EP0642290A2 - Mobile communication apparatus with speech processing device - Google Patents

Mobile communication apparatus with speech processing device Download PDF

Info

Publication number
EP0642290A2
EP0642290A2 EP94202513A EP94202513A EP0642290A2 EP 0642290 A2 EP0642290 A2 EP 0642290A2 EP 94202513 A EP94202513 A EP 94202513A EP 94202513 A EP94202513 A EP 94202513A EP 0642290 A2 EP0642290 A2 EP 0642290A2
Authority
EP
European Patent Office
Prior art keywords
signal
microphone
speech
interference signal
microphone signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP94202513A
Other languages
German (de)
French (fr)
Other versions
EP0642290A3 (en
Inventor
Walter Prof. Dr. Ing. C/O Philips Kellermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Corporate Intellectual Property GmbH
Philips Patentverwaltung GmbH
Koninklijke Philips Electronics NV
Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Corporate Intellectual Property GmbH, Philips Patentverwaltung GmbH, Koninklijke Philips Electronics NV, Philips Electronics NV filed Critical Philips Corporate Intellectual Property GmbH
Publication of EP0642290A2 publication Critical patent/EP0642290A2/en
Publication of EP0642290A3 publication Critical patent/EP0642290A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/406Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/20Processing of the output signals of the acoustic transducers of an array for obtaining a desired directivity characteristic
    • H04R2430/23Direction finding using a sum-delay beam-former

Definitions

  • the invention relates to a mobile radio device with a speech processing device with at least two microphones, which are used to deliver microphone signals consisting of speech and interference signal components to microphone signal branches, which are coupled to the inputs of an adding device used to form a sum signal.
  • a microphone arrangement is known from four microphones located in the corners of a room with a square floor plan, the Microphone signals are further processed so that the influence of interference signals that are superimposed on speech signals is reduced.
  • the microphone signals are first shifted against each other in time in order to compensate for time differences between a speaker and the individual microphones.
  • the microphone signals with thus in-phase speech signal components are superimposed by an adding device to form a sum signal, so that the uncorrelated interference signal components of the microphone signals are weakened during the superimposition.
  • the attenuation is not optimal if there is an inhomogeneous interference signal field.
  • the superimposed microphone signals are fed to an adaptive filter (Wiener filter) by means of a correction factor serving to form the mean value. This is set by evaluating the in-phase microphone signals and further suppresses the interference signals.
  • the object of the invention is to improve the suppression of the interference signal component of the sum signal present at the output of the adding device.
  • the signal-to-noise ratio corresponds to the ratio of the powers of the speech and interference signal components of the sum signal.
  • the influence of an inhomogeneity of the interference signal field is minimized.
  • Microphone signals with small interfering signal components are compared to the microphone signals large interfering signal components amplified. Due to the correlated nature of the speech signals and the uncorrelated nature of the interference signals, this leads to the sum signal present at the output of the adding device having a reduced interference signal component or an increased signal / noise ratio, as a result of which the speech signal of the sum signal is better understood.
  • the computation of the weight factors which does not require much computation, leads to an increased signal / noise ratio and improved speech intelligibility. Because of the efficient calculation of the weighting factors, a calculation that is often required in speech processing is possible in real time, so that there is no annoying delay during a conversation conducted via the speech processing device.
  • an adaptation of the weighting factors to changes in the interference signal components over time is provided.
  • the weighting factors are kept constant in periods in which a satisfactory stationarity of the signal statistics of the interference signals is assumed. The length of these time segments depends on the nature of the respective interference signal field.
  • Another embodiment of the invention is characterized in that in each microphone signal branch a transformation device for spectral transformation of the assigned microphone signal, it is provided that the evaluation circuit is provided to form weight factors for each section of the spectral range of the microphone signals and that in each microphone signal branch a reverse transformation device is arranged after a means for weighting the spectral section sections.
  • the interference signal components of the microphone signals generally have no spectra with spectral values of the same size. For this reason, it makes sense to determine the weighting factors of the microphone signals and the weighting not in the time domain but in the spectral range, for which purpose a transformation of the microphone signals - for example with a Fourier transformation - is required.
  • the spectral range is divided into sections with at least one spectral value. For each spectral range section, the optimal weight factors are determined with which the corresponding spectral values of the microphone signals are weighted. An improved reduction of the interference signal components of the microphone signals is achieved and speech intelligibility is further increased.
  • x i stands for the microphone signal generated by the microphone M i , s i for the speech signal component contained therein and n i for the corresponding interference signal component in each case in the i-th microphone signal branch. The following designations apply to the digitized signals as for the corresponding analog signals.
  • the interference signals are normally noise signals that are caused, for example, by engine or wind noise when used in vehicles.
  • the outputs of the analog-digital converter 1 are connected to N inputs of a preprocessing unit 2. This contains for each microphone signal branch a delay element T1, ..., T N , whereby differences in transit time of speech signals from a speech signal source to the microphones M1, ..., M N are compensated.
  • the delay elements T1, ..., T N are adaptively adapted to these time differences.
  • the weight factors c1, ..., c N are set by an evaluation unit 4, which determines this by evaluating the microphone signals x1, ..., x N according to a scheme to be explained. If an approximate temporal steadiness of the statistical properties of the interference signal components n i can be assumed, a one-off calculation of the weighting factors is sufficient.
  • the filter 6 is set with the aid of the evaluation unit 4 by evaluating the microphone signals, for example as in the prior art cited at the beginning.
  • the estimates of the amplitudes of the speech signal components s i are obtained by Determination of difference determined.
  • the weighting factors c 1, ..., c N are to be dimensioned such that the so-called signal-to-noise ratio (SNR) of the sum signal x at the output of the adding device 5 is maximized.
  • SNR results from the ratio of the power (variance) of the speech signal component to the power (variance) of the interference signal component of the sum signal x.
  • ⁇ s and ⁇ n are the standard deviations of the speech signal component s and the interference signal component n of the sum signal x.
  • n1 thus serves as a reference interference signal. All other microphone signals or speech and interference signal components with an index i ⁇ 1 can also be set as reference variables without restriction.
  • Interference signal ratios b i 2 are thus defined by the ratio of the estimated powers ⁇ ni 2 of the interference signal components to the estimated power ⁇ n1 2 of the reference interference signal component.
  • the speech processing device described by FIGS. 2 and 3 represents an embodiment of the speech processing device shown in FIG. 1.
  • the N output signals of the preprocessing unit 2, which represent the samples of the microphone signals x 1,..., N are converted into spectral transformation devices 7 in the Spectral range transformed, for example by fast Fourier transform (FFT).
  • FFT fast Fourier transform
  • the spectral range is divided into M sections that contain at least one spectral value.
  • the spectral values are given to N multiplication devices 8, each section of the spectral range weighted or multiplied by a weight factor c i, j calculated separately for each spectral range section.
  • i is the index of the microphone signal branch.
  • j represents the spectral or frequency index of the respective spectral range section.
  • one of the multiplication devices 8 is shown in its basic structure, which multiplies the spectral range sections of the respective microphone signal branch by the weighting factors c i, j .
  • the spectral range contains M spectral range sections, so that M multipliers are required for each microphone signal branch.
  • the weighting factors c i, j are set by an evaluation unit 9. They are determined analogously to the calculation of the weighting factors c i in the description of FIG. 1 by maximizing the signal / noise ratio (SNR) in the respective spectral range sections.
  • SNR signal / noise ratio
  • the estimated values of the amplitudes of the speech and interference signal components s i , n i in the time domain are to be replaced by corresponding estimated values in the frequency domain.
  • the spectral values weighted in this way are fed back transformation devices 10, which transform the weighted spectra of the respective microphone signal branches back into the time domain.
  • the signals obtained in this way are added up as in FIG. 1 by the adding device 5 and fed to the adaptive filter 6.
  • This is set by an evaluation unit 11 which, analogous to the evaluation unit 4 in FIG. 1, evaluates the microphone signals x i present at the outputs of the analog-digital converter 1.
  • the signal-to-noise ratio (SNR) of the sum signal x can be further increased and speech intelligibility can be improved, since it is taken into account that the power of the interference signal components in the spectral range is not uniformly distributed over all spectral values.
  • the weighting factors c i and c i, j are constantly recalculated and set. This depends on the nature of the respective interference signal field. For example, the interference signal statistics of a vehicle change considerably when accelerating from a standing position, since noise is now generated, for example, by the headwind.
  • a mobile device 12 in which a voice processing device 13 is integrated, which are supplied via an arrangement of three microphones M1, M2 and M3 microphone signals.
  • the structure of the speech processing device 13 can be found either in FIG. 1 or in FIGS. 2 and 3 with the associated descriptions.
  • Output signals of the speech processing device 13 are fed to a function block 14, which combines the other functional units of the mobile radio device 12 and to which a loudspeaker 15 and an antenna 16 are coupled.
  • the microphones M 1, M 2 and M 3, the speech processing device 13 and the loudspeaker 15 act with the help of the function block 14 as parts of a hands-free device of the mobile radio device 12.

Abstract

The invention relates to a mobile radio unit having at least two microphones (M1, ...,MN). These are used for supplying microphone signals (x1, ..., xN), consisting of voice and noise signal components (s1, ..., sN, n1, ..., nN) to microphone signal branches which are connected to the inputs of an adding device (5) used for forming an aggregate signal (x). It is proposed to provide in the microphone signal branches means (3) for weighting the microphone signals (x1, ..., xN) with weighting factors (c1, ..., cN), to be calculated in a simple manner, in order to increase the signal/noise ratio (SNR) of the aggregate signal (x). The voice processing device is preferably integrated into a hands-free talking facility of the mobile radio unit. <IMAGE>

Description

Die Erfindung bezieht sich auf ein Mobilfunkgerät mit einer Sprachverarbeitungseinrichtung mit mindestens zwei Mikrophonen, die zur Lieferung von aus Sprach- und Störsignalanteilen bestehenden Mikrophonsignalen an Mikrophonsignalzweige dienen, die mit den Eingängen einer zur Bildung eines Summensignals dienenden Addiervorrichtung gekoppelt sind.The invention relates to a mobile radio device with a speech processing device with at least two microphones, which are used to deliver microphone signals consisting of speech and interference signal components to microphone signal branches, which are coupled to the inputs of an adding device used to form a sum signal.

Aus "Proceedings International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 2578-2581, New York, April 1988, IEEE" ist eine Mikrophonanordnung aus vier sich in den Ecken eines Raums mit quadratförmigem Grundriß befindenden Mikrophonen bekannt, deren Mikrophonsignale so weiterverarbeitet werden, daß der Einfluß von Störsignalen, die Sprachsignalen überlagert sind, verringert wird. Dazu werden zunächst die Mikrophonsignale zeitlich gegeneinander verschoben, um Laufzeitdifferenzen von einem Sprecher zu den einzelnen Mikrophonen auszugleichen. Die Mikrophonsignale mit somit phasengleichen Sprachsignalanteilen werden von einer Addiervorrichtung zu einem Summensignal überlagert, so daß die unkorrelierten Störsignalanteile der Mikrophonsignale bei der Uberlagerung abschwächt werden. Die Abschwächung ist dann nicht optimal, wenn ein inhomogenes Störsignalfeld vorliegt. In diesem Fall liegen an den Stellen, wo die Mikrophone angeordnet sind, unterschiedliche Leistungen von Störsignalen vor. Die überlagerten Mikrophonsignale werden nach Abschwächung durch einen der Mittelwertbildung dienendem Korrekturfaktor einem adaptivem Filter (Wiener-Filter) zugeführt. Dieses wird durch Auswertung der phasengleichen Mikrophonsignale eingestellt und sorgt für eine weitere Unterdrückung der Störsignale.From "Proceedings International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 2578-2581, New York, April 1988, IEEE" a microphone arrangement is known from four microphones located in the corners of a room with a square floor plan, the Microphone signals are further processed so that the influence of interference signals that are superimposed on speech signals is reduced. For this purpose, the microphone signals are first shifted against each other in time in order to compensate for time differences between a speaker and the individual microphones. The microphone signals with thus in-phase speech signal components are superimposed by an adding device to form a sum signal, so that the uncorrelated interference signal components of the microphone signals are weakened during the superimposition. The attenuation is not optimal if there is an inhomogeneous interference signal field. In this case, there are different levels of interference signals at the locations where the microphones are arranged. After attenuation, the superimposed microphone signals are fed to an adaptive filter (Wiener filter) by means of a correction factor serving to form the mean value. This is set by evaluating the in-phase microphone signals and further suppresses the interference signals.

Der Erfindung liegt die Aufgabe zugrunde, die Unterdrückung des Störsignalanteils des am Ausgang der Addiervorrichtung anliegenden Summensignals zu verbessern.The object of the invention is to improve the suppression of the interference signal component of the sum signal present at the output of the adding device.

Die Aufgabe wird dadurch gelöst, daß in den Mikrophonsignalzweigen Mittel zur Verzögerung der Mikrophonsignale und Mittel zur Gewichtung der Mikrophonsignale mit Gewichtsfaktoren vorgesehen sind und
daß eine Auswerteschaltung

  • zum Empfang der Mikrophonsignale,
  • zum Abschätzen der Störsignalanteile,
  • zum Abschätzen der Sprachsignalanteile jeweils durch Bildung der Differenz von einem der Mikrophonsignale und dem geschätzten Störsignalanteil für dieses Mikrophonsignal,
  • zur Auswahl eines der Mikrophonsignale als Referenzsignal bestehend aus einem Referenzstörsignalanteil und einem Referenzsprachsignalanteil,
  • zur Bildung von Sprachsignalverhältnissen durch Division der geschätzten Sprachsignalanteile durch den geschätzten Referenzsprachsignalanteil,
  • zur Bildung von Störsignalverhältnissen durch Division der Leistungen der geschätzten Störsignalanteile durch die Leistung des geschätzten Referenzstörsignalanteils und
  • zur Bestimmung der Gewichtsfaktoren durch Division der Sprachsignalverhältnisse jeweils durch das zugehörige Störsignalverhältnis
vorgesehen ist.The object is achieved in that means for delaying the microphone signals and for weighting the microphone signals with weighting factors are provided in the microphone signal branches and
that an evaluation circuit
  • for receiving the microphone signals,
  • for estimating the interference signal components,
  • for estimating the speech signal components in each case by forming the difference between one of the microphone signals and the estimated interference signal component for this microphone signal,
  • to select one of the microphone signals as a reference signal consisting of a reference interference signal component and a reference speech signal component,
  • to form speech signal ratios by dividing the estimated speech signal components by the estimated reference speech signal components,
  • to form interference signal ratios by dividing the powers of the estimated interference signal components by the power of the estimated reference interference signal components and
  • to determine the weighting factors by dividing the speech signal ratios by the associated interference signal ratio
is provided.

Das Signal/Rausch-Verhältnis entspricht dem Verhältnis der Leistungen von Sprach- und Störsignalanteil des Summensignals. Der Einfluß einer Inhomogenität des Störsignalfeldes wird minimiert. Mikrophonsignale mit kleinen Störsignalanteilen werden gegenüber den Mikrophonsignalen mit großen Störsignalanteilen verstärkt. Dies führt aufgrund der Korreliertheit der Sprachsignale und der Unkorreliertheit der Störsignale dazu, daß das am Ausgang der Addiervorrichtung anliegende Summensignal einen verrringerten Störsignalanteil bzw. ein erhöhtes Signal/Rausch-Verhältnis aufweist, wodurch eine bessere Sprachverständlichkeit des Summensignals erreicht wird.The signal-to-noise ratio corresponds to the ratio of the powers of the speech and interference signal components of the sum signal. The influence of an inhomogeneity of the interference signal field is minimized. Microphone signals with small interfering signal components are compared to the microphone signals large interfering signal components amplified. Due to the correlated nature of the speech signals and the uncorrelated nature of the interference signals, this leads to the sum signal present at the output of the adding device having a reduced interference signal component or an increased signal / noise ratio, as a result of which the speech signal of the sum signal is better understood.

Die wenig rechenaufwendige Berechnung der Gewichtsfaktoren führt zu einem erhöhten Signal/Rausch-Verhältnis und einer verbesserten Sprachverständlichkeit. Wegen der effizienten Berechnung der Gewichtsfaktoren ist eine in der Sprachverarbeitung häufig erforderliche Berechnung in Echtzeit möglich, so daß während eines über die Sprachverarbeitungseinrichtung geführten Gespräches keine störende Verzögerung entsteht.The computation of the weight factors, which does not require much computation, leads to an increased signal / noise ratio and improved speech intelligibility. Because of the efficient calculation of the weighting factors, a calculation that is often required in speech processing is possible in real time, so that there is no annoying delay during a conversation conducted via the speech processing device.

In einer weiteren Ausgestaltung der Erfindung ist eine Anpassung der Gewichtsfaktoren an zeitliche Änderungen der Störsignalanteile vorgesehen.In a further embodiment of the invention, an adaptation of the weighting factors to changes in the interference signal components over time is provided.

Für den Fall instationärer, d.h. zeitabhängiger Störsignalstatistiken verschlechtert sich bei konstanten Gewichtsfaktoren die Störsignalunterdrückung mit der Veränderung der Signalstatistik. Eine Anpassung der Gewichtsfaktoren verhindert dies. Die Gewichtsfaktoren werden in Zeitabschnitten konstant gehalten, in denen von einer zufriedenstellenden Stationarität der Signalstatistiken der Störsignale ausgegangen wird. Die Länge dieser Zeitabschnitte hängt von der Eigenart des jeweiligen Störsignalfeldes ab.In the case of transient, i.e. time-dependent interference signal statistics deteriorate with constant weight factors, the interference signal suppression with the change in the signal statistics. An adjustment of the weight factors prevents this. The weighting factors are kept constant in periods in which a satisfactory stationarity of the signal statistics of the interference signals is assumed. The length of these time segments depends on the nature of the respective interference signal field.

Eine andere Ausgestaltung der Erfindung ist dadurch gekennzeichnet, daß in jedem Mikrophonsignalzweig eine Transformationseinrichtung zur Spektraltransformation des zugeordneten Mikrophonsignals vorgesehen ist, daß die Auswerteschaltung zur Bildung von Gewichtsfaktoren für jeden Ausschnitt des Spektralbereiches der Mikrophonsignale vorgesehen ist und daß in jedem Mikrophonsignalzweig einem Mittel zur Gewichtung der Spektralbereichsausschnitte eine Rücktransformationseinrichtung nachgeordnet ist.Another embodiment of the invention is characterized in that in each microphone signal branch a transformation device for spectral transformation of the assigned microphone signal, it is provided that the evaluation circuit is provided to form weight factors for each section of the spectral range of the microphone signals and that in each microphone signal branch a reverse transformation device is arranged after a means for weighting the spectral section sections.

Die Störsignalanteile der Mikrophonsignale besitzen im allgemeinen keine Spektren mit gleich großen Spektralwerten. Aus diesem Grund ist es sinnvoll, die Bestimmung der Gewichtsfaktoren der Mikrophonsignale und die Gewichtung nicht im Zeitbereich sondern im Spektralbereich auszuführen, wozu eine Transformation der Mikrophonsignale - beispielsweise mit einer Fourier-Transformation - erforderlich ist. Der Spektralbereich wird in Ausschnitte mit mindestens einem Spektralwert unterteilt. Zu jedem Spektralbereichsausschnitt werden die optimalen Gewichtsfaktoren bestimmt, mit dem die entsprechenden Spektralwerte der Mikrophonsignale gewichtet werden. Eine verbesserte Reduzierung der Störsignalanteile der Mikrophonsignale wird erreicht und die Sprachverständlichkeit weiter erhöht.The interference signal components of the microphone signals generally have no spectra with spectral values of the same size. For this reason, it makes sense to determine the weighting factors of the microphone signals and the weighting not in the time domain but in the spectral range, for which purpose a transformation of the microphone signals - for example with a Fourier transformation - is required. The spectral range is divided into sections with at least one spectral value. For each spectral range section, the optimal weight factors are determined with which the corresponding spectral values of the microphone signals are weighted. An improved reduction of the interference signal components of the microphone signals is achieved and speech intelligibility is further increased.

Ausführungsbeispiele werden nachstehend anhand der Zeichnungen näher erläutert.Exemplary embodiments are explained in more detail below with reference to the drawings.

Es zeigen:

  • Fig. 1 eine Sprachverarbeitungseinrichtung mit einer Anordnung zur Reduzierung von Störsignalen,
  • Fig. 2 eine Ausgestaltung der Sprachverarbeitungseinrichtung durch eine Verarbeitung im Spektralbereich,
  • Fig. 3 ein Schaltungselement der in Fig. 2 dargestellten Sprachverarbeitungseinrichtung und
  • Fig. 4 ein Mobilfunkgerät, in das die Sprachverarbeitungseinrichtung integriert ist.
Show it:
  • 1 shows a speech processing device with an arrangement for reducing interference signals,
  • 2 shows an embodiment of the speech processing device by processing in the spectral range,
  • Fig. 3 shows a circuit element of the speech processing device shown in Fig. 2 and
  • 4 shows a mobile radio device in which the speech processing device is integrated.

Die in Fig. 1 dargestellte Sprachverarbeitungseinrichtung, die beispielsweise in Freisprecheinrichtungen von Fahrzeugen integriert ist, enthält N Mikrophone Mi (i=1, ..., N). Diese wandeln akustische Signale, die sich aus Sprach- und Störsignalanteilen zusammensetzen, in elektrische Mikrophonsignale x i =s i +n i

Figure imgb0001
(i=1, ..., N) um, die zur Weiterverarbeitung von Analog-Digital-Umsetzern 1 digitalisiert werden. xi steht für das vom Mikrophon Mi erzeugte Mikrophonsignal, si für den darin enthaltenen Sprachsignalanteil und ni für den entsprechenden Störsignalanteil jeweils im i-ten Mikrophonsignalzweig. Für die digitalisierten Signale sollen im folgenden dieselben Bezeichnungen wie für die entsprechenden analogen Signale gelten. Die Störsignale sind normalerweise Rauschsignale, die beim Einsatz in Fahrzeugen beispielsweise durch Motor- oder Fahrtwindgeräusche verursacht werden. Die Ausgänge der Analog-Digital-Umsetzer 1 sind mit N Eingängen einer Vorverarbeitungseinheit 2 verbunden. Diese enthält für jeden Mikrophonsignalzweig jeweils ein Verzögerungsglied T₁, ..., TN, wodurch Laufzeitunterschiede von Sprachsignalen einer Sprachsignalquelle zu den Mikrophonen M₁, ..., MN ausgeglichen werden. Die Verzögerungsglieder T₁, ..., TN werden adaptiv an diese Laufzeitunterschiede angepaßt. Die Ausgänge der Vorverarbeitungseinheit 2 sind mit steuerbaren Multiplizierern 3 verbunden, die für eine Gewichtung mit Gewichtsfaktoren ci (i=1, ..., N) in den Mikrophonsignalzweigen sorgen. Die Gewichtsfaktoren c₁, ..., cN werden durch eine Auswerteeinheit 4 eingestellt, die diese durch Auswertung der Mikrophonsignale x₁, ..., xN nach einem noch zu erläuternden Schema ermittelt. Kann eine näherungsweise zeitliche Stationarität der statistischen Eigenschaften der Störsignalanteile ni vorausgesetzt werden, reicht eine einmalige Berechnung der Gewichtsfaktoren aus. Die Ausgänge der Multiplizierer 3, die gleichzeitig die Ausgänge der Mikrophonsignalzweige darstellen, sind mit N Eingängen einer Addiervorrichtung 5 verbunden. Diese erzeugt aus den Ausgangssignalen der Multiplizierer 3 ein Summensignal x=s+n
Figure imgb0002
, das einem adaptivem Filter 6 - beispielsweise ein als Wiener-Filter ausgeführtes FIR-Filter - zugeführt wird. Das Filter 6 wird mit Hilfe der Auswerteeinheit 4 durch Auswertung der Mikrophonsignale z.B. wie im eingangs zitierten Stand der Technik eingestellt.The speech processing device shown in FIG. 1, which is integrated, for example, into hands-free devices of vehicles, contains N microphones M i (i = 1, ..., N). These convert acoustic signals, which are composed of speech and interference signal components, into electrical microphone signals x i = s i + n i
Figure imgb0001
(i = 1, ..., N), which are digitized for further processing by analog-digital converters 1. x i stands for the microphone signal generated by the microphone M i , s i for the speech signal component contained therein and n i for the corresponding interference signal component in each case in the i-th microphone signal branch. The following designations apply to the digitized signals as for the corresponding analog signals. The interference signals are normally noise signals that are caused, for example, by engine or wind noise when used in vehicles. The outputs of the analog-digital converter 1 are connected to N inputs of a preprocessing unit 2. This contains for each microphone signal branch a delay element T₁, ..., T N , whereby differences in transit time of speech signals from a speech signal source to the microphones M₁, ..., M N are compensated. The delay elements T₁, ..., T N are adaptively adapted to these time differences. The outputs of the preprocessing unit 2 are connected to controllable multipliers 3, which ensure weighting with weighting factors c i (i = 1, ..., N) in the microphone signal branches. The weight factors c₁, ..., c N are set by an evaluation unit 4, which determines this by evaluating the microphone signals x₁, ..., x N according to a scheme to be explained. If an approximate temporal steadiness of the statistical properties of the interference signal components n i can be assumed, a one-off calculation of the weighting factors is sufficient. The outputs of the multipliers 3, which simultaneously represent the outputs of the microphone signal branches, have N inputs an adding device 5 connected. This generates a sum signal from the output signals of the multipliers 3 x = s + n
Figure imgb0002
, which is fed to an adaptive filter 6 - for example a FIR filter designed as a Wiener filter. The filter 6 is set with the aid of the evaluation unit 4 by evaluating the microphone signals, for example as in the prior art cited at the beginning.

Im folgenden soll das Schema erläutert werden, mit dem die Auswerteeinheit 4 die Gewichtsfaktoren ci ermittelt. In einen in der Auswerteeinheit 4 angeordneten Pufferspeicher werden Abtastwerte der Mikrophonsignale xi eingelesen. Man erhält Schätzwerte für die Amplituden bzw. der Störsignalanteile ni durch Auswertung von den im Pufferspeicher abgelegten Abtastwerten der Mikrophonsignale xi aus den Zeiträumen, in denen keine oder vernachlässigbar kleine Sprachsignalanteile si vorhanden sind. Solche Sprachpausen sind aufgrund des markanten Signalverlaufs bzw. Spektrums von Sprachsignalen gegenüber Störsignalen detektierbar. Durch Subtraktion der ermittelten Schätzwerte der Amplituden der Störsignale ni von außerhalb der Sprachpausen liegenden Schätzwerten der Amplituden von Mikrophonsignalen xi (mit Sprachsignalanteilen si), die ebenfalls aus im Pufferspeicher abgelegten Abtastwerten ermittelt werden, werden die Schätzwerte der Amplituden der Sprachsignalanteile si durch Differenzbildung bestimmt.In the following, the scheme with which the evaluation unit 4 determines the weighting factors c i will be explained. Sampled values of the microphone signals x i are read into a buffer memory arranged in the evaluation unit 4. Estimates for the amplitudes or the interference signal components n i are obtained by evaluating the sample values of the microphone signals x i stored in the buffer memory from the periods in which there are no or negligibly small speech signal components s i . Such speech pauses can be detected due to the striking signal curve or spectrum of speech signals compared to interference signals. By subtracting the determined estimates of the amplitudes of the interference signals n i from estimates of the amplitudes of microphone signals x i (with speech signal components s i ) which are outside the speech pauses and which are likewise determined from sample values stored in the buffer memory, the estimates of the amplitudes of the speech signal components s i are obtained by Determination of difference determined.

Die Gewichtsfaktoren c₁, ..., cN sollen so dimensioniert werden, daß das sogenannte Signal-Rauschverhältnis (SNR) des Summensignals x am Ausgang der Addiervorrichtung 5 maximiert wird. Das SNR ergibt sich aus dem Verhältnis der Leistung (Varianz) des Sprachsignalanteils zur Leistung (Varianz) des Störsignalanteils des Summensignals x.

Figure imgb0003

σs und σn sind die Standardabweichungen des Sprachsignalanteils s und des Störsignalanteils n des Summensignals x. Weiterhin sind durch

s i = a i s₁, i=1,...,N
Figure imgb0004


Sprachsignalverhältnisse ai durch das Verhältnis der geschätzten Amplituden der Sprachsignalanteile si zu der geschätzten Amplitude des als Referenzsprachsignalanteil dienenden Sprachsignalanteils s₁ bestimmt, wenn x₁ als Referenzmikrophonsignal zugrunde gelegt wird. n₁ dient damit als Referenzstörsignal. Als Referenzgrößen sind ohne Einschränkung auch alle anderen Mikrophonsignale bzw. Sprach- und Störsignalanteile mit einem Index i≠1 festsetzbar. Unter der Voraussetzung, daß die Störsignalanteile ni unkorreliert und mittelwertfrei sind, gilt:

E{n i n j } = 0 für alle i≠j
Figure imgb0005


und

E{n i ²} = σ ni ² = b i ² σ n1 ²
Figure imgb0006


mit E{} als Erwartungswertoperator und σn1² als Referenzstörleistung. Damit sind sind Störsignalverhältnisse bi² durch das Verhältnis der geschätzten Leistungen σni² der Störsignalanteile zu der geschätzten Leistung σn1² des Referenzstörsignalanteils definiert.The weighting factors c 1, ..., c N are to be dimensioned such that the so-called signal-to-noise ratio (SNR) of the sum signal x at the output of the adding device 5 is maximized. The SNR results from the ratio of the power (variance) of the speech signal component to the power (variance) of the interference signal component of the sum signal x.
Figure imgb0003

σ s and σ n are the standard deviations of the speech signal component s and the interference signal component n of the sum signal x. Furthermore are through

s i = a i s₁, i = 1, ..., N
Figure imgb0004


Speech signal ratios a i determined by the ratio of the estimated amplitudes of the speech signal components s i to the estimated amplitude of the speech signal component serving as the reference speech signal component s 1 if x 1 is used as the reference microphone signal. n₁ thus serves as a reference interference signal. All other microphone signals or speech and interference signal components with an index i ≠ 1 can also be set as reference variables without restriction. Provided that the interference signal components n i are uncorrelated and free of mean values, the following applies:

E {n i n j } = 0 for all i ≠ j
Figure imgb0005


and

E {n i ²} = σ ni ² = b i ² σ n1 ²
Figure imgb0006


with E {} as the expected value operator and σ n1 ² as the reference interference power. Interference signal ratios b i ² are thus defined by the ratio of the estimated powers σ ni ² of the interference signal components to the estimated power σ n1 ² of the reference interference signal component.

Es wird weiterhin davon ausgegangen, daß die Sprach- und Störsignalanteile nicht miteinander korreliert sind und mittelwertfrei sind, was durch den Ausdruck

E{s i n j } = 0 für alle i, j

Figure imgb0007


beschrieben wird. Damit ergibt sich als Formel für das SNR des Summensignals x:
Figure imgb0008

Die Maximierung dieses Ausdrucks bezüglich der Gewichtsfaktoren ci ergibt:
Figure imgb0009

Dieses Ergebnis erhält man beispielsweise über die Bildung der partiellen Ableitungen des obigen Ausdrucks für das SNR. Man erhält eine sehr einfache Formel zur Berechnung der Gewichtsfaktoren ci.It is further assumed that the speech and interference signal components are not correlated with one another and are free of mean values, which is due to the expression

It i n j } = 0 for all i, j
Figure imgb0007


is described. The formula for the SNR of the sum signal x is:
Figure imgb0008

Maximizing this expression with respect to the weighting factors c i gives:
Figure imgb0009

This result can be obtained, for example, by forming the partial derivatives of the above expression for the SNR. A very simple formula for calculating the weighting factors c i is obtained .

Die durch die Fig. 2 und 3 beschriebene Sprachverarbeitungeinrichtung stellt eine Ausgestaltung der in Fig. 1 dargestellten Sprachverarbeitungeinrichtung dar. Die N Ausgangssignale der Vorverarbeitungseinheit 2, die die Abtastwerte der Mikrophonsignale x₁, ..., xN darstellen, werden durch Spektraltransformationseinrichtungen 7 in den Spektralbereich transformiert, z.B. durch schnelle Fourier-Transformation (FFT). Der Spektralbereich wird in M Ausschnitte unterteilt, die mindestens einen Spektralwert enthalten. Die Spektralwerte werden auf N Multiplikationseinrichtungen 8 gegeben, die jeden Spektralbereichsausschnitt mit einem eigens für jeden Spektralbereichsausschnitt getrennt berechneten Gewichtsfaktor ci,j gewichtet bzw. multipliziert. i ist der Index des Mikrophonsignalzweiges. j stellt den Spektral- bzw. Frequenzindex des jeweiligen Spektralbereichsausschnittes dar. In Fig. 3 ist eine der Multiplikationseinrichtungen 8 in ihrer Grundstruktur dargestellt, die die Spektralbereichsausschnitte des jeweiligen Mikrophonsignalzweiges mit den Gewichtsfaktoren ci,j multipliziert. Der Spektralbereich enthält M Spektralbereichsausschnitte, so daß für jeden Mikrophonsignalzweig M Multiplizierer notwendig sind. Die Gewichtsfaktoren ci,j werden von einer Auswerteeinheit 9 eingestellt. Sie werden analog zur Berechnung der Gewichtsfaktoren ci in der Beschreibung zu Fig. 1 durch Maximierung des Signal/Rausch-Verhältnisses (SNR) in den jeweiligen Spektralbereichsausschnitten ermittelt. Die Schätzwerte der Amplituden der Sprach- und Störsignalanteile si, ni im Zeitbereich sind durch entsprechende Schätzwerte im Frequenzbereich zu ersetzen. Die so gewichteten Spektralwerte werden Rücktransformationseinrichtungen 10 zugeführt, die die gewichteten Spektren der jeweiligen Mikrophonsignalzweige in den Zeitbereich rücktransformiert. Die so erhaltenen Signale werden wie in Fig. 1 von der Addiervorrichtung 5 aufsummiert und dem adaptiven Filter 6 zugeführt. Dieses wird von einer Auswerteeinheit 11 eingestellt, die analog zur die Auswerteeinheit 4 in Fig. 1 die an den Ausgängen der Analog-Digital-Umsetzer 1 anliegenden Mikrophonsignale xi auswertet.The speech processing device described by FIGS. 2 and 3 represents an embodiment of the speech processing device shown in FIG. 1. The N output signals of the preprocessing unit 2, which represent the samples of the microphone signals x 1,..., N , are converted into spectral transformation devices 7 in the Spectral range transformed, for example by fast Fourier transform (FFT). The spectral range is divided into M sections that contain at least one spectral value. The spectral values are given to N multiplication devices 8, each section of the spectral range weighted or multiplied by a weight factor c i, j calculated separately for each spectral range section. i is the index of the microphone signal branch. j represents the spectral or frequency index of the respective spectral range section. In FIG. 3 one of the multiplication devices 8 is shown in its basic structure, which multiplies the spectral range sections of the respective microphone signal branch by the weighting factors c i, j . The spectral range contains M spectral range sections, so that M multipliers are required for each microphone signal branch. The weighting factors c i, j are set by an evaluation unit 9. They are determined analogously to the calculation of the weighting factors c i in the description of FIG. 1 by maximizing the signal / noise ratio (SNR) in the respective spectral range sections. The estimated values of the amplitudes of the speech and interference signal components s i , n i in the time domain are to be replaced by corresponding estimated values in the frequency domain. The spectral values weighted in this way are fed back transformation devices 10, which transform the weighted spectra of the respective microphone signal branches back into the time domain. The signals obtained in this way are added up as in FIG. 1 by the adding device 5 and fed to the adaptive filter 6. This is set by an evaluation unit 11 which, analogous to the evaluation unit 4 in FIG. 1, evaluates the microphone signals x i present at the outputs of the analog-digital converter 1.

Mit Hilfe einer so ausgestalteten Sprachverarbeitungseinrichtung kann das Signal/Rausch-Verhältnis (SNR) des Summensignals x weiter erhöht und die Sprachverständlichkeit verbessert werden, da berücksichtigt wird, daß die Leistung der Störsignalanteile im Spektralbereich nicht gleichmäßig auf alle Spektralwerte verteilt ist.With the aid of a speech processing device designed in this way, the signal-to-noise ratio (SNR) of the sum signal x can be further increased and speech intelligibility can be improved, since it is taken into account that the power of the interference signal components in the spectral range is not uniformly distributed over all spectral values.

Für den Fall zeitvarianter Störsignalstatistik, d.h. daß die Standardabweichungen σni sind nicht näherungsweise zeitunabhängig sind, werden die Gewichtsfaktoren ci bzw. ci,j ständig neu berechnet und eingestellt. Dies ist von der Eigenart des jeweiligen Störsignalfeldes abhängig. So ändert sich beispielsweise die Störsignalstatistik eines Fahrzeuges beim Beschleunigen aus dem Stand erheblich, da nun beispielsweise durch den Fahrtwind erzeugtes Rauschen entsteht.In the case of time-variant interference signal statistics, ie that the standard deviations σ ni are not approximately independent of time, the weighting factors c i and c i, j are constantly recalculated and set. This depends on the nature of the respective interference signal field. For example, the interference signal statistics of a vehicle change considerably when accelerating from a standing position, since noise is now generated, for example, by the headwind.

In Fig. 4 ist ein Mobilfunkgerät 12 dargestellt, in das eine Sprachverarbeitungseinrichtung 13 integriert ist, der über eine Anordnung aus drei Mikrophonen M₁, M₂ und M₃ Mikrophonsignale zugeführt werden. Der Aufbau der Sprachverarbeitungseinrichtung 13 ist entweder der Figur 1 oder den Figuren 2 und 3 mit den zugehörigen Beschreibungen zu entnehmen. Ausgangssignale der Sprachverarbeitungseinrichtung 13 werden einem Funktionsblock 14 zugeführt, der die weiteren Funktionseinheiten des Mobilfunkgeräts 12 zusammenfaßt und an den ein Lautsprecher 15 und eine Antenne 16 gekoppelt sind. Die Mikrophone M₁, M₂ und M₃, die Sprachverarbeitungseinrichtung 13 und der Lautsprecher 15 wirken mit Hilfe des Funktionsblocks 14 als Teile einer Freisprecheinrichtung des Mobilfunkgeräts 12.In Fig. 4, a mobile device 12 is shown, in which a voice processing device 13 is integrated, which are supplied via an arrangement of three microphones M₁, M₂ and M₃ microphone signals. The structure of the speech processing device 13 can be found either in FIG. 1 or in FIGS. 2 and 3 with the associated descriptions. Output signals of the speech processing device 13 are fed to a function block 14, which combines the other functional units of the mobile radio device 12 and to which a loudspeaker 15 and an antenna 16 are coupled. The microphones M 1, M 2 and M 3, the speech processing device 13 and the loudspeaker 15 act with the help of the function block 14 as parts of a hands-free device of the mobile radio device 12.

Claims (5)

Mobilfunkgerät mit einer Sprachverarbeitungseinrichtung mit mindestens zwei Mikrophonen (M₁, ...,MN), die zur Lieferung von aus Sprach- und Störsignalanteilen (s₁, ..., sN, n₁, ..., nN) bestehenden Mikrophonsignalen (x₁, ..., xN) an Mikrophonsignalzweige dienen, die mit den Eingängen einer zur Bildung eines Summensignals (x) dienenden Addiervorrichtung (5) gekoppelt sind,
dadurch gekennzeichnet,
daß in den Mikrophonsignalzweigen Mittel (T₁, ..., TN) zur Verzögerung der Mikrophonsignale (x₁, ..., xN) und Mittel (3) zur Gewichtung der Mikrophonsignale (x₁, ..., xN) mit Gewichtsfaktoren (c₁, ..., cN) vorgesehen sind und daß eine Auswerteschaltung (4) - zum Empfang der Mikrophonsignale (x₁, ..., xN), - zum Abschätzen der Störsignalanteile (n₁, ..., nN), - zum Abschätzen der Sprachsignalanteile (s₁, ..., sN) jeweils durch Bildung der Differenz von einem der Mikrophonsignale (xi) und dem geschätzten Störsignalanteil (ni) für dieses Mikrophonsignal (xi), - zur Auswahl eines der Mikrophonsignale als Referenzsignal (x₁) bestehend aus einem Referenzstörsignalanteil (n₁) und einem Referenzsprachsignalanteil (s₁), - zur Bildung von Sprachsignalverhältnissen (a₁,..., aN) durch Division der geschätzten Sprachsignalanteile (s₁, ..., sN) durch den geschätzten Referenzsprachsignalanteil (s₁), - zur Bildung von Störsignalverhältnissen (b₁²,...,bN²) durch Division der Leistungen (σn1²,...,σnN²) der geschätzten Störsignalanteile (n₁, ..., nN) durch die Leistung (σn1²) des geschätzten Referenzstörsignalanteils (n₁) und - zur Bestimmung der Gewichtsfaktoren (c₁, ...,cN) durch Division der Sprachsignalverhältnisse (a₁,...,aN) jeweils durch das zugehörige Störsignalverhältnis (bi²) vorgesehen ist.
Mobile radio device with a speech processing device with at least two microphones (M₁, ..., M N ), which are used to supply microphone signals consisting of speech and interference signal components (s₁, ..., s N , n₁, ..., n N ) ( x₁, ..., x N ) are used on microphone signal branches which are coupled to the inputs of an adding device (5) serving to form a sum signal (x),
characterized by
that in the microphone signal branches means (T₁, ..., T N ) for delaying the microphone signals (x₁, ..., x N ) and means (3) for weighting the microphone signals (x₁, ..., x N ) with weighting factors (c₁, ..., c N ) are provided and that an evaluation circuit (4) - to receive the microphone signals (x₁, ..., x N ), - to estimate the interference signal components (n₁, ..., n N ), - to estimate the speech signal components (s 1, ..., s N ) in each case by forming the difference between one of the microphone signals (x i ) and the estimated interference signal component (n i ) for this microphone signal (x i ), - to select one of the microphone signals as a reference signal (x₁) consisting of a reference interference signal component (n₁) and a reference speech signal component (s₁), - to form speech signal ratios (a₁, ..., a N ) by dividing the estimated speech signal components (s₁, ..., s N ) by the estimated reference speech signal component (s₁), - For the formation of interference signal ratios (b₁², ..., b N ²) by dividing the powers (σ n1 ², ..., σ nN ²) of the estimated interference signal components (n₁, ..., n N ) by the Power (σ n1 ²) of the estimated reference noise component (n₁) and - To determine the weighting factors (c₁, ..., c N ) by dividing the speech signal ratios (a₁, ..., a N ) each by the associated interference signal ratio (b i ²) is provided.
Mobilfunkgerät nach Anspruch 1,
dadurch gekennzeichnet,
daß die Sprachverarbeitungseinrichtung in eine Freisprecheinrichtung integriert ist.
Mobile radio device according to claim 1,
characterized by
that the speech processing device is integrated into a hands-free device.
Mobilfunkgerät nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß eine Anpassung der Gewichtsfaktoren (c₁, ..., cN) an zeitliche Änderungen der Störsignalanteile (n₁, ..., nN) vorgesehen ist.
Mobile radio device according to claim 1 or 2,
characterized by
that an adaptation of the weighting factors (c₁, ..., c N ) to temporal changes in the interference signal components (n₁, ..., n N ) is provided.
Mobilfunkgerät nach einem der Ansprüche 1, 2 oder 3, dadurch gekennzeichnet,
daß in jedem Mikrophonsignalzweig eine Transformationseinrichtung (7) zur Spektraltransformation des zugeordneten Mikrophonsignals (xi) vorgesehen ist,
daß die Auswerteschaltung (9) zur Bildung von Gewichtsfaktoren (ci,j) für jeden Ausschnitt des Spektralbereichs der Mikrophonsignale (x₁, ..., xN) vorgesehen ist und
daß in jedem Mikrophonsignalzweig einem Mittel (8) zur Gewichtung der Spektralbereichsausschnitte eine Rücktransformationseinrichtung (10) nachgeordnet ist.
Mobile radio device according to one of Claims 1, 2 or 3, characterized in that
that in each microphone signal branch a transformation device (7) for spectrally transforming the assigned microphone signal (x i ) is provided,
that the evaluation circuit (9) for forming weight factors (c i, j ) is provided for each section of the spectral range of the microphone signals (x₁, ..., x N ) and
that in each microphone signal branch a means (8) for weighting the spectral range sections is followed by a reverse transformation device (10).
Sprachverarbeitungseinrichtung mit mindestens zwei Mikrophonen (M₁, ...,MN), die zur Lieferung von aus Sprach- und Störsignalanteilen (s₁, ..., sN, n₁, ..., nN) bestehenden Mikrophonsignalen (x₁, ..., xN) an Mikrophonsignalzweige dienen, die mit den Eingängen einer zur Bildung eines Summensignals (x) dienenden Addiervorrichtung (5) gekoppelt sind,
dadurch gekennzeichnet,
daß in den Mikrophonsignalzweigen Mittel (T₁, ..., TN) zur Verzögerung der Mikrophonsignale (x₁, ..., xN) und Mittel (3) zur Gewichtung der Mikrophonsignale (x₁, ..., xN) mit Gewichtsfaktoren (c₁, ..., cN) vorgesehen sind und daß eine Auswerteschaltung (4) - zum Empfang der Mikrophonsignale (x₁, ..., xN), - zum Abschätzen der Störsignalanteile (n₁, ..., nN), - zum Abschätzen der Sprachsignalanteile (s₁, ..., sN) jeweils durch Bildung der Differenz von einem der Mikrophonsignale (xi) und dem geschätzten Störsignalanteil (ni) für dieses Mikrophonsignal (xi), - zur Auswahl eines der Mikrophonsignale als Referenzsignal (x₁) bestehend aus einem Referenzstörsignalanteil (n₁) und einem Referenzsprachsignalanteil (s₁), - zur Bildung von Sprachsignalverhältnissen (a₁,..., aN) durch Division der geschätzten Sprachsignalanteile (s₁, ..., sN) durch den geschätzten Referenzsprachsignalanteil (s₁), - zur Bildung von Störsignalverhältnissen (b₁², ...,bN²) durch Division der Leistungen (σn1²,...,σnN²) der geschätzten Störsignalanteile (n₁, ..., nN) durch die Leistung (σn1²) des geschätzten Referenzstörsignalanteils (n₁) und - zur Bestimmung der Gewichtsfaktoren (c₁,...,cN) durch Division der Sprachsignalverhältnisse (a₁,...,aN) jeweils durch das zugehörige Störsignalverhältnis (bi²) vorgesehen ist.
Speech processing device with at least two microphones (M₁, ..., M N ) which are used to supply microphone signals (x₁,... Consisting of speech and interference signal components (s₁, ..., s N , n₁, ..., n N ). .., x N ) are used on microphone signal branches which are coupled to the inputs of an adding device (5) serving to form a sum signal (x),
characterized by
that in the microphone signal branches means (T₁, ..., T N ) for delaying the microphone signals (x₁, ..., x N ) and means (3) for weighting the microphone signals (x₁, ..., x N ) with weighting factors (c₁, ..., c N ) are provided and that an evaluation circuit (4) - to receive the microphone signals (x₁, ..., x N ), - to estimate the interference signal components (n₁, ..., n N ), - to estimate the speech signal components (s 1, ..., s N ) in each case by forming the difference between one of the microphone signals (x i ) and the estimated interference signal component (n i ) for this microphone signal (x i ), - to select one of the microphone signals as a reference signal (x₁) consisting of a reference interference signal component (n₁) and a reference speech signal component (s₁), - to form speech signal ratios (a₁, ..., a N ) by dividing the estimated speech signal components (s₁, ..., s N ) by the estimated reference speech signal component (s₁), - to form interference signal ratios (b₁², ..., b N ²) by dividing the powers (σ n1 ², ..., σ nN ²) of the estimated interference signal components (n₁, ..., n N ) by the power ( σ n1 ²) of the estimated reference noise component (n₁) and - To determine the weighting factors (c₁, ..., c N ) by dividing the speech signal ratios (a₁, ..., a N ) each by the associated interference signal ratio (b i ²) is provided.
EP94202513A 1993-09-07 1994-09-02 Mobile communication apparatus with speech processing device Withdrawn EP0642290A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4330243A DE4330243A1 (en) 1993-09-07 1993-09-07 Speech processing facility
DE4330243 1993-09-07

Publications (2)

Publication Number Publication Date
EP0642290A2 true EP0642290A2 (en) 1995-03-08
EP0642290A3 EP0642290A3 (en) 2006-04-19

Family

ID=6497058

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94202513A Withdrawn EP0642290A3 (en) 1993-09-07 1994-09-02 Mobile communication apparatus with speech processing device

Country Status (4)

Country Link
US (1) US5602962A (en)
EP (1) EP0642290A3 (en)
JP (1) JP3373306B2 (en)
DE (1) DE4330243A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997029614A1 (en) * 1996-02-07 1997-08-14 Advanced Micro Devices, Inc. Directional microphone utilizing spaced-apart omni-directional microphones
GB2289593B (en) * 1994-05-18 1998-08-05 Mitsubishi Electric Corp Handsfree communication apparatus
US5907823A (en) * 1995-09-13 1999-05-25 Nokia Mobile Phones Ltd. Method and circuit arrangement for adjusting the level or dynamic range of an audio signal
EP1614322A2 (en) * 2003-04-08 2006-01-11 Philips Intellectual Property & Standards GmbH Method and apparatus for reducing an interference noise signal fraction in a microphone signal
US6987343B2 (en) 2001-04-25 2006-01-17 Matsushita Electric Industrial Co., Ltd. Motor

Families Citing this family (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5737433A (en) * 1996-01-16 1998-04-07 Gardner; William A. Sound environment control apparatus
US5774562A (en) * 1996-03-25 1998-06-30 Nippon Telegraph And Telephone Corp. Method and apparatus for dereverberation
US6978159B2 (en) * 1996-06-19 2005-12-20 Board Of Trustees Of The University Of Illinois Binaural signal processing using multiple acoustic sensors and digital filtering
KR100198289B1 (en) * 1996-12-27 1999-06-15 구자홍 Direction control method and apparatus in microphone system
US6603861B1 (en) * 1997-08-20 2003-08-05 Phonak Ag Method for electronically beam forming acoustical signals and acoustical sensor apparatus
US7146012B1 (en) * 1997-11-22 2006-12-05 Koninklijke Philips Electronics N.V. Audio processing arrangement with multiple sources
US6023514A (en) * 1997-12-22 2000-02-08 Strandberg; Malcolm W. P. System and method for factoring a merged wave field into independent components
DE19812697A1 (en) * 1998-03-23 1999-09-30 Volkswagen Ag Method and device for operating a microphone arrangement, in particular in a motor vehicle
DE19818611C1 (en) * 1998-04-20 1999-09-16 Deutsche Telekom Ag Frequency range equalization method for microphone array e.g. for hands-free phone device in automobile
US6549586B2 (en) 1999-04-12 2003-04-15 Telefonaktiebolaget L M Ericsson System and method for dual microphone signal noise reduction using spectral subtraction
US6459914B1 (en) * 1998-05-27 2002-10-01 Telefonaktiebolaget Lm Ericsson (Publ) Signal noise reduction by spectral subtraction using spectrum dependent exponential gain function averaging
US6556966B1 (en) * 1998-08-24 2003-04-29 Conexant Systems, Inc. Codebook structure for changeable pulse multimode speech coding
AU2001252913A1 (en) * 2000-03-17 2001-10-03 The Johns-Hopkins University Phased array surveillance system
EP1290912B1 (en) * 2000-05-26 2005-02-02 Koninklijke Philips Electronics N.V. Method for noise suppression in an adaptive beamformer
US20020054685A1 (en) * 2000-11-09 2002-05-09 Carlos Avendano System for suppressing acoustic echoes and interferences in multi-channel audio systems
US7206418B2 (en) * 2001-02-12 2007-04-17 Fortemedia, Inc. Noise suppression for a wireless communication device
JP3771812B2 (en) * 2001-05-28 2006-04-26 インターナショナル・ビジネス・マシーンズ・コーポレーション Robot and control method thereof
US7274794B1 (en) 2001-08-10 2007-09-25 Sonic Innovations, Inc. Sound processing system including forward filter that exhibits arbitrary directivity and gradient response in single wave sound environment
CA2357200C (en) * 2001-09-07 2010-05-04 Dspfactory Ltd. Listening device
GB2382748A (en) * 2001-11-28 2003-06-04 Ipwireless Inc Signal to noise plus interference ratio (SNIR) estimation with corection factor
US8942387B2 (en) 2002-02-05 2015-01-27 Mh Acoustics Llc Noise-reducing directional microphone array
US7171008B2 (en) * 2002-02-05 2007-01-30 Mh Acoustics, Llc Reducing noise in audio systems
US8098844B2 (en) * 2002-02-05 2012-01-17 Mh Acoustics, Llc Dual-microphone spatial noise suppression
KR20030083317A (en) * 2002-04-20 2003-10-30 엘지전자 주식회사 Noise eliminate apparatus for mobile communication terminal
JP4196162B2 (en) * 2002-08-20 2008-12-17 ソニー株式会社 Automatic wind noise reduction circuit and automatic wind noise reduction method
US7039200B2 (en) * 2003-03-31 2006-05-02 Microsoft Corporation System and process for time delay estimation in the presence of correlated noise and reverberation
ATE420539T1 (en) * 2003-05-13 2009-01-15 Harman Becker Automotive Sys METHOD AND SYSTEM FOR ADAPTIVE COMPENSATION OF MICROPHONE INEQUALITIES
EP1581026B1 (en) * 2004-03-17 2015-11-11 Nuance Communications, Inc. Method for detecting and reducing noise from a microphone array
ATE405925T1 (en) 2004-09-23 2008-09-15 Harman Becker Automotive Sys MULTI-CHANNEL ADAPTIVE VOICE SIGNAL PROCESSING WITH NOISE CANCELLATION
US8543390B2 (en) * 2004-10-26 2013-09-24 Qnx Software Systems Limited Multi-channel periodic signal enhancement system
US7292985B2 (en) * 2004-12-02 2007-11-06 Janus Development Group Device and method for reducing stuttering
US20070116300A1 (en) * 2004-12-22 2007-05-24 Broadcom Corporation Channel decoding for wireless telephones with multiple microphones and multiple description transmission
US8509703B2 (en) * 2004-12-22 2013-08-13 Broadcom Corporation Wireless telephone with multiple microphones and multiple description transmission
US20060133621A1 (en) * 2004-12-22 2006-06-22 Broadcom Corporation Wireless telephone having multiple microphones
US7983720B2 (en) * 2004-12-22 2011-07-19 Broadcom Corporation Wireless telephone with adaptive microphone array
US20060147063A1 (en) * 2004-12-22 2006-07-06 Broadcom Corporation Echo cancellation in telephones with multiple microphones
US8345890B2 (en) * 2006-01-05 2013-01-01 Audience, Inc. System and method for utilizing inter-microphone level differences for speech enhancement
US9185487B2 (en) * 2006-01-30 2015-11-10 Audience, Inc. System and method for providing noise suppression utilizing null processing noise subtraction
US8204252B1 (en) 2006-10-10 2012-06-19 Audience, Inc. System and method for providing close microphone adaptive array processing
US8194880B2 (en) * 2006-01-30 2012-06-05 Audience, Inc. System and method for utilizing omni-directional microphones for speech enhancement
US8744844B2 (en) * 2007-07-06 2014-06-03 Audience, Inc. System and method for adaptive intelligent noise suppression
US7720681B2 (en) * 2006-03-23 2010-05-18 Microsoft Corporation Digital voice profiles
US8949120B1 (en) 2006-05-25 2015-02-03 Audience, Inc. Adaptive noise cancelation
US8934641B2 (en) * 2006-05-25 2015-01-13 Audience, Inc. Systems and methods for reconstructing decomposed audio signals
US8150065B2 (en) * 2006-05-25 2012-04-03 Audience, Inc. System and method for processing an audio signal
US8204253B1 (en) 2008-06-30 2012-06-19 Audience, Inc. Self calibration of audio device
US8849231B1 (en) 2007-08-08 2014-09-30 Audience, Inc. System and method for adaptive power control
US9462118B2 (en) * 2006-05-30 2016-10-04 Microsoft Technology Licensing, Llc VoIP communication content control
US8971217B2 (en) * 2006-06-30 2015-03-03 Microsoft Technology Licensing, Llc Transmitting packet-based data items
US8259926B1 (en) 2007-02-23 2012-09-04 Audience, Inc. System and method for 2-channel and 3-channel acoustic echo cancellation
JP4455614B2 (en) * 2007-06-13 2010-04-21 株式会社東芝 Acoustic signal processing method and apparatus
US8189766B1 (en) 2007-07-26 2012-05-29 Audience, Inc. System and method for blind subband acoustic echo cancellation postfiltering
US8428661B2 (en) * 2007-10-30 2013-04-23 Broadcom Corporation Speech intelligibility in telephones with multiple microphones
US8121311B2 (en) * 2007-11-05 2012-02-21 Qnx Software Systems Co. Mixer with adaptive post-filtering
US8143620B1 (en) 2007-12-21 2012-03-27 Audience, Inc. System and method for adaptive classification of audio sources
US8180064B1 (en) 2007-12-21 2012-05-15 Audience, Inc. System and method for providing voice equalization
US8411880B2 (en) * 2008-01-29 2013-04-02 Qualcomm Incorporated Sound quality by intelligently selecting between signals from a plurality of microphones
US8194882B2 (en) 2008-02-29 2012-06-05 Audience, Inc. System and method for providing single microphone noise suppression fallback
US8355511B2 (en) 2008-03-18 2013-01-15 Audience, Inc. System and method for envelope-based acoustic echo cancellation
EP2304968A2 (en) * 2008-05-23 2011-04-06 Analog Devices, Inc. Wide dynamic range microphone
US8521530B1 (en) 2008-06-30 2013-08-27 Audience, Inc. System and method for enhancing a monaural audio signal
US8774423B1 (en) 2008-06-30 2014-07-08 Audience, Inc. System and method for controlling adaptivity of signal modification using a phantom coefficient
US9008329B1 (en) 2010-01-26 2015-04-14 Audience, Inc. Noise reduction using multi-feature cluster tracker
US8798290B1 (en) 2010-04-21 2014-08-05 Audience, Inc. Systems and methods for adaptive signal equalization
TWI419149B (en) * 2010-11-05 2013-12-11 Ind Tech Res Inst Systems and methods for suppressing noise
US9100735B1 (en) 2011-02-10 2015-08-04 Dolby Laboratories Licensing Corporation Vector noise cancellation
US9253566B1 (en) 2011-02-10 2016-02-02 Dolby Laboratories Licensing Corporation Vector noise cancellation
EP2490459B1 (en) * 2011-02-18 2018-04-11 Svox AG Method for voice signal blending
US9502050B2 (en) 2012-06-10 2016-11-22 Nuance Communications, Inc. Noise dependent signal processing for in-car communication systems with multiple acoustic zones
TWI466108B (en) * 2012-07-31 2014-12-21 Acer Inc Audio processing method and audio processing device
CN104704560B (en) 2012-09-04 2018-06-05 纽昂斯通讯公司 The voice signals enhancement that formant relies on
US9640194B1 (en) 2012-10-04 2017-05-02 Knowles Electronics, Llc Noise suppression for speech processing based on machine-learning mask estimation
DE102013005049A1 (en) * 2013-03-22 2014-09-25 Unify Gmbh & Co. Kg Method and apparatus for controlling voice communication and use thereof
US9536540B2 (en) 2013-07-19 2017-01-03 Knowles Electronics, Llc Speech signal separation and synthesis based on auditory scene analysis and speech modeling
WO2015179914A1 (en) * 2014-05-29 2015-12-03 Wolfson Dynamic Hearing Pty Ltd Microphone mixing for wind noise reduction
DE112015003945T5 (en) 2014-08-28 2017-05-11 Knowles Electronics, Llc Multi-source noise reduction
US9554207B2 (en) 2015-04-30 2017-01-24 Shure Acquisition Holdings, Inc. Offset cartridge microphones
US9565493B2 (en) 2015-04-30 2017-02-07 Shure Acquisition Holdings, Inc. Array microphone system and method of assembling the same
US9894434B2 (en) 2015-12-04 2018-02-13 Sennheiser Electronic Gmbh & Co. Kg Conference system with a microphone array system and a method of speech acquisition in a conference system
US11064291B2 (en) 2015-12-04 2021-07-13 Sennheiser Electronic Gmbh & Co. Kg Microphone array system
US10367948B2 (en) 2017-01-13 2019-07-30 Shure Acquisition Holdings, Inc. Post-mixing acoustic echo cancellation systems and methods
EP3804356A1 (en) 2018-06-01 2021-04-14 Shure Acquisition Holdings, Inc. Pattern-forming microphone array
US11297423B2 (en) 2018-06-15 2022-04-05 Shure Acquisition Holdings, Inc. Endfire linear array microphone
EP3854108A1 (en) 2018-09-20 2021-07-28 Shure Acquisition Holdings, Inc. Adjustable lobe shape for array microphones
CN113841419A (en) 2019-03-21 2021-12-24 舒尔获得控股公司 Housing and associated design features for ceiling array microphone
JP2022526761A (en) 2019-03-21 2022-05-26 シュアー アクイジッション ホールディングス インコーポレイテッド Beam forming with blocking function Automatic focusing, intra-regional focusing, and automatic placement of microphone lobes
US11558693B2 (en) 2019-03-21 2023-01-17 Shure Acquisition Holdings, Inc. Auto focus, auto focus within regions, and auto placement of beamformed microphone lobes with inhibition and voice activity detection functionality
CN114051738A (en) 2019-05-23 2022-02-15 舒尔获得控股公司 Steerable speaker array, system and method thereof
CN114051637A (en) 2019-05-31 2022-02-15 舒尔获得控股公司 Low-delay automatic mixer integrating voice and noise activity detection
JP2022545113A (en) 2019-08-23 2022-10-25 シュアー アクイジッション ホールディングス インコーポレイテッド One-dimensional array microphone with improved directivity
CN111009255B (en) * 2019-11-29 2022-04-22 深圳市无限动力发展有限公司 Method, apparatus, computer device and storage medium for eliminating internal noise interference
US11552611B2 (en) 2020-02-07 2023-01-10 Shure Acquisition Holdings, Inc. System and method for automatic adjustment of reference gain
USD944776S1 (en) 2020-05-05 2022-03-01 Shure Acquisition Holdings, Inc. Audio device
WO2021243368A2 (en) 2020-05-29 2021-12-02 Shure Acquisition Holdings, Inc. Transducer steering and configuration systems and methods using a local positioning system
US11696083B2 (en) 2020-10-21 2023-07-04 Mh Acoustics, Llc In-situ calibration of microphone arrays
US11785380B2 (en) 2021-01-28 2023-10-10 Shure Acquisition Holdings, Inc. Hybrid audio beamforming system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4658426A (en) * 1985-10-10 1987-04-14 Harold Antin Adaptive noise suppressor
US4672674A (en) * 1982-01-27 1987-06-09 Clough Patrick V F Communications systems
US4956867A (en) * 1989-04-20 1990-09-11 Massachusetts Institute Of Technology Adaptive beamforming for noise reduction

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4536887A (en) * 1982-10-18 1985-08-20 Nippon Telegraph & Telephone Public Corporation Microphone-array apparatus and method for extracting desired signal
US4802227A (en) * 1987-04-03 1989-01-31 American Telephone And Telegraph Company Noise reduction processing arrangement for microphone arrays
IL84948A0 (en) * 1987-12-25 1988-06-30 D S P Group Israel Ltd Noise reduction system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4672674A (en) * 1982-01-27 1987-06-09 Clough Patrick V F Communications systems
US4658426A (en) * 1985-10-10 1987-04-14 Harold Antin Adaptive noise suppressor
US4956867A (en) * 1989-04-20 1990-09-11 Massachusetts Institute Of Technology Adaptive beamforming for noise reduction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZELINSKI R: "A microphone array with adaptive post-filtering for noise reduction in reverberant rooms" ICASSP, 11. April 1988 (1988-04-11), Seiten 2578-2581, XP010072723 New York *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2289593B (en) * 1994-05-18 1998-08-05 Mitsubishi Electric Corp Handsfree communication apparatus
US5907823A (en) * 1995-09-13 1999-05-25 Nokia Mobile Phones Ltd. Method and circuit arrangement for adjusting the level or dynamic range of an audio signal
WO1997029614A1 (en) * 1996-02-07 1997-08-14 Advanced Micro Devices, Inc. Directional microphone utilizing spaced-apart omni-directional microphones
US6535610B1 (en) 1996-02-07 2003-03-18 Morgan Stanley & Co. Incorporated Directional microphone utilizing spaced apart omni-directional microphones
US6987343B2 (en) 2001-04-25 2006-01-17 Matsushita Electric Industrial Co., Ltd. Motor
EP1614322A2 (en) * 2003-04-08 2006-01-11 Philips Intellectual Property & Standards GmbH Method and apparatus for reducing an interference noise signal fraction in a microphone signal

Also Published As

Publication number Publication date
DE4330243A1 (en) 1995-03-09
EP0642290A3 (en) 2006-04-19
JP3373306B2 (en) 2003-02-04
US5602962A (en) 1997-02-11
JPH07240992A (en) 1995-09-12

Similar Documents

Publication Publication Date Title
EP0642290A2 (en) Mobile communication apparatus with speech processing device
DE60009206T2 (en) Noise suppression by means of spectral subtraction
EP1143416B1 (en) Time domain noise reduction
DE112009001003B4 (en) Noise cancellation system with two microphones
DE602004001241T2 (en) Device for suppressing impulsive wind noise
DE60031354T2 (en) Noise cancellation before voice coding
DE60108401T2 (en) SYSTEM FOR INCREASING LANGUAGE QUALITY
DE69838474T2 (en) METHOD AND DEVICE FOR BLINDING COMPENSATING TRANSMISSION CHANNEL EFFECTS TO A DIGITAL LANGUAGE SIGNAL
EP1453194B1 (en) Method for automatic adjustment of an amplifier of a hearing aid and hearing aid
DE19948308C2 (en) Method and device for noise suppression in speech transmission
EP0668007B1 (en) Mobile radiotelephone set with handsfree device
DE2818204C2 (en) Signal processing system for deriving an output signal with reduced interference
DE69835644T2 (en) Acoustic echo canceler
EP0747880B1 (en) System for speech recognition
DE69634841T2 (en) Method and apparatus for echo cancellation
EP1251493A2 (en) Method for noise reduction with self-adjusting spurious frequency
DE2919085A1 (en) PRE-PROCESSING METHOD AND DEVICE FOR A VOICE RECOGNITION DEVICE
EP1456839B1 (en) Method and device for the suppression of periodic interference signals
EP1189419B1 (en) Method and device for eliminating the loudspeaker interference on microphone signals
DE4106405C2 (en) Noise suppression device for a speech recognition system
EP1155561B1 (en) Method and device for suppressing noise in telephone devices
DE2830837C2 (en) Method and device for measuring the characteristic values of a loudspeaker
EP1239455A2 (en) Method and system for implementing a Fourier transformation which is adapted to the transfer function of human sensory organs, and systems for noise reduction and speech recognition based thereon
EP0695045B1 (en) Echo canceller using short time spectral analysis
EP1755110A2 (en) Method and device for adaptive reduction of noise signals and background signals in a speech processing system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS CORPORATE INTELLECTUAL PROPERTY GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS CORPORATE INTELLECTUAL PROPERTY GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS INTELLECTUAL PROPERTY & STANDARDS GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 20061019

17Q First examination report despatched

Effective date: 20061229

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070509