EP0684427A1 - Rotating heat transfer and thermal purification device for gaseous effluents - Google Patents

Rotating heat transfer and thermal purification device for gaseous effluents Download PDF

Info

Publication number
EP0684427A1
EP0684427A1 EP95401154A EP95401154A EP0684427A1 EP 0684427 A1 EP0684427 A1 EP 0684427A1 EP 95401154 A EP95401154 A EP 95401154A EP 95401154 A EP95401154 A EP 95401154A EP 0684427 A1 EP0684427 A1 EP 0684427A1
Authority
EP
European Patent Office
Prior art keywords
crown
effluents
cage
sector
central part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95401154A
Other languages
German (de)
French (fr)
Other versions
EP0684427B1 (en
Inventor
Jean Morlec
Jacques Bourcier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0684427A1 publication Critical patent/EP0684427A1/en
Application granted granted Critical
Publication of EP0684427B1 publication Critical patent/EP0684427B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • F23G7/066Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator
    • F23G7/068Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator using regenerative heat recovery means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D19/00Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium
    • F28D19/04Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier
    • F28D19/045Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier with radial flow through the intermediate heat-transfer medium

Definitions

  • the invention relates to a rotary transfer device for gaseous effluents, adapted to function as a heat exchanger and in addition, as a purifier with thermal effect.
  • the invention finds applications in particular in heat exchange systems or adapted to purify air loaded with substances such as volatile organic compounds (C.O.V), which can be oxidized and eliminated by thermal or catalytic incineration.
  • substances such as volatile organic compounds (C.O.V)
  • C.O.V volatile organic compounds
  • Heat treatment devices are generally very efficient and compact. Their most notable drawback is their high energy consumption, that which is necessary to bring the gases to be treated to oxidation temperatures (850 ° C. to 1100 ° C.), drawback reduced if the purification is carried out in the presence of catalysts at much lower temperatures (200 ° C to 450 ° C °).
  • a known process of heat exchange consists in circulating the gases to be purified between two masses capable of taking, storing and returning the heat.
  • the effluents heat up until they reach a temperature close to that necessary for the oxidation of polluting substances. They then pass through a combustion hearth (with or without flame) or else over a catalytic bed where they oxidize according to an exothermic reaction. Gas then cross the other mass to which they transfer their calories before being thrown out. The direction of flow is reversed periodically.
  • This periodic reversal has the main drawback of disturbing the regularity of treatment or its effectiveness. It also requires the interposition of valves adapted to effluent conduits, often of large section. If, in fact, the quality of treatment is chosen, it is necessary to prevent any mixing between polluted and cleaned gases during periods of cycle inversion and therefore stop treatment for a short period of time (a few seconds in when each cycle lasts several minutes). If the continuity of the treatment is imposed, it is necessary to accept the mixing of the flows at the moments of reversals of direction during the intercycles, and therefore a momentary loss of efficiency.
  • a known technique used in particular in thermal power stations comprises the use of a rotating drum with a vertical or horizontal axis.
  • the yield obtained is relatively low (of the order of 60 to 75%) owing to the fact that the flows of unequal temperatures which exchange heat, pass through the drum parallel to its axis and therefore are poorly separated from each other in adjacent traffic areas.
  • Another known technique of heat exchange involves the use of a cross-flow heat exchanger produced with plates or tubes, in which the heated effluents give up their calories continuously to the gases to be purified. This technique is expensive for medium or high flow rates, due to the significant heat exchange surfaces that it implies and the care that must be taken to obtain a perfect separation between the two flows.
  • the device according to the invention makes it possible to carry out heat energy exchanges and possibly to thermally purify polluted effluents, avoiding the drawbacks of known techniques.
  • the device comprises an envelope or cage, a crown containing a charge of particulate solid materials chosen because they have a large heat exchange surface (silica, granite or lighter materials such as metallic or other cellular structures, or nodules cryogenic for negative temperatures, etc.) which is placed inside the cage.
  • the crown is divided into several parts by an internal partitioning or else, as the case may be, it supports a certain number of baskets.
  • Motor means are used to animate the crown and the cage in a rotational movement relative to each other about a vertical axis (either that the crown rotates, the cage being fixed, or that the crown on the contrary is fixed and the cage rotates around it).
  • the device comprises at least one conduit for the introduction of effluents into the cage and at least one conduit for the evacuation of effluents out of the cage.
  • the crown comprises at least a first sector for communicating at any time the introduction conduit with the central part of the cage, where a first heat transfer takes place between the effluents and the charge in the crown.
  • the crown also has a second sector making it possible to communicate at any time the central part of the cage with the discharge pipe, where a second heat transfer takes place between effluents and the charge in the crown.
  • the rotation of the crown brings the mass of material which has been heated (respectively cooled) by effluents towards the second angular zone where it heats (respectively cools) a second gaseous effluent.
  • the device can be used only as a heat exchanger and in this case, it has a primary effluent circulation circuit including the introduction pipe and a pipe arranged in the central zone of the crown, this primary circuit communicating with a first source of effluents. It also includes a secondary effluent circulation circuit including the evacuation pipe, located on either side of the second sector, this secondary circuit communicating with a second source of effluents.
  • One of the two primary or secondary circuits is connected to a source of hot effluents, the other circuit being connected to a source of cooler effluents.
  • the device can be used both as a heat exchanger and as an incinerator for polluted effluents.
  • the introduction conduit is connected to a source of effluents containing polluting substances.
  • the first sector and the second sector communicate directly with each other via the central part of the cage.
  • a thermal reactor is arranged in this central part to burn the polluting substances in the effluents channeled by the first angular zone.
  • a catalytic bed thermal reactor chosen is used to cause an exothermic reaction in the presence of polluting substances.
  • the device may include additional means (burner, fuel injector) for raising the temperature prevailing in the reactor if necessary, as well as other mechanical or chemical means for treating the mass in the crown.
  • additional means burner, fuel injector
  • the device according to the invention with its rotary drum has great advantages: - It allows to perform under a small volume, treatment and heat exchange functions. Due to its compactness, the pressure drops are very reduced.
  • the device according to the invention in its version with catalytic bed reactor in the central zone, can operate in an autothermal manner with effluents loaded with 400 mg of VOCs per m3.
  • the device comprises a drum DR consisting of a crown 1 with a vertical axis arranged inside a metal outer casing or cage 2 of cylindrical shape for example.
  • the cage comprises a first arm 3 and a second arm 4 to which are connected respectively a conduit 5 for supplying the gaseous effluents to be purified, and a conduit 6 for discharging these same effluents after treatment.
  • the crown 1 is provided with an internal partition consisting of a set of straight or curved blades 7 regularly distributed.
  • a first angular sector A delimited by one or more blades channels the effluents coming from the conduit 5 towards the central zone 8 of the cage (flow Fe in FIG. 3).
  • a second angular sector B communicates the central zone 8 of the cage with the evacuation duct 6 (flow Fs in FIG. 3).
  • the crown can also be arranged to serve as a support for a certain number of baskets.
  • an active mass M is made up of a material with a large heat exchange surface.
  • honeycomb structures may be ceramic or metallic balls, turnings or machining chips, loose or structured packing, a honeycomb structure with regular or irregular honeycombs such as honeycombs, metallic knitted fabrics or ceramic etc.
  • a honeycomb structure such as that described in patent FR 2,564,037 of the applicant is used.
  • the crown load can also consist of stones.
  • cryogenic nodules are used.
  • Seals 9 are arranged between the cage and the crown to ensure vertical sealing and isolate the two spaces upstream and downstream from the central zone or transit zone 8 from each other, so that all the effluents are practically channeled towards it. These seals 9 are arranged so that the residual pressure drop between the crown 1 and the cage 2, is at least equal to the pressure drop experienced by the gases in the main circuit passing through the device.
  • the circular configuration of the crown 1 and the cage 2, as well as the preferably curved shape of the vanes 7, are particularly well suited to withstand strong and frequent temperature variations, while ensuring satisfactory guidance of the flows passing through the device.
  • the cage 2 and the crown 1 are driven by motor means (not shown) with a slow rotational movement relative to one another.
  • the cage 2 also has at least one opening in its side wall in each of the angular sectors C, D intermediate between sectors A and B, where conduits 10, 11 open connected to suction means 13 (Fig.4).
  • the peripheral gas leaks between the crown 1 and the cage 2 are sucked through the conduits 10, 11 (return flow Fr of FIG. 3) and reinjected into the supply duct 5 (incoming flow Fe).
  • the cage 2 can also include openings into which one or more conduits 13 (Fig. 1-2) open to perform other functions. It may involve injecting a chemical inhibitor to avoid a parasitic chemical reaction such as polymerization, or else the formation of plugs. It can be a mechanical action: suction or blowing in order to clean the crown load, etc.
  • the cage 2 is fixed (Fig. 1) and the crown 1 is driven in rotation.
  • Fig.2 it is the crown 1 which is fixed and the cage 2 driving with it the conduits 5, 6, which can rotate around its axis.
  • a central area 8 of the cage 2 is disposed an intermediate cover 14 with selective openings.
  • This cover 14 rotates at the same time as the cage 2 and serves to guide the incoming flow (Fe in FIG. 3) towards the central zone 8 and the outgoing flow towards a converging chamber 15 from which a discharge chimney starts. 16 arranged to be able to follow the rotation of the cage 2.
  • FIG. 1 Depending on the mass of the ring, which depends on the nature of the load M with a large heat exchange surface or the applications and / or the volume of effluents to be treated, one chooses the embodiment of FIG. 1 or for that of Fig. 2.
  • the central zone 8 is used as a flow exchange zone for the evacuation or the admission of effluents.
  • a stream of hot effluents Fc is channeled towards the central zone 8.
  • the effluents cede their thermal energy to the load M.
  • they are channeled by a pipe 17 towards the outside ( flow Fs1).
  • a another conduit 18 is used to channel towards the zone B a flow of cooler gases Ff.
  • These cold gases passing through the angular zone B are then in contact with the particles which have been previously heated during their passage in the zone A and exit through the conduit 6 at a higher temperature (flow Fs2).
  • the operation is identical for a reverse heat transfer.
  • the flow of cold gas admitted via line 5 cools the mass M in the angular sector A of the crown.
  • Via line 18, a warmer gas flow is admitted which, crossing the angular zone B, is then in contact with the particles which have been cooled during their passage through the zone A and emerge through the line 6 at a lower temperature.
  • the device is used for a mixed use of heat exchange and incineration of gaseous effluents loaded with polluting substances such as VOC compounds for example.
  • the crown 1 also contains a charge M of a material with a large heat exchange surface, as defined above.
  • the incineration of polluting substances is carried out in a reactor 19 placed in the central zone 8 of the cage 2.
  • the reactor 19 is of the catalytic bed type.
  • the effluents to be purified are introduced at a relatively low temperature (from 200 ° C. to 400 ° C. for example.
  • the reaction is exothermic and it is regulated so as to release enough energy to substantially compensate for the heat dissipation.
  • a proportion of 0 , 4 mg of VOC per m3 of effluent is sufficient for autothermal operation.
  • the device is connected by an injection tube 20, a reservoir 21 of natural gas or LPG to improve the calorific value of the admitted effluents.
  • a by-pass circuit 22 controlled by a valve 23 allows part of the hot gases to be removed without passing them through the exchanger.
  • a burner 24 can be arranged upstream of the drum T, to heat at start-up if necessary the incoming effluents, so as to reach an auto-thermal operating point.
  • VOCs polluting compounds
  • the high temperature gases from the reactor 19 pass through the part M2 of the charge M located in the angular zone B of the ring and give it a good part of their calories.
  • the rotation of the crown 1 relative to the cage 2 gradually brings the heated elements to the angular zone A where they can in turn yield to the incoming gases via the supply duct 5, part of the accumulated heat energy.
  • the desired oxidation can also be obtained by placing direct heating means of a known type in the central zone of the crown, making it possible to bring the effluents to a temperature of the order of 850 ° C. to 1100 ° C.
  • the polluted air (or the discharge to be incinerated) is sent (Fig. 6) to the load M1 in the angular sector A of the device, a hot zone where an increasing temperature gradient is established on the outside (temperature T '' 1) towards the interior (temperature T'1) around an average temperature T1 (T'1>T1>T''1).
  • the heated air passes into the distribution zone E. If the temperature of the heated air is lower than the catalytic activity temperature, it can be provided in this zone E, a thermal back-up.
  • the air then passes over the catalyst in the reactor 19 and the polluting compounds VOCs are transformed into combustion products (CO2, H2O, SO2, N2 and NOx).
  • the gases then pass through the mass M2 of the angular sector B which they heat to an outlet temperature of the filling mass equal to T2, very close to T'1, apart from the thermal losses.

Abstract

The rotary unit consists of a shell or cage (2) and a crown (1) containing a charge of a material with a large heat exchange surface, a drive to rotate the cage and crown relative to one another about a vertical axis, and at least one duct (5) for introducing the effluent gas into the cage and another (6) to remove it after treatment. The crown has at least one sector (A) to connect the inlet duct at any time with the central part of the cage, and a second sector (B) to connect it with the outlet duct. The central part of the crown has an aperture (8) for a thermal or catalytic reactor which burns off or converts pollutants contained in the gases passing through it. The charge of solid material can be in the form of cryogenic nodules. <IMAGE>

Description

L'invention concerne un dispositif rotatif de transfert pour des effluents gazeux, adapté à fonctionner comme échangeur de chaleur et de façon complémentaire, comme épurateur à effet thermique.The invention relates to a rotary transfer device for gaseous effluents, adapted to function as a heat exchanger and in addition, as a purifier with thermal effect.

L'invention trouve des applications notamment dans les systèmes d'échange de chaleur ou adaptés à purifier de l'air chargé de substances telles que des composés organiques volatils (C.O.V), qui pouvent être oxydées et éliminées par incinération thermique ou catalytique.The invention finds applications in particular in heat exchange systems or adapted to purify air loaded with substances such as volatile organic compounds (C.O.V), which can be oxidized and eliminated by thermal or catalytic incineration.

Les dispositifs d'épuration par action thermique sont en général très efficaces et de faible encombrement. Leur inconvénient le plus notable est leur grande consommation d'énergie, celle qui est néccessaire pour porter les gaz à traiter aux températures d'oxydation (850°C à 1100°C), inconvénient diminué si l'épuration est effectuée en présence de catalyseurs à des températures très inférieures (200°C à 450°C°).Heat treatment devices are generally very efficient and compact. Their most notable drawback is their high energy consumption, that which is necessary to bring the gases to be treated to oxidation temperatures (850 ° C. to 1100 ° C.), drawback reduced if the purification is carried out in the presence of catalysts at much lower temperatures (200 ° C to 450 ° C °).

Pour des raisons économiques évidentes, il est nécessaire dans tous les cas de récupérer la plus grande partie possible de la chaleur accumulée par les effluents à leur passage dans le purificateur thermique. au moyen d'échangeurs thermiques placés en aval de celui-ci. Dans le cas d'une incinération en présence d'un lit catalytique, les effluents sont chauffés préalablement à leur incinération par passage dans un autre échangeur thermique placé en amont. Le rendement thermique global dépend de l'efficacité des échangeurs. Dans la pratique, on réalise des incinérateurs autothermes pour l'épuration de gaz chargés d'au moins 0,7 g/m3 d'air.For obvious economic reasons, it is necessary in all cases to recover as much as possible of the heat accumulated by the effluents as they pass through the thermal purifier. by means of heat exchangers placed downstream of it. In the case of an incineration in the presence of a catalytic bed, the effluents are heated prior to their incineration by passage through another heat exchanger placed upstream. The overall thermal efficiency depends on the efficiency of the exchangers. In practice, autothermal incinerators are produced for the purification of gases charged with at least 0.7 g / m3 of air.

Un procédé connu d'échange thermique consiste à faire circuler les gaz à épurer entre deux masses capables de prendre, de stocker et de restituer la chaleur. En traversant la première masse, les effluents s'échauffent jusqu'à atteindre une température proche de celle néccessaire à l'oxydation des substances polluantes. Ils passent alors dans un foyer de combustion (avec ou sans flamme) ou bien sur un lit catalytique où ils s'oxydent suivant une réaction exothermique. Les gaz traversent ensuite l'autre masse à qui ils cèdent leurs calories avant d'être rejetés au dehors. Le sens du flux est inversé périodiquement.A known process of heat exchange consists in circulating the gases to be purified between two masses capable of taking, storing and returning the heat. By passing through the first mass, the effluents heat up until they reach a temperature close to that necessary for the oxidation of polluting substances. They then pass through a combustion hearth (with or without flame) or else over a catalytic bed where they oxidize according to an exothermic reaction. Gas then cross the other mass to which they transfer their calories before being thrown out. The direction of flow is reversed periodically.

Cette inversion périodique présente l'inconvénient principal de perturber la régularité de traitement ou son efficacité. Elle exige de plus l'interposition de vannes adaptées aux conduits d'effluents souvent de grande section. Si l'on choisit en effet de privilégier la qualité de l'épuration, il faut empêcher dans les périodes d'inversion du cyle tout mélange entre les gaz pollués et épurés et donc arrêter le traitement durant un court intervalle de temps (quelques secondes en pratique quand chaque cycle dure plusieurs minutes). Si on impose la continuité du traitement, il faut accepter le mélange des flux aux moments des inversions de sens durant les intercycles, et donc une perte d'efficacité momentanée.This periodic reversal has the main drawback of disturbing the regularity of treatment or its effectiveness. It also requires the interposition of valves adapted to effluent conduits, often of large section. If, in fact, the quality of treatment is chosen, it is necessary to prevent any mixing between polluted and cleaned gases during periods of cycle inversion and therefore stop treatment for a short period of time (a few seconds in when each cycle lasts several minutes). If the continuity of the treatment is imposed, it is necessary to accept the mixing of the flows at the moments of reversals of direction during the intercycles, and therefore a momentary loss of efficiency.

Un autre inconvénient notable des appareils d'échange thermique à inversion périodique tient au fait que l'enceinte de préchauffage en amont du foyer au cours d'un cycle, se retrouve en aval au cours du cycle suivant. Il en résulte d'une part un mélange dans cette enceinte à l'intercycle, d'effluents pollués et épurés, et d'autre part une variation de température de l'enceinte durant la durée du cycle suivant.Another notable drawback of periodic inversion heat exchange devices is that the preheating chamber upstream of the hearth during one cycle is found downstream during the next cycle. This results, on the one hand, in a mixture in this enclosure at the intercycle, of polluted and purified effluents, and on the other hand a temperature variation of the enclosure during the duration of the following cycle.

Une technique connue utilisée notamment dans les centrales thermiques, comporte l'utilisation d'un tambour rotatif d'axe vertical ou horizontal. Le rendement obtenu est relativement faible (de l'ordre de 60 à 75%) du fait que les flux de températures inégales qui s'échangent de la chaleur, traversent le tambour parallèlement à son axe et donc sont mal séparés les uns des autres dans les zones de circulation adjacentes.A known technique used in particular in thermal power stations comprises the use of a rotating drum with a vertical or horizontal axis. The yield obtained is relatively low (of the order of 60 to 75%) owing to the fact that the flows of unequal temperatures which exchange heat, pass through the drum parallel to its axis and therefore are poorly separated from each other in adjacent traffic areas.

Une autre technique connue d'échange thermique comporte l'utilisation d'un échangeur thermique à flux croisés réalisé avec des plaques ou des tubes, dans lequel les effluents réchauffés cèdent leurs calories en continu aux gaz à épurer. Cette technique est coûteuse pour les débits moyens ou élevés, en raison des surfaces importantes d'échange thermique qu'elle implique et du soin qu'il faut apporter pour obtenir une parfaite séparation entre les deux flux.Another known technique of heat exchange involves the use of a cross-flow heat exchanger produced with plates or tubes, in which the heated effluents give up their calories continuously to the gases to be purified. This technique is expensive for medium or high flow rates, due to the significant heat exchange surfaces that it implies and the care that must be taken to obtain a perfect separation between the two flows.

De par son agencement, le dispositif selon l'invention permet de réaliser des échanges d'énergie thermique et éventuellement de purifier thermiquement des effluents pollués, en évitant les inconvénients des techniques connues.By its arrangement, the device according to the invention makes it possible to carry out heat energy exchanges and possibly to thermally purify polluted effluents, avoiding the drawbacks of known techniques.

Le dispositif comporte une enveloppe ou cage, une couronne contenant une charge de matériaux solides particulaires choisis du fait qu'ils présentent une grande surface d'échange thermique (silice, granit ou matériaux plus légers tels que structures alvéolaires métalliques ou autres, ou encore nodules cryogéniques pour les températures négatives, etc) qui est disposée à l'intérieur de la cage. La couronne est divisée en plusieurs parties par un cloisonnement intérieur ou bien selon les cas, elle sert de support à un certain nombre de paniers. Des moyens moteurs sont utilisés pour animer la couronne et la cage d'un mouvement de rotation l'une relativement à l'autre autour d'un axe vertical (soit que la couronne tourne, la cage étant fixe, soit que la couronne au contraire est fixe et la cage tourne autour d'elle).The device comprises an envelope or cage, a crown containing a charge of particulate solid materials chosen because they have a large heat exchange surface (silica, granite or lighter materials such as metallic or other cellular structures, or nodules cryogenic for negative temperatures, etc.) which is placed inside the cage. The crown is divided into several parts by an internal partitioning or else, as the case may be, it supports a certain number of baskets. Motor means are used to animate the crown and the cage in a rotational movement relative to each other about a vertical axis (either that the crown rotates, the cage being fixed, or that the crown on the contrary is fixed and the cage rotates around it).

Le dispositif comporte au moins un conduit pour l'introduction d'effluents dans la cage et au moins un conduit pour l'évacuation d'effluents hors de la cage. La couronne comporte au moins un premier secteur pour faire communiquer à tout instant le conduit d'introduction avec la partie centrale de la cage, où s'effectue un premier transfert de chaleur entre les effluents et la charge dans la couronne. La couronne comporte aussi un deuxième secteur permettant de faire communiquer à tout instant la partie centrale de la cage avec la conduite d'évacuation, où s'effectue une deuxième transfert de chaleur entre des effluents et la charge dans la couronne.The device comprises at least one conduit for the introduction of effluents into the cage and at least one conduit for the evacuation of effluents out of the cage. The crown comprises at least a first sector for communicating at any time the introduction conduit with the central part of the cage, where a first heat transfer takes place between the effluents and the charge in the crown. The crown also has a second sector making it possible to communicate at any time the central part of the cage with the discharge pipe, where a second heat transfer takes place between effluents and the charge in the crown.

La rotation de la couronne amène la masse de matériaux qui a été chauffée (respectivement refroidie) par des effluents vers la deuxième zone angulaire où elle réchauffe (respectivement refroidit) un deuxième effluent gazeux.The rotation of the crown brings the mass of material which has been heated (respectively cooled) by effluents towards the second angular zone where it heats (respectively cools) a second gaseous effluent.

Le dispositif peut être utilisé seulement comme échangeur de chaleur et dans ce cas, il comporte un circuit primaire de circulation d'effluents incluant la conduite d'introduction et un conduit disposé dans la zone centrale de la couronne, ce circuit primaire communiquant avec une première source d'effluents. Il comporte aussi un circuit secondaire de circulation d'effluents incluant la conduite d'évacuation, situé de part et d'autre du deuxième secteur, ce circuit secondaire communiquant avec une deuxième source d'effluents.The device can be used only as a heat exchanger and in this case, it has a primary effluent circulation circuit including the introduction pipe and a pipe arranged in the central zone of the crown, this primary circuit communicating with a first source of effluents. It also includes a secondary effluent circulation circuit including the evacuation pipe, located on either side of the second sector, this secondary circuit communicating with a second source of effluents.

L'un des deux circuits primaire ou secondaire est connecté à une source d'effluents chauds, l'autre circuit étant connecté à une source d'effluents plus froids.One of the two primary or secondary circuits is connected to a source of hot effluents, the other circuit being connected to a source of cooler effluents.

Le dispositif peut être utilisé à la fois comme échangeur de chaleur et comme incinérateur pour effluents pollués. Dans ce cas, le conduit d'introduction est connecté à une source d'effluents contenant des substances polluantes. Le premier secteur et le deuxième secteur communiquent directement l'un avec l'autre par l'intermédiaire de la partie centrale de la cage. Un réacteur thermique est disposé dans cette partie centrale pour brûler les substances polluantes dans les effluents canalisés par la première zone angulaire.The device can be used both as a heat exchanger and as an incinerator for polluted effluents. In this case, the introduction conduit is connected to a source of effluents containing polluting substances. The first sector and the second sector communicate directly with each other via the central part of the cage. A thermal reactor is arranged in this central part to burn the polluting substances in the effluents channeled by the first angular zone.

De préférence, on utilise un réacteur thermique à lit catalytique choisi pour provoquer une réaction exothermique en présence des substances polluantes.Preferably, a catalytic bed thermal reactor chosen is used to cause an exothermic reaction in the presence of polluting substances.

Le dispositif peut comporter des moyens additionnels (brûleur, injecteur de combustible) pour élever si besoin est la température régnant dans le réacteur, ainsi que d'autres moyens mécaniques ou chimiques de traitement de la masse dans la couronne.The device may include additional means (burner, fuel injector) for raising the temperature prevailing in the reactor if necessary, as well as other mechanical or chemical means for treating the mass in the crown.

Le dispositif selon l'invention avec son tambour rotatif présente de grands avantages :
   - Il permet de réaliser sous un faible volume, des fonctions de traitement et d'échange thermique. En raison de sa compacité, les pertes de charge sont très réduites.
The device according to the invention with its rotary drum has great advantages:
- It allows to perform under a small volume, treatment and heat exchange functions. Due to its compactness, the pressure drops are very reduced.

Dans sa configuration où la zone de réaction la plus chaude est au centre de la cage, et les zones plus froides sont à la périphérie,

  • a) les pertes thermiques sont faibles. Du fait de la symétrie cylindrique du dispositif et de la rotation de la couronne intérieure, les échanges thermiques s'effectuent en continu ce qui ne nécessite aucune inversion de sens des flux et permet la régularité du débit épuré. Les inversions de sens éventuelles sont de toute façon progressives, ce qui favorise un rendement élevé.
  • b) La forte dilatation consécutive à l'élévation de température entraîne, on le sait, une augmentation de la vitesse d'écoulement et par conséquent des pertes de charge. On peut noter à cet égard que l'agencement et la forme du dispositif permettent de raccourcir beaucoup la portion de circuit où les effluents sont à une température élevée et donc de diminuer les dépenses d'énergie de l'installation de traitement.
  • c) Du fait de sa compacité, la surface périphérique de la cage par où s'effectuent les échanges thermiques avec l'extérieur, est relativement réduite, et les pertes thermiques sont par conséquent plus faibles et plus faciles à minimiser.
  • d) La zone la plus chaude est au centre et la couronne qui fonctionne comme récupérateur d'énergie, est interposée entre cette zone et la périphérie de la cage. De ce fait, la température extérieure de l'enveloppe est relativement faible (moins de 100°C en pratique), ce qui simplifie le calorifugeage extérieur. On obtient ainsi une forte concentration de la chaleur et une récupération optimale des dissipations par la masse thermique placée dans la couronne.
In its configuration where the hottest reaction zone is in the center of the cage, and the colder zones are at the periphery,
  • a) the heat losses are low. Due to the cylindrical symmetry of the device and the rotation of the inner ring, the heat exchanges are carried out continuously which does not require any reversal of the direction of flow and allows the regularity of the purified flow. Any reversals of direction are in any case progressive, which promotes high efficiency.
  • b) The strong expansion following the rise in temperature leads, as is known, to an increase in the flow speed and consequently to pressure losses. It may be noted in this regard that the arrangement and the shape of the device make it possible to greatly shorten the portion of the circuit where the effluents are at a high temperature and therefore to reduce the energy expenditure of the treatment installation.
  • c) Due to its compactness, the peripheral surface of the cage through which the heat exchanges with the outside take place, is relatively reduced, and the heat losses are consequently lower and easier to minimize.
  • d) The hottest area is in the center and the crown, which functions as an energy recuperator, is interposed between this area and the periphery of the cage. Therefore, the outside temperature of the envelope is relatively low (less than 100 ° C in practice), which simplifies the external insulation. A high concentration of heat is thus obtained and an optimal recovery of dissipations by the thermal mass placed in the crown.

Dans la pratique, le dispositif selon l'invention, dans sa version avec réacteur à lit catalytique dans la zone centrale, peut fonctionner de façon autotherme avec des effluents chargés de 400 mg de COV par m3.In practice, the device according to the invention, in its version with catalytic bed reactor in the central zone, can operate in an autothermal manner with effluents loaded with 400 mg of VOCs per m3.

D'autres caractéristiques et avantages du dispositif selon l'invention, apparaîtront à la lecture de la description ci-après d'exemples non limitatifs de réalisation, en se référant aux dessins annexés où :

  • la Fig.1 montre une vue en coupe schématique d'un premier mode de réalisation du dispositif, avec une couronne tournante;
  • la Fig.2 montre une vue schématique en coupe simplifiée d'un deuxième mode de réalisation du dispositif avec une cage susceptible de tourner autour de la couronne;
  • la Fig.3 montre une vue éclatée du tambour tournant pour illustrer schématiquement les circulations des effluents à l'intérieur du tambour rotatif; et
  • la Fig.4 montre schématiquement un mode de réalisation du tambour rotatif utilisé comme échangeur de chaleur; et
  • la Fig.5 montre un mode de réalisation où le dispositif est utilisé pour un usage mixte comme incinérateur de substances polluantes dans des effluents, et échangeur de chaleur; et
  • la Fig.6 montre schématiquement le tambour tournant et sa zone centrale.
Other characteristics and advantages of the device according to the invention will appear on reading the following description of nonlimiting exemplary embodiments, with reference to the appended drawings where:
  • Fig.1 shows a schematic sectional view of a first embodiment of the device, with a rotating crown;
  • Fig.2 shows a schematic view in simplified section of a second embodiment of the device with a cage capable of rotating around the crown;
  • Fig.3 shows an exploded view of the rotating drum to schematically illustrate the flow of effluents inside the rotating drum; and
  • Fig.4 schematically shows an embodiment of the rotary drum used as a heat exchanger; and
  • Fig.5 shows an embodiment where the device is used for mixed use as an incinerator of polluting substances in effluents, and heat exchanger; and
  • Fig.6 schematically shows the rotating drum and its central area.

Suivant le mode de réalisation des Fig.1, 2, 3, le dispositif comporte un tambour DR constitué d'une couronne 1 à axe vertical disposée à l'intérieur d'une enveloppe ou cage extérieure métallique 2 de forme cylindrique par exemple. La cage comporte un premier bras 3 et un deuxième bras 4 auxquels se raccordent respectivement un conduit 5 d'amenée des effluents gazeux à épurer, et un conduit 6 d'évacuation de ces mêmes effluents après traitement. La couronne 1 est pourvue d'un cloisonnement intérieur constitué d'un ensemble d'aubes droites ou courbes 7 régulièrement réparties. Un premier secteur angulaire A délimité par une ou plusieurs aubes, canalise les effluents issus du conduit 5 vers la zone centrale 8 de la cage (flux Fe sur la Fig.3). Un deuxième secteur angulaire B fait communiquer la zone centrale 8 de la cage avec le conduit d'évacuation 6 (flux Fs sur la Fig.3).According to the embodiment of Fig.1, 2, 3, the device comprises a drum DR consisting of a crown 1 with a vertical axis arranged inside a metal outer casing or cage 2 of cylindrical shape for example. The cage comprises a first arm 3 and a second arm 4 to which are connected respectively a conduit 5 for supplying the gaseous effluents to be purified, and a conduit 6 for discharging these same effluents after treatment. The crown 1 is provided with an internal partition consisting of a set of straight or curved blades 7 regularly distributed. A first angular sector A delimited by one or more blades, channels the effluents coming from the conduit 5 towards the central zone 8 of the cage (flow Fe in FIG. 3). A second angular sector B communicates the central zone 8 of the cage with the evacuation duct 6 (flow Fs in FIG. 3).

La couronne peut être agencée aussi pour servir de support à un certain nombres de paniers.The crown can also be arranged to serve as a support for a certain number of baskets.

A l'intérieur de la couronne (entre les aubes ou dans les paniers), est répartie une masse active M constituée d'un matériau à grande surface d'échange thermique.Inside the crown (between the blades or in the baskets), an active mass M is made up of a material with a large heat exchange surface.

Il peut s'agir de billes en céramique ou métalliques, de tournures ou copeaux d'usinage, de garnissage en vrac ou structuré, d'une structure alvéolaire à alvéoles régulières ou irrégulières telles que des nids d'abeille, de tricots métalliques ou en céramique etc. On utilise avantageusement une structure alvéolaire telle que celle décrite dans le brevet FR 2 564 037 du demandeur.They may be ceramic or metallic balls, turnings or machining chips, loose or structured packing, a honeycomb structure with regular or irregular honeycombs such as honeycombs, metallic knitted fabrics or ceramic etc. Advantageously, a honeycomb structure such as that described in patent FR 2,564,037 of the applicant is used.

La charge de la couronne peut encore être constituée de cailloux. Dans le cas d'un transfert de chaleur négatif, on utilise des nodules cryogéniques.The crown load can also consist of stones. In the case of a negative heat transfer, cryogenic nodules are used.

Des joints 9 sont disposés entre la cage et la couronne pour assurer l'étanchéité verticale et isoler l'un de l'autre les deux espaces en amont et en aval de la zone centrale ou zone de transit 8, de façon que tous les effluents entrants soient pratiquement canalisés vers celle-ci. Ces joints 9 sont agencés de façon que la perte de charge résiduelle entre la couronne 1 et la cage 2, soit au moins égale à la perte de charge subie par les gaz dans le circuit principal traversant le dispositif.Seals 9 are arranged between the cage and the crown to ensure vertical sealing and isolate the two spaces upstream and downstream from the central zone or transit zone 8 from each other, so that all the effluents are practically channeled towards it. These seals 9 are arranged so that the residual pressure drop between the crown 1 and the cage 2, is at least equal to the pressure drop experienced by the gases in the main circuit passing through the device.

D'autres joints (non représentés) de type à lèvre ou à balai, à joint hydraulique annulaire avec chicanage dans un bain d'huile, etc, sont disposés de façon à réaliser l'étanchéité périmétrique (horizontalement).Other seals (not shown) of the lip or brush type, with annular hydraulic seal with baffling in an oil bath, etc., are arranged so as to provide the perimeter seal (horizontally).

La configuration circulaire de la couronne 1 et de la cage 2, ainsi que la forme de préférence courbe des aubes 7, sont particulièrement bien adaptées pour supporter des fortes et fréquentes variations de température, tout en assurant un guidage satisfaisant des flux traversant le dispositif.The circular configuration of the crown 1 and the cage 2, as well as the preferably curved shape of the vanes 7, are particularly well suited to withstand strong and frequent temperature variations, while ensuring satisfactory guidance of the flows passing through the device.

La cage 2 et la couronne 1, sont animées par des moyens moteurs (non représentés) d'un lent mouvement de rotation l'une relativement à l'autre.The cage 2 and the crown 1 are driven by motor means (not shown) with a slow rotational movement relative to one another.

La cage 2 comporte aussi au moins une ouverture dans sa paroi latérale dans chacun des secteurs angulaires C, D intermédiaire entre les secteurs A et B, où débouchent des conduits 10, 11 connectés à des moyens d'aspiration 13 (Fig.4). Les fuites périphériques de gaz entre la couronne 1 et la cage 2, sont aspirées par les conduits 10, 11 (flux de reprise Fr de la Fig.3) et réinjectées dans le conduit d'amenée 5 (flux entrant Fe).The cage 2 also has at least one opening in its side wall in each of the angular sectors C, D intermediate between sectors A and B, where conduits 10, 11 open connected to suction means 13 (Fig.4). The peripheral gas leaks between the crown 1 and the cage 2, are sucked through the conduits 10, 11 (return flow Fr of FIG. 3) and reinjected into the supply duct 5 (incoming flow Fe).

Dans un des deux secteurs angulaires intermédiaires C, D (Fig.3), la cage 2 peut comporter également des ouvertures où débouchent un ou plusieurs conduits 13 (Fig. 1-2) pour réaliser d'autres fonctions. Il peut s'agir d'injecter un inhibiteur chimique pour éviter une réaction chimique parasite telle qu'une polymérisation, ou bien la formation de bouchons. Il peut s'agir d'une action mécanique: aspiration ou soufflage dans le but de nettoyer la charge de la couronne, etc.In one of the two intermediate angular sectors C, D (Fig. 3), the cage 2 can also include openings into which one or more conduits 13 (Fig. 1-2) open to perform other functions. It may involve injecting a chemical inhibitor to avoid a parasitic chemical reaction such as polymerization, or else the formation of plugs. It can be a mechanical action: suction or blowing in order to clean the crown load, etc.

Suivant un mode de réalisation, la cage 2 est fixe (Fig.1) et la couronne 1 est entraînée en rotation.According to one embodiment, the cage 2 is fixed (Fig. 1) and the crown 1 is driven in rotation.

Suivant un autre mode de réalisation (Fig.2), c'est la couronne 1 qui est fixe et la cage 2 entraînant avec elle les conduits 5, 6, qui peut tourner autour de son axe. Dans la zone centrale 8 de la cage 2, est disposé un cache intermédiaire 14 à ouvertures sélectives. Ce cache 14 tourne en même temps que la cage 2 et sert à guider le flux entrant (Fe sur la Fig.3) vers la zone centrale 8 et le flux sortant vers une chambre de convergeance 15 d'où part une cheminée d'évacuation 16 agencée pour pouvoir suivre la rotation de la cage 2.According to another embodiment (Fig.2), it is the crown 1 which is fixed and the cage 2 driving with it the conduits 5, 6, which can rotate around its axis. In the central area 8 of the cage 2, is disposed an intermediate cover 14 with selective openings. This cover 14 rotates at the same time as the cage 2 and serves to guide the incoming flow (Fe in FIG. 3) towards the central zone 8 and the outgoing flow towards a converging chamber 15 from which a discharge chimney starts. 16 arranged to be able to follow the rotation of the cage 2.

Selon la masse de la couronne qui dépend de la nature de la charge M à grande surface d'échange thermique ou les applications et/ou le volume d'effluents à traiter, on opte pour le mode de réalisation de la Fig.1 ou pour celui de la Fig.2.Depending on the mass of the ring, which depends on the nature of the load M with a large heat exchange surface or the applications and / or the volume of effluents to be treated, one chooses the embodiment of FIG. 1 or for that of Fig. 2.

Suivant un premier mode de mise en oeuvre (Fig.4), la zone centrale 8 est utilisée comme zone d'échange de flux pour l'évacuation ou l'admission d'effluents.According to a first embodiment (Fig. 4), the central zone 8 is used as a flow exchange zone for the evacuation or the admission of effluents.

Par le secteur angulaire A, on canalise un courant d'effluents chauds Fc vers la zone centrale 8. Les effluents cèdent leur énergie thermique à la charge M. Dans la zone centrale 8, ils sont canalisés par une conduite 17 vers l'extérieur (flux Fs1). Un autre conduit 18 est utilisé pour canaliser vers la zone B un flux de gaz plus froids Ff. Ces gaz froids traversant la zone angulaire B, sont alors au contact des particules qui ont été réchauffées précédemment durant leur passage dans la zone A et ressortent par le conduit 6 à une température plus élevée (flux Fs2).Through the angular sector A, a stream of hot effluents Fc is channeled towards the central zone 8. The effluents cede their thermal energy to the load M. In the central zone 8, they are channeled by a pipe 17 towards the outside ( flow Fs1). A another conduit 18 is used to channel towards the zone B a flow of cooler gases Ff. These cold gases passing through the angular zone B, are then in contact with the particles which have been previously heated during their passage in the zone A and exit through the conduit 6 at a higher temperature (flow Fs2).

Le fonctionnement est identique pour un transfert thermique en sens inverse. Le flux de gaz froid admis par la conduite 5, refroidit la masse M dans le secteur angulaire A de la couronne. Par la conduite 18, on admet un flux gazeux plus chaud qui, en traversant la zone angulaire B, est alors au contact des particules qui ont été refroidies durant leur passage dans la zone A et ressortent par le conduit 6 à une température inférieure.The operation is identical for a reverse heat transfer. The flow of cold gas admitted via line 5 cools the mass M in the angular sector A of the crown. Via line 18, a warmer gas flow is admitted which, crossing the angular zone B, is then in contact with the particles which have been cooled during their passage through the zone A and emerge through the line 6 at a lower temperature.

Suivant le mode de réalisation de la Fig.5, le dispositif est utilisé pour un usage mixte d'échange thermique et d'incinération d'effluents gazeux chargés de substances polluantes telles que des composés COV par exemple. La couronne 1 contient encore une charge M d'un matériau à grande surface d'échange thermique, comme défini précédemment. L'incinération des substances polluantes est effectuée dans un réacteur 19 placé dans la zone centrale 8 de la cage 2. De préférence, le réacteur 19 est du type à lit catalytique. Les effluents à purifier sont introduits à une température relativement faible (de 200°C à 400°C par exemple. La réaction est exothermique et elle est réglée de façon à dégager suffisamment d'énergie pour compenser sensiblement la dissipation calorifique. Une proportion de 0,4 mg de COV par m3 d'effluents suffit pour un fonctionnement autothermique.According to the embodiment of Fig.5, the device is used for a mixed use of heat exchange and incineration of gaseous effluents loaded with polluting substances such as VOC compounds for example. The crown 1 also contains a charge M of a material with a large heat exchange surface, as defined above. The incineration of polluting substances is carried out in a reactor 19 placed in the central zone 8 of the cage 2. Preferably, the reactor 19 is of the catalytic bed type. The effluents to be purified are introduced at a relatively low temperature (from 200 ° C. to 400 ° C. for example. The reaction is exothermic and it is regulated so as to release enough energy to substantially compensate for the heat dissipation. A proportion of 0 , 4 mg of VOC per m3 of effluent is sufficient for autothermal operation.

Dans certains cas, si la teneur en composés polluants COV est insuffisante, on connecte au dispositif par un tube 20 d'injection, un réservoir 21 de gaz naturel ou de GPL pour améliorer le pouvoir calorifique des effluents admis. Un circuit 22 de by-pass commandé par une vanne 23, permet d'évacuer une partie des gaz chauds sans leur faire traverser l'échangeur. Un brûleur 24 peut être disposé en amont du tambour T, pour chauffer au démarrage si néccessaire les effluents entrants, de façon à atteindre un point de fonctionnement auto-thermique.In certain cases, if the content of polluting compounds VOC is insufficient, the device is connected by an injection tube 20, a reservoir 21 of natural gas or LPG to improve the calorific value of the admitted effluents. A by-pass circuit 22 controlled by a valve 23 allows part of the hot gases to be removed without passing them through the exchanger. A burner 24 can be arranged upstream of the drum T, to heat at start-up if necessary the incoming effluents, so as to reach an auto-thermal operating point.

Après traversée du réacteur 19, les composés polluants (COV) se trouvent transformés par la réaction en produits de combustion divers : CO2, H2O, N2 principalement, SOx et NOx à l'état de traces.After crossing reactor 19, the polluting compounds (VOCs) are transformed by the reaction into various combustion products: CO2, H2O, N2 mainly, SOx and NOx in trace amounts.

Les gaz à température élevée issus du réacteur 19, traversent la partie M2 de la charge M située dans la zone angulaire B de la couronne et lui cèdent une bonne partie de leurs calories. La rotation de la couronne 1 relativement à la cage 2, amène progressivement les éléments chauffés vers la zone angulaire A où ils peuvent céder à leur tour aux gaz entrants par le conduit d'amenée 5, une partie de l'énergie calorifique accumulée.The high temperature gases from the reactor 19 pass through the part M2 of the charge M located in the angular zone B of the ring and give it a good part of their calories. The rotation of the crown 1 relative to the cage 2, gradually brings the heated elements to the angular zone A where they can in turn yield to the incoming gases via the supply duct 5, part of the accumulated heat energy.

L'oxydation recherchée peut encore être obtenue en plaçant dans la zone centrale de la couronne, des moyens de chauffage directs d'un type connu permettant de porter les effluents à une température de l'ordre de 850°C à 1100°C.The desired oxidation can also be obtained by placing direct heating means of a known type in the central zone of the crown, making it possible to bring the effluents to a temperature of the order of 850 ° C. to 1100 ° C.

Exemple d'utilisationExample of use

L'air pollué (ou le rejet à incinérer) est envoyé (Fig.6) sur la charge M1 dans le secteur angulaire A du dispositif, zone chaude où s'établit un gradient de température croissant de la partie extérieure (température T''1) vers la partie intérieure (température T'1) autour d'une température moyenne T1 (T'1>T1>T''1). L'air réchauffé passe dans dans la zone de distribution E. Si la température de l'air réchauffé est inférieure à la température d'activité catalytique, on peut lui apporter dans cette zone E, un appoint thermique. L'air passe ensuite sur le catalyseur dans le réacteur 19 et les composés polluants COV sont transformés en produits de combustion (CO2, H2O, SO2, N2 et NOx). Les gaz traversent alors la masse M2 du secteur angulaire B qu'ils réchauffent à une température de sortie de la masse de remplissage égale à T2, très voisine de T'1, aux pertes thermiques près.The polluted air (or the discharge to be incinerated) is sent (Fig. 6) to the load M1 in the angular sector A of the device, a hot zone where an increasing temperature gradient is established on the outside (temperature T '' 1) towards the interior (temperature T'1) around an average temperature T1 (T'1>T1>T''1). The heated air passes into the distribution zone E. If the temperature of the heated air is lower than the catalytic activity temperature, it can be provided in this zone E, a thermal back-up. The air then passes over the catalyst in the reactor 19 and the polluting compounds VOCs are transformed into combustion products (CO2, H2O, SO2, N2 and NOx). The gases then pass through the mass M2 of the angular sector B which they heat to an outlet temperature of the filling mass equal to T2, very close to T'1, apart from the thermal losses.

Cette application du dispositif est particulièrement avantageuse :

  • lorsqu'on ne veut pas récupérer les composés polluants COV,
  • lorsque la teneur en composés COV est suffisament élevée pour éviter un appoint thermique important en E, la chaleur d'incinération catalytique équilibrant les pertes thermiques. Cette limite avec le système ainsi décrit, se situe au niveau de 400 mg/m3 d' hydrocarbures.
This application of the device is particularly advantageous:
  • when we don't want to recover VOC pollutants,
  • when the content of VOC compounds is high enough to avoid significant thermal back-up in E, the catalytic incineration heat balancing the thermal losses. This limit with the system thus described is at the level of 400 mg / m3 of hydrocarbons.

Claims (18)

1) Dispositif rotatif de transfert appliqué à des effluents gazeux, caractérisé en ce qu'il comporte une enveloppe ou cage (2), une couronne (1) contenant une charge (M) de matériaux solides possédant une grande surface d'échange thermique, qui est disposée à l'intérieur de la cage, et des moyens moteurs pour animer la couronne et la cage d'un mouvement de rotation l'une relativement à l'autre autour d'un axe vertical, au moins un conduit (5, 18) pour l'introduction d'effluents dans la cage (2) et au moins un conduit (6, 17) pour l'évacuation d'effluents hors de la cage, la couronne (1) comportant au moins une premier secteur (A) pour faire communiquer à tout instant le conduit d'introduction (5) avec la partie centrale (8) de la cage (2), où s'effectue un premier transfert de chaleur entre les effluents et la charge (M1) dans la couronne (1), et au moins un deuxième secteur (B) de la couronne pour faire communiquer à tout instant la partie centrale (8) de la cage avec les circuits d'évacuation, où s'effectue une deuxième transfert de chaleur entre des effluents et la charge (M2) dans la couronne. 1) Rotary transfer device applied to gaseous effluents, characterized in that it comprises an envelope or cage (2), a ring (1) containing a charge (M) of solid materials having a large heat exchange surface, which is arranged inside the cage, and motor means for animating the crown and the cage with a rotational movement relative to each other about a vertical axis, at least one conduit (5, 18) for the introduction of effluents into the cage (2) and at least one conduit (6, 17) for the evacuation of effluents out of the cage, the crown (1) comprising at least a first sector (A ) to communicate at any time the introduction conduit (5) with the central part (8) of the cage (2), where a first heat transfer takes place between the effluents and the charge (M1) in the crown (1), and at least a second sector (B) of the crown to communicate at any time the central part (8) of the cage with the evacuation circuits, where a second heat transfer takes place between effluents and the charge (M2) in the crown. 2) Dispositif selon la revendication 1, caractérisé en ce qu'il comporte un circuit primaire de circulation d'effluents incluant la conduite d'introduction (5) et un conduit (17) disposé dans la zone centrale de la couronne (1), ce circuit primaire communiquant avec une première source d'effluents, et un circuit secondaire de circulation d'effluents (6,18) incluant la conduite d'évacuation (6), situé de part et d'autre du deuxième secteur (B), ce circuit secondaire communiquant avec une deuxième source d'effluents. 2) Device according to claim 1, characterized in that it comprises a primary effluent circulation circuit including the introduction pipe (5) and a pipe (17) disposed in the central zone of the crown (1), this primary circuit communicating with a first source of effluents, and a secondary circuit for circulation of effluents (6, 18) including the discharge pipe (6), located on either side of the second sector (B), this secondary circuit communicating with a second source of effluents. 3) Dispositif selon la revendication 2, caractérisé en ce que l'un des deux circuits primaire ou secondaire est connecté à une source d'effluents chauds, l'autre circuit étant connecté à une source d'effluents plus froids. 3) Device according to claim 2, characterized in that one of the two primary or secondary circuits is connected to a source of hot effluents, the other circuit being connected to a source of cooler effluents. 4) Dispositif selon la revendication 1 ou 2, caractérisé en ce que la première source délivre des effluents chargés de substances polluantes, le premier secteur (A) et le deuxième secteur (B) communiquent directement l'un avec l'autre par l'intermédiaire de la partie centrale (8) de la cage (2), un réacteur thermique (19) étant disposé dans cette partie centrale pour brûler les substances polluantes chargeant les effluents canalisés par ladite première zone angulaire (A). 4) Device according to claim 1 or 2, characterized in that the first source delivers effluents charged with polluting substances, the first sector (A) and the second sector (B) communicate directly with each other via the central part (8) of the cage (2), a thermal reactor (19) being disposed in this central part for burning the polluting substances charging the effluents channeled through said first angular zone (A). 5) Dispositif selon la revendication 4, caractérisé en ce que le réacteur thermique (19) contient un catalyseur choisi pour provoquer une réaction exothermique en présence des substances polluantes. 5) Device according to claim 4, characterized in that the thermal reactor (19) contains a catalyst chosen to cause an exothermic reaction in the presence of polluting substances. 6) Dispositif selon la revendication 4, caractérisé en ce que le réacteur (19) contient des moyens de chauffage pour brûler lesdites substances polluantes. 6) Device according to claim 4, characterized in that the reactor (19) contains heating means for burning said polluting substances. 7) Dispositif selon l'une des revendications 4 à 6, caractérisé en ce qu'il comporte des moyens pour élever la température régnant dans le réacteur (19). 7) Device according to one of claims 4 to 6, characterized in that it comprises means for raising the temperature prevailing in the reactor (19). 8) Dispositif selon la revendication précédente, caractérisé en ce que les moyens pour élever la température comportent des moyens (20,21) d'injection de combustible. 8) Device according to the preceding claim, characterized in that the means for raising the temperature comprise means (20,21) for injecting fuel. 9) Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comporte des moyens (11,12) pour aspirer des effluents dans au moins un secteur (C1, C2) de la couronne (1) intermédiaire entre le premier et le deuxième secteur de transfert thermique. 9) Device according to one of the preceding claims, characterized in that it comprises means (11,12) for sucking effluents in at least one sector (C1, C2) of the crown (1) intermediate between the first and the second heat transfer sector. 10) Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comporte des moyens (13) pour faire communiquer l'intérieur de la couronne avec des moyens mécaniques ou aérauliques de nettoyage de la masse (M). 10) Device according to one of the preceding claims, characterized in that it comprises means (13) for communicating the interior of the crown with mechanical or aeraulic means for cleaning the mass (M). 11) Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comporte des moyens (13) pour faire communiquer l'intérieur de la couronne avec des moyens d'injection de substances chimiques. 11) Device according to one of the preceding claims, characterized in that it comprises means (13) for communicating the interior of the crown with means for injecting chemical substances. 12) Dispositif selon l'une des revendications précédentes, caractérisé en ce que les moyens moteurs sont associés à la couronne (1), la cage (2) étant fixe. 12) Device according to one of the preceding claims, characterized in that the drive means are associated with the crown (1), the cage (2) being fixed. 13) Dispositif selon l'une des revendications précédentes, caractérisé en ce que la couronne (1) est fixe, les moyens moteurs sont associés à la cage (2) qui est mobile relativement à la couronne, et les circuits (5, 6) d'amenée et d'évacuation sont fixés à la cage et tournent avec elle. 13) Device according to one of the preceding claims, characterized in that the crown (1) is fixed, the drive means are associated with the cage (2) which is movable relative to the crown, and the circuits (5, 6) inlet and outlet are attached to the cage and rotate with it. 14) Dispositif selon l'une des revendications précédentes, caractérisé en ce que la masse (M) est constituée de nodules cryogéniques. 14) Device according to one of the preceding claims, characterized in that the mass (M) consists of cryogenic nodules. 15) Dispositif selon l'une des revendications précédentes, caractérisé en ce que la couronne est divisée en plusieurs zones angulaires par un cloisonnement intérieur (7). 15) Device according to one of the preceding claims, characterized in that the crown is divided into several angular zones by an internal partitioning (7). 16) Dispositif selon l'une des revendications précédentes, caractérisé en ce que la couronne est agencée pour servir de support à plusieurs paniers contenant la charge (M). 16) Device according to one of the preceding claims, characterized in that the crown is arranged to serve as a support for several baskets containing the load (M). 17) Application du dispositif selon l'une des revendications 1 à 16, à l'échange thermique entre deux flux de gaz par l'intermédiaire d'une masse (M) d'un matériau pourvu d'une grande surface d'échange thermique, déplacée par rotation continue d'une couronne (1) d'axe vertical, pour être mise successivement en contact thermique avec les deux flux. 17) Application of the device according to one of claims 1 to 16, to the heat exchange between two gas flows via a mass (M) of a material provided with a large heat exchange surface , moved by continuous rotation of a crown (1) of vertical axis, to be successively brought into thermal contact with the two flows. 18) Procédé d'épuration en continu d'effluents gazeux chargés de substances polluantes, caractérisé en ce qu'il comporte : - l'établissement d'une circulation permanente d'effluents à épurer d'une part entre des conduits (5) d'amenée d'effluents et la partie centrale (8) d'une cage renfermant une couronne (1) qui est chargée avec une masse (M) d'un matériau possédant une grande surface d'échange thermique, via un premier secteur (A) de la couronne, la cage et la couronne pouvant tourner l'une relativement à l'autre, et d'autre part entre la partie centrale (8) de la cage et des moyens d'évacuation d'effluents via un deuxième secteur (B) de la couronne, la partie centrale de la couronne comportant un réacteur thermique (19) pour brûler les substances polluantes; et - le préchauffage des effluents par l'énergie thermique accumulée par la masse (M) au contact des effluents sortant du réacteur les effluents traversant au cours du trajet une première zone à une température suffisante pour l'incinération des substances polluantes et une deuxième zone d'échange thermique où ils cèdent une partie au moins de la chaleur acquise dans la traversée de la première zone. 18) Process for the continuous purification of gaseous effluents loaded with polluting substances, characterized in that it comprises: the establishment of a permanent circulation of effluents to be purified on the one hand between conduits (5) for supplying effluents and the central part (8) of a cage containing a crown (1) which is loaded with a mass (M) of a material having a large heat exchange surface, via a first sector (A) of the crown, the cage and the crown being able to rotate relative to one another, and other part between the central part (8) of the cage and means for discharging effluents via a second sector (B) of the crown, the central part of the crown comprising a thermal reactor (19) for burning the polluting substances; and - the preheating of the effluents by the thermal energy accumulated by the mass (M) in contact with the effluents leaving the reactor, the effluents crossing during the journey a first zone at a temperature sufficient for the incineration of polluting substances and a second zone d 'heat exchange where they give up at least part of the heat acquired in crossing the first zone.
EP95401154A 1994-05-24 1995-05-18 Rotating heat transfer device Expired - Lifetime EP0684427B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9406282 1994-05-24
FR9406282A FR2720488B1 (en) 1994-05-24 1994-05-24 Rotary device for heat transfer and thermal purification applied to gaseous effluents.

Publications (2)

Publication Number Publication Date
EP0684427A1 true EP0684427A1 (en) 1995-11-29
EP0684427B1 EP0684427B1 (en) 2001-02-28

Family

ID=9463462

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95401154A Expired - Lifetime EP0684427B1 (en) 1994-05-24 1995-05-18 Rotating heat transfer device

Country Status (9)

Country Link
US (1) US5643538A (en)
EP (1) EP0684427B1 (en)
JP (1) JP3655667B2 (en)
KR (1) KR100414430B1 (en)
CA (1) CA2150000C (en)
DE (1) DE69520168T2 (en)
ES (1) ES2156597T3 (en)
FR (1) FR2720488B1 (en)
NO (1) NO304906B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2786551A1 (en) 1998-11-26 2000-06-02 Inst Francais Du Petrole WATERPROOF TURNING CONNECTION DEVICE ALLOWING LARGE TRAVELS
US6193504B1 (en) 1997-04-01 2001-02-27 Engelhard Corporation Portable rotary catalytic oxidizer systems
US6235249B1 (en) 1997-04-01 2001-05-22 Engelhard Corporation Rotary oxidizer systems for control of restaurant emissions
WO2009135573A2 (en) * 2008-05-05 2009-11-12 Applikations- Und Technikzentrum Für Energieverfahrens-, Umwelt- Und Strömungstechnik (Atz-Evus) Method for operating a steam turbine
EP2400249A1 (en) * 2010-06-25 2011-12-28 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Air separation method and facility for cryogenic distilling

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2728483B1 (en) * 1994-12-26 1997-01-24 Inst Francais Du Petrole IMPROVED ROTARY DEVICE FOR CATALYTIC PURIFICATION OF POLLUTED EFFLUENTS
US5972299A (en) * 1996-09-26 1999-10-26 Industrial Technology Research Institute Catalytic converter with heating for motorcycles
FR2756753B1 (en) * 1996-12-05 1998-12-31 Inst Francais Du Petrole IMPROVED ROTARY DEVICE FOR CATALYTIC PURIFICATION OF GASEOUS EFFLUENTS
US6153150A (en) * 1998-01-12 2000-11-28 Advanced Technology Materials, Inc. Apparatus and method for controlled decomposition oxidation of gaseous pollutants
US6261524B1 (en) 1999-01-12 2001-07-17 Advanced Technology Materials, Inc. Advanced apparatus for abatement of gaseous pollutants
EP1101019A1 (en) * 1998-07-31 2001-05-23 Volkswagen Aktiengesellschaft Method and device for post-treatment of exhaust gases of an internal combustion engine
DE10324937A1 (en) * 2003-06-03 2004-12-23 Deere & Company, Moline Heat exchange device
GB2433041A (en) * 2005-12-08 2007-06-13 Eminox Ltd Cleaning a vehicle exhaust system filter
DE102006034483A1 (en) * 2006-07-21 2008-01-24 Alstom Technology Ltd. Regenerative air preheater with brush seal
PT2023070E (en) * 2007-07-24 2011-06-30 Balcke Duerr Gmbh Regenerative heat exchanger and radial seal for use for such and method for separating gaseous media in a regenerative heat exchanger
GB2574065B (en) * 2018-05-25 2021-06-16 Intelligent Power Generation Ltd Rotary regenerator

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1397214A (en) * 1964-01-02 1965-04-30 Chausson Usines Sa Rotary heat exchanger
US3404965A (en) * 1964-11-13 1968-10-08 Benjamin P. Shiller Fume combustion apparatus
GB1166209A (en) * 1968-06-26 1969-10-08 Kazakhsk Nii Energetiki Apparatus for Carrying out Chemical Reactions in a Current of Gas Reagents and especially suitable for Burning out Combustible Components from a Gas Mixture of Low Calorific Value
US3678992A (en) * 1970-08-06 1972-07-25 Philips Corp Thermal regenerator
FR2373769A1 (en) * 1976-12-07 1978-07-07 Air Ind IMPROVEMENTS TO DYNAMIC HEAT EXCHANGERS
US4231418A (en) * 1979-05-07 1980-11-04 Hughes Aircraft Company Cryogenic regenerator
GB2065856A (en) * 1979-12-20 1981-07-01 Steinmueller Gmbh L & C Regenerative heat exchanger
FR2564037A1 (en) 1984-05-11 1985-11-15 Inst Francais Du Petrole ALVEOLAR STRUCTURE FOR COVERING A CURVILINE SURFACE AND METHOD OF MAKING SAME
DE3516831A1 (en) * 1985-05-10 1986-11-13 Ferdinand Lentjes, Dampfkessel- und Maschinenbau, 4000 Düsseldorf Process and apparatus for operating a regenerative gas preheater
JPS62266120A (en) * 1986-05-12 1987-11-18 Asahi Glass Co Ltd Apparatus for treating waste gas of painting drying oven
WO1994023246A1 (en) * 1993-03-26 1994-10-13 Applied Regenerative Technologies Co., Inc. Regenerative gas treatment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870474B1 (en) * 1972-11-13 1991-04-02 Regenerative incinerator systems for waste gases
DE3805791A1 (en) * 1988-02-24 1989-08-31 Kraftanlagen Ag METHOD AND PLANT FOR NICKELING THE EXHAUST GAS FROM COMBUSTION PLANTS
US5362449A (en) * 1991-02-26 1994-11-08 Applied Regenerative Tech. Co., Inc. Regenerative gas treatment

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1397214A (en) * 1964-01-02 1965-04-30 Chausson Usines Sa Rotary heat exchanger
US3404965A (en) * 1964-11-13 1968-10-08 Benjamin P. Shiller Fume combustion apparatus
GB1166209A (en) * 1968-06-26 1969-10-08 Kazakhsk Nii Energetiki Apparatus for Carrying out Chemical Reactions in a Current of Gas Reagents and especially suitable for Burning out Combustible Components from a Gas Mixture of Low Calorific Value
US3678992A (en) * 1970-08-06 1972-07-25 Philips Corp Thermal regenerator
FR2373769A1 (en) * 1976-12-07 1978-07-07 Air Ind IMPROVEMENTS TO DYNAMIC HEAT EXCHANGERS
US4231418A (en) * 1979-05-07 1980-11-04 Hughes Aircraft Company Cryogenic regenerator
GB2065856A (en) * 1979-12-20 1981-07-01 Steinmueller Gmbh L & C Regenerative heat exchanger
FR2564037A1 (en) 1984-05-11 1985-11-15 Inst Francais Du Petrole ALVEOLAR STRUCTURE FOR COVERING A CURVILINE SURFACE AND METHOD OF MAKING SAME
DE3516831A1 (en) * 1985-05-10 1986-11-13 Ferdinand Lentjes, Dampfkessel- und Maschinenbau, 4000 Düsseldorf Process and apparatus for operating a regenerative gas preheater
JPS62266120A (en) * 1986-05-12 1987-11-18 Asahi Glass Co Ltd Apparatus for treating waste gas of painting drying oven
WO1994023246A1 (en) * 1993-03-26 1994-10-13 Applied Regenerative Technologies Co., Inc. Regenerative gas treatment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 12, no. 155 (C - 494) 12 May 1988 (1988-05-12) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6193504B1 (en) 1997-04-01 2001-02-27 Engelhard Corporation Portable rotary catalytic oxidizer systems
US6235249B1 (en) 1997-04-01 2001-05-22 Engelhard Corporation Rotary oxidizer systems for control of restaurant emissions
FR2786551A1 (en) 1998-11-26 2000-06-02 Inst Francais Du Petrole WATERPROOF TURNING CONNECTION DEVICE ALLOWING LARGE TRAVELS
EP1004806B1 (en) * 1998-11-26 2006-02-22 Institut Francais Du Petrole Sealed rotary coupling allowing movements
WO2009135573A2 (en) * 2008-05-05 2009-11-12 Applikations- Und Technikzentrum Für Energieverfahrens-, Umwelt- Und Strömungstechnik (Atz-Evus) Method for operating a steam turbine
WO2009135573A3 (en) * 2008-05-05 2010-12-02 Applikations- Und Technikzentrum Für Energieverfahrens-, Umwelt- Und Strömungstechnik (Atz-Evus) Method for operating a steam turbine
EP2400249A1 (en) * 2010-06-25 2011-12-28 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Air separation method and facility for cryogenic distilling
FR2961893A1 (en) * 2010-06-25 2011-12-30 Air Liquide ROTARY REGENERATIVE HEAT EXCHANGER

Also Published As

Publication number Publication date
ES2156597T3 (en) 2001-07-01
JPH0868596A (en) 1996-03-12
DE69520168T2 (en) 2001-06-21
FR2720488A1 (en) 1995-12-01
DE69520168D1 (en) 2001-04-05
FR2720488B1 (en) 1996-07-12
NO304906B1 (en) 1999-03-01
CA2150000A1 (en) 1995-11-25
KR950033399A (en) 1995-12-26
KR100414430B1 (en) 2004-03-09
CA2150000C (en) 2006-02-14
US5643538A (en) 1997-07-01
NO952023L (en) 1995-11-27
JP3655667B2 (en) 2005-06-02
NO952023D0 (en) 1995-05-22
EP0684427B1 (en) 2001-02-28

Similar Documents

Publication Publication Date Title
CA2150000C (en) Heat transfer and thermal purification rotational mechanism for gaz effluents
EP0757585B1 (en) Rotary device for the catalytic purification of contaminated gas effluents
US6974318B2 (en) Online bakeout of regenerative oxidizers
US6000929A (en) Rotary distribution valve, and regenerative combustion apparatus and regenerative heat exchanger using same
BE897104A (en) VERTICAL HEAT EXCHANGE REGENERATOR INCINERATOR,
WO2010138494A1 (en) Regenerator for syngas cleanup and energy recovery in gasifier systems
JP2001517292A (en) Rotary regenerative oxidizer
US5362449A (en) Regenerative gas treatment
FR2533905A1 (en) SINGLE-STAGE DEVICE FOR PRODUCING SO3 GASEOUS FROM MOLTEN SULFUR, SUITABLE FOR SULFONATION PLANTS AND PARTICULARLY FOR ADDITIVE PLANTS USING SO3 TO PRECIPIT SMOKE ASH FROM ORDINARY OVENS
JP4529230B2 (en) Rotary kiln
EP0846492B1 (en) Process for the catalytic purification of exhaust gases
EP0990848B1 (en) Process for thermal gas purification and regenerative thermal incinerator
EP3389883B1 (en) Method and plant for waste treatment
JP2004520565A (en) Thermal storage waste incineration system
FR2720294A1 (en) Purifier for adsorbing gaseous pollutants using rotating drum
EP0009456A1 (en) Apparatus for the heat exchange between solid particles and a gas current
FR2895272A1 (en) Continuous production of a gas rich in oxygen from a feed gas containing oxygen, comprises contacting the feed gas with a passage zone contained in oxygen capturing unit and recovering the collected oxygen by the zone
FR2458308A1 (en) PROCESS AND INSTALLATION FOR REMOVING OXIDABLE COMPONENTS OR POLLUTANTS FROM GASES, IN PARTICULAR AIR
BE1006702A6 (en) Heating device for a gas fluid.
KR100418159B1 (en) A Compact High Temperature Air Purifier
JP2000088230A (en) Heat storage type waste gas processing apparatus and air intake/exhaust distributing apparatus
MXPA01006314A (en) Regenerative type carbon dioxide separator and carbon dioxide separating system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES GB IT NL SE

17P Request for examination filed

Effective date: 19960529

17Q First examination report despatched

Effective date: 19971125

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: ROTATING HEAT TRANSFER DEVICE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RTI1 Title (correction)

Free format text: ROTATING HEAT TRANSFER DEVICE

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES GB IT NL SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010228

REF Corresponds to:

Ref document number: 69520168

Country of ref document: DE

Date of ref document: 20010405

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2156597

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100324

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20100518

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100526

Year of fee payment: 16

Ref country code: IT

Payment date: 20100519

Year of fee payment: 16

Ref country code: DE

Payment date: 20100602

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20100526

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20100520

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 69520168

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNERS: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR; BOURCIER, JACQUES, SAINT-NAZAIRE, FR

Effective date: 20110329

Ref country code: DE

Ref legal event code: R081

Ref document number: 69520168

Country of ref document: DE

Owner name: BOURCIER, JACQUES, FR

Free format text: FORMER OWNERS: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR; BOURCIER, JACQUES, SAINT-NAZAIRE, FR

Effective date: 20110329

Ref country code: DE

Ref legal event code: R081

Ref document number: 69520168

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE,JACQUES BOURCIER, , FR

Effective date: 20110329

Ref country code: DE

Ref legal event code: R081

Ref document number: 69520168

Country of ref document: DE

Owner name: BOURCIER, JACQUES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE,JACQUES BOURCIER, , FR

Effective date: 20110329

BERE Be: lapsed

Owner name: *BOURCIER JACQUES

Effective date: 20110531

Owner name: INSTITUT FRANCAIS DU *PETROLE

Effective date: 20110531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69520168

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69520168

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20111201

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110519