EP0718800A1 - Franking machine with a spare memory - Google Patents

Franking machine with a spare memory Download PDF

Info

Publication number
EP0718800A1
EP0718800A1 EP94120219A EP94120219A EP0718800A1 EP 0718800 A1 EP0718800 A1 EP 0718800A1 EP 94120219 A EP94120219 A EP 94120219A EP 94120219 A EP94120219 A EP 94120219A EP 0718800 A1 EP0718800 A1 EP 0718800A1
Authority
EP
European Patent Office
Prior art keywords
memory
reserve
franking machine
data
reserve memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94120219A
Other languages
German (de)
French (fr)
Other versions
EP0718800B1 (en
Inventor
Peter Dr. Rieckhoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Francotyp Postalia GmbH
Original Assignee
Francotyp Postalia GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Francotyp Postalia GmbH filed Critical Francotyp Postalia GmbH
Priority to EP19940120219 priority Critical patent/EP0718800B1/en
Priority to DE59408216T priority patent/DE59408216D1/en
Publication of EP0718800A1 publication Critical patent/EP0718800A1/en
Application granted granted Critical
Publication of EP0718800B1 publication Critical patent/EP0718800B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07BTICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
    • G07B17/00Franking apparatus
    • G07B17/00185Details internally of apparatus in a franking system, e.g. franking machine at customer or apparatus at post office
    • G07B17/00362Calculation or computing within apparatus, e.g. calculation of postage value
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07BTICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
    • G07B17/00Franking apparatus
    • G07B17/00185Details internally of apparatus in a franking system, e.g. franking machine at customer or apparatus at post office
    • G07B17/00314Communication within apparatus, personal computer [PC] system, or server, e.g. between printhead and central unit in a franking machine
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07BTICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
    • G07B17/00Franking apparatus
    • G07B17/00185Details internally of apparatus in a franking system, e.g. franking machine at customer or apparatus at post office
    • G07B17/00314Communication within apparatus, personal computer [PC] system, or server, e.g. between printhead and central unit in a franking machine
    • G07B2017/00346Power handling, e.g. power-down routine
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07BTICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
    • G07B17/00Franking apparatus
    • G07B17/00185Details internally of apparatus in a franking system, e.g. franking machine at customer or apparatus at post office
    • G07B17/00362Calculation or computing within apparatus, e.g. calculation of postage value
    • G07B2017/00395Memory organization
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07BTICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
    • G07B17/00Franking apparatus
    • G07B17/00185Details internally of apparatus in a franking system, e.g. franking machine at customer or apparatus at post office
    • G07B17/00362Calculation or computing within apparatus, e.g. calculation of postage value
    • G07B2017/00395Memory organization
    • G07B2017/00411Redundant storage, e.g. back-up of registers

Definitions

  • the invention relates to a franking machine with an electronic control that accesses a first memory in which security-relevant data is stored and from which this data can be called up again, and with at least one non-volatile reserve memory in which the data of the first memory are stored in the event of a power failure and after voltage recovery the data of the reserve memory can be read out again.
  • a franking machine with a voltage monitoring circuit which detects the drop and the return of the operating voltage.
  • the franking machine has a non-volatile reserve memory, in which data from the working memory are stored by a copying process when the operating voltage drops. When the operating voltage rises again, the data stored in the non-volatile memory are transferred back into the working memory of the franking machine.
  • a franking machine with two reserve memories is known from US-A-4,564,922.
  • One of these memories is a non-volatile read-only memory, while the other memory works as a so-called shadow working memory, which has two memory sections.
  • a first memory section serves as volatile working memory, while a second memory section is provided as non-volatile memory.
  • data is stored in the shadow RAM transferred from the volatile memory section to the non-volatile memory section by a copying operation. After the voltage has returned, data which were stored in the non-volatile memory section of the shadow RAM are read out to a computer unit and compared with non-volatile data of the read-only memory for correspondence.
  • a franking machine is known from EP-A-0 572 019 which has at least two non-volatile memories. If the operating voltage drops, safety-relevant data is written into both non-volatile memories. After voltage recovery, the data from the two memories are transferred to the computer of the franking machine by means of a copying process and there checked for identity.
  • the known devices and methods each copy an entire data set in the event of a voltage drop and on voltage recovery. This means that a large amount of data must be transferred between the memories. During this transmission, read and write errors can occur which impair the reliability of the franking machine.
  • the multiple storage in non-volatile memories and the subsequent comparison of the data sets with one another increases the data security for franking machines, but when interference signals occur, which are caused, for example, by voltage induction or voltage peaks, the data that is transferred from various memories to the computer during data transfer , influenced in the same way so that a systematic data error can occur, in which an identity of the different data sets is simulated.
  • the reserve memory can be operated either as a static non-volatile memory or as a dynamic volatile memory, that the reserve memory and the franking machine are supplied from a common supply voltage, and that the control at If the supply voltage drops to a specified value, the reserve memory sets to static operation and dynamic operation when voltage returns.
  • the invention is based on the consideration of eliminating the copying process required in the known prior art.
  • the errors that occur during data transmission can then be avoided.
  • two modes of operation are provided for the reserve memory in the invention.
  • the reserve memory can be operated as a static, non-volatile memory; another time as dynamic volatile memory.
  • static operation the data stored in the reserve memory are quasi frozen, with the reserve memory no longer requiring any further power supply in this state.
  • the voltage returns the cells of the reserve memory are put into the dynamic state, in which renewal cycles are continuously required for the memory content.
  • a ferroelectric memory is provided as a reserve memory.
  • the memory cells contain ferroelectric material as the storage medium.
  • the data are stored as states of storage capacitors. These storage capacitors form the memory cells of the ferroelectric memory.
  • the data are defined by the polarization state of the memory cells; in the dynamic operating mode, the data are mapped as charge states of the memory cells.
  • the use of a ferroelectric memory in conjunction with conventional other technologies for working memory and non-volatile memory, for example battery-buffered memory has the advantage that the simultaneous occurrence of write and read errors in the presence of interference signals due to different memory technologies is avoided.
  • an area of the reserve memory is provided for storing a control program.
  • the reserve memory serves as a read-only memory, which at least partially replaces the otherwise conventional ROM module in this application. This further development reduces the hardware expenditure for the franking machine. It is also possible to provide an area of the reserve memory as a working memory for the control.
  • control program In order to avoid that when writing to the reserve memory, in which the control program is also stored in addition to the safety-relevant data, data are written in non-permitted areas which destroy the control program certain areas of the reserve memory are write-protected.
  • the control program or other non-changeable data can be stored in this read-only area.
  • the controller 10 of the franking machine contains a microprocessor 12 which, via a data bus 16 and an address bus 14, has a decoding unit 18, a working memory 20, an EPROM program memory 22, an EEPROM memory for fixed data, a clock module 16 with a battery-buffered first non-volatile memory 26 , a battery non-volatile second non-volatile memory 28, a third non-volatile memory designed as a ferroelectric reserve memory 30, a further decoding unit 32, an interface module 34 for external units and an interface module 36 for a display and for input means.
  • the two decoding units 18 and 32 are combined in a customer-specific ASIC module 40.
  • the decoding unit 32 has lines 46, 46a, 46b, which are connected to the chip select inputs CS of the reserve memory 30, the memory 28 and the memory 26.
  • the memories 30, 28, 26 are selected via these lines 46, 46a, 46b in order to read and write data.
  • An output Port1 of the microprocessor 12 is connected to the input via a control line 48 D / NV of the reserve memory 30 connected. Depending on the signal on the control line 48, the reserve memory 30 is switched to the "dynamic memory” or "static memory” mode.
  • the first, second and third non-volatile memories 26, 28, 30 each store security-relevant data of the franking machine, for example the postage amount still available and the postage amount already issued.
  • the three non-volatile memories 26, 28, 30 operate according to different technologies, so that high memory security is possible even under unfavorable operating conditions.
  • the microprocessor 12 compares the security-relevant data stored in the three memories 26, 28, 30 with one another at certain time intervals. If the data differ from one another, an error signal is generated or an error correction is initiated, as described, for example, in European patent application EP-A-0 572 019.
  • the microprocessor 12 is connected to a voltage monitoring module 42, which monitors the operating voltage U B on the line 44.
  • the ferroelectric reserve memory 30 is operated with the same operating voltage U B as the other components of the control system 10.
  • the operation of the franking machine for franking mail using the components shown in FIG. 1 is known per se to the person skilled in the art and must be here not explained in more detail.
  • FIG. 2 shows in a flowchart the function of the reserve memory 30 when a drop in the supply voltage occurs and when the voltage returns.
  • the voltage monitoring module 42 reports to the microprocessor 12 that the operating voltage U B has been reached , and initialization takes place in the subsequent step 52 of the microprocessor 12 and the structural units connected to it, the security-relevant data in the memories 26 and 28 also being compared for agreement. If it is determined in step 54 that the security-relevant data do not match, a branch is made to a further program in step 56, in which the error is corrected if necessary.
  • the method described in EP-A-0 572 019 can be used here.
  • interrupts events to which the microprocessor 12 reacts and triggers control functions
  • the processing of interrupts is interrupted in the subsequent step 58 in order to be able to change the operating mode of the reserve memory 30 without interruption.
  • the reserve memory 30 is activated via the chip select line 46 by the decoding unit 32, and the microprocessor 12 sends a signal via the control line 48 to the input D / NV of the memory 30 to put it into the dynamic operating state to switch.
  • the data 30 stored in the memory are continuously renewed.
  • the renewal energy is supplied by the supply voltage U B.
  • So-called dummy read cycles are then carried out in the memory 30. These cycles are required to complete data storage, i.e. to change the polarization or charging of the memory cells depending on the control signal 48 present.
  • step 64 the block for interrupt handling is released.
  • the microprocessor samples the signal of the voltage monitoring module 42. If there is no power failure in step 66, it becomes normal Postage meter operation (step 68) branches and the usual control functions are carried out.
  • step 66 branches to program part A, the sequence of which is shown in FIG. 3.
  • step 70 the interrupt processing by the microprocessor 12 is blocked in the subsequent step 72.
  • the memory 30 is selected via the decoder module 32 and the line 46, and the microprocessor 12 outputs the signal for activating the non-volatile mode of operation of the memory 30 via the control line 48, so that this memory 30 switches to its static mode.
  • the dummy read cycles already mentioned are carried out in the subsequent step 76.
  • the data in the memory 30 are stored statically. In this state, the memory 30 does not require a voltage supply. It is therefore possible to supply the memory 30 solely from the supply voltage U B , from which the franking machine, with the exception of the battery-buffered memories 26, 28, also draw its electrical energy.

Abstract

The electronic control (10) accesses two battery-backed nonvolatile stores (26, 28) and a ferroelectric reserve store (30) all operating according to different technologies and contg. security-relevant data such as postal charges already incurred and those remaining available. The reserve store can be operated selectively as static nonvolatile or dynamic volatile memory. Together with the franking machine it is fed with a common supply voltage (UB) which is checked by a voltage monitor (42), sending an emergency signal to the CPU (12) which branches its program to switch off the machine, block the interrupt handling and change the mode of the reserve store.

Description

Die Erfindung betrifft eine Frankiermaschine mit einer elektronischen Steuerung, die auf einen ersten Speicher zugreift, in welchem sicherheitsrelevante Daten gespeichert und aus dem diese Daten wieder abrufbar sind, und mit mindestens einem nicht flüchtigen Reservespeicher, in dem bei Spannungsausfall die Daten des ersten Speichers gespeichert sind und nach Spannungswiederkehr die Daten des Reservespeichers wieder auslesbar sind.The invention relates to a franking machine with an electronic control that accesses a first memory in which security-relevant data is stored and from which this data can be called up again, and with at least one non-volatile reserve memory in which the data of the first memory are stored in the event of a power failure and after voltage recovery the data of the reserve memory can be read out again.

Aus der US-A-4,306,299 ist eine Frankiermaschine mit einer Spannungsüberwachungsschaltung bekannt, welche das Absinken und das Wiederkehren der Betriebsspannung erfaßt. Die Frankiermaschine hat einen nicht flüchtigen Reservespeicher, in dem beim Abfall der Betriebsspannung Daten aus dem Arbeitsspeicher durch einen Kopiervorgang abgespeichert werden. Wenn die Betriebsspannung wieder ansteigt, werden die im nicht flüchtigen Speicher gespeicherten Daten wieder in den Arbeitsspeicher der Frankiermaschine übertragen.From US-A-4,306,299 a franking machine with a voltage monitoring circuit is known which detects the drop and the return of the operating voltage. The franking machine has a non-volatile reserve memory, in which data from the working memory are stored by a copying process when the operating voltage drops. When the operating voltage rises again, the data stored in the non-volatile memory are transferred back into the working memory of the franking machine.

Weiterhin ist aus der US-A-4,564,922 eine Frankiermaschine mit zwei Reservespeichern bekannt. Einer dieser Speicher ist ein nicht flüchtiger Festwertspeicher, während der andere Speicher als sogenannter Schattenarbeitsspeicher arbeitet, der zwei Speicherabschnitte hat. Ein erster Speicherabschnitt dient als flüchtiger Arbeitsspeicher, während ein zweiter Speicherabschnitt als nicht flüchtiger Speicher vorgesehen ist. Bei einem Spannungsabfall werden Daten im Schattenarbeitspeicher vom flüchtigen Speicherabschnitt in den nicht flüchtigen Speicherabschnitt durch einen Kopiervorgang transferiert. Nach Wiederkehr der Spannung werden Daten, die im nicht flüchtigen Speicherabschnitt des Schattenarbeitsspeichers gespeichert waren an eine Computereinheit ausgelesen und mit nicht flüchtigen Daten des Festwertspeichers auf Übereinstimmung verglichen.Furthermore, a franking machine with two reserve memories is known from US-A-4,564,922. One of these memories is a non-volatile read-only memory, while the other memory works as a so-called shadow working memory, which has two memory sections. A first memory section serves as volatile working memory, while a second memory section is provided as non-volatile memory. In the event of a voltage drop, data is stored in the shadow RAM transferred from the volatile memory section to the non-volatile memory section by a copying operation. After the voltage has returned, data which were stored in the non-volatile memory section of the shadow RAM are read out to a computer unit and compared with non-volatile data of the read-only memory for correspondence.

Aus der EP-A-0 572 019 ist eine Frankiermaschine bekannt, die mindestens zwei nicht flüchtige Speicher hat. Bei Abfall der Betriebsspannung werden sicherheitsrelevante Daten in beide nicht flüchtige Speicher eingeschrieben. Nach Spannungswiederkehr werden die Daten aus den beiden Speichern durch einen Kopiervorgang zum Computer der Frankiermaschine übertragen und dort auf Identität überprüft.A franking machine is known from EP-A-0 572 019 which has at least two non-volatile memories. If the operating voltage drops, safety-relevant data is written into both non-volatile memories. After voltage recovery, the data from the two memories are transferred to the computer of the franking machine by means of a copying process and there checked for identity.

Die bekannten Einrichtungen und Verfahren kopieren jeweils einen gesamten Datensatz bei Spannungsabfall und bei Spannungswiederkehr. Dies bedeutet, daß eine große Anzahl von Daten zwischen den Speichern übertragen werden müssen. Bei dieser Übertragung können Lese- und Schreibfehler auftreten, welche die Zuverlässigkeit der Frankiermaschine beeinträchtigen. Das mehrfache Abspeichern in nicht flüchtigen Speichern und der nachfolgende Vergleich der Datensätze untereinander erhöht zwar die Datensicherheit für Frankiermaschinen, jedoch werden beim Auftreten von Störsignalen, die beispielsweise durch Spannungsinduktion oder durch Spannungsspitzen hervorgerufen werden, die Daten, die von verschiedenen Speichern beim Datentransfer zum Computer gelangen, auf gleiche Weise beeinflußt, so daß es zu einem systematischen Datenfehler kommen kann, bei dem eine Identität der verschiedenen Datensätze vorgetäuscht wird.The known devices and methods each copy an entire data set in the event of a voltage drop and on voltage recovery. This means that a large amount of data must be transferred between the memories. During this transmission, read and write errors can occur which impair the reliability of the franking machine. The multiple storage in non-volatile memories and the subsequent comparison of the data sets with one another increases the data security for franking machines, but when interference signals occur, which are caused, for example, by voltage induction or voltage peaks, the data that is transferred from various memories to the computer during data transfer , influenced in the same way so that a systematic data error can occur, in which an identity of the different data sets is simulated.

Es ist Aufgabe der Erfindung, eine Frankiermaschine anzugeben, die bei Spannungsausfall und bei Spannungswiederkehr die Speicherung sicherheitsrelevanter Daten ohne zusätzliche Hilfsenergie zuverlässig ausführt.It is an object of the invention to provide a franking machine which, in the event of a power failure and when the power returns, reliably stores the security-relevant data without additional auxiliary energy.

Diese Aufgabe wird für eine Frankiermaschine nach dem Oberbegriff des Anspruchs 1 dadurch gelöst, daß der Reservespeicher wahlweise als statischer nicht flüchtiger Speicher oder als dynamischer flüchtiger Speicher betreibbar ist, daß der Reservespeicher und die Frankiermaschine aus einer gemeinsamen Versorgungsspannung gespeist werden, und daß die Steuerung bei Abfall der Versorgungsspannung auf einen vorgegebenen Wert den Reservespeicher auf den statischen Betrieb und bei Spannungswiederkehr den dynamischen Betrieb einstellt.This object is achieved for a franking machine according to the preamble of claim 1 in that the reserve memory can be operated either as a static non-volatile memory or as a dynamic volatile memory, that the reserve memory and the franking machine are supplied from a common supply voltage, and that the control at If the supply voltage drops to a specified value, the reserve memory sets to static operation and dynamic operation when voltage returns.

Die Erfindung geht von der Überlegung aus, den beim bekannten Stand der Technik erforderlichen Kopiervorgang entfallen zu lassen. Die während einer Datenübertragung auftretenden Fehler können dann vermieden werden. Demgemäß sind bei der Erfindung für den Reservespeicher zwei Betriebsweisen vorgesehen. Einmal ist der Reservespeicher als statischer nicht flüchtiger Speicher betreibbar; ein andermal als dynamischer flüchtiger Speicher. Im statischen Betrieb werden die im Reservespeicher gespeicherten Daten quasi eingefroren, wobei in diesem Zustand der Reservespeicher keine weitere Spannungsversorgung mehr benötigt. Bei Spannungswiederkehr werden die Zellen des Reservespeichers in den dynamischen Zustand versetzt, bei dem fortlaufend Erneuerungszyklen für den Speicherinhalt erforderlich sind.The invention is based on the consideration of eliminating the copying process required in the known prior art. The errors that occur during data transmission can then be avoided. Accordingly, two modes of operation are provided for the reserve memory in the invention. On the one hand, the reserve memory can be operated as a static, non-volatile memory; another time as dynamic volatile memory. In static operation, the data stored in the reserve memory are quasi frozen, with the reserve memory no longer requiring any further power supply in this state. When the voltage returns, the cells of the reserve memory are put into the dynamic state, in which renewal cycles are continuously required for the memory content.

Es muß also bei der Erfindung kein Kopiervorgang zwischen verschiedenen Speichern oder zwischen Speicherabschnitten eines Speichers durchgeführt werden, wodurch die Daten im Reservespeicher selbst bei hohem Störsignalpegel sicher sind. Zwar werden bei der Umschaltung vom statischen Betrieb in den dynamischen Betrieb und umgekehrt die Speicherzellen belastet, so daß ihre Lebensdauer eingeschränkt ist. Ferner wird die Lebensdauer des Reservespeichers durch Lesevorgänge beeinträchtigt, bei denen die einzelnen Speicherzellen jeweils gelöscht und ihr ursprünglicher Wert neu eingeschrieben werden muß. Jedoch ist für Anwendungen in einer Frankiermaschine diese Art von Reservespeicher möglich, wenn man sich auf wenige Schreib- und Lesezyklen beschränkt, beispielsweise auf das Absspeichern sicherheitsrelevanter Daten, für die die Anzahl an Lese- und Schreibzyklen abhängig vom Portoverbrauch relativ klein ist.In the invention, therefore, no copying process has to be carried out between different memories or between memory sections of a memory, as a result of which the data in the reserve memory are safe even at a high interference signal level. When switching from static to dynamic operation and vice versa, the memory cells are loaded so that their service life is limited. Furthermore, the life of the reserve memory is adversely affected by read operations in which the individual memory cells must be erased and their original values rewritten. However, for applications in a franking machine this type of reserve memory is possible if you limit yourself to a few write and read cycles, for example to the storage of security-relevant data for which the number of read and write cycles is relatively small depending on postage usage.

Bei einem bevorzugten Ausführungsbeispiel ist als Reservespeicher ein ferroelektrischer Speicher vorgesehen. Bei dieser Technologie enthalten die Speicherzellen ferroelektrisches Material als Speichermedium. Die Daten werden als Zustände von Spicherkondensatoren gespeichert. Diese Speicherkondensatoren bilden die Speicherzellen des ferroelektrischen Speichers. In der statischen Betriebsart sind die Daten durch den Polarisationszustand der Speicherzellen definiert; in der dynamischen Betriebsart werden die Daten als Ladezustände der Speicherzellen abgebildet. Die Verwendung eines ferroelektrischen Speichers in Verbindung mit üblichen anderen Technologien für Arbeitsspeicher und nicht flüchtige Speicher, beispielsweise batteriegepufferte Speicher, hat den Vorteil, daß das gleichzeitige Auftreten von Schreib- und Lesefehlern bei einwirkenden Störsignalen aufgrund unterschiedlicher Speichertechnologien vermieden wird.In a preferred embodiment, a ferroelectric memory is provided as a reserve memory. With this technology, the memory cells contain ferroelectric material as the storage medium. The data are stored as states of storage capacitors. These storage capacitors form the memory cells of the ferroelectric memory. In the static operating mode, the data are defined by the polarization state of the memory cells; in the dynamic operating mode, the data are mapped as charge states of the memory cells. The use of a ferroelectric memory in conjunction with conventional other technologies for working memory and non-volatile memory, for example battery-buffered memory, has the advantage that the simultaneous occurrence of write and read errors in the presence of interference signals due to different memory technologies is avoided.

Eine andere Weiterbildung ist dadurch gekennzeichnet, daß ein Bereich des Reservespeichers für die Speicherung eines Steuerprogramms vorgesehen ist. Der Reservespeicher dient in diesem Fall als Festwertspeicher, der bei diesem Anwendungsfall den sonst üblichen ROM-Baustein zumindest teilweise ersetzt. Durch diese Weiterbildung wird der Hardware-Aufwand für die Frankiermaschine verringert. Auch ist es möglich, einen Bereich des Reservespeichers als Arbeitsspeicher für die Steuerung vorzusehen.Another development is characterized in that an area of the reserve memory is provided for storing a control program. In this case, the reserve memory serves as a read-only memory, which at least partially replaces the otherwise conventional ROM module in this application. This further development reduces the hardware expenditure for the franking machine. It is also possible to provide an area of the reserve memory as a working memory for the control.

Um zu vermeiden, daß beim Schreiben in den Reservespeicher, in welchem neben den sicherheitsrelevanten Daten auch das Steuerprogramm abgespeichert ist, in nicht erlaubten Bereichen Daten eingeschrieben werden, die das Steuerprogramm zerstören könnten, werden bestimmte Bereiche des Reservespeichers schreibgeschützt. In diesem schreibgeschützten Bereichen können das Steuerprogramm oder weitere nicht veränderbare Daten abgelegt werden.In order to avoid that when writing to the reserve memory, in which the control program is also stored in addition to the safety-relevant data, data are written in non-permitted areas which destroy the control program certain areas of the reserve memory are write-protected. The control program or other non-changeable data can be stored in this read-only area.

Ein Ausführungsbeispiel der Erfindung wird im folgenden anhand der Zeichnung erläutert. Darin zeigt:

Figur 1
die Steuerung einer Frankiermaschine in einer Blockdarstellung, sowie
Figuren 2 und 3
die Ablaufschritte beim Einschalten des dynamischen Betriebs bzw. des statischen Betriebs des Reservespeichers.
An embodiment of the invention is explained below with reference to the drawing. It shows:
Figure 1
the control of a franking machine in a block representation, and
Figures 2 and 3
the process steps when switching on dynamic operation or static operation of the reserve memory.

In Figur 1 ist in einem Blockschaltbild die Steuerung 10 der Frankiermaschine dargestellt. Sie enthält einen Mikroprozessor 12, der über einen Datenbus 16 und einen Adreßbus 14 mit einer Decodiereinheit 18, einem Arbeitsspeicher 20, einem als EPROM ausgebildeten Programmspeicher 22, einem als EEPROM ausgebildeten Speicher für Festdaten, einem Uhrenbaustein 16 mit einem batteriegepufferten ersten nicht flüchtigen Speicher 26, einem ebenfalls als batteriegepufferten zweiten nicht flüchtigen Speicher 28, einem als ferroelektrischen Reservespeicher 30 ausgebildeten dritten nicht flüchtigen Speicher, einer weiteren Decodiereinheit 32, einem Schnittstellenbaustein 34 für externe Einheiten sowie einem Interfacebaustein 36 für eine Anzeige und für Eingabemittel elektrisch verbunden ist. Die beiden Decodiereinheiten 18 und 32 sind in einem kundenspezifischen ASIC-Baustein 40 zusammengefaßt. Die Decodiereinheit 32 hat Leitungen 46, 46a, 46b, die mit den Chip-Select-Eingängen CS des Reservespeichers 30, des Speichers 28 und des Speichers 26 verbunden sind. Über diese Leitungen 46, 46a, 46b werden die Speicher 30, 28, 26 angewählt, um Daten zu lesen und zu schreiben. Ein Ausgang Port1 des Mikroprozessors 12 ist über eine Steuerleitung 48 mit dem Eingang D/NV des Reservespeichers 30 verbunden. Abhängig vom Signal auf der Steuerleitung 48 wird der Reservespeicher 30 in die Betriebsart "dynamischer Speicher" oder "statischer Speicher" geschaltet.In Figure 1, the controller 10 of the franking machine is shown in a block diagram. It contains a microprocessor 12 which, via a data bus 16 and an address bus 14, has a decoding unit 18, a working memory 20, an EPROM program memory 22, an EEPROM memory for fixed data, a clock module 16 with a battery-buffered first non-volatile memory 26 , a battery non-volatile second non-volatile memory 28, a third non-volatile memory designed as a ferroelectric reserve memory 30, a further decoding unit 32, an interface module 34 for external units and an interface module 36 for a display and for input means. The two decoding units 18 and 32 are combined in a customer-specific ASIC module 40. The decoding unit 32 has lines 46, 46a, 46b, which are connected to the chip select inputs CS of the reserve memory 30, the memory 28 and the memory 26. The memories 30, 28, 26 are selected via these lines 46, 46a, 46b in order to read and write data. An output Port1 of the microprocessor 12 is connected to the input via a control line 48 D / NV of the reserve memory 30 connected. Depending on the signal on the control line 48, the reserve memory 30 is switched to the "dynamic memory" or "static memory" mode.

Im ersten, zweiten und dritten nicht flüchtigen Speicher 26, 28, 30 werden sicherheitsrelevante Daten der Frankiermaschine, beispielsweise der noch verfügbare Portobetrag und der bereits ausgegebene Portobetrag, jeweils abgespeichert. Die drei nicht flüchtigen Speicher 26, 28, 30 arbeiten nach unterschiedlichen Technologien, so daß eine hohe Speichersicherheit auch unter ungünstigen Betriebszuständen möglich ist. Der Mikroprozessor 12 vergleicht in bestimmten Zeitabständen die in den drei Speichern 26, 28, 30 abgespeicherten sicherheitsrelevanten Daten untereinander. Bei Abweichung der Daten voneinander wird ein Fehlersignal erzeugt oder es wird eine Fehlerkorrektur veranlaßt, wie dies beispielsweise in der europäischen Patentanmeldung EP-A-0 572 019 beschrieben ist.The first, second and third non-volatile memories 26, 28, 30 each store security-relevant data of the franking machine, for example the postage amount still available and the postage amount already issued. The three non-volatile memories 26, 28, 30 operate according to different technologies, so that high memory security is possible even under unfavorable operating conditions. The microprocessor 12 compares the security-relevant data stored in the three memories 26, 28, 30 with one another at certain time intervals. If the data differ from one another, an error signal is generated or an error correction is initiated, as described, for example, in European patent application EP-A-0 572 019.

Der Mikroprozessor 12 ist mit einem Spannungsüberwachungsbaustein 42 verbunden, welcher die Betriebsspannung UB auf der Leitung 44 überwacht. Der ferroelektrische Reservespeicher 30 wird beim Betrieb der Frankiermaschine mit derselben Betriebsspannung UB betrieben, wie die weiteren Bausteine der Steuerung 10. Der Betrieb der Frankiermaschine zum Frankieren von Postgut unter Verwendung der in der Figur 1 gezeigten Bausteinen ist dem Fachmann an sich bekannt und muß hier nicht näher erläutert werden.The microprocessor 12 is connected to a voltage monitoring module 42, which monitors the operating voltage U B on the line 44. When the franking machine is in operation, the ferroelectric reserve memory 30 is operated with the same operating voltage U B as the other components of the control system 10. The operation of the franking machine for franking mail using the components shown in FIG. 1 is known per se to the person skilled in the art and must be here not explained in more detail.

Figur 2 zeigt in einem Ablaufdiagramm die Funktion des Reservespeichers 30 beim Auftreten eines Abfalls der Versorgungsspannung und bei Spannungswiederkehr. Beim Einschalten der Frankiermaschine bzw. bei Wiederkehr der Versorgungsspannung im Schritt 50 meldet der Spannungsüberwachungsbaustein 42 dem Mikroprozessor 12 das Erreichen der Betriebsspannung UB, und es erfolgt im nachfolgenden Schritt 52 eine Initialisierung des Mikroprozessors 12 und der an ihn angeschlossenen Baueinheiten, wobei auch die sicherheitsrelevanten Daten in den Speichern 26 und 28 auf Übereinstimmung miteinander verglichen werden. Falls im Schritt 54 festgestellt wird, daß die sicherheitsrelevanten Daten nicht übereinstimmen, so wird zu einem weiteren Programm im Schritt 56 verzweigt, in welchem der Fehler gegebenenfalls korrigiert wird. Beispielsweise kann hierbei das in der EP-A-0 572 019 beschriebene Verfahren eingesetzt werden.FIG. 2 shows in a flowchart the function of the reserve memory 30 when a drop in the supply voltage occurs and when the voltage returns. When the franking machine is switched on or when the supply voltage returns in step 50, the voltage monitoring module 42 reports to the microprocessor 12 that the operating voltage U B has been reached , and initialization takes place in the subsequent step 52 of the microprocessor 12 and the structural units connected to it, the security-relevant data in the memories 26 and 28 also being compared for agreement. If it is determined in step 54 that the security-relevant data do not match, a branch is made to a further program in step 56, in which the error is corrected if necessary. For example, the method described in EP-A-0 572 019 can be used here.

Wenn die sicherheitsrelevanten Daten fehlerfrei sind, so wird im nachfolgenden Schritt 58 die Bearbeitung von Interrupts (Ereignisse, auf die der Mikroprozessor 12 reagiert und Steuerfunktionen auslöst) unterbrochen, um ohne Unterbrechung den Wechsel der Betriebsart des Reservespeichers 30 durchführen zu können.If the security-relevant data is error-free, the processing of interrupts (events to which the microprocessor 12 reacts and triggers control functions) is interrupted in the subsequent step 58 in order to be able to change the operating mode of the reserve memory 30 without interruption.

Im nachfolgenden Schritt 60 wird der Reservespeicher 30 über die Chip-Select-Leitung 46 durch die Decodiereinheit 32 aktiv geschaltet, und der Mikroprozessor 12 sendet über die Steuerleitung 48 ein Signal an den Eingang D/NV des Speichers 30, um diesen in den dynamischen Betriebszustand zu schalten. In diesem dynamischen Betriebszustand werden die im Speicher gespeicherten Daten 30 fortlaufend erneuert. Die Erneuerungsenergie wird durch die Versorgungsspannung UB geliefert.In the subsequent step 60, the reserve memory 30 is activated via the chip select line 46 by the decoding unit 32, and the microprocessor 12 sends a signal via the control line 48 to the input D / NV of the memory 30 to put it into the dynamic operating state to switch. In this dynamic operating state, the data 30 stored in the memory are continuously renewed. The renewal energy is supplied by the supply voltage U B.

Nachfolgend werden im Speicher 30 sogenannte Dummy-Lese-Zyklen durchgeführt. Diese Zyklen sind erforderlich, um die Datenspeicherung, d.h. die Polarisierung oder Aufladung der Speicherzellen abhängig vom anliegenden Steuersignal 48 zu ändern.So-called dummy read cycles are then carried out in the memory 30. These cycles are required to complete data storage, i.e. to change the polarization or charging of the memory cells depending on the control signal 48 present.

Im nachfolgenden Schritt 64 wird die Sperre für die Interruptbehandlung aufgehoben. Der Mikroprozessor tastet das Signal des Spannungsüberwachungsbausteins 42 ab. Falls kein Spannungsausfall im Schritt 66 vorliegt, wird zum normalen Frankiermaschinenbetrieb (Schritt 68) verzweigt, und die üblichen Steuerfunktionen werden ausgeführt.In the subsequent step 64, the block for interrupt handling is released. The microprocessor samples the signal of the voltage monitoring module 42. If there is no power failure in step 66, it becomes normal Postage meter operation (step 68) branches and the usual control functions are carried out.

Falls der Spannungsüberwachungsbaustein 42 ein Abfallen der Versorgungsspannung UB signalisiert, so wird im Schritt 66 zum Programmteil A verzweigt, dessen Ablaufschritte in Figur 3 dargestellt sind. Nach dem Ausschalten der Maschine oder einem Versorgungsspannungsausfall (Schritt 70) wird im nachfolgenden Schritt 72 die Interruptbehandlung durch den Mikroprozessor 12 gesperrt. Mit der noch verbleibenden, beispielsweise in einem Kondensator gepufferten elektrischen Energie, wird über den Decodierbaustein 32 und die Leitung 46 der Speicher 30 angewählt, und der Mikroprozessor 12 gibt über die Steuerleitung 48 das Signal zum Aktivieren der nicht flüchten Betriebsart des Speichers 30 ab, so daß dieser Speicher 30 in seinen statischen Betrieb umschaltet. Zum Festlegen des Speicherinhalts des Speichers 30 werden im nachfolgenden Schritt 76 die bereits erwähnten Dummy-Lese-Zyklen durchgeführt. Nach dem endgültigen Spannungszusammenbruch im Schritt 78 sind die Daten des Speichers 30 statisch gespeichert. In diesem Zustand benötigt der Speicher 30 keine Spannungsversorgung. Es ist also möglich, den Speicher 30 alleine aus der Versorgungsspannung UB zu speisen, aus der auch die Frankiermaschine mit Ausnahme der batteriegepufferten Speicher 26, 28 ihre elektrische Energie entnehmen.If the voltage monitoring module 42 signals a drop in the supply voltage U B , step 66 branches to program part A, the sequence of which is shown in FIG. 3. After the machine has been switched off or a supply voltage failure (step 70), the interrupt processing by the microprocessor 12 is blocked in the subsequent step 72. With the remaining electrical energy, for example buffered in a capacitor, the memory 30 is selected via the decoder module 32 and the line 46, and the microprocessor 12 outputs the signal for activating the non-volatile mode of operation of the memory 30 via the control line 48, so that this memory 30 switches to its static mode. In order to determine the memory content of the memory 30, the dummy read cycles already mentioned are carried out in the subsequent step 76. After the final voltage breakdown in step 78, the data in the memory 30 are stored statically. In this state, the memory 30 does not require a voltage supply. It is therefore possible to supply the memory 30 solely from the supply voltage U B , from which the franking machine, with the exception of the battery-buffered memories 26, 28, also draw its electrical energy.

Claims (10)

Frankiermaschine mit einer elektronischen Steuerung (10), die auf einen ersten Speicher (26, 28) zugreift, in welchem sicherheitsrelevante Daten gespeichert und aus dem diese Daten wieder abrufbar sind, und mit mindestens einem nicht flüchtigen Reservespeicher (30), in dem bei Spannungsausfall die Daten des ersten Speichers (26, 28) gespeichert sind und nach Spannungswiederkehr die Daten des Reservespeichers (30) wieder auslesbar sind, dadurch gekennzeichnet, daß der Reservespeicher (30) wahlweise als statischer nicht flüchtiger Speicher oder als dynamischer flüchtiger Speicher betreibbar ist, daß der Reservespeicher (30) und die Frankiermaschine aus einer gemeinsamen Versorgungsspannung (UB) gespeist werden, und daß die Steuerung (10) bei Abfall der Versorgungsspannung (UB) auf einen vorgegebenen Wert den Reservespeicher (30) auf den statischen Betrieb und bei Spannungswiederkehr den dynamischen Betrieb einstellt.Postage meter with an electronic control (10) which accesses a first memory (26, 28) in which security-relevant data is stored and from which this data can be called up again, and with at least one non-volatile reserve memory (30), in the event of a power failure the data of the first memory (26, 28) are stored and after voltage recovery the data of the reserve memory (30) can be read out again, characterized in that the reserve memory (30) can be operated either as a static non-volatile memory or as a dynamic volatile memory that the reserve memory (30) and the franking machine are fed from a common supply voltage (U B ), and that the control (10) when the supply voltage (U B ) drops to a predetermined value, the reserve memory (30) on static operation and on voltage recovery stops dynamic operation. Frankiermaschine nach Anspruch 1, dadurch gekennzeichnet, daß als Reservespeicher ein ferroelektrischer Speicher (30) vorgesehen ist.Franking machine according to claim 1, characterized in that a ferroelectric memory (30) is provided as a reserve memory. Frankiermaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zum Erkennen des Abfalls der Versorgungsspannung (UB) ein Spannungsüberwachungsbaustein (42) vorgesehen ist, der die Versorgungsspannung (UB) mit einem vorgegebenen Vergleichswert vergleicht und bei Unterschreiten des Vergleichswertes ein Interruptsignal für die Steuerung (10) erzeugt, die den Reservespeicher (30) durch Abgabe eines Steuersignals in den statischen Betrieb schaltet.Postage meter according to claim 1 or 2, characterized in that a voltage monitoring module (42) is provided for detecting the drop in the supply voltage (U B ), which compares the supply voltage (U B ) with a predetermined comparison value and, when the comparison value is undershot, an interrupt signal for the Control (10) generates, which switches the reserve memory (30) into static operation by emitting a control signal. Frankiermaschine nach Anspruch 3, dadurch gekennzeichnet, daß der Spannungsüberwachungsbaustein (42) bei Spannungswiederkehr ein weiteres Interruptsignal für die Steuerung (10) erzeugt, die den Reservespeicher (30) durch ein Steuersignal in den dynamischen Betrieb schaltet.Franking machine according to claim 3, characterized in that the voltage monitoring module (42) upon voltage recovery generates another interrupt signal for the controller (10), which switches the reserve memory (30) into dynamic operation by means of a control signal. Frankiermaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein Bereich des Reservespeichers (30) für die Speicherung eines Steuerprogramms vorgesehen ist.Franking machine according to one of the preceding claims, characterized in that an area of the reserve memory (30) is provided for storing a control program. Frankiermaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein weiterer Bereich des Reservespeichers (30) als Arbeitsspeicher für die Steuerung (10) vorgesehen ist.Franking machine according to one of the preceding claims, characterized in that a further area of the reserve memory (30) is provided as a working memory for the control (10). Frankiermaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß vorbestimmte Bereiche des Reservespeichers (30) schreibgeschützt sind.Franking machine according to one of the preceding claims, characterized in that predetermined areas of the reserve memory (30) are write-protected. Frankiermaschine nach Anspruch 7, dadurch gekennzeichnet, daß der dem Steuerprogramm zugeordnete Speicherbereich schreibgeschützt ist.Postage meter according to claim 7, characterized in that the memory area assigned to the control program is write-protected. Frankiermaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein weiterer Reservespeicher (26 oder 28) vorgesehen ist, der durch eine Batterie oder einen Akkumulator spannungsgepuffert ist.Franking machine according to one of the preceding claims, characterized in that a further reserve memory (26 or 28) is provided which is voltage-buffered by a battery or an accumulator. Frankiermaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als sicherheitsrelevante Daten Portodaten der Frankiermaschine, vorzugsweise der noch verfügbare Portobetrag und der bereits ausgegebene Portobetrag, im Reservespeicher gespeichert sind.Postage meter machine according to one of the preceding claims, characterized in that postage data of the postage meter machine, preferably the postage amount still available and the postage amount already issued, are stored in the reserve memory as security-relevant data.
EP19940120219 1994-12-20 1994-12-20 Franking machine with a spare memory Expired - Lifetime EP0718800B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19940120219 EP0718800B1 (en) 1994-12-20 1994-12-20 Franking machine with a spare memory
DE59408216T DE59408216D1 (en) 1994-12-20 1994-12-20 Franking machine with a reserve memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19940120219 EP0718800B1 (en) 1994-12-20 1994-12-20 Franking machine with a spare memory

Publications (2)

Publication Number Publication Date
EP0718800A1 true EP0718800A1 (en) 1996-06-26
EP0718800B1 EP0718800B1 (en) 1999-05-06

Family

ID=8216548

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19940120219 Expired - Lifetime EP0718800B1 (en) 1994-12-20 1994-12-20 Franking machine with a spare memory

Country Status (2)

Country Link
EP (1) EP0718800B1 (en)
DE (1) DE59408216D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1451968A1 (en) * 2001-10-05 2004-09-01 Pitney Bowes Inc. Method and system for dispensing virtual stamps

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4564922A (en) * 1983-10-14 1986-01-14 Pitney Bowes Inc. Postage meter with power-failure resistant memory
US4706215A (en) * 1984-08-22 1987-11-10 Pitney Bowes Inc. Data protection system for electronic postage meters having multiple non-volatile multiple memories
US5187798A (en) * 1989-03-06 1993-02-16 Pitney Bowes Inc. Electronic postage meter having separate funds charge registers and recredits funds register in predetermined amount when funds fall to predetermined level
EP0550994A2 (en) * 1991-12-19 1993-07-14 Neopost Limited Franking machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4564922A (en) * 1983-10-14 1986-01-14 Pitney Bowes Inc. Postage meter with power-failure resistant memory
US4706215A (en) * 1984-08-22 1987-11-10 Pitney Bowes Inc. Data protection system for electronic postage meters having multiple non-volatile multiple memories
US5187798A (en) * 1989-03-06 1993-02-16 Pitney Bowes Inc. Electronic postage meter having separate funds charge registers and recredits funds register in predetermined amount when funds fall to predetermined level
EP0550994A2 (en) * 1991-12-19 1993-07-14 Neopost Limited Franking machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1451968A1 (en) * 2001-10-05 2004-09-01 Pitney Bowes Inc. Method and system for dispensing virtual stamps
EP1451968A4 (en) * 2001-10-05 2009-09-16 Pitney Bowes Inc Method and system for dispensing virtual stamps
US7962423B2 (en) 2001-10-05 2011-06-14 Pitney Bowes Inc. Method and system for dispensing virtual stamps

Also Published As

Publication number Publication date
DE59408216D1 (en) 1999-06-10
EP0718800B1 (en) 1999-05-06

Similar Documents

Publication Publication Date Title
EP0512542B1 (en) Data-protecting microprocessor circuit for portable record carriers, for example credit cards
DE4331703C2 (en) Electronic device
EP0163096A1 (en) Apparatus for saving a calculator status
EP0195885B1 (en) Method and device for the non-volatile memorizing of the counting state of an electronic counter circuit
DE2054830C3 (en) Information processing system with means for accessing memory data fields of variable length
DE2905675A1 (en) CIRCUIT ARRANGEMENT FOR BLOCKING ACCESS TO A MEMORY
DE2317576A1 (en) DEVICE FOR FAILURE REORDERING OF MEMORY MODULES IN A DATA PROCESSING SYSTEM
DE2554502C3 (en) Method and arrangement for addressing a memory
DE69927571T2 (en) Data processor and method for processing data
DE3903486A1 (en) METHOD AND CIRCUIT FOR SELECTING A REPLACEMENT COLUMN
DE4217830C2 (en) Method for operating a data processing system
DE4302553A1 (en) High security binary counting method for chip card - offsetting final state of binary number w.r.t. sequence such that contents of counter never represents number smaller than previous value
WO2009062655A1 (en) Method for testing a main memory
EP0902924A1 (en) Redundancy concept for memory circuits with rom storage cells
EP0753815A2 (en) Method and system for the automatic detection and correction of invalid data sets
EP0718800B1 (en) Franking machine with a spare memory
DE2530887C3 (en) Control device for information exchange
DE19649577A1 (en) Communication system
DE2823457C2 (en) Circuit arrangement for error monitoring of a memory of a digital computer system
DE60128596T2 (en) INTERRUPT CONTROL FOR A MICROPROCESSOR
DE4429633C2 (en) Method and device for monitoring memory cells of a memory
EP0880092B1 (en) Program controlled device whose operating system is capable of being upgraded and the new version switched over to, without having to restart the device
DE102005018790A1 (en) Integrated circuit and method for operating and parallel testing integrated circuits
EP0715313B1 (en) Method of programming an electrically erasable read-only memory in an elecronic computer device and control device using the method
DE10115630C2 (en) Control circuit with data backup and data backup method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

AX Request for extension of the european patent

Free format text: SI

RAX Requested extension states of the european patent have changed

Free format text: SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRANCOTYP-POSTALIA AKTIENGESELLSCHAFT & CO.

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19961223

17Q First examination report despatched

Effective date: 19970730

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59408216

Country of ref document: DE

Date of ref document: 19990610

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990707

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20051013

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20051110

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20051130

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20051208

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061231

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070703

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20061220

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071220