EP0703265A1 - Hydrophilic Hydrogels with elevated swelling capacity - Google Patents

Hydrophilic Hydrogels with elevated swelling capacity Download PDF

Info

Publication number
EP0703265A1
EP0703265A1 EP95109493A EP95109493A EP0703265A1 EP 0703265 A1 EP0703265 A1 EP 0703265A1 EP 95109493 A EP95109493 A EP 95109493A EP 95109493 A EP95109493 A EP 95109493A EP 0703265 A1 EP0703265 A1 EP 0703265A1
Authority
EP
European Patent Office
Prior art keywords
polymer
water
hydrogel
hydrophilic
hydrogel according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95109493A
Other languages
German (de)
French (fr)
Other versions
EP0703265B1 (en
Inventor
Fritz Dr. Engelhardt
Norbert Dr. Herfert
Uwe Stüven
Ulrich Riegel
Rüdiger Dr. Funk
Detlev Dr. Seip
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
Hoechst AG
Clariant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG, Clariant GmbH filed Critical Hoechst AG
Publication of EP0703265A1 publication Critical patent/EP0703265A1/en
Application granted granted Critical
Publication of EP0703265B1 publication Critical patent/EP0703265B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/14Water soluble or water swellable polymers, e.g. aqueous gels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S524/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S524/916Hydrogel compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Definitions

  • the present invention relates to hydrophilic, highly swellable hydrogels which are coated with non-reactive, water-insoluble film-forming polishes.
  • Hydrophilic hydrogels which can be obtained by polymerizing olefinically unsaturated acids, such as, for example, acrylic acid, methacrylic acid, acrylamidopropanesulfonic acid, etc., in the presence of small amounts of polyolefinically unsaturated compounds are already known and are described, for example, in US Pat. No. 4,057,521, US Pat. No. 4,062,817, US Pat. No. 4,525,527, US Pat. No. 4,286,082 , US 4,340,706 and US 4,295,987.
  • olefinically unsaturated acids such as, for example, acrylic acid, methacrylic acid, acrylamidopropanesulfonic acid, etc.
  • hydrophilic hydrogels are also known, which are accessible by graft copolymerization of olefinically unsaturated acids onto different matrices, such as, for example, polysaccharides, polyalkylene oxides and their derivatives (e.g. US 5,011,892, US 4,076,663 and US 4,931,497).
  • hydrogels mentioned are distinguished by a high absorption capacity for water and aqueous solutions and are therefore preferably used as absorbents in hygiene articles.
  • hydrogels can be modified by surface treatment with certain substances.
  • conventional hydrogels which have been dried, ground and optionally sieved, are reacted in powder form with reactive compounds, ie with compounds which contain at least two groups which form covalent bonds with the carboxyl groups of the hydrogels can. It is therefore a crosslinking that takes place on the surface of the gel particles.
  • Such surface crosslinking is described, for example, in EP-A 543 303, mixtures of phosphonic acid diglycidyl esters and other reactive compounds being used as surface crosslinking agents.
  • EP-A 83022 for improved dispersibility in water and for improving the absorbency
  • DE-A 3331644 for improving the resistance to saline solutions at a high water absorption rate
  • DE-A 3507775 also for increasing the salt resistance with good liquid absorption and Gel Strength
  • DE-A 3523617 to improve flowability and prevent caking
  • DE-A 3628482 to improve water absorption when used repeatedly
  • EP-A 349240 to achieve a balance between absorbency and absorption speed as well as gel strength and suction power
  • EP-A 349240 describes the aftertreatment of polishing with crosslinking agents containing bifunctional or multifunctional groups, which can react with the carboxyl or carboxylate groups or other groups contained in the polymer.
  • the powder is mixed directly with the components, if appropriate with the use of smaller amounts of water and solvent, or the powder is dispersed in an inert solvent or water containing 10 to 40% by weight
  • Polymers are dispersed in a hydrophilic or hydrophobic solvent and then or simultaneously mixed with the crosslinking agent.
  • Polyglycidyl ethers, haloepoxy compounds, polyols, polyamines or polyisocyanates can be used as crosslinking agents (see US Pat. No. 4,666,983).
  • DE-A 3314019, EP-A 317106 (in each case to achieve a high absorption rate and high absorption rate) and DE-A 3737196 (high absorption capacity and high absorption rate with simultaneous high gel strength) furthermore polyfunctional aziridine compounds, alkyl-di- (tri ) -halides and oil-soluble polyepoxy compounds mentioned.
  • DE-A 3503458 to achieve polishing with good water absorption capacity, high water absorption rate and high gel strength with non-sticky gel, a crosslinking agent is applied to a polymer resin in the presence of an inert inorganic powder material such as SiO2 without the use of organic solvents.
  • DE-A 4020480 describes a process for surface crosslinking of hydrophilic absorbents by treatment with alkylene carbonates and subsequent thermal treatment at 150-300 o C.
  • EP-A 509708 describes a method, which has the surface-crosslinking carboxyl-containing polymer particles with polyhydroxy compounds in combination with a surfactant coating content .
  • the abrasion caused by mechanical stress not only increases the dust content of the products, but also causes a deterioration in the physico-chemical product properties.
  • the object of the present invention is therefore to provide dust-free, abrasion-resistant, highly swellable absorbents for aqueous liquids.
  • This object is surprisingly achieved in that known hydrophilic, highly swellable hydrogels are coated with non-reactive, water-insoluble film-forming polymers.
  • the present invention thus relates to a hydrophilic, highly swellable hydrogel, characterized in that it is coated with a non-reactive, water-insoluble film-forming polymer.
  • Suitable polymers are, in particular, those which have film-forming capacity in the temperature range between -1 ° C. and 130 ° C. and thereby form water-insoluble but water-permeable or water-swellable polymer films.
  • Suitable polymers are also, in particular, those which form polymer films which do not tend to stick in the temperature range between 0 ° C. and 80 ° C.
  • suitable polymers are, in particular, those which form polymer films which have tensile strength values of 0.5 to 15 Newton / mm and elongation at break values of 100% to 1000%.
  • the polymers to be used according to the invention are not reactive. In the context of the present invention, this means that they have no reactive groups which can react with the carboxyl groups on the surface of the hydrogel particles.
  • Preferred polymers to be used according to the invention are homopolymers and copolymers of vinyl esters, in particular vinyl acetate homopolymers and vinyl acetate copolymers with ethylene, acrylates, maleic acid esters, vinyl amides and / or other vinyl acyl derivatives.
  • Homo- and copolymers of acrylic and methacrylic acid esters are also preferred, such as copolymers of methyl methacrylate and n-butyl acrylate or 2-ethylhexyl acrylate.
  • copolymers mentioned, based on vinyl, acrylic and metharyl esters can contain, for example, styrene, butadiene, vinylamides, olefinically unsaturated carboxylic acids and their derivatives, olefinically unsaturated sulfonic acids and their derivatives, vinylphosphonic acid and its derivatives or polyglycol esters of unsaturated acids as further comonomers.
  • vinylamides are in particular N-vinylformamide, N-vinyl-N-methylacetamide and N-vinylpyrrolidone.
  • olefinically unsaturated carboxylic acids are in particular acrylic acid, methacrylic acid, itaconic acid and maleic acid as well as their alkali, ammonium and amine salts.
  • derivatives of these olefinically unsaturated carboxylic acids are, in particular, amides, such as (meth) acrylamide, N-tert-butyl (meth) acrylamide and N-isopropyl (meth) acrylamide, but also N-methylolamides or ethers of N-methylolamides, half-amides and imides aliphatic amines, and acrylonitrile.
  • olefinically unsaturated sulfonic acids are the salts of vinylsulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, styrene sulfonic acid, allyl and methallylsulfonic acid, especially their alkali, ammonium and amine salts.
  • Examples of derivatives of vinylphosphonic acid are in particular the mono- and diesters of (C1-C18) alcohols, such as, for example, the methyl, propyl or stearyl esters.
  • the vinylphosphonic acid itself is present in particular as a mono- or disalt, with the alkali, ammonium and amine salts being preferred.
  • Polyglycol esters of unsaturated acids are especially hydroxyethyl (meth) acrylate or esters of acrylic and methacrylic acid with polyalkylene oxide compounds of the general formula in which X1 is hydrogen or methyl, n 0 to 50 and R is an aliphatic, araliphatic or cycloaliphatic (C1-C24) radical, for example nonylphenyl mean.
  • mixtures of two or more of the abovementioned polymers can also be used.
  • the mixing ratios are completely uncritical and must be adapted to the respective circumstances.
  • the film-forming polymers are preferably used in amounts of 0.1 to 40% by weight, particularly preferably in amounts of 0.5 to 20% by weight, based on the hydrogel according to the invention.
  • hydrophilic, highly swellable hydrogels on which the hydrogels according to the invention are based are in particular polymers of (co) polymerized hydrophilic monomers, graft (co) polymers of one or more hydrophilic monomers on a suitable graft base, crosslinked cellulose or starch ethers or natural products which are swellable in aqueous liquids, such as for example guar derivatives.
  • These hydrogels are known and are described, for example, in the references cited above.
  • Suitable hydrophilic monomers are, for example, polymerizable acids, such as acrylic acid, methacrylic acid, vinylsulfonic acid, vinylphosphonic acid, maleic acid including its anhydride, fumaric acid, itaconic acid, 2-acrylamido-2-methylpropanesulfonic acid, 2-acrylamido-2-methylpropanephosphonic acid and their amides, hydroxyalkyl esters and amino groups esters and amides containing ammonium groups. Furthermore, water-soluble N-vinylamides or diallyldimethylammonium chloride.
  • Particularly preferred hydrophilic monomers are acrylic acid and methacrylic acid.
  • Suitable graft bases can be of natural or synthetic origin. Examples are starch, cellulose or cellulose derivatives and other polysaccharides and oligosaccharides, polyalkylene oxides, in particular polyethylene oxides and polypropylene oxides, and hydrophilic polyesters.
  • Suitable polyalkylene oxides have, for example, the formula wherein R6 and R7 independently Hydrogen, alkyl, alkenyl or aryl, X is hydrogen or methyl and n is an integer from 1 to 10,000.
  • R6 and R7 are preferably hydrogen, (C1-C6) alkyl, (C2-C6) alkenyl or phenyl.
  • Preferred hydrogels are in particular polyacrylates, polymethacryalates and the graft polymers described in US 4,931,497, US 5,011,892 and US 5,041,496. The content of these patents is also an integral part of this disclosure.
  • hydrophilic, highly swellable hydrogels on which the hydrogels according to the invention are based are preferably crosslinked, ie they contain compounds having at least two double bonds which are polymerized into the polymer network.
  • Suitable crosslinkers are in particular methylenebisacryl or methacrylamide, esters of unsaturated mono- or polycarboxylic acids of polyols, such as diacrylate or triacrylate, e.g. Butanediol or ethylene glycol and also trimethylolpropane triacrylate and allyl compounds such as allyl (meth) acrylate, triallyl cyanurate, diallyl maleate, polyallyl esters, tetraallyloxyethane, triallylamine, tetraallylethylenediamine, allyl esters of phosphoric acid and also vinylphosphonic acid derivatives as described for example in EP-A 343 427th The content of EP-A 343 427 is expressly also part of the present disclosure.
  • hydrophilic, highly swellable hydrogels on which the hydrogels according to the invention are based are particularly preferably postcrosslinked in a known manner in an aqueous gel phase or surface crosslinked as ground and sieved polymer particles.
  • Crosslinkers suitable for this purpose are compounds which contain at least two groups which can form covalent bonds with the carboxyl groups of the hydrophilic polymer.
  • Suitable compounds are, for example, di- or polyglycidyl compounds, such as phosphonic acid diglycidyl ester, alkoxysilyl compounds, polyaziridines, polyamines or polyamidoamines, it being also possible to use the compounds mentioned in mixtures with one another (see, for example, EP-A 83 022, EP-A 543 303 and EP-A 530 438).
  • Polyamidoamines suitable as crosslinkers are described in particular in EP-A 349 935. The content of the aforementioned patent applications is expressly part of the present disclosure.
  • hydrophilic, highly swellable hydrogels on which the hydrogels according to the invention are based can be formed by known polymerization processes are produced. Polymerization in aqueous solution by the so-called gel polymerization method is preferred. 15 to 50% by weight aqueous solutions of one or more hydrophilic monomers and, if appropriate, a suitable graft base in the presence of a radical initiator are preferably used without mechanical mixing, using the Trommsdorff-Norrish effect (Bios Final Rep. 363.22; Makromol. Chem. 1, 169 (1947)), polymerized.
  • the polymerization reaction can be carried out in the temperature range between 0 ° C. and 130 ° C., preferably between 10 ° C. and 100 ° C., both under normal pressure and under elevated pressure.
  • the polymerization can also be carried out in a protective gas atmosphere, preferably under nitrogen.
  • the hydrogels according to the invention can be prepared by applying the non-reactive, water-insoluble film-forming polymers to the underlying hydrophilic, highly swellable hydrogels in the desired weight ratio in a manner known per se.
  • This application is preferably done in mixers, such as twin-drum mixers, so-called "ZIG-ZAG” mixers, horizontally working ploughshare mixers, such as e.g. Lödige mixers or cone screw mixers or vertically cylindrical mixers with coaxially rotating knives or fluidized bed mixers.
  • the non-reactive, water-insoluble film-forming polymers are preferred in the form of an aqueous polymer dispersion, polymer emulsion or polymer suspension used. However, they can also be used in the form of a solution in an organic solvent or in a mixture of water and an organic water-miscible solvent.
  • the aqueous dispersions, emulsions and suspensions mentioned can also contain a proportion of organic, if appropriate, water-miscible solvent.
  • Suitable organic solvents are, for example, aliphatic and aromatic hydrocarbons, alcohols, ethers, esters and ketones such as, for example, n-hexane, cyclohexane, toluene, xylene, methanol, ethanol, i-propanol, ethylene glycol, 1,2-propanediol, glycerol, diethyl ether, methyl triglycol , Polyethylene glycols with an average molecular weight Mw of 200-10,000, ethyl acetate, n-butyl acetate, acetone and 2-butanone.
  • Suitable water-miscible organic solvents are, for example, aliphatic (C1-C4) alcohols such as methanol, i-propanol, t-butanol, polyhydric alcohols such as ethylene glycol, 1,2-propanedipole and glycerol, ethers such as methyl triglycol and polyethylene glycols with a medium molecular weight Mw from 200 to 10,000 and ketones such as acetone and 2-butanone.
  • C1-C4 alcohols such as methanol, i-propanol, t-butanol
  • polyhydric alcohols such as ethylene glycol, 1,2-propanedipole and glycerol
  • ethers such as methyl triglycol and polyethylene glycols with a medium molecular weight Mw from 200 to 10,000 and ketones such as acetone and 2-butanone.
  • the hydrogels according to the invention are notable for excellent mechanical stability, in particular resistance to abrasion. This applies particularly to the incorporation into hygiene articles. In addition, they have minimal dust generation.
  • the abrasion resistance of the hydrogels according to the invention described in the following examples was determined. This was done in a cylindrical porcelain mill with an inner diameter of 11 cm, an inner height of 11.5 cm, a volume of approx. 1100 ml and associated metal balls (32 pieces with a diameter of approx. 0.9 cm each and a weight of each approx. 16.5 g and 1 piece with a diameter of approx. 6.4 cm and a weight of approx. 1324 g) with a total weight of approx. 1852 g.
  • the vessel was filled with the balls and 100 g of the polymer powder to be tested, closed and rolled for 30 minutes at 60 rpm on a corresponding roller drive.
  • the polymer powder was subjected to a sieve analysis before and after this treatment, the fraction in the lower grain area and the absorption under pressure (AUL) in particular being determined with different pressure loads and surface coverage.
  • AUL absorption under pressure
  • the abrasion resistance of this product was determined as described above.
  • the absorption under pressure was determined at a pressure load of 60 g / cm2 and an area coverage of 0.02 g / cm2, using the grain fraction 0.3 to 0.6 mm. The result is shown in Table 1.
  • Example 10 50 g of surface-post-crosslinked superabsorbent granulate, prepared as in Example 10 of DEA 4138408, were placed in a 500 ml round-bottomed flask, and 2 g of the commercial product ®Mowilith dispersion LDM 7460 (®Mowilith is a registered trademark of Hoechst AG, Frankfurt am Main), a plasticizer-free, aqueous dispersion based on acrylic and methacrylic acid esters, diluted with 30 g of methanol, added and mixed homogeneously on a rotary evaporator by rotating at medium speed for 15 minutes. The methanol was then distilled off under reduced pressure and the powder was dried in a drying cabinet at 50 ° C. in vacuo to remove the residual methanol. Any clumps formed were removed by sieving through a sieve with a mesh size of 0.85 mm. The abrasion resistance of this product was determined as indicated in Example 1.

Abstract

The present invention relates to hydrophilic, highly swellable hydrogels which are coated with non-reactive, water-insoluble film-forming polymers.

Description

Die vorliegende Erfindung betrifft hydrophile, hochquellfähige Hydrogele, die mit nicht reaktiven, wasserunlöslichen filmbildenden Polieren beschichtet sind.The present invention relates to hydrophilic, highly swellable hydrogels which are coated with non-reactive, water-insoluble film-forming polishes.

Hydrophile Hydrogele, die durch Polymerisation olefinisch ungesättigter Säuren, wie beispielsweise Acrylsäure, Methacrylsäure, Acrylamidopropansulfonsäure usw., in Gegenwart geringer Mengen mehrfach olefinisch ungesättigter Verbindungen erhalten werden können, sind bereits bekannt und beispielsweise beschrieben in US 4,057,521, US 4,062,817, US 4,525,527, US 4,286,082, US 4,340,706 und US 4,295,987.Hydrophilic hydrogels which can be obtained by polymerizing olefinically unsaturated acids, such as, for example, acrylic acid, methacrylic acid, acrylamidopropanesulfonic acid, etc., in the presence of small amounts of polyolefinically unsaturated compounds are already known and are described, for example, in US Pat. No. 4,057,521, US Pat. No. 4,062,817, US Pat. No. 4,525,527, US Pat. No. 4,286,082 , US 4,340,706 and US 4,295,987.

Weiterhin sind auch hydrophile Hydrogele bekannt, die durch Pfropfcopolymerisation olefinisch ungesättigter Säuren auf unterschiedliche Matrices, wie beispielsweise Polysaccharide, Polyalkylenoxide sowie deren Derivate, zugänglich sind (z.B. US 5,011,892, US 4,076,663 und US 4,931,497).Furthermore, hydrophilic hydrogels are also known, which are accessible by graft copolymerization of olefinically unsaturated acids onto different matrices, such as, for example, polysaccharides, polyalkylene oxides and their derivatives (e.g. US 5,011,892, US 4,076,663 and US 4,931,497).

Die genannten Hydrogele zeichnen sich durch ein hohes Aufnahmevermögen für Wasser und wäßrige Lösungen aus und finden daher bevorzugt Anwendung als Absorptionsmittel in Hygieneartikeln.The hydrogels mentioned are distinguished by a high absorption capacity for water and aqueous solutions and are therefore preferably used as absorbents in hygiene articles.

Es ist bereits bekannt, daß die Eigenschaften dieser Hydrogele durch eine Oberflächenbehandlung mit bestimmten Substanzen modifiziert werden können. Zu diesem Zweck werden herkömmliche Hydrogele, die getrocknet, gemahlen und gegebenenfalls abgesiebt sind, in Pulverform mit reaktiven Verbindungen umgesetzt, d.h. mit Verbindungen, die mindestens zwei Gruppen enthalten, die mit den Carboxylgruppen der Hydrogele kovalente Bindungen bilden können. Es handelt sich also um eine Vernetzung, die auf der Oberfläche der Gelpartikel stattfindet.It is already known that the properties of these hydrogels can be modified by surface treatment with certain substances. For this purpose, conventional hydrogels, which have been dried, ground and optionally sieved, are reacted in powder form with reactive compounds, ie with compounds which contain at least two groups which form covalent bonds with the carboxyl groups of the hydrogels can. It is therefore a crosslinking that takes place on the surface of the gel particles.

Eine derartige Oberflächenvernetzung ist beispielsweise in der EP-A 543 303 beschrieben, wobei als Oberflächenvernetzer Mischungen aus Phosphonsäurediglycidylestern und weiteren reaktiven Verbindungen eingesetzt werden.Such surface crosslinking is described, for example, in EP-A 543 303, mixtures of phosphonic acid diglycidyl esters and other reactive compounds being used as surface crosslinking agents.

Zahlreiche weitere Verfahren beschreiben die Oberflächenbehandlung und Vernetzung saug- und quellfähiger Polymerenpartikel mit reaktiven Verbindungen. So werden in der US 4043952 zur Verbesserung der Dispergierbarkeit in Wasser polyvalente Metallverbindungen und in der US 4051086 zur Verbesserung der Aufnahmegeschwindigkeit Glyoxal empfohlen. In den Dokumenten EP-A 83022 (zur verbesserten Dispergierbarkeit in Wasser und zur Verbesserung des Absorptionsvermögens), DE-A 3331644 (zur Verbesserung der Resistenz gegen Salzlösungen bei hoher Wasseraufnahmegeschwindigkeit), DE-A 3507775 (ebenfalls zur Erhöhung der Salzbeständigkeit bei guter Flüssigkeitsabsorption und Gelfestigkeit), DE-A 3523617 (zur Verbesserung der Fließfähigkeit und dem Verhindern des Zusammenbackens), DE-A 3628482 (zur Verbesserung der Wasseraufnahme bei wiederholter Verwendung) und EP-A 349240 (zur Erzielung eines Gleichgewichtes zwischen Absorptionsvermögen und Absorptionsgeschwindigkeit sowie Gelfestigkeit und Saugkraft) wird die Nachbehandlung von Polieren mit zwei- oder mehrfunktionellen Gruppen enthaltenden Vernetzungsmitteln beschrieben, die mit den Carboxyl-oder Carboxylatgruppen oder anderen im Polymer enthaltenen Gruppen reagieren können. Hierbei wird entweder das Pulver direkt mit den Komponenten, ggf. unter Mitvervendung geringerer Mengen Wasser und Lösungsmittel, vermischt oder das Pulver in einem inerten Lösungsmittel dispergiert oder 10 bis 40 Gew.% Wasser enthaltende Polymere werden in einem hydrophilen oder hydrophoben Lösungsmittel dispergiert und anschließend oder gleichzeitig mit dem Vernetzungsmittel vermischt. Als Vernetzungsmittel können Polyglycidylether, Haloepoxiverbindungen, Polyole, Polyamine oder Polyisocyanate verwendet werden (siehe US 4666983). Neben diesen werden in DE-A 3314019, EP-A 317106 (jeweils zur Erreichung von hoher Absorptionsmenge und hoher Absorptionsgeschwindigkeit) und DE-A 3737196 (hohes Absorptionsvermögen und hohe Aufnahmegeschwindigkeit bei gleichzeitiger großer Gelfestigkeit) weiterhin polyfunktionelle Aziridinverbindungen, Alkyl-di-(tri)-halogenide und öllösliche Polyepoxiverbindungen erwähnt. In der DE-A 3503458 (zur Erzielung eines Polieren mit gutem Wasserabsorptionsvermögen, hoher Wasserabsorptionsrate und hoher Gelfestigkeit bei nicht-klebrigem Gel) erfolgt die Aufbringung eines Vernetzungsmittels auf ein Polymerharz in Gegenwart eines inerten anorganischen Pulvermaterials wie SiO₂ ohne Verwendung organischer Lösungsmittel. Allen diesen Verfahren ist gemeinsam, daß anschließend eine Temperaturbehandlung der Harze erfolgt, sowie ferner, daß die zur Oberflächenbehandlung verwendeten Vernetzer wenigstens zwei funktionelle Gruppen aufweisen, d.h. reaktiv sind. DE-A 4020480 beschreibt ein Verfahren zur Oberflächenvernetzung von hydrophilen Absorptionsmitteln durch Behandlung mit Alkylencarbonaten und nachfolgender thermischer Behandlung bei 150-300oC. EP-A 509708 beschreibt ein Verfahren, welches die Oberflächenvernetzung carboxylgruppenhaltiger Polymerteilchen mit Polyhydroxylverbindungen in Kombination mit einer Tensidbeschichtung zum Inhalt hat.Numerous other processes describe the surface treatment and crosslinking of absorbent and swellable polymer particles with reactive compounds. Polyvalent metal compounds are recommended in US 4043952 to improve dispersibility in water and glyoxal is recommended in US 4051086 to improve the rate of absorption. In documents EP-A 83022 (for improved dispersibility in water and for improving the absorbency), DE-A 3331644 (for improving the resistance to saline solutions at a high water absorption rate), DE-A 3507775 (also for increasing the salt resistance with good liquid absorption and Gel Strength), DE-A 3523617 (to improve flowability and prevent caking), DE-A 3628482 (to improve water absorption when used repeatedly) and EP-A 349240 (to achieve a balance between absorbency and absorption speed as well as gel strength and suction power ) describes the aftertreatment of polishing with crosslinking agents containing bifunctional or multifunctional groups, which can react with the carboxyl or carboxylate groups or other groups contained in the polymer. In this case, either the powder is mixed directly with the components, if appropriate with the use of smaller amounts of water and solvent, or the powder is dispersed in an inert solvent or water containing 10 to 40% by weight Polymers are dispersed in a hydrophilic or hydrophobic solvent and then or simultaneously mixed with the crosslinking agent. Polyglycidyl ethers, haloepoxy compounds, polyols, polyamines or polyisocyanates can be used as crosslinking agents (see US Pat. No. 4,666,983). In addition to these, DE-A 3314019, EP-A 317106 (in each case to achieve a high absorption rate and high absorption rate) and DE-A 3737196 (high absorption capacity and high absorption rate with simultaneous high gel strength) furthermore polyfunctional aziridine compounds, alkyl-di- (tri ) -halides and oil-soluble polyepoxy compounds mentioned. In DE-A 3503458 (to achieve polishing with good water absorption capacity, high water absorption rate and high gel strength with non-sticky gel), a crosslinking agent is applied to a polymer resin in the presence of an inert inorganic powder material such as SiO₂ without the use of organic solvents. All of these processes have in common that the resins are subsequently subjected to a thermal treatment, and furthermore that the crosslinking agents used for the surface treatment have at least two functional groups, ie are reactive. DE-A 4020480 describes a process for surface crosslinking of hydrophilic absorbents by treatment with alkylene carbonates and subsequent thermal treatment at 150-300 o C. EP-A 509708 describes a method, which has the surface-crosslinking carboxyl-containing polymer particles with polyhydroxy compounds in combination with a surfactant coating content .

All diesen nach oben beschriebenen Methoden hergestellten Polymerpulvern ist gemein, daß sie einen gewissen Anteil feinerer Partikel enthalten, die für das sogenannte Stauben verantwortlich sind und daß zum Teil diese Staubanteile infolge mechanischer Belastung wie z.B. durch pneumatische Förderung und dadurch bedingten Abrieb deutlich erhöht werden. Feinstaub einer Korngröße kleiner 10 µm ist aus inhalationstoxischen Gründen unerwünscht, Feinstaubanteile kleiner 100 µm verursachen das visuell sichtbare Stauben mit all seinen Folgeerscheinungen und führen zu Handlingsproblemen im Produktions- und im Verarbeitungsbetrieb und sind daher ebenfalls unerwünscht.All these polymer powders produced by the methods described above have in common that they contain a certain proportion of finer particles, which are known for the Dust is responsible and that some of these dust components are significantly increased as a result of mechanical stress such as pneumatic conveyance and the abrasion caused by it. Fine dust with a grain size smaller than 10 µm is undesirable for inhalation toxic reasons, fine dust particles smaller than 100 µm cause the visually visible dust with all its consequences and lead to handling problems in the production and processing plant and are therefore also undesirable.

Desweiteren ist festzustellen, daß bei verschiedenen handelsüblichen Superabsorber-Produkten durch den durch mechanische Belastung bedingten Abrieb nicht nur der Staubanteil der Produkte erhöht wird, sondern auch eine Verschlechterung der physikalisch-chemischen Produkteigenschaften bewirkt wird.Furthermore, it should be noted that in the case of various commercially available superabsorbent products, the abrasion caused by mechanical stress not only increases the dust content of the products, but also causes a deterioration in the physico-chemical product properties.

Aufgabe vorliegender Erfindung ist es somit, staubfreie abriebbeständige hochquellfähige Absorptionsmittel für wäßrige Flüssigkeiten bereitzustellen. Diese Aufgabe wird überraschenderweise dadurch gelöst, daß an sich bekannte hydrophile, hochquellfähige Hydrogele mit nicht reaktiven, wasserunlöslichen filmbildenden Polymeren beschichtet werden.The object of the present invention is therefore to provide dust-free, abrasion-resistant, highly swellable absorbents for aqueous liquids. This object is surprisingly achieved in that known hydrophilic, highly swellable hydrogels are coated with non-reactive, water-insoluble film-forming polymers.

Die vorliegende Erfindung betrifft somit ein hydrophiles, hochquellfähiges Hydrogel, dadurch gekennzeichnet, daß es mit einem nicht reaktiven, wasserunlöslichen filmbildenden Polymeren beschichtet ist.The present invention thus relates to a hydrophilic, highly swellable hydrogel, characterized in that it is coated with a non-reactive, water-insoluble film-forming polymer.

Geeignete Polymere sind insbesondere solche, die im Temperaturbereich zwischen -1oC und 130oC Filmbildungsvermögen aufweisen und dabei wasserunlösliche aber wasserdurchlässige oder in wäßrigen Lösungen quellbare Polymerfilme bilden.Suitable polymers are, in particular, those which have film-forming capacity in the temperature range between -1 ° C. and 130 ° C. and thereby form water-insoluble but water-permeable or water-swellable polymer films.

Geeignete Polymere sind außerdem insbesondere solche, die Polymerfilme bilden, die im Temperaturbereich zwischen 0oC und 80oC nicht zum Verkleben neigen.Suitable polymers are also, in particular, those which form polymer films which do not tend to stick in the temperature range between 0 ° C. and 80 ° C.

Schließlich sind geeignete Polymere insbesondere solche, die Polymerfilme bilden, die Reißfestigkeitswerte von 0,5 bis 15 Newton/mm und Reißdehnungswerte von 100% bis 1000% aufweisen.Finally, suitable polymers are, in particular, those which form polymer films which have tensile strength values of 0.5 to 15 Newton / mm and elongation at break values of 100% to 1000%.

Die erfindungsgemäß einzusetzenden Polymeren sind nicht reaktiv. Dies bedeutet im Rahmen vorliegender Erfindung, daß sie keine reaktiven Gruppen aufweisen, die mit den Carboxylgruppen an der Oberfläche der Hydrogelteilchen reagieren können.The polymers to be used according to the invention are not reactive. In the context of the present invention, this means that they have no reactive groups which can react with the carboxyl groups on the surface of the hydrogel particles.

Bevorzugte erfindungsgemäß einzusetzende Polymere sind Homo- und Copolymerisate von Vinylestern, insbesondere Vinylacetat-Homopolymerisate und Vinylacetat-Copolymerisate mit Ethylen, Acrylaten, Maleinsäureestern, Vinylamiden und/oder anderen Vinylacylderivaten.Preferred polymers to be used according to the invention are homopolymers and copolymers of vinyl esters, in particular vinyl acetate homopolymers and vinyl acetate copolymers with ethylene, acrylates, maleic acid esters, vinyl amides and / or other vinyl acyl derivatives.

Bevorzugt sind außerdem Homo- und Copolymerisate von Acryl- und Methacrylsäureestern, wie beispielsweise Copolymerisate von Methylmethacrylat und Acrylsäure-n-butylester oder Acrylsäure-2-ethylhexylester.Homo- and copolymers of acrylic and methacrylic acid esters are also preferred, such as copolymers of methyl methacrylate and n-butyl acrylate or 2-ethylhexyl acrylate.

Die genannten Copolymerisate auf Basis Vinyl-, Acrylsäure- und Metharylsäureestern können als weitere Comonomere beispielsweise Styrol, Butadien, Vinylamide, olefinisch ungesättigte Carbonsäuren und deren Derivate, olefinisch ungesättigte Sulfonsäuren und deren Derivate, Vinylphosphonsäure und deren Derivate oder Polyglykolester ungesättigter Säuren enthalten.The copolymers mentioned, based on vinyl, acrylic and metharyl esters, can contain, for example, styrene, butadiene, vinylamides, olefinically unsaturated carboxylic acids and their derivatives, olefinically unsaturated sulfonic acids and their derivatives, vinylphosphonic acid and its derivatives or polyglycol esters of unsaturated acids as further comonomers.

Beispiele für Vinylamide sind insbesondere N-Vinylformamid, N-Vinyl-N-methylacetamid und N-Vinylpyrrolidon.Examples of vinylamides are in particular N-vinylformamide, N-vinyl-N-methylacetamide and N-vinylpyrrolidone.

Beispiele für olefinisch ungesätttigte Carbonsäuren sind insbesondere Acrylsäure, Methacrylsäure, Itaconsäure und Maleinsäure sowie deren Alkali-, Ammonium- und Aminsalze. Beispiele für Derivate dieser olefinisch ungesättigten Carbonsäuren sind insbesondere Amide, wie (Meth)acrylamid, N-tert-Butyl(meth)acrylamid und N-Isopropyl(meth)acrylamid, aber auch N-Methylolamide oder Ether der N-Methylolamide, Halbamide und Imide aliphatischer Amine, sowie Acrylnitril.Examples of olefinically unsaturated carboxylic acids are in particular acrylic acid, methacrylic acid, itaconic acid and maleic acid as well as their alkali, ammonium and amine salts. Examples of derivatives of these olefinically unsaturated carboxylic acids are, in particular, amides, such as (meth) acrylamide, N-tert-butyl (meth) acrylamide and N-isopropyl (meth) acrylamide, but also N-methylolamides or ethers of N-methylolamides, half-amides and imides aliphatic amines, and acrylonitrile.

Beispiele für olefinisch ungesättigte Sulfonsäuren sind die Salze der Vinylsulfonsäure, 2-Acrylamido-2-methylpropansulfonsäure, Styrolsulfonsäure, Allyl- und Methallylsulfonsäure, insbesondere deren Alkali-, Ammonium- und Aminsalze.Examples of olefinically unsaturated sulfonic acids are the salts of vinylsulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, styrene sulfonic acid, allyl and methallylsulfonic acid, especially their alkali, ammonium and amine salts.

Beispiele für Derivate der Vinylphosphonsäure sind insbesondere die Mono- und Diester von (C₁-C₁₈)-Alkoholen wie beispielsweise die Methyl-, Propyl- oder Stearylester. Die Vinylphosphonsäure selbst liegt insbesondere als Mono- oder Disalz vor, wobei die Alkali-, Ammonium- und Aminsalze bevorzugt sind.Examples of derivatives of vinylphosphonic acid are in particular the mono- and diesters of (C₁-C₁₈) alcohols, such as, for example, the methyl, propyl or stearyl esters. The vinylphosphonic acid itself is present in particular as a mono- or disalt, with the alkali, ammonium and amine salts being preferred.

Polyglykolester ungesättigter Säuren sind insbesondere Hydroxyethyl(meth)acrylat oder Ester der Acryl- und Methacrylsäure mit Polyalkylenoxidverbindungen der allgemeinen Formel

Figure imgb0001

wobei
   X¹ Wasserstoff oder Methyl,
   n 0 bis 50 und
   R einen aliphatischen, araliphatischen oder cycloaliphatischen (C₁-C₂₄)-Rest, beispielsweise Nonylphenyl
bedeuten.Polyglycol esters of unsaturated acids are especially hydroxyethyl (meth) acrylate or esters of acrylic and methacrylic acid with polyalkylene oxide compounds of the general formula
Figure imgb0001

in which
X¹ is hydrogen or methyl,
n 0 to 50 and
R is an aliphatic, araliphatic or cycloaliphatic (C₁-C₂₄) radical, for example nonylphenyl
mean.

Bevorzugte erfindungsgemäß einzusetzende Polymere sind weiterhin filmbildende Polymere auf Basis von

  • Polyacetalen, d.h. Umsetzungsprodukten von Polyvinylalkoholen mit Aldehyden wie beispielsweise Butyraldehyd,
  • Polyurethanen, d.h. aus durch Polyaddition aus zwei- und höherwertigen Alkoholen und Isocyanaten zugänglichen Polymeren, beispielsweise hergestellt aus Polyester- und/oder Polyetherdiolen und zum Beispiel 2,4- bzw. 2,6-Toluoldiisocyanat, 4,4-Methylendi(phenylisocyanat) oder Hexamethylendiisocyanat (siehe auch in Houben-Weyl E20/2, 1561-1721),
  • Polyharnstoffen, d.h. Polymeren, die zugänglich sind durch Polyaddition von Diaminen und Diisocyanaten oder durch Polykondensation von Diaminen mit Kohlenstoffdioxid, Phosgen, Carbonsäureestern (z.B. aktivierte Diphenylcarbonate) oder Harnstoff bzw. durch Umsetzung von Diisocyanaten mit Wasser (siehe Houben-Weyl E20/2, 1722),
  • Polysiloxanen, wobei als Basispolymer insbesondere lineares Dimethylpolysiloxan verwendet wird, dessen Endgruppen unterschiedlich blockiert sein können (siehe "Chemie und Technologie des kalthärtenden Siliconkautschuks", 49-64 in SILICONE - Chemie und Technologie, [Symposium am 28.04.89] VULKAN-VERLAG, Essen),
  • Polyamiden, wobei Copolyamide (siehe Plaste Kautsch. 25, 440-444 (1978)) wie sie beispielsweise zur Herstellung von Lacken Verwendung finden, bevorzugt sind.
  • Polyestern, d.h. Polymeren, die durch Ringöffnungspolymerisation von Lactonen oder durch Polykondensation von Hydroxycarbonsäuren bzw. von Diolen und Dicarbonsäurederivaten hergestellt werden (siehe Houben Weyl E20/2, 1404-1429),
  • Epoxidharzen, die aus Polyepoxiden durch Polyadditionsreaktionen mit geeigneten Härtern oder durch Polymerisation über Epoxidgruppen hergestellt werden können (siehe hierzu Houben Weyl 14/2, 462-552 und E20, 1891-1994 (Beispiele sind Umsetzungsprodukte aus Bisphenol A mit Epichlorhydrin) oder auf Basis von
  • Polycarbonaten, wie sie leicht durch Umsetzung von Diglykolen oder Bisphenolen mit Phosgen bzw. Kohlensäurediestern in Polykondensations- bzw. Umesterungsreaktionen herzustellen sind (siehe Houben Weyl) E 20/2, 1443-1457).
    Besonders bevorzugte erfindungsgemäß einzusetzende Polymere sind Homo- und Copolymerisate von Acryl- und Methacrylsäureestern sowie Polymerisate auf Basis von Polyacetalen.
Preferred polymers to be used according to the invention are furthermore film-forming polymers based on
  • Polyacetals, ie reaction products of polyvinyl alcohols with aldehydes such as butyraldehyde,
  • Polyurethanes, ie from polymers accessible by polyaddition from dihydric and higher alcohols and isocyanates, for example made from polyester and / or polyether diols and for example 2,4- or 2,6-toluenediisocyanate, 4,4-methylenedi (phenyl isocyanate) or Hexamethylene diisocyanate (see also in Houben-Weyl E20 / 2, 1561-1721),
  • Polyureas, ie polymers that are accessible by polyaddition of diamines and diisocyanates or by polycondensation of diamines with carbon dioxide, phosgene, carboxylic acid esters (e.g. activated diphenyl carbonates) or urea or by reacting diisocyanates with water (see Houben-Weyl E20 / 2, 1722 ),
  • Polysiloxanes, with linear dimethylpolysiloxane in particular being used as the base polymer, the end groups of which may be blocked differently (see "Chemistry and Technology of Cold-Curing Silicone Rubber", 49-64 in SILICONE - Chemistry and Technology, [Symposium on April 28, 1989] VULKAN-VERLAG, Essen ),
  • Polyamides, with copolyamides (see Plaste Kautsch. 25 , 440-444 (1978)) as are used, for example, for the production of coatings, are preferred.
  • Polyesters, ie polymers which are prepared by ring-opening polymerization of lactones or by polycondensation of hydroxycarboxylic acids or of diols and dicarboxylic acid derivatives (see Houben Weyl E20 / 2, 1404-1429),
  • Epoxy resins made from polyepoxides by polyaddition reactions with suitable hardeners or by polymerization can be prepared via epoxy groups (see Houben Weyl 14/2, 462-552 and E20, 1891-1994 (examples are reaction products of bisphenol A with epichlorohydrin) or based on
  • Polycarbonates, as can be easily prepared by reacting diglycols or bisphenols with phosgene or carbonic acid diesters in polycondensation or transesterification reactions (see Houben Weyl) E 20/2, 1443-1457).
    Particularly preferred polymers to be used according to the invention are homopolymers and copolymers of acrylic and methacrylic acid esters and polymers based on polyacetals.

Soweit sie geeignete Filme ausbilden können, können auch Mischungen zweier oder mehrerer der oben genannten Polymere eingesetzt werden. Die Mischungsverhältnisse sind dabei vollkommen unkritisch und den jeweiligen Gegebenheiten anzupassen.If they can form suitable films, mixtures of two or more of the abovementioned polymers can also be used. The mixing ratios are completely uncritical and must be adapted to the respective circumstances.

Die filmbildenden Polymere werden bevorzugt in Mengen von 0,1 bis 40 Gew.%, besonders bevorzugt in Mengen von 0,5 bis 20 Gew.%, bezogen auf erfindungsgemäßes Hydrogel eingesetzt.The film-forming polymers are preferably used in amounts of 0.1 to 40% by weight, particularly preferably in amounts of 0.5 to 20% by weight, based on the hydrogel according to the invention.

Die den erfindungsgemäßen Hydrogelen zugrunde liegenden hydrophilen, hochquellfähigen Hydrogele sind insbesondere Polymere aus (co)polymerisierten hydrophilen Monomeren, Pfropf(co)polymere von einem oder mehreren hydrophilen Monomeren auf eine geeignete Pfropfgrundlage, vernetzte Cellulose- oder Stärkeether oder in wäßrigen Flüssigkeiten quellbare Naturprodukte, wie beispielsweise Guarderivate. Diese Hydrogele sind bekannt und beispielsweise in den oben zitierten Literaturstellen beschrieben.The hydrophilic, highly swellable hydrogels on which the hydrogels according to the invention are based are in particular polymers of (co) polymerized hydrophilic monomers, graft (co) polymers of one or more hydrophilic monomers on a suitable graft base, crosslinked cellulose or starch ethers or natural products which are swellable in aqueous liquids, such as for example guar derivatives. These hydrogels are known and are described, for example, in the references cited above.

Geeignete hydrophile Monomere sind beispielsweise polymerisationsfähige Säuren, wie Acrylsäure, Methacrylsäure, Vinylsulfonsäure, Vinylphosphonsäure, Maleinsäure einschließlich dessen Anhydrid, Fumarsäure, Itaconsäure, 2-Acrylamido-2-methylpropansulfonsäure, 2-Acrylamido-2-methylpropanphosphonsäure sowie deren Amide, Hydroxyalkylester und aminogruppen- oder ammoniumgruppenhaltige Ester und Amide. Desweiteren wasserlösliche N-Vinylamide oder auch Diallyldimethylammoniumchlorid.Suitable hydrophilic monomers are, for example, polymerizable acids, such as acrylic acid, methacrylic acid, vinylsulfonic acid, vinylphosphonic acid, maleic acid including its anhydride, fumaric acid, itaconic acid, 2-acrylamido-2-methylpropanesulfonic acid, 2-acrylamido-2-methylpropanephosphonic acid and their amides, hydroxyalkyl esters and amino groups esters and amides containing ammonium groups. Furthermore, water-soluble N-vinylamides or diallyldimethylammonium chloride.

Bevorzugte hydrophile Monomere sind Verbindungen der allgemeinen Formel I

Figure imgb0002

worin

Wasserstoff, Methyl oder Ethyl,
die Gruppe -COOR⁴, die Sulfonylgruppe, die Phosphonylgruppe, die mit (C₁-C₄)-Alkanol veresterte Phosphonylgruppe oder eine Gruppe der Formel
Figure imgb0003
Wasserstoff, Methyl, Ethyl oder die Carboxylgruppe,
R⁴
Wasserstoff, Amino oder Hydroxy-(C₁-C₄)-alkyl und
R⁵
die Sulfonylgruppe, die Phosphonylgruppe oder die Carboxylgruppe
bedeuten.Preferred hydrophilic monomers are compounds of the general formula I.
Figure imgb0002

wherein
Hydrogen, methyl or ethyl,
the group -COOR⁴, the sulfonyl group, the phosphonyl group, the phosphonyl group esterified with (C₁-C₄) alkanol or a group of the formula
Figure imgb0003
Hydrogen, methyl, ethyl or the carboxyl group,
R⁴
Hydrogen, amino or hydroxy- (C₁-C₄) alkyl and
R⁵
the sulfonyl group, the phosphonyl group or the carboxyl group
mean.

Besonders bevorzugte hydrophile Monomere sind Acrylsäure und Methacrylsäure.Particularly preferred hydrophilic monomers are acrylic acid and methacrylic acid.

Geeignete Pfropfgrundlagen können natürlichen oder synthetischen Ursprungs sein. Beispiele sind Stärke, Cellulose oder Cellulosederivate sowie andere Polysaccharide und Oligosaccharide, Polyalkylenoxide, insbesondere Polyethylenoxide und Polypropylenoxide, sowie hydrophile Polyester.Suitable graft bases can be of natural or synthetic origin. Examples are starch, cellulose or cellulose derivatives and other polysaccharides and oligosaccharides, polyalkylene oxides, in particular polyethylene oxides and polypropylene oxides, and hydrophilic polyesters.

Geeignete Polyalkylenoxide haben beispielsweise die Formel

Figure imgb0004

worin R⁶ und R⁷ unabhängig voneinander
Wasserstoff, Alkyl, Alkenyl oder Aryl,
X Wasserstoff oder Methyl und
n eine ganze Zahl von 1 bis 10000 bedeuten.Suitable polyalkylene oxides have, for example, the formula
Figure imgb0004

wherein R⁶ and R⁷ independently
Hydrogen, alkyl, alkenyl or aryl,
X is hydrogen or methyl and
n is an integer from 1 to 10,000.

R⁶ und R⁷ bedeuten bevorzugt Wasserstoff, (C₁-C₆)-Alkyl, (C₂-C₆)-Alkenyl oder Phenyl.R⁶ and R⁷ are preferably hydrogen, (C₁-C₆) alkyl, (C₂-C₆) alkenyl or phenyl.

Bevorzugte Hydrogele sind insbesondere Polyacrylate, Polymethacryalate sowie die in US 4,931,497, US 5,011,892 und US 5,041,496 beschriebenen Pfropfpolymere. Der Inhalt dieser Patente ist ausdrücklich auch Bestandteil vorliegender Offenbarung.Preferred hydrogels are in particular polyacrylates, polymethacryalates and the graft polymers described in US 4,931,497, US 5,011,892 and US 5,041,496. The content of these patents is also an integral part of this disclosure.

Die den erfindungsgemäßen Hydrogelen zugrunde liegenden hydrophilen, hochquellfähigen Hydrogele sind bevorzugt vernetzt, d.h. sie enthalten Verbindungen mit mindestens zwei Doppelbindungen, die in das Polymernetzwerk einpolymerisiert sind.The hydrophilic, highly swellable hydrogels on which the hydrogels according to the invention are based are preferably crosslinked, ie they contain compounds having at least two double bonds which are polymerized into the polymer network.

Geeignete Vernetzer sind insbesondere Methylenbisacryl- bzw. -methacrylamid, Ester ungesättigter Mono- oder Polycarbonsäuren von Polyolen, wie Diacrylat oder Triacrylat, z.B. Butandiol- oder Ethylenglykoldiacrylat bzw. -methacrylat sowie Trimethylolpropantriacrylat und Allylverbindungen wie Allyl(meth)acrylat, Triallylcyanurat, Maleinsäurediallylester, Polyallylester, Tetraallyloxyethan, Triallylamin, Tetraallylethylendiamin, Allylester der Phosphorsäure sowie Vinylphosphonsäurederivate, wie sie beispielsweise in der EP-A 343 427 beschrieben sind. Der Inhalt der EP-A 343 427 ist ausdrücklich auch Bestandteil der vorliegenden Offenbarung.Suitable crosslinkers are in particular methylenebisacryl or methacrylamide, esters of unsaturated mono- or polycarboxylic acids of polyols, such as diacrylate or triacrylate, e.g. Butanediol or ethylene glycol and also trimethylolpropane triacrylate and allyl compounds such as allyl (meth) acrylate, triallyl cyanurate, diallyl maleate, polyallyl esters, tetraallyloxyethane, triallylamine, tetraallylethylenediamine, allyl esters of phosphoric acid and also vinylphosphonic acid derivatives as described for example in EP-A 343 427th The content of EP-A 343 427 is expressly also part of the present disclosure.

Darüber hinaus sind die den erfindungsgemäßen Hydrogelen zugrunde liegenden hydrophilen, hochquellfähigen Hydrogele besonders bevorzugt in an sich bekannter Weise in wäßriger Gelphase nachvernetzt oder als gemahlene und abgesiebte Polymerpartikel oberflächenvernetzt. Dazu geeignete Vernetzer sind Verbindungen, die mindestens zwei Gruppen enthalten, die mit den Carboxylgruppen des hydrophilen Polymeren kovalente Bindungen bilden können. Geeignete Verbindungen sind beispielsweise Di- oder Polyglycidylverbindungen, wie Phosphonsäurediglycidylester, Alkoxysilylverbindungen, Polyaziridine, Polyamine oder Polyamidoamine, wobei die genannten Verbindungen auch in Mischungen untereinander verwendet werden können (siehe beispielsweise EP-A 83 022, EP-A 543 303 und EP-A 530 438). Als Vernetzer geeignete Polyamidoamine sind insbesondere in der EP-A 349 935 beschrieben. Der Inhalt der vorstehend genannten Patentanmeldungen ist ausdrücklich Bestandteil auch der vorliegenden Offenbarung.In addition, the hydrophilic, highly swellable hydrogels on which the hydrogels according to the invention are based are particularly preferably postcrosslinked in a known manner in an aqueous gel phase or surface crosslinked as ground and sieved polymer particles. Crosslinkers suitable for this purpose are compounds which contain at least two groups which can form covalent bonds with the carboxyl groups of the hydrophilic polymer. Suitable compounds are, for example, di- or polyglycidyl compounds, such as phosphonic acid diglycidyl ester, alkoxysilyl compounds, polyaziridines, polyamines or polyamidoamines, it being also possible to use the compounds mentioned in mixtures with one another (see, for example, EP-A 83 022, EP-A 543 303 and EP-A 530 438). Polyamidoamines suitable as crosslinkers are described in particular in EP-A 349 935. The content of the aforementioned patent applications is expressly part of the present disclosure.

Die den erfindungsgemäßen Hydrogelen zugrunde liegenden hydrophilen, hochquellfähigen Hydrogele können durch bekannte Polymerisationsverfahren hergestellt werden. Bevorzugt ist die Polymerisation in wäßriger Lösung nach dem Verfahren der sogenannten Gelpolymerisation. Dabei werden 15 bis 50 gew.%ige wäßrige Lösungen eines oder mehrerer hydrophiler Monomerer und gegebenenfalls einer geeigneten Pfropfgrundlage in Gegenwart eines Radikalinitiators bevorzugt ohne mechanische Durchmischung unter Ausnutzung des Trommsdorff-Norrish-Effektes (Bios Final Rep. 363.22; Makromol. Chem. 1, 169 (1947)), polymerisiert.The hydrophilic, highly swellable hydrogels on which the hydrogels according to the invention are based can be formed by known polymerization processes are produced. Polymerization in aqueous solution by the so-called gel polymerization method is preferred. 15 to 50% by weight aqueous solutions of one or more hydrophilic monomers and, if appropriate, a suitable graft base in the presence of a radical initiator are preferably used without mechanical mixing, using the Trommsdorff-Norrish effect (Bios Final Rep. 363.22; Makromol. Chem. 1, 169 (1947)), polymerized.

Die Polymerisationsreaktion kann im Temperaturbereich zwischen 0°C und 130°C, vorzugsweise zwischen 10°C und 100°C, sowohl bei Normaldruck als auch unter erhöhtem Druck durchgeführt werden. Wie üblich kann die Polymerisation auch in einer Schutzgasatmosphäre, vorzugsweise unter Stickstoff, ausgeführt werden.The polymerization reaction can be carried out in the temperature range between 0 ° C. and 130 ° C., preferably between 10 ° C. and 100 ° C., both under normal pressure and under elevated pressure. As usual, the polymerization can also be carried out in a protective gas atmosphere, preferably under nitrogen.

Die erfindungsgemäßen Hydrogele können dadurch hergestellt werden, daß die nicht reaktiven, wasserunlöslichen filmbildenden Polymere in an sich bekannter Weise im gewünschten Gewichtsverhältnis auf die zugrunde liegenden hydrophilen, hochquellfähigen Hydrogele aufgebracht werden. Dieses Aufbringen geschieht bevorzugt in Mischern, wie beispielsweise Zwillingstrommelmischern, sogenannten "ZIG-ZAG"-Mischern, horizontal arbeitenden Pflugscharmischern, wie z.B. Lödige-Mischern oder Kegel-Schneckenmischern oder senkrecht zylindrischen Mischern mit koaxial rotierenden Messern oder auch Wirbelschichtmischern.The hydrogels according to the invention can be prepared by applying the non-reactive, water-insoluble film-forming polymers to the underlying hydrophilic, highly swellable hydrogels in the desired weight ratio in a manner known per se. This application is preferably done in mixers, such as twin-drum mixers, so-called "ZIG-ZAG" mixers, horizontally working ploughshare mixers, such as e.g. Lödige mixers or cone screw mixers or vertically cylindrical mixers with coaxially rotating knives or fluidized bed mixers.

Die nicht reaktiven, wasserunlöslichen filmbildenden Polymere werden dabei bevorzugt in Form einer wäßrigen Polymerdispersion, Polymeremulsion oder Polymersuspension eingesetzt. Sie können aber auch in Form einer Lösung in einem organischen Lösungsmittel oder in einem Gemisch aus Wasser und einem organischen wassermischbaren Lösungsmittel eingesetzt werden. Auch die genannten wäßrigen Dispersionen, Emulsionen und Suspensionen können einen Anteil an organischem gegebenenfalls wassermischbaren Lösungsmittel enthalten.The non-reactive, water-insoluble film-forming polymers are preferred in the form of an aqueous polymer dispersion, polymer emulsion or polymer suspension used. However, they can also be used in the form of a solution in an organic solvent or in a mixture of water and an organic water-miscible solvent. The aqueous dispersions, emulsions and suspensions mentioned can also contain a proportion of organic, if appropriate, water-miscible solvent.

Geeignete organische Lösungsmittel sind beispielsweise aliphatische und aromatische Kohlenwasserstoffe, Alkohole, Ether, Ester und Ketone wie beispielsweise n-Hexan, Cyclohexan, Toluol, Xylol, Methanol, Ethanol, i-Propanol, Ethylenglykol, 1,2-Propandiol, Glycerin, Diethylether, Methyltriglykol, Polyethylenglykole mit mittlerem Molekulargewicht Mw von 200 - 10.000, Ethylacetat, n-Butylacetat, Aceton und 2-Butanon.Suitable organic solvents are, for example, aliphatic and aromatic hydrocarbons, alcohols, ethers, esters and ketones such as, for example, n-hexane, cyclohexane, toluene, xylene, methanol, ethanol, i-propanol, ethylene glycol, 1,2-propanediol, glycerol, diethyl ether, methyl triglycol , Polyethylene glycols with an average molecular weight Mw of 200-10,000, ethyl acetate, n-butyl acetate, acetone and 2-butanone.

Geeignete wassermischbare organische Lösungsmittel sind beispielsweise aliphatische (C₁-C₄)-Alkohole wie beispielsweise Methanol, i-Propanol, t-Butanol, mehrwertige Alkohole wie beispielsweise Ethylenglykol, 1,2-Propandipol und Glycerin, Ether wie beispielsweise Methyltriglykol und Polyethylenglykole mit mittlerem Molekulargewicht Mw von 200 - 10.000 sowie Ketone wie beispielsweise Aceton und 2-Butanon.Suitable water-miscible organic solvents are, for example, aliphatic (C₁-C₄) alcohols such as methanol, i-propanol, t-butanol, polyhydric alcohols such as ethylene glycol, 1,2-propanedipole and glycerol, ethers such as methyl triglycol and polyethylene glycols with a medium molecular weight Mw from 200 to 10,000 and ketones such as acetone and 2-butanone.

Die erfindungsgemäßen Hydrogele zeichnen sich durch eine hervorragende mechanische Stabilität, insbesondere Abriebfestigkeit, aus. Dies gilt besonders bei der Einarbeitung in Hygieneartikel. Außerdem weisen sie lediglich eine minimale Staubentwicklung auf.The hydrogels according to the invention are notable for excellent mechanical stability, in particular resistance to abrasion. This applies particularly to the incorporation into hygiene articles. In addition, they have minimal dust generation.

Sie sind deshalb in hervorragender Weise als Absorptionsmittel für Wasser und wäßrige Flüssigkeiten, wie Urin oder Blut, in Hygieneartikeln wie Baby- und Erwachsenenwindeln, Binden, Tampons und dergleichen geeignet. Sie können aber auch als Bodenverbesserungsmittel in Landwirtschaft und Gartenbau, als Feuchtigkeitsbindemittel bei der Kabelummantelung sowie zum Eindicken wäßriger Abfälle verwendet werden.They are therefore excellent as an absorbent for water and aqueous liquids such as urine or blood, in hygiene articles such as baby and adult diapers, sanitary napkins, tampons and the like. However, they can also be used as soil improvers in agriculture and horticulture, as moisture binders for cable sheathing and for thickening aqueous waste.

Von den in nachfolgenden Beispielen beschriebenen erfindungsgemäßen Hydrogele wurde die Abriebfestigkeit bestimmt. Dies erfolgte in einer zylindrischen Porzellanmühle eines Innendurchmessers von 11 cm, einer inneren Höhe von 11,5 cm, einem Fassungsvolumen von ca. 1100 ml und dazugehörigen Metallkugeln (32 Stück mit einem Durchmesser von je ca. 0,9 cm und einem Gewicht von je ca. 16,5 g sowie 1 Stück mit einem Durchmesser von ca. 6,4 cm und einem Gewicht von ca. 1324 g) mit einem Gesamtgewicht von ca. 1852 g. Das Gefäß wurde mit den Kugeln sowie jeweils 100 g des zu prüfenden Polymerpulvers befüllt, verschlossen und für 30 Minuten bei 60 UpM auf entsprechendem Walzenantrieb gerollt. Das Polymerpulver wurde vor und nach dieser Behandlung einer Siebanalyse unterzogen, wobei insbesondere der Anteil im unteren Kornbereich und die Absorption unter Druck (AUL) bei unterschiedlicher Druckbelastung und Flächenbelegung bestimmt wurden.The abrasion resistance of the hydrogels according to the invention described in the following examples was determined. This was done in a cylindrical porcelain mill with an inner diameter of 11 cm, an inner height of 11.5 cm, a volume of approx. 1100 ml and associated metal balls (32 pieces with a diameter of approx. 0.9 cm each and a weight of each approx. 16.5 g and 1 piece with a diameter of approx. 6.4 cm and a weight of approx. 1324 g) with a total weight of approx. 1852 g. The vessel was filled with the balls and 100 g of the polymer powder to be tested, closed and rolled for 30 minutes at 60 rpm on a corresponding roller drive. The polymer powder was subjected to a sieve analysis before and after this treatment, the fraction in the lower grain area and the absorption under pressure (AUL) in particular being determined with different pressure loads and surface coverage.

Die Absorption unter Druck wurde in bekannter Weise, wie beispielsweise in der EP-A 339 461 beschrieben, bestimmt.The absorption under pressure was determined in a known manner, for example as described in EP-A 339 461.

Beispiel 1example 1

In einem 1000 ml Rundkolben wurden 200 g Methanol vorgelegt, 2,0 g des Handelsproduktes ®Mowital B30T (®Mowital ist ein eingetragenes Warenzeichen der Firme Hoechst AG, Frankfurt am Main, Bundesrepublik Deutschland), eines Polyacetals auf Basis eines niedrig acetalisierten Polyvinylbutyrals, darin gelöst, 200 g eines Superabsorbers, hergestellt analog Beispiel 5 der DE-A 4138408, zugegeben und am Rotationsverdampfer durch 15minütiges Drehen bei mittlerer Gechwindigkeit homogen vermischt. Anschließend wurde das Methanol unter vermindertem Druck abdestilliert und das Pulver bei 50°C im Trockenschrank im Vakkum zur Entfernung des Rest-Methanols nachgetrocknet. Eventuell gebildete Klumpen wurden durch Absieben über ein Sieb mit 0,85 mm Maschenweite entfernt.200 g of methanol were placed in a 1000 ml round-bottomed flask, 2.0 g of the commercial product ®Mowital B30T (®Mowital is a registered trademark of the company Hoechst AG, Frankfurt am Main, Federal Republic of Germany), one Polyacetal based on a low acetalized polyvinyl butyral, dissolved therein, 200 g of a super absorber, produced analogously to Example 5 of DE-A 4138408, added and homogeneously mixed on a rotary evaporator by rotating at medium speed for 15 minutes. The methanol was then distilled off under reduced pressure and the powder was dried in a drying cabinet at 50 ° C. in a vacuum to remove the residual methanol. Any clumps formed were removed by sieving through a sieve with a mesh size of 0.85 mm.

Von dieser Ware wurde die Abriebfestigkeit wie oben beschrieben bestimmt. Die Absorption unter Druck wurde bei einer Druckbelastung von 60 g/cm² und einer Flächenbelegung von 0,02 g/cm² ermittelt, wobei die Kornfraktion 0,3 bis 0,6 mm verwendet wurde. Das Ergebnis ist Tabelle 1 zu entnehmen.The abrasion resistance of this product was determined as described above. The absorption under pressure was determined at a pressure load of 60 g / cm² and an area coverage of 0.02 g / cm², using the grain fraction 0.3 to 0.6 mm. The result is shown in Table 1.

Der oben beschriebene Versuch wurde mit zwei weiteren handelsüblichen ®Mowital-Typen wiederholt. Die Ergebnisse sind ebenfalls Tabelle 1 zu entnehmen. Tabelle 1 ®Mowital-Typ vor Abriebtest nach Abriebtest AUL Kornanteil <0,2 mm AUL Kornanteil <0,2mm ohne Nachbehandlung 22,2 14,2 12,2 20,0 B 30 T 24,6 7,1 15,2 14,6 B 60 T 24,8 7,0 15,1 14,1 B 69 SF 24,4 4,3 16,5 14,4 The experiment described above was repeated with two other commercially available ®Mowital types. The results are also shown in Table 1. Table 1 ®Mowital type before abrasion test after abrasion test AUL Grain fraction <0.2 mm AUL Grain content <0.2mm without post-treatment 22.2 14.2 12.2 20.0 B 30 T. 24.6 7.1 15.2 14.6 B 60 T. 24.8 7.0 15.1 14.1 B 69 SF 24.4 4.3 16.5 14.4

Beispiel 2:Example 2:

In einem 500 ml Rundkolben wurden 50 g oberflächennachvernetztes Superabsorber-Granulat, hergestellt analog Beispiel 10 der DEA 4138408, vorgelegt und 2 g des Handelsproduktes ®Mowilith-Dispersion LDM 7460 (®Mowilith ist ein eingetragenes Warenzeichen der Firma Hoechst AG, Frankfurt am Main), einer weichmacherfreien, wäßrigen Dispersion auf Basis von Acryl- und Methacrylsäureestern, verdünnt mit 30 g Methanol, zugegeben und am Rotationsverdampfer durch 15 minütiges Drehen bei mittlerer Geschwindigkeit homogen vermischt. Anschließend wurde das Methanol unter vermindertem Druck abdestilliert und das Pulver bei 50°C im Trockenschrank im Vakuum zur Entfernung des Rest-Methanols nachgetrocknet. Eventuell gebildete Klumpen wurden durch Absieben über ein Sieb mit 0,85 mm Maschenweite entfernt. Von dieser Ware wurde die Abriebfestigkeit wie in Beispiel 1 angegeben bestimmt.50 g of surface-post-crosslinked superabsorbent granulate, prepared as in Example 10 of DEA 4138408, were placed in a 500 ml round-bottomed flask, and 2 g of the commercial product ®Mowilith dispersion LDM 7460 (®Mowilith is a registered trademark of Hoechst AG, Frankfurt am Main), a plasticizer-free, aqueous dispersion based on acrylic and methacrylic acid esters, diluted with 30 g of methanol, added and mixed homogeneously on a rotary evaporator by rotating at medium speed for 15 minutes. The methanol was then distilled off under reduced pressure and the powder was dried in a drying cabinet at 50 ° C. in vacuo to remove the residual methanol. Any clumps formed were removed by sieving through a sieve with a mesh size of 0.85 mm. The abrasion resistance of this product was determined as indicated in Example 1.

Der Versuch wurde mit drei weiteren ®Mowilith-Typen wiederholt. Der Ergebnisse sind Tabelle 2 zu entnehmen. TABELLE 2 ®Mowilith-Typ vor Abriebtest nach Abriebtest AUL Kornanteil <0,2 mm AUL Kornanteil <0,2mm ohne Nachbehandlung 16,9 13,5 12,6 22,5 LDM 7460 21,8 8,1 19,5 12,5 LDM 7410 17,9 10,2 15,9 15,4 DH 257 20,7 7,5 18,3 13,0 DM 1062 21,5 6,2 19,6 12,7 The experiment was repeated with three other ®Mowilith types. The results are shown in Table 2. TABLE 2 ®Mowilith type before abrasion test after abrasion test AUL Grain fraction <0.2 mm AUL Grain content <0.2mm without post-treatment 16.9 13.5 12.6 22.5 LDM 7460 21.8 8.1 19.5 12.5 LDM 7410 17.9 10.2 15.9 15.4 DH 257 20.7 7.5 18.3 13.0 DM 1062 21.5 6.2 19.6 12.7

Beispiel 3:Example 3:

In einem Telschig Laborsprühmischer RSM 6-60 von 6 l Inhalt wurden 1 kg Superabsorber, hergestellt analog Beispiel 5 der DE-A 4138408 vorgelegt. Unter Mischen wurde im Verlauf von 5 Minuten mit Hilfe einer Zweistoffdüse eine Mischung aus 20 g ®Mowilith-Dispersion LDM 7460 und 13 g Wasser aufgesprüht und 3 Minuten nachgemischt. Das Produkt wurde anschließend im Trockenschrank 30 Minuten bei 140°C nachgetrocknet. Eventuell gebildete Klumpen wurden durch Absieben über ein Sieb mit 0,85 mm Maschenweite entfernt. Von dieser Ware wurde die Abriebfestigkeit wie in Beispiel 1 angegeben bestimmt, wobei aber die AUL bei einer Druckbelastung von 40 g/cm² und einer Flächenbelegung von 0,032 g/cm² gemessen wurde.In a Telschig laboratory spray mixer RSM 6-60 of 6 l content, 1 kg of superabsorbent, prepared as in Example 5 of DE-A 4138408, was initially introduced. While mixing, a mixture of 20 g of ®Mowilith dispersion LDM 7460 and 13 g of water was sprayed on with the aid of a two-component nozzle over the course of 5 minutes and mixed in for 3 minutes. The product was then dried in a drying cabinet at 140 ° C. for 30 minutes. Any clumps formed were removed by sieving through a sieve with a mesh size of 0.85 mm. The abrasion resistance of this product was determined as indicated in Example 1, but the AUL was measured at a pressure load of 40 g / cm² and an area coverage of 0.032 g / cm².

Der Versuch wurde mit drei weiteren ®Mowilith-Typen wiederholt. Die Ergebnisse sind Tabelle 3 zu entnehmen. Tabelle 3 ®Mowilith-Typ vor Abriebtest nach Abriebtest AUL Kornanteil <0,3 mm AUL Kornanteil <0,3mm ohne Nachbehandlung 23,0 19,5 15,9 29,3 LDM 7460 28,2 14,1 27,4 20,0 LDM 7751 23,7 16,2 19,2 22,5 LDM 7736 22,1 15,8 18,6 21,4 DH 257 27,8 13,8 26,2 18,9 The experiment was repeated with three other ®Mowilith types. The results are shown in Table 3. Table 3 ®Mowilith type before abrasion test after abrasion test AUL Grain content <0.3 mm AUL Grain content <0.3mm without post-treatment 23.0 19.5 15.9 29.3 LDM 7460 28.2 14.1 27.4 20.0 LDM 7751 23.7 16.2 19.2 22.5 LDM 7736 22.1 15.8 18.6 21.4 DH 257 27.8 13.8 26.2 18.9

Claims (10)

Hydrophiles, hochquellfähiges Hydrogel, dadurch gekennzeichnet, daß es mit einem nicht reaktiven, wasserunlöslichen filmbildenden Polymeren beschichtet ist.Hydrophilic, highly swellable hydrogel, characterized in that it is coated with a non-reactive, water-insoluble film-forming polymer. Hydrogel nach Anspruch 1, dadurch gekennzeichnet, daß das Polymer im Temperaturbereich zwischen -1°C und 130°C Filmbildungsvermögen aufweist und dabei wasserunlösliche aber wasserdurchlässige oder in wäßrigen Lösungen quellbare Polymerfilme bildet.Hydrogel according to Claim 1, characterized in that the polymer has film-forming capacity in the temperature range between -1 ° C and 130 ° C and thereby forms water-insoluble but water-permeable or water-swellable polymer films. Hydrogel nach Anspruch 1 und/oder 2, dadurch gekennzeichnet, daß das Polymer einen Polymerenfilm mit einem Reißfestigkeitswert von 0,5 bis 15 Newton/mm und einem Reißdehnungswert von 100 % bis 1000 % bildet.Hydrogel according to Claim 1 and / or 2, characterized in that the polymer forms a polymer film with a tensile strength value of 0.5 to 15 Newton / mm and an elongation at break value of 100% to 1000%. Hydrogel nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Polymer ein Homo- oder Copolymerisat von Vinylestern ist.Hydrogel according to one or more of claims 1 to 3, characterized in that the polymer is a homo- or copolymer of vinyl esters. Hydrogel nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Polymer ein Homo- oder Copolymersat von Acryl- oder Methacrylsäureestern ist.Hydrogel according to one or more of claims 1 to 3, characterized in that the polymer is a homo- or copolymerate of acrylic or methacrylic acid esters. Hydrogel nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Polymer ein filmbildendes Polymer auf Basis Polyacetal, Polyurethan, Polyharnstoff, Polysiloxan, Polyamid, Polyester, Polyepoxid oder Polycarbonat ist.Hydrogel according to one or more of claims 1 to 3, characterized in that the polymer is a film-forming polymer based on polyacetal, polyurethane, polyurea, polysiloxane, polyamide, polyester, polyepoxide or polycarbonate. Hydrogel nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß es das Polymer in Mengen von 0,1 bis 40 Gew.%, bezogen auf das Hydrogel, enthält.Hydrogel according to one or more of claims 1 to 6, characterized in that it contains the polymer in amounts of 0.1 to 40% by weight, based on the hydrogel. Hydrogel nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß es ein Polymer aus (co)polymerisierten hydrophilen Monomeren, ein Pfropf(co)polymer von einem oder mehreren hydrophilen Monomeren auf eine geeignete Pfropfgrundlage, ein vernetzter Cellulose- oder Stärkeether oder ein in wäßrigen Flüssigkeiten quellbarer Naturstoff ist.Hydrogel according to one or more of claims 1 to 7, characterized in that it is a polymer of (co) polymerized hydrophilic monomers, a graft (co) polymer of one or more hydrophilic monomers on a suitable graft base, a crosslinked cellulose or starch ether or is a natural substance swellable in aqueous liquids. Verfahren zur Herstellung eines Hydrogels gemäß einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das nicht reaktive, wasserunlösliche filmbildende Polymere auf das zugrunde liegende hydrophile, hochquellfähige Hydrogel aufgebracht wird.A process for the preparation of a hydrogel according to one or more of claims 1 to 8, characterized in that the non-reactive, water-insoluble film-forming polymer is applied to the underlying hydrophilic, highly swellable hydrogel. Verwendung der Hydrogele gemäß einem oder mehreren der Ansprüche 1 bis 8 als Absorptionsmittel für Wasser und wäßrige Flüssigkeiten.Use of the hydrogels according to one or more of claims 1 to 8 as absorbents for water and aqueous liquids.
EP95109493A 1994-07-22 1995-06-20 Hydrophilic Hydrogels with elevated swelling capacity Expired - Lifetime EP0703265B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4426008A DE4426008A1 (en) 1994-07-22 1994-07-22 Hydrophilic, highly-swellable hydrogel coated with non-reactive, water-insol. polymer film
DE4426008 1994-07-22

Publications (2)

Publication Number Publication Date
EP0703265A1 true EP0703265A1 (en) 1996-03-27
EP0703265B1 EP0703265B1 (en) 2001-09-19

Family

ID=6523892

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95109493A Expired - Lifetime EP0703265B1 (en) 1994-07-22 1995-06-20 Hydrophilic Hydrogels with elevated swelling capacity

Country Status (8)

Country Link
US (1) US5731365A (en)
EP (1) EP0703265B1 (en)
JP (1) JPH0884927A (en)
AT (1) ATE205866T1 (en)
CA (1) CA2154425A1 (en)
DE (2) DE4426008A1 (en)
ES (1) ES2164124T3 (en)
MX (1) MX193604B (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998046668A1 (en) * 1997-04-15 1998-10-22 Solplax Limited Controlled degradation coatings and a method for their manufacture
WO1999037395A1 (en) * 1998-01-20 1999-07-29 Basf Aktiengesellschaft Encapsulated hydrogels
US6103785A (en) * 1998-03-26 2000-08-15 Nippon Shokubai Co., Ltd. Water-absorbing agent and its production process and use
WO2002036663A1 (en) * 2000-10-30 2002-05-10 Stockhausen Gmbh & Co. Kg Absorbent material with improved blocking properties
WO2006083585A2 (en) 2005-02-04 2006-08-10 The Procter & Gamble Company Absorbent structure with improved water-absorbing material
EP1910460A1 (en) 2005-07-27 2008-04-16 Basf Se Odour-preventing, water-absorbing compositions
WO2008077780A1 (en) * 2006-12-22 2008-07-03 Basf Se Method for producing mechanically stable water-absorbent polymer particles
WO2008077779A1 (en) 2006-12-22 2008-07-03 Basf Se Method for producing mechanically stable water-absorbent polymer particles
EP1981551A2 (en) 2006-01-20 2008-10-22 Basf Se Odor-blocking water-absorbent compositions containing urease inhibitors
WO2012054661A1 (en) 2010-10-21 2012-04-26 The Procter & Gamble Company Absorbent structures comprising post-crosslinked water-absorbent particles
WO2012052365A1 (en) 2010-10-21 2012-04-26 Basf Se Water-absorbing polymeric particles and method for the production thereof
KR20160076559A (en) 2014-12-23 2016-07-01 주식회사 엘지화학 Attrition Resistant Superabsorbent Polymers And Method Of Preparing The Same
EP3391959A1 (en) 2017-04-19 2018-10-24 The Procter & Gamble Company Method for making water-absorbing polymer particles having areas with inorganic solid particles and areas substantially free of inorganic solid particles
EP0812873B2 (en) 1995-12-27 2018-10-24 Nippon Shokubai Co., Ltd. Water absorbent and process and equipment for the production thereof
EP3391962A1 (en) 2017-04-19 2018-10-24 The Procter & Gamble Company Method for making water-absorbing polymer particles
EP3391958A1 (en) 2017-04-19 2018-10-24 The Procter & Gamble Company Method of making surface-coated water-absorbing polymer particles in a microfluidic device
EP3391960A1 (en) 2017-04-19 2018-10-24 The Procter & Gamble Company Superabsorbent polymer particles comprising one, or more than one area(s) with clay platelets and one, or more than one area(s) substantially free of clay platelets
US10357510B2 (en) 2014-08-07 2019-07-23 The Regents Of The University Of Michigan Metal nanoclusters and uses thereof
WO2020020675A1 (en) 2018-07-24 2020-01-30 Basf Se Method for the production of superabsorbers
WO2020038742A1 (en) 2018-08-20 2020-02-27 Basf Se Method for the production of superabsorbents
WO2020064411A1 (en) 2018-09-28 2020-04-02 Basf Se Method for the production of superabsorbents

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19716657A1 (en) * 1997-04-21 1998-10-22 Stockhausen Chem Fab Gmbh Super absorber with controlled absorption speed
ATE297440T1 (en) 1998-08-31 2005-06-15 Cornell Res Foundation Inc DEXTRAN-MALEIC ACID MONOESTER AND HYDRGELS THEREOF
US6241918B1 (en) 1998-12-28 2001-06-05 Johnson & Johnson Vision Care, Inc. Process of manufacturing contact lenses in ambient environment
US6918765B1 (en) 1999-01-25 2005-07-19 Dentsply Research & Development Corp. Hydrogel dental adhesive composition, product, system, method and dispenser
DE19909653A1 (en) * 1999-03-05 2000-09-07 Stockhausen Chem Fab Gmbh Powdery, crosslinked, aqueous liquids and blood-absorbing polymers, processes for their preparation and their use
US6387495B1 (en) 1999-04-16 2002-05-14 Kimberly-Clark Worldwide, Inc. Superabsorbent-containing composites
US6376011B1 (en) * 1999-04-16 2002-04-23 Kimberly-Clark Worldwide, Inc. Process for preparing superabsorbent-containing composites
US6592550B1 (en) * 1999-09-17 2003-07-15 Cook Incorporated Medical device including improved expandable balloon
US6414214B1 (en) 1999-10-04 2002-07-02 Basf Aktiengesellschaft Mechanically stable hydrogel-forming polymers
US6872787B2 (en) * 2000-09-15 2005-03-29 Isp Investments Inc. Post-treatment of a polymeric composition
SE517781C2 (en) * 2000-11-24 2002-07-16 Sca Hygiene Prod Ab Intralabial menstrual protection of preformed hydrogel
US6554813B2 (en) 2000-11-24 2003-04-29 Sca Hygiene Products Ab Absorbent intralabial sanitary protection device
SE518321C2 (en) * 2000-11-24 2002-09-24 Sca Hygiene Prod Ab Absorbent articles with anatomically shaped raised dehydrated hydrogel
US20020065497A1 (en) * 2000-11-24 2002-05-30 Ewa Kolby-Falk Absorbent product having anatomically shaped elevation
US20030065296A1 (en) * 2001-02-26 2003-04-03 Kaiser Thomas A. Absorbent material of water absorbent polymer, thermoplastic polymer, and water and method for making same
US6849672B2 (en) * 2002-01-15 2005-02-01 H.B. Fuller Licensing & Financing Inc. Superabsorbent thermoplastic composition and article including same
US7169843B2 (en) 2003-04-25 2007-01-30 Stockhausen, Inc. Superabsorbent polymer with high permeability
DE10334286B4 (en) * 2003-07-25 2006-01-05 Stockhausen Gmbh Powdered, water-absorbing polymers with fine particles bound by means of thermoplastic adhesives, process for their preparation and chemical products and compounds containing them
WO2005014065A1 (en) 2003-08-06 2005-02-17 The Procter & Gamble Company Absorbant structures comprising coated water-swellable material
US7270881B2 (en) 2003-08-06 2007-09-18 The Procter & Gamble Company Coated water-swellable material
ATE506082T1 (en) * 2003-08-06 2011-05-15 Procter & Gamble METHOD FOR PRODUCING A WATER-SUFFLABLE MATERIAL WITH COATED WATER-SULLABILIZABLE POLYMERS
US7445812B2 (en) * 2003-08-06 2008-11-04 The Procter & Gamble Company Process for making water-swellable material comprising coated water-swellable polymers
CN100441237C (en) * 2003-08-06 2008-12-10 宝洁公司 Process for making surface treated absorbent gelling material
US7179851B2 (en) * 2003-09-05 2007-02-20 Kimberly-Clark Worldwide, Inc. Damage-resistant superabsorbent materials
EP1518567B1 (en) * 2003-09-25 2017-06-28 The Procter & Gamble Company Absorbent articles comprising fluid acquisition zones with coated superabsorbent particles
US7173086B2 (en) * 2003-10-31 2007-02-06 Stockhausen, Inc. Superabsorbent polymer with high permeability
EP1696974B1 (en) * 2003-12-19 2007-05-23 Basf Aktiengesellschaft Swellable hydrogel-forming polymers having a low fine dust concentration
JP2008527058A (en) * 2004-12-30 2008-07-24 ビーエーエスエフ ソシエタス・ヨーロピア Superabsorbent polymer with reduced amount of finely sized particles and method of making the same
US20060173431A1 (en) * 2005-02-01 2006-08-03 Laumer Jason M Absorbent articles comprising polyamine-coated superabsorbent polymers
US20060173434A1 (en) * 2005-02-02 2006-08-03 Zoromski Paula K Ultra thin absorbent article including a hot melt superabsorbent polymer composition
WO2006097389A2 (en) * 2005-02-04 2006-09-21 Basf Aktiengesellschaft A process for producing a water-absorbing material having a coating of elastic filmforming polymers
WO2006083583A2 (en) * 2005-02-04 2006-08-10 The Procter & Gamble Company Absorbent structure with improved water-swellable material
EP1846048A2 (en) * 2005-02-04 2007-10-24 Basf Aktiengesellschaft A process for producing a water-absorbing material having a coating of elastic filmforming polymers
CN101119756A (en) * 2005-02-04 2008-02-06 宝洁公司 Absorbent structure with improved water-absorbing material
EP1846049B1 (en) * 2005-02-04 2011-08-03 Basf Se Water-absorbing material having a coating of elastic film-forming polymers
WO2006082240A1 (en) * 2005-02-04 2006-08-10 Basf Aktiengesellschaft Water swellable material
JP2008528785A (en) * 2005-02-04 2008-07-31 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing a water-absorbing material having an elastic film-forming polymer film
US20060275567A1 (en) * 2005-06-07 2006-12-07 Richard Vicari Borate resistant films
US20070031499A1 (en) * 2005-07-28 2007-02-08 Huh Kang M Readily shapeable xerogels having controllably delayed swelling properties
US20070135785A1 (en) * 2005-12-12 2007-06-14 Jian Qin Absorbent articles comprising thermoplastic coated superabsorbent polymer materials
US7812082B2 (en) * 2005-12-12 2010-10-12 Evonik Stockhausen, Llc Thermoplastic coated superabsorbent polymer compositions
US20080045916A1 (en) * 2005-12-22 2008-02-21 Basf Aktiengesellschaft A German Corporation Superabsorbent Polymer Particles Having a Reduced Amount of Fine-Sized Particles, and Methods of Manufacturing the Same
CN101351232A (en) * 2005-12-28 2009-01-21 巴斯夫欧洲公司 Process for production of a water-absorbing material
US8329292B2 (en) * 2006-08-24 2012-12-11 H.B. Fuller Company Absorbent article for absorbing moisture on a structure
DE102006060156A1 (en) * 2006-12-18 2008-06-19 Evonik Stockhausen Gmbh Water-absorbing polymer structures produced using polymer dispersions
EP2134772B1 (en) * 2007-03-12 2013-06-05 Basf Se Process for producing re-moisturised surface-crosslinked superabsorbents
EP2018877A1 (en) * 2007-07-27 2009-01-28 The Procter and Gamble Company Absorbent article comprising water-absorbing polymeric particles and method for the production thereof
JP2010534751A (en) * 2007-07-27 2010-11-11 ビーエーエスエフ ソシエタス・ヨーロピア Water-absorbing polymer particles and method for producing the same
EP2018876A1 (en) * 2007-07-27 2009-01-28 The Procter and Gamble Company Absorbent article comprising water-absorbing polymeric particles and method for the production thereof
EP2182993B1 (en) * 2007-07-27 2015-09-23 Basf Se Water-absorbing polymeric particles and method for the production thereof
US8038886B2 (en) 2007-09-19 2011-10-18 Fresenius Medical Care North America Medical hemodialysis container including a self sealing vent
KR200443281Y1 (en) * 2008-06-17 2009-02-05 김진성 Stuffed Toy Filled with Super Absorbent Polymer
EP2358769B1 (en) * 2008-11-21 2022-01-05 Basf Se Method for producing permeable water-absorbing polymer particles through polymerization of drops of a monomer solution
JP5322816B2 (en) * 2009-07-15 2013-10-23 キヤノン株式会社 Imaging apparatus and control method thereof
WO2011109174A1 (en) 2010-02-18 2011-09-09 Dow Corning Corporation Surface -modified hydrogels and hydrogel microparticles
US9375524B2 (en) 2011-06-03 2016-06-28 Fresenius Medical Care Holdings, Inc. Method and arrangement for venting gases from a container having a powdered concentrate for use in hemodialysis
US11325990B2 (en) 2016-08-10 2022-05-10 Basf Se Method for the production of superabsorbers
US10875985B2 (en) 2017-04-19 2020-12-29 The Procter & Gamble Company Superabsorbent polymer particles comprising one or more than one area(s) with clay platelets and at least two distinct areas substantially free of clay platelets
EP3697457B1 (en) 2017-10-18 2021-07-07 Basf Se Method for the production of superabsorbers
EP3737709A1 (en) 2018-01-09 2020-11-18 Basf Se Superabsorber mixtures
US11859059B2 (en) 2018-02-06 2024-01-02 Basf Se Method for the pneumatic delivery of superabsorbent particles
KR20200125931A (en) 2018-02-22 2020-11-05 바스프 에스이 Method for producing super absorbent particles
US11135336B2 (en) 2019-09-30 2021-10-05 L'oreal Thin-film vehicles that stabilize highly reactive active ingredients
EP4074755A4 (en) * 2019-12-13 2024-01-24 Sumitomo Seika Chemicals Absorbent resin particles and absorbent
CN114106392B (en) * 2021-12-03 2023-04-21 青岛大学 Super-strong super-tough self-healing cellulose-polyurethane hybrid material and preparation method thereof

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4043952A (en) 1975-05-09 1977-08-23 National Starch And Chemical Corporation Surface treatment process for improving dispersibility of an absorbent composition, and product thereof
US4051086A (en) 1976-03-25 1977-09-27 Hercules Incorporated Absorption rate of absorbent polymers by treating with glyoxal
US4057521A (en) 1974-08-05 1977-11-08 The Dow Chemical Company Absorbent articles made from carboxylic synthetic polyelectrolytes having copolymerized N-substituted acrylamide crosslinker
US4062817A (en) 1977-04-04 1977-12-13 The B.F. Goodrich Company Water absorbent polymers comprising unsaturated carboxylic acid, acrylic ester containing alkyl group 10-30 carbon atoms, and another acrylic ester containing alkyl group 2-8 carbon atoms
US4076663A (en) 1975-03-27 1978-02-28 Sanyo Chemical Industries, Ltd. Water absorbing starch resins
GB2046275A (en) * 1979-03-27 1980-11-12 American Cyanamid Co Granulation and drying aids for polymeric gels
US4286082A (en) 1979-04-06 1981-08-25 Nippon Shokubai Kagaku Kogyo & Co., Ltd. Absorbent resin composition and process for producing same
US4295987A (en) 1979-12-26 1981-10-20 The Procter & Gamble Company Cross-linked sodium polyacrylate absorbent
US4340706A (en) 1980-03-19 1982-07-20 Seitetsu Kagaku Co., Ltd. Alkali metal acrylate or ammonium acrylate polymer excellent in salt solution-absorbency and process for producing same
EP0083022A2 (en) 1981-12-30 1983-07-06 Seitetsu Kagaku Co., Ltd. Water-absorbent resin having improved water-absorbency and improved water-dispersibility and process for producing same
DE3314019A1 (en) 1982-04-19 1984-01-12 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka ABSORBENT OBJECT
DE3331644A1 (en) 1982-09-02 1984-03-08 Kao Corp., Tokyo METHOD FOR PRODUCING A STRONG WATER-ABSORBENT POLYMER
US4525527A (en) 1982-01-25 1985-06-25 American Colloid Company Production process for highly water absorbable polymer
DE3503458A1 (en) 1984-02-04 1985-08-08 Arakawa Kagaku Kogyo K.K., Osaka METHOD FOR PRODUCING IMPROVED WATER ABSORBENT RESINS
DE3507775A1 (en) 1984-03-05 1985-09-12 Kao Corp., Tokio/Tokyo ABSORBENT MATERIAL AND METHOD FOR THE PRODUCTION AND USE THEREOF
DE3523617A1 (en) 1984-07-02 1986-01-23 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka WATER ABSORBING AGENT
DE3628482A1 (en) 1985-08-30 1987-03-05 Kao Corp METHOD FOR PRODUCING A RESIN WITH HIGH ABSORPTION
DE3737196A1 (en) 1986-11-06 1988-05-19 Nippon Synthetic Chem Ind METHOD FOR PRODUCING HIGH GRADE WATER-ABSORBING RESINS
EP0317106A2 (en) 1987-10-29 1989-05-24 Nippon Shokubai Kagaku Kogyo Co., Ltd Method of surface-treating water-absorbent resin
EP0321755A1 (en) * 1987-12-04 1989-06-28 Chemische Fabrik Stockhausen GmbH Process for the agglomeration of water-swellable polymers by sinter granulation
EP0339461A1 (en) 1988-04-21 1989-11-02 Kimberly-Clark Corporation Absorbent products containing hydrogels with ability to swell against pressure
EP0343427A2 (en) 1988-05-21 1989-11-29 Hoechst Aktiengesellschaft Hydrogele prepared by using Alkenyl-phosphonic and phosphinic acid esters as cross-linking agents.
EP0349935A2 (en) 1988-07-02 1990-01-10 Hoechst Aktiengesellschaft Aqueous solutions of polyamidoamine-epichlorhydrine resines, process for preparing the same and use
US4931497A (en) 1987-11-13 1990-06-05 Cassella Aktiengesellschaft Hydrophilic swellable graft polymers from maleic anhydride-alkylene substrate
US4979946A (en) * 1987-12-14 1990-12-25 The Kendall Company Environmental absorbent dressing
US5011892A (en) 1989-04-07 1991-04-30 Cassella Ag Hydrophilic swellable graft copolymers, their preparation and use
US5041496A (en) 1989-04-01 1991-08-20 Cassella Ag Hydrophilic, swellable graft copolymers, their preparation and use
EP0509708A1 (en) 1991-04-13 1992-10-21 The Dow Chemical Company Surface crosslinked and surfactant coated absorbent resin particles and method of preparation
EP0530438A1 (en) 1991-09-03 1993-03-10 Hoechst Celanese Corporation A superabsorbent polymer having improved absorbency properties
EP0543303A1 (en) 1991-11-22 1993-05-26 Hoechst Aktiengesellschaft Hydrophilic hydrogels having a high swelling capacity

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4171556A (en) * 1976-09-17 1979-10-23 Textron Inc. Slide fastener with molded elements and method of manufacture
US4427836A (en) * 1980-06-12 1984-01-24 Rohm And Haas Company Sequential heteropolymer dispersion and a particulate material obtainable therefrom, useful in coating compositions as a thickening and/or opacifying agent
GB8916944D0 (en) * 1989-07-25 1989-09-13 Ici Plc Composite particle dispersions
US5278203A (en) * 1991-03-21 1994-01-11 Halliburton Company Method of preparing and improved liquid gelling agent concentrate and suspendable gelling agent
JP3323232B2 (en) * 1992-05-23 2002-09-09 住友精化株式会社 Composite composition of superabsorbent resin particles

Patent Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4057521A (en) 1974-08-05 1977-11-08 The Dow Chemical Company Absorbent articles made from carboxylic synthetic polyelectrolytes having copolymerized N-substituted acrylamide crosslinker
US4076663A (en) 1975-03-27 1978-02-28 Sanyo Chemical Industries, Ltd. Water absorbing starch resins
US4043952A (en) 1975-05-09 1977-08-23 National Starch And Chemical Corporation Surface treatment process for improving dispersibility of an absorbent composition, and product thereof
US4051086A (en) 1976-03-25 1977-09-27 Hercules Incorporated Absorption rate of absorbent polymers by treating with glyoxal
US4062817A (en) 1977-04-04 1977-12-13 The B.F. Goodrich Company Water absorbent polymers comprising unsaturated carboxylic acid, acrylic ester containing alkyl group 10-30 carbon atoms, and another acrylic ester containing alkyl group 2-8 carbon atoms
GB2046275A (en) * 1979-03-27 1980-11-12 American Cyanamid Co Granulation and drying aids for polymeric gels
US4286082A (en) 1979-04-06 1981-08-25 Nippon Shokubai Kagaku Kogyo & Co., Ltd. Absorbent resin composition and process for producing same
US4295987A (en) 1979-12-26 1981-10-20 The Procter & Gamble Company Cross-linked sodium polyacrylate absorbent
US4340706A (en) 1980-03-19 1982-07-20 Seitetsu Kagaku Co., Ltd. Alkali metal acrylate or ammonium acrylate polymer excellent in salt solution-absorbency and process for producing same
EP0083022A2 (en) 1981-12-30 1983-07-06 Seitetsu Kagaku Co., Ltd. Water-absorbent resin having improved water-absorbency and improved water-dispersibility and process for producing same
US4525527A (en) 1982-01-25 1985-06-25 American Colloid Company Production process for highly water absorbable polymer
DE3314019A1 (en) 1982-04-19 1984-01-12 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka ABSORBENT OBJECT
US4666983A (en) 1982-04-19 1987-05-19 Nippon Shokubai Kagaku Kogyo Co., Ltd. Absorbent article
DE3331644A1 (en) 1982-09-02 1984-03-08 Kao Corp., Tokyo METHOD FOR PRODUCING A STRONG WATER-ABSORBENT POLYMER
DE3503458A1 (en) 1984-02-04 1985-08-08 Arakawa Kagaku Kogyo K.K., Osaka METHOD FOR PRODUCING IMPROVED WATER ABSORBENT RESINS
DE3507775A1 (en) 1984-03-05 1985-09-12 Kao Corp., Tokio/Tokyo ABSORBENT MATERIAL AND METHOD FOR THE PRODUCTION AND USE THEREOF
DE3523617A1 (en) 1984-07-02 1986-01-23 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka WATER ABSORBING AGENT
DE3628482A1 (en) 1985-08-30 1987-03-05 Kao Corp METHOD FOR PRODUCING A RESIN WITH HIGH ABSORPTION
DE3737196A1 (en) 1986-11-06 1988-05-19 Nippon Synthetic Chem Ind METHOD FOR PRODUCING HIGH GRADE WATER-ABSORBING RESINS
EP0317106A2 (en) 1987-10-29 1989-05-24 Nippon Shokubai Kagaku Kogyo Co., Ltd Method of surface-treating water-absorbent resin
US4931497A (en) 1987-11-13 1990-06-05 Cassella Aktiengesellschaft Hydrophilic swellable graft polymers from maleic anhydride-alkylene substrate
EP0321755A1 (en) * 1987-12-04 1989-06-28 Chemische Fabrik Stockhausen GmbH Process for the agglomeration of water-swellable polymers by sinter granulation
US4979946A (en) * 1987-12-14 1990-12-25 The Kendall Company Environmental absorbent dressing
EP0339461A1 (en) 1988-04-21 1989-11-02 Kimberly-Clark Corporation Absorbent products containing hydrogels with ability to swell against pressure
EP0343427A2 (en) 1988-05-21 1989-11-29 Hoechst Aktiengesellschaft Hydrogele prepared by using Alkenyl-phosphonic and phosphinic acid esters as cross-linking agents.
EP0349935A2 (en) 1988-07-02 1990-01-10 Hoechst Aktiengesellschaft Aqueous solutions of polyamidoamine-epichlorhydrine resines, process for preparing the same and use
US5041496A (en) 1989-04-01 1991-08-20 Cassella Ag Hydrophilic, swellable graft copolymers, their preparation and use
US5011892A (en) 1989-04-07 1991-04-30 Cassella Ag Hydrophilic swellable graft copolymers, their preparation and use
EP0509708A1 (en) 1991-04-13 1992-10-21 The Dow Chemical Company Surface crosslinked and surfactant coated absorbent resin particles and method of preparation
EP0530438A1 (en) 1991-09-03 1993-03-10 Hoechst Celanese Corporation A superabsorbent polymer having improved absorbency properties
EP0543303A1 (en) 1991-11-22 1993-05-26 Hoechst Aktiengesellschaft Hydrophilic hydrogels having a high swelling capacity
DE4138408A1 (en) * 1991-11-22 1993-05-27 Cassella Ag HYDROPHILES, HIGHLY SOURCE HYDROGELS

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"Bios Final Rep.", pages: 363.22
"Houben Weyl", vol. 14/2, pages: 462 - 552
"Houben Weyl", vol. E20, pages: 1891 - 1994
"Houben Weyl", vol. E20/2, pages: 1404 - 1429
"Houben Weyl", vol. E20/2, pages: 1443 - 1457
"Houben-Weyl", vol. E20/2, pages: 1561 - 1721
"Houben-Weyl", vol. E20/2, pages: 1722
"SILICONE - Chemie und Technologie, (Symposium am 28.04.89)", VULKAN-VERLAG, ESSEN, article "Chemie und Technologie des Kalthaertenden Siliconkautschuks", pages: 49 - 64
MAKROMOL. CHEM., vol. 1, 1947, pages 169
PLASTE KAUTSCH., vol. 25, 1978, pages 440 - 444

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0812873B2 (en) 1995-12-27 2018-10-24 Nippon Shokubai Co., Ltd. Water absorbent and process and equipment for the production thereof
WO1998046668A1 (en) * 1997-04-15 1998-10-22 Solplax Limited Controlled degradation coatings and a method for their manufacture
WO1999037395A1 (en) * 1998-01-20 1999-07-29 Basf Aktiengesellschaft Encapsulated hydrogels
US6103785A (en) * 1998-03-26 2000-08-15 Nippon Shokubai Co., Ltd. Water-absorbing agent and its production process and use
WO2002036663A1 (en) * 2000-10-30 2002-05-10 Stockhausen Gmbh & Co. Kg Absorbent material with improved blocking properties
US7241820B2 (en) 2000-10-30 2007-07-10 Stockhausen Gmbh Absorbing structure having improved blocking properties
US7427650B2 (en) 2000-10-30 2008-09-23 Stockhausen Gmbh Absorbing structure having improved blocking properties
WO2006083585A2 (en) 2005-02-04 2006-08-10 The Procter & Gamble Company Absorbent structure with improved water-absorbing material
EP1910460A1 (en) 2005-07-27 2008-04-16 Basf Se Odour-preventing, water-absorbing compositions
EP1981551A2 (en) 2006-01-20 2008-10-22 Basf Se Odor-blocking water-absorbent compositions containing urease inhibitors
WO2008077779A1 (en) 2006-12-22 2008-07-03 Basf Se Method for producing mechanically stable water-absorbent polymer particles
US7951304B2 (en) 2006-12-22 2011-05-31 Basf Se Method for producing mechanically stable water-absorbent polymer particles
CN101573386B (en) * 2006-12-22 2012-06-20 巴斯夫欧洲公司 Method for producing mechanically stable water-absorbent polymer particles
US8419971B2 (en) 2006-12-22 2013-04-16 Basf Se Method for producing mechanically stable water-absorbent polymer particles
WO2008077780A1 (en) * 2006-12-22 2008-07-03 Basf Se Method for producing mechanically stable water-absorbent polymer particles
WO2012054661A1 (en) 2010-10-21 2012-04-26 The Procter & Gamble Company Absorbent structures comprising post-crosslinked water-absorbent particles
WO2012052365A1 (en) 2010-10-21 2012-04-26 Basf Se Water-absorbing polymeric particles and method for the production thereof
US10357510B2 (en) 2014-08-07 2019-07-23 The Regents Of The University Of Michigan Metal nanoclusters and uses thereof
KR20160076559A (en) 2014-12-23 2016-07-01 주식회사 엘지화학 Attrition Resistant Superabsorbent Polymers And Method Of Preparing The Same
US10307731B2 (en) 2014-12-23 2019-06-04 Lg Chem, Ltd. Attrition-resistant superabsorbent polymer and method for producing same
WO2018194946A1 (en) 2017-04-19 2018-10-25 The Procter & Gamble Company Method for making water-absorbing polymer particles having areas with inorganic solid particles and areas substantially free of inorganic solid particles
EP3391960A1 (en) 2017-04-19 2018-10-24 The Procter & Gamble Company Superabsorbent polymer particles comprising one, or more than one area(s) with clay platelets and one, or more than one area(s) substantially free of clay platelets
WO2018194781A1 (en) 2017-04-19 2018-10-25 The Procter & Gamble Company Superabsorbent polymer particles comprising one, or more than one area(s) with clay platelets and one, or more than one area(s) substantially free of clay platelets
WO2018194945A1 (en) 2017-04-19 2018-10-25 The Procter & Gamble Company Method for making water-absorbing polymer particles
WO2018194779A1 (en) 2017-04-19 2018-10-25 The Procter & Gamble Company Method of making surface-coated water-absorbing polymer particles in a microfluidic device
EP3391962A1 (en) 2017-04-19 2018-10-24 The Procter & Gamble Company Method for making water-absorbing polymer particles
EP3391958A1 (en) 2017-04-19 2018-10-24 The Procter & Gamble Company Method of making surface-coated water-absorbing polymer particles in a microfluidic device
EP3391959A1 (en) 2017-04-19 2018-10-24 The Procter & Gamble Company Method for making water-absorbing polymer particles having areas with inorganic solid particles and areas substantially free of inorganic solid particles
EP4147774A1 (en) 2017-04-19 2023-03-15 The Procter & Gamble Company Method for making water-absorbing polymer particles having areas with inorganic solid particles and areas substantially free of inorganic solid particles
WO2020020675A1 (en) 2018-07-24 2020-01-30 Basf Se Method for the production of superabsorbers
WO2020038742A1 (en) 2018-08-20 2020-02-27 Basf Se Method for the production of superabsorbents
WO2020064411A1 (en) 2018-09-28 2020-04-02 Basf Se Method for the production of superabsorbents

Also Published As

Publication number Publication date
DE4426008A1 (en) 1996-01-25
CA2154425A1 (en) 1996-01-23
US5731365A (en) 1998-03-24
ES2164124T3 (en) 2002-02-16
DE59509610D1 (en) 2001-10-25
ATE205866T1 (en) 2001-10-15
MX193604B (en) 1999-10-05
EP0703265B1 (en) 2001-09-19
JPH0884927A (en) 1996-04-02

Similar Documents

Publication Publication Date Title
EP0703265B1 (en) Hydrophilic Hydrogels with elevated swelling capacity
EP0755964B1 (en) Hydrophylic, highly swellable hydrogels
EP1123330B1 (en) Method for producing water-swellable hydrophilic polymers, said polymers and use thereof
EP1165638B1 (en) Cross-linked, hydrophilic highly swellable hydrogels, method for their production and their use
EP1537177B1 (en) Water absorbing agent and method for the production thereof
EP0400283B1 (en) Hydrophilic, water swellable graft copolymers, their preparation and their use
EP1824908B1 (en) Insoluble petal sulphates contained in water-absorbing polymer particles
EP0545126B1 (en) Hydrophilic water swellable graft copolymers
EP1735375B1 (en) Highly permeable swellable hydrogel-forming polymers
DE19646484C2 (en) Liquid absorbing polymers, processes for their production and their use
EP1969017B1 (en) Production of a water-absorbing resin to which a particulate additive is admixed
EP0736060B1 (en) Cross-linked polymers with a porous structure
EP0316792B1 (en) Hydrophilic swellable graft polymers, their preparation and their use
EP1123329B1 (en) Hydrophilic hydrogels with a high swelling capacity and method for producing and using them
EP0977803B1 (en) Superabsorbants with controlled absorption speed
EP2104686B2 (en) Method for producing mechanically stable water-absorbent polymer particles
DE60107877T2 (en) WATER-ABSORBING RESIN PARTICLES OF NETWORKED CARBOXYL GROUP-BASED POLYMERS WITH LOW MONOMER CONTENT
DE102005018922A1 (en) Polycation-surface-treated water-absorbing polymer structure
EP0798335A2 (en) Process for producing porous, hydrophilic, highly swellable hydrogels
EP0675142A1 (en) Water-swellable hydrophilic polymers
EP1084174A1 (en) Mechanically stable hydrogels
DE19813443A1 (en) New polymer particles which are useful for absorption of aqueous fluids
DE10202839A1 (en) Hydrogel-forming polymer, used in e.g. hygiene, packaging, food, medicine, cosmetics, textile, chemical, building, water or waste treatment, water separation, cleaning, agriculture or fire protection field, has fine particle size
EP1049535B1 (en) Encapsulated hydrogels
WO2001040335A1 (en) HYDROPHILIC HYDROGEL-FORMING POLYMERS HAVING 1,4-α-D-GLYCOSIDIC COMPOUNDS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL SE

17P Request for examination filed

Effective date: 19960927

17Q First examination report despatched

Effective date: 19970716

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CLARIANT GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF AKTIENGESELLSCHAFT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL SE

REF Corresponds to:

Ref document number: 205866

Country of ref document: AT

Date of ref document: 20011015

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59509610

Country of ref document: DE

Date of ref document: 20011025

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011221

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2164124

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080626

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20080609

Year of fee payment: 14

Ref country code: NL

Payment date: 20080603

Year of fee payment: 14

Ref country code: ES

Payment date: 20080717

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080617

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080625

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090620

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20100101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100101

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090621

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140829

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140730

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59509610

Country of ref document: DE