ureteral catheter and urinary bladder and methods of creating negative pressure to increase renal perfusion
US10493232B2 (en) 2015-07-20 2019-12-03 Strataca Systems Limited Ureteral catheters, bladder catheters, systems, kits and methods for inducing negative pressure to increase renal function
US10765834B2 (en) 2015-07-20 2020-09-08 Strataca Systems Limited Ureteral and bladder catheters and methods of inducing negative pressure to increase renal perfusion
US10926062B2 (en) 2015-07-20 2021-02-23 Strataca Systems Limited Ureteral and bladder catheters and methods of inducing negative pressure to increase renal perfusion
US11040180B2 (en) 2015-07-20 2021-06-22 Strataca Systems Limited Systems, kits and methods for inducing negative pressure to increase renal function
US11040172B2 (en) 2015-07-20 2021-06-22 Strataca Systems Limited Ureteral and bladder catheters and methods of inducing negative pressure to increase renal perfusion
US10512713B2 (en) 2015-07-20 2019-12-24 Strataca Systems Limited Method of removing excess fluid from a patient with hemodilution
US11541205B2 (en) 2015-07-20 2023-01-03 Roivios Limited Coated urinary catheter or ureteral stent and method
CN107949573B (en) 2015-09-01 2022-05-03 艾吉纳斯公司 anti-PD-1 antibodies and methods of use thereof
PT3875459T (en) 2015-10-30 2024-02-21 Neurocrine Biosciences Inc Valbenazine salts and polymorphs thereof
WO2017079566A1 (en) 2015-11-05 2017-05-11 Conatus Pharmaceuticals, Inc. Caspase inhibitors for use in the treatment of liver cancer
US10112924B2 (en) 2015-12-02 2018-10-30 Astraea Therapeutics, Inc. Piperdinyl nociceptin receptor compounds
CN108925135A (en) 2015-12-23 2018-11-30 纽罗克里生物科学有限公司 Prepare (S)-(2R, 3R, 11bR) -3- isobutyl group -9,10- dimethoxy -2,3,4,6,7,11b- hexahydro -1H- pyrido [2,1-a] isoquinolin-2-yl 2- amino -3 Methylbutanoic acid ester two (4- toluenesulfonate) synthetic method
CA3010286A1 (en) 2015-12-31 2017-07-06 Conatus Pharmaceuticals Inc. Methods of using caspase inhibitors in treatment of liver disease
ES2959267T3 (en) 2016-01-08 2024-02-22 Celgene Corp Solid forms of 2-(4-chlorophenyl)-n-((2-2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)methyl)-2,2-difluoroacetamide and their pharmaceutical compositions and uses
PT3399978T (en) 2016-01-08 2020-11-19 Celgene Corp Antiproliferative compounds, and their pharmaceutical compositions and uses
WO2017151836A1 (en) 2016-03-04 2017-09-08 East Carolina University J-series prostaglandin-ethanolamides as novel therapeutics for skin and/or oral disorders
WO2017156191A1 (en) 2016-03-08 2017-09-14 Los Gatos Pharmaceuticals, Inc. Composite nanoparticles and uses thereof
WO2017156183A1 (en) 2016-03-08 2017-09-14 Los Gatos Pharmaceuticals, Inc. Camptothecin derivatives and uses thereof
JP2019513707A (en) 2016-04-11 2019-05-30 クレキシオ バイオサイエンシーズ エルティーディー. Deuterated ketamine derivative
US10047077B2 (en) 2016-04-13 2018-08-14 Skyline Antiinfectives, Inc. Deuterated O-sulfated beta-lactam hydroxamic acids and deuterated N-sulfated beta-lactams
CA3018617A1 (en) * 2016-04-15 2017-10-19 Temple University-Of The Commonwealth System Of Higher Education Infusion catheter and method of use
US20170319818A1 (en) * 2016-05-06 2017-11-09 Cook Medical Technologies Llc Drug delivery device
EP3454904B1 (en) 2016-05-13 2022-12-14 Institut Pasteur Inhibition of beta-2 nicotinic acetylcholine receptors to treat alzheimer's disease pathology
TWI753910B (en) 2016-05-16 2022-02-01 美商拜歐斯瑞克斯公司 Pyridinethiones, pharmaceutical compositions thereof, and their therapeutic use for treating a proliferative, inflammatory, neurodegenerative, or immune-mediated disease
KR20230091191A (en) 2016-05-27 2023-06-22 아게누스 인코포레이티드 Anti-tim-3 antibodies and methods of use thereof
EP3468650B1 (en) * 2016-06-09 2020-07-15 Boston Scientific Scimed, Inc. Infusion catheter
EP3481864A1 (en) 2016-07-08 2019-05-15 Staten Biotechnology B.V. Anti-apoc3 antibodies and methods of use thereof
WO2018035281A1 (en) 2016-08-17 2018-02-22 North Carolina State University Northern-southern route to synthesis of bacteriochlorins
MA46285A (en) 2016-09-19 2019-07-31 Mei Pharma Inc POLYTHERAPY
WO2018071500A1 (en) 2016-10-11 2018-04-19 Agenus Inc. Anti-lag-3 antibodies and methods of use thereof
WO2018083248A1 (en) 2016-11-03 2018-05-11 Kymab Limited Antibodies, combinations comprising antibodies, biomarkers, uses & methods
US11332521B2 (en) 2016-11-07 2022-05-17 Neuracle Science Co., Ltd. Anti-family with sequence similarity 19, member A5 antibodies and method of use thereof
US10106521B2 (en) 2016-11-09 2018-10-23 Phloronol, Inc. Eckol derivatives, methods of synthesis and uses thereof
AU2017356926B2 (en) 2016-11-09 2024-01-04 Novomedix, Llc Nitrite salts of 1, 1-dimethylbiguanide, pharmaceutical compositions, and methods of use
WO2018102252A1 (en) 2016-11-30 2018-06-07 North Carolina State University Methods for making bacteriochlorin macrocycles comprising an annulated isocyclic ring and related compounds
US10799503B2 (en) 2016-12-01 2020-10-13 Ignyta, Inc. Methods for the treatment of cancer
EP3548027A1 (en) 2016-12-02 2019-10-09 Neurocrine Biosciences, Inc. Use of valbenazine for treating schizophrenia or schizoaffective disorder
BR112019011651A2 (en) 2016-12-07 2020-01-07 Agenus Inc. ANTI-CTTLA-4 ANTIBODIES AND METHODS OF USE OF THE SAME
CN110300599A (en) 2016-12-07 2019-10-01 艾吉纳斯公司 Antibody and its application method
MY195934A (en) 2017-01-27 2023-02-27 Neurocrine Biosciences Inc Methods for the Administration of Certain VMAT2 Inhibitors
JP7307681B2 (en) 2017-02-17 2023-07-12 カムリス インターナショナル インコーポレイテッド general purpose antitoxin
JP7157752B2 (en) 2017-02-17 2022-10-20 エイドス セラピューティクス,インコーポレイティド Methods for the preparation of AG-10, intermediates thereof and salts thereof
WO2018164996A1 (en) 2017-03-06 2018-09-13 Neurocrine Biosciences, Inc. Dosing regimen for valbenazine
SG11201908678XA (en) 2017-03-27 2019-10-30 Celgene Corp Methods and compositions for reduction of immunogenicity
BR112019017241A2 (en) 2017-04-13 2020-04-14 Agenus Inc anti-cd137 antibodies and methods of using them
EP3612560A1 (en) 2017-04-21 2020-02-26 Staten Biotechnology B.V. Anti-apoc3 antibodies and methods of use thereof
WO2018200605A1 (en) 2017-04-26 2018-11-01 Neurocrine Biosciences, Inc. Use of valbenazine for treating levodopa-induced dyskinesia
US11021537B2 (en) 2017-05-01 2021-06-01 Agenus Inc. Anti-TIGIT antibodies and methods of use thereof
JOP20190219A1 (en) 2017-05-09 2019-09-22 Cardix Therapeutics LLC Pharmaceutical compositions and methods of treating cardiovascular diseases
US10085999B1 (en) 2017-05-10 2018-10-02 Arixa Pharmaceuticals, Inc. Beta-lactamase inhibitors and uses thereof
BR112019025420A2 (en) 2017-06-01 2020-06-16 Xoc Pharmaceuticals, Inc. POLYCYCLICAL COMPOUNDS AND USES OF THESE
KR102327698B1 (en) 2017-06-27 2021-11-17 주식회사 뉴라클사이언스 Use of a family, member A5 antibody with anti-sequence similarity 19 for the treatment of glaucoma
EP3645039A4 (en) 2017-06-27 2021-05-05 Neuracle Science Co., Ltd Use of anti-fam19a5 antibodies for treating fibrosis
KR102574549B1 (en) 2017-06-27 2023-09-07 주식회사 뉴라클사이언스 Anti-FAM19A5 Antibodies and Uses Thereof
WO2019003164A1 (en) 2017-06-27 2019-01-03 Neuracle Science Co., Ltd. Use of anti-fam19a5 antibodies for treating cancers
US10307566B2 (en) 2017-07-05 2019-06-04 Duke University Drainage or infusion catheter and method of use
EP3675866B1 (en) 2017-09-01 2023-08-02 East Carolina University Ex vivo methods for activating immune cells
IL273300B1 (en) 2017-09-21 2024-02-01 Neurocrine Biosciences Inc High dosage valbenazine formulation and compositions, methods, and kits related thereto
JP2021502959A (en) 2017-10-10 2021-02-04 ニューロクライン バイオサイエンシーズ,インコーポレイテッド Methods for Administering Specific VMAT2 Inhibitors
US10993941B2 (en) 2017-10-10 2021-05-04 Neurocrine Biosciences, Inc. Methods for the administration of certain VMAT2 inhibitors
BR112020008514A2 (en) 2017-10-31 2020-10-20 Staten Biotechnology B.V. anti-apoc3 antibodies and methods of using them
EP3731919A1 (en) * 2017-12-28 2020-11-04 Avent, Inc. Incisional tunneler
WO2019139871A1 (en) 2018-01-10 2019-07-18 Cura Therapeutics Llc Pharmaceutical compositions comprising dicarboxylic acids and their therapeutic applications
CA3087856A1 (en) 2018-01-10 2019-07-18 Cura Therapeutics, Llc Pharmaceutical compositions comprising phenylsulfonamides, and their therapeutic applications
US11116561B2 (en) 2018-01-24 2021-09-14 Medtronic Ardian Luxembourg S.A.R.L. Devices, agents, and associated methods for selective modulation of renal nerves
CA3094711A1 (en) 2018-03-23 2019-09-26 Eidos Therapeutics, Inc. Methods of treating ttr amyloidosis using ag10
US11634484B2 (en) 2018-04-24 2023-04-25 Neuracle Science Co., Ltd. Use of anti-family with sequence similarity 19, member A5 antibodies for the treatment of neuropathic pain
BR112020024018A2 (en) 2018-06-14 2021-02-23 Neurocrine Biosciences Inc. vmat2 inhibitor compounds, compositions and methods related to them
EP3814327A1 (en) 2018-06-29 2021-05-05 Histogen, Inc. (s)-3-(2-(4-(benzyl)-3-oxopiperazin-1-yl)acetamido)-4-oxo-5-(2,3,5,6-tetrafluorophenoxy)pentanoic acid derivatives and related compounds as caspase inhibitors for treating cardiovascular diseases
BR112021000934A2 (en) 2018-07-20 2021-04-27 Pierre Fabre Medicament receiver for sight
JP2021528481A (en) 2018-08-15 2021-10-21 ニューロクライン バイオサイエンシーズ,インコーポレイテッド Methods for Administering Specific VMAT2 Inhibitors
MA53238A (en) 2018-08-17 2022-04-13 Eidos Therapeutics Inc AG10 FORMULAS
AU2019352017A1 (en) 2018-10-03 2021-05-06 Staten Biotechnology B.V. Antibodies specific for human and cynomolgus ApoC3 and methods of use thereof
JP2022507606A (en) 2018-11-16 2022-01-18 ネオイミューンテック, インコーポレイテッド How to Treat Tumors with a Combination of IL-7 Protein and Immune Checkpoint Inhibitors
KR20200071198A (en) 2018-12-10 2020-06-19 네오이뮨텍, 인코퍼레이티드 Development of new adoptive T cell immunotherapy by modification of Nrf2 expression
WO2020132071A1 (en) 2018-12-19 2020-06-25 Shy Therapeutics. Llc Compounds that interact with the ras superfamily for the treatment of cancers, inflammatory diseases, rasopathies, and f1brotic disease
EP3921038A1 (en) 2019-02-06 2021-12-15 Dice Alpha, Inc. Il-17a modulators and uses thereof
WO2020176497A1 (en) 2019-02-26 2020-09-03 Rgenix, Inc. High-affinity anti-mertk antibodies and uses thereof
WO2020181165A1 (en) 2019-03-07 2020-09-10 Conatus Pharmaceuticals Inc. Caspase inhibitors and methods of use thereof
CA3138403A1 (en) 2019-05-20 2020-11-26 Christopher J. MACNEVIN Narrow emission dyes, compositions comprising same, and methods for making and using same
US20220274922A1 (en) 2019-07-11 2022-09-01 Cura Therapeutics, Llc Sulfone compounds and pharmaceutical compositions thereof, and their therapeutic applications
AU2020310190A1 (en) 2019-07-11 2022-02-24 Cura Therapeutics, Llc Phenyl compounds and pharmaceutical compositions thereof, and their therapeutic applications
US10940141B1 (en) 2019-08-23 2021-03-09 Neurocrine Biosciences, Inc. Methods for the administration of certain VMAT2 inhibitors
BR112022003740A2 (en) 2019-08-30 2022-05-31 Agenus Inc Anti-cd96 antibodies and methods of using them
BR112022004802A2 (en) 2019-09-16 2022-08-23 Dice Alpha Inc IL-17A MODULATORS AND USES THEREOF
US20230057939A1 (en) 2020-01-13 2023-02-23 Neoimmunetech, Inc. Method of treating a tumor with a combination of il-7 protein and a bispecific antibody
WO2021151001A1 (en) 2020-01-22 2021-07-29 Outpace Bio, Inc. Chimeric polypeptides
US20230210952A1 (en) 2020-02-05 2023-07-06 Washington University Method of treating a solid tumor with a combination of an il-7 protein and car-bearing immune cells
CA3179635A1 (en) 2020-05-29 2021-12-02 Boulder Bioscience Llc Methods for improved endovascular thrombectomy using 3,3'-diindolylmethane
US20230227466A1 (en) 2020-06-18 2023-07-20 Shy Therapeutics, Llc Substituted thienopyrimidines that interact with the ras superfamily for the treatment of cancers, inflammatory diseases, rasopathies, and fibrotic disease
US20240025863A1 (en) 2020-09-16 2024-01-25 Biotheryx, Inc. Sos1 protein degraders, pharmaceutical compositions thereof, and their therapeutic applications
WO2022087335A1 (en) 2020-10-23 2022-04-28 Biotheryx, Inc. Kras protein degraders, pharmaceutical compositions thereof, and their therapeutic applications
KR20230104176A (en) 2020-11-02 2023-07-07 네오이뮨텍, 인코퍼레이티드 Use of interleukin-7 for treatment of coronavirus
EP4240408A1 (en) 2020-11-05 2023-09-13 Neoimmunetech, Inc. Method of treating a tumor with a combination of an il-7 protein and a nucleotide vaccine
TW202237580A (en) 2020-12-14 2022-10-01 美商拜歐斯瑞克斯公司 Pde4 degraders, pharmaceutical compositions, and therapeutic applications
WO2022165000A1 (en) 2021-01-27 2022-08-04 Shy Therapeutics, Llc Methods for the treatment of fibrotic disease
US20240124483A1 (en) 2021-01-27 2024-04-18 Shy Therapeutics, Llc Methods for the Treatment of Fibrotic Disease
EP4304716A1 (en) 2021-03-10 2024-01-17 Dice Molecules Sv, Inc. Alpha v beta 6 and alpha v beta 1 integrin inhibitors and uses thereof
EP4326721A1 (en) 2021-04-22 2024-02-28 Protego Biopharma, Inc. Spirocyclic imidazolidinones and imidazolidinediones for treatment of light chain amyloidosis
EP4347568A1 (en) 2021-05-27 2024-04-10 Protego Biopharma, Inc. Heteroaryl diamide ire1/xbp1s activators
WO2022251644A1 (en) 2021-05-28 2022-12-01 Lyell Immunopharma, Inc. Nr4a3-deficient immune cells and uses thereof
US20230052243A1 (en) 2021-06-02 2023-02-16 Lyell Immunopharma, Inc. Nr4a-deficient cells expressing c-jun and uses thereof
WO2022263357A1 (en) 2021-06-14 2022-12-22 Argenx Iip Bv Anti-il-9 antibodies and methods of use thereof
WO2022266249A1 (en) 2021-06-16 2022-12-22 Biotheryx, Inc. Kras protein degraders, pharmaceutical compositions thereof, and their therapeutic applications
CA3222240A1 (en) 2021-06-16 2022-12-22 Biotheryx, Inc. Sos1 protein degraders, pharmaceutical compositions thereof, and their therapeutic applications
CN113546277B (en) * 2021-07-23 2022-07-01 云南省阜外心血管病医院 Medical catheter structure with rigidity capable of being adjusted rapidly
WO2023055045A1 (en) 2021-09-29 2023-04-06 주식회사 엔바이오스 Coiled-coil fusion protein
WO2023081923A1 (en) 2021-11-08 2023-05-11 Frequency Therapeutics, Inc. Platelet-derived growth factor receptor (pdgfr) alpha inhibitors and uses thereof
WO2023130081A1 (en) 2021-12-30 2023-07-06 Neoimmunetech, Inc. Method of treating a tumor with a combination of il-7 protein and vegf antagonist
WO2023129577A1 (en) 2022-01-03 2023-07-06 Lilac Therapeutics, Inc. Cyclic thiol prodrugs
WO2023192904A1 (en) 2022-03-30 2023-10-05 Biomarin Pharmaceutical Inc. Dystrophin exon skipping oligonucleotides
GB2619907A (en) 2022-04-01 2023-12-27 Kanna Health Ltd Novel crystalline salt forms of mesembrine
WO2023201282A1 (en) 2022-04-14 2023-10-19 Bristol-Myers Squibb Company Novel gspt1 compounds and methods of use of the novel compounds
US20230416741A1 (en) 2022-05-05 2023-12-28 Biomarin Pharmaceutical Inc. Method of treating duchenne muscular dystrophy
WO2023220640A1 (en) 2022-05-10 2023-11-16 Biotheryx, Inc. Cdk protein degraders, pharmaceutical compositions, and therapeutic applications
WO2023225665A1 (en) 2022-05-19 2023-11-23 Lyell Immunopharma, Inc. Polynucleotides targeting nr4a3 and uses thereof
CN115253019B (en) * 2022-08-11 2023-06-30 临沂市兴华医用器材有限公司 Damage-proof reinforced anesthetic tube
WO2024054832A1 (en) 2022-09-09 2024-03-14 Innovo Therapeutics, Inc. CK1α AND DUAL CK1α / GSPT1 DEGRADING COMPOUNDS
WO2024073473A1 (en) 2022-09-30 2024-04-04 Boulder Bioscience Llc Compositions comprising 3,3'-diindolylmethane for treating non-hemorrhagic closed head injury

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4693243A (en) * 1983-01-14 1987-09-15 Buras Sharon Y Conduit system for directly administering topical anaesthesia to blocked laryngeal-tracheal areas
US4813925A (en) * 1987-04-21 1989-03-21 Medical Engineering Corporation Spiral ureteral stent
NZ228382A (en) * 1989-03-17 1992-08-26 Carter Holt Harvey Plastic Pro Drug administering coil-like device for insertion in body cavity of animal
US4994033A (en) * 1989-05-25 1991-02-19 Schneider (Usa) Inc. Intravascular drug delivery dilatation catheter
US5049132A (en) * 1990-01-08 1991-09-17 Cordis Corporation Balloon catheter for delivering therapeutic agents
US5221261A (en) * 1990-04-12 1993-06-22 Schneider (Usa) Inc. Radially expandable fixation member
US5102402A (en) * 1991-01-04 1992-04-07 Medtronic, Inc. Releasable coatings on balloon catheters
US5181911A (en) * 1991-04-22 1993-01-26 Shturman Technologies, Inc. Helical balloon perfusion angioplasty catheter
US5256146A (en) * 1991-10-11 1993-10-26 W. D. Ensminger Vascular catheterization system with catheter anchoring feature

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
No further relevant documents disclosed *
See also references of WO9520416A1 *

Also Published As

Publication number Publication date
CA2182201A1 (en) 1995-08-03
DK0754072T3 (en) 2005-09-05
PT754072E (en) 2005-10-31
DE69534245T2 (en) 2006-01-26
DE69534245D1 (en) 2005-07-07
ATE296660T1 (en) 2005-06-15
JPH10500028A (en) 1998-01-06
US5709874A (en) 1998-01-20
EP0754072A4 (en) 1998-01-14
AU1868395A (en) 1995-08-15
AU682582B2 (en) 1997-10-09
WO1995020416A1 (en) 1995-08-03
ES2243934T3 (en) 2005-12-01
US5523092A (en) 1996-06-04
EP0754072B1 (en) 2005-06-01

Similar Documents

Publication Publication Date Title
US5523092A (en) Device for local drug delivery and methods for using the same
US5985307A (en) Device and method for non-occlusive localized drug delivery
US5399352A (en) Device for local drug delivery and methods for using the same
US8808255B2 (en) Drug delivery cuff
JP4052395B2 (en) Insertable medical device
US20190060094A1 (en) Endoluminal device for in vivo delivery of bioactive agents
Gillams et al. Self-expandable stainless steel braided endoprosthesis for biliary strictures.
CA2397654C (en) Expanded ptfe drug delivery graft
US20070161967A1 (en) Implantable medical device with pharmacologically active ingredient
Boudghene et al. Abdominal aortic aneurysms in sheep: prevention of rupture with endoluminal stent-grafts.
Markou et al. A novel method for efficient drug delivery
US8721711B2 (en) Graft having microporous membrane for uniform fluid infusion
JP2002536406A (en) Alkylating agents for the treatment of cell proliferation
CA2239089C (en) Implantable medical device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960828

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

A4 Supplementary search report drawn up and despatched

Effective date: 19971126

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20020125

RTI1 Title (correction)

Free format text: A DEVICE FOR LOCAL DRUG DELIVERY

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69534245

Country of ref document: DE

Date of ref document: 20050707

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE SA

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20050402375

Country of ref document: GR

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Effective date: 20050816

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2243934

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20051223

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20060126

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20060130

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060131

Year of fee payment: 12

Ref country code: DE

Payment date: 20060131

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060202

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20060203

Year of fee payment: 12

Ref country code: PT

Payment date: 20060203

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060206

Year of fee payment: 12

Ref country code: DK

Payment date: 20060206

Year of fee payment: 12

Ref country code: AT

Payment date: 20060206

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060209

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20060220

Year of fee payment: 12

Ref country code: CH

Payment date: 20060220

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20060221

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20060227

Year of fee payment: 12

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: EMORY UNIVERSITY

Free format text: EMORY UNIVERSITY#WOODRUFF HEALTH SCIENCE ADMINISTRATION BUILDING, FIRST FLOOR,#ATLANTA, GA 30322 (US) -TRANSFER TO- EMORY UNIVERSITY#1784 NORTH DECATUR ROAD SUITE 130 NORTH DECATUR BUILDING FIRST FLOOR#ATLANTA, GA 30322 (US)

26N No opposition filed

Effective date: 20060302

REG Reference to a national code

Ref country code: PT

Ref legal event code: TE4A

Owner name: EMORY UNIVERSITY, US

Effective date: 20060418

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

REG Reference to a national code

Ref country code: FR

Ref legal event code: D3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070801

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20070727

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070127

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070801

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070127

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070127

BECA Be: change of holder's address

Owner name: *EMORY UNIVERSITY1784 NORTH DECATUR ROAD, SUITE 13

Effective date: 20050601

BERE Be: lapsed

Owner name: *EMORY UNIVERSITY

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070801

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070129

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070129

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070127