EP0610699B1 - Copolymere auf Basis von Maleinsäurederivaten und Vinylmonomeren, deren Herstellung und Verwendung - Google Patents

Copolymere auf Basis von Maleinsäurederivaten und Vinylmonomeren, deren Herstellung und Verwendung Download PDF

Info

Publication number
EP0610699B1
EP0610699B1 EP94100854A EP94100854A EP0610699B1 EP 0610699 B1 EP0610699 B1 EP 0610699B1 EP 94100854 A EP94100854 A EP 94100854A EP 94100854 A EP94100854 A EP 94100854A EP 0610699 B1 EP0610699 B1 EP 0610699B1
Authority
EP
European Patent Office
Prior art keywords
mol
mixture
group
structural element
copolymers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94100854A
Other languages
English (en)
French (fr)
Other versions
EP0610699A1 (de
Inventor
Gerhard Dr. Albrecht
Hubert Leitner
Rudolf Lindenberger
Richard Siedl
Christian Werenka
Willi Suter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
DSM Chemie Linz GmbH
Chemie Linz GmbH
Holderchem Holding AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DSM Chemie Linz GmbH, Chemie Linz GmbH, Holderchem Holding AG filed Critical DSM Chemie Linz GmbH
Publication of EP0610699A1 publication Critical patent/EP0610699A1/de
Application granted granted Critical
Publication of EP0610699B1 publication Critical patent/EP0610699B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2652Nitrogen containing polymers, e.g. polyacrylamides, polyacrylonitriles
    • C04B24/2658Nitrogen containing polymers, e.g. polyacrylamides, polyacrylonitriles containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2664Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of ethylenically unsaturated dicarboxylic acid polymers, e.g. maleic anhydride copolymers
    • C04B24/267Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of ethylenically unsaturated dicarboxylic acid polymers, e.g. maleic anhydride copolymers containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2688Copolymers containing at least three different monomers
    • C04B24/2694Copolymers containing at least three different monomers containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/32Superplasticisers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/52Grinding aids; Additives added during grinding

Definitions

  • the invention relates to copolymers based on maleic acid derivatives and vinyl monomers, the production and use thereof, and binder mixtures and building materials containing the copolymers.
  • Copolymers based on maleic anhydride are known for example from DE-A-33 44 470 or DE-A-38 09 964 and are u. a. also as an additive for hydraulic binders, e.g. B. cements, anhydrite or gypsum are used, in which they in particular increase the flowability during processing or improve the mechanical properties of the hardened building material.
  • plasticizers known as plasticizers, superplasticizers, flow agents, dispersants or water-reducing agents
  • flow agents known as flow agents, dispersants or water-reducing agents
  • water-reducing agents have the disadvantage that the flowability of the binder mixture cannot be maintained for a sufficiently long period of time. Since an increasing amount of concrete is delivered to the construction site as pre-mixed or ready-mixed concrete, this loss of workability (“slump loss”) represents a problem that has to be solved urgently within a relatively short period of time.
  • Possible residues M of organic amino groups are, for example, mono-, di- or tri-alkyl- or alkanolamines having 1 to 8 carbon atoms.
  • the structural elements A, Ba, Bb, Bc, C and D can each represent uniform compositions, but they can also be present as mixtures of different compositions.
  • the weight average molecular weight of the copolymers according to the invention is preferably about 2000 to 50,000 g / mol.
  • the structural elements A in the copolymers according to the invention are preferably in an amount of about 1 to 85, particularly preferably 20 to 55 mol%, the structural elements B in an amount of about 1 to 85, particularly preferably 2 to 25 mol%, the structural elements C in an amount of about 1 to 90, particularly preferably 40 to 60 mol% and the structural elements D in an amount of 0 to 50, particularly preferably 1 to 10 mol%.
  • a composition of 35 to 40 mol% of the structural elements A, 5 to 10 mol% of the structural elements B, 50 mol% of the structural elements C and 2 to 5 mol% of the structural elements D proves to be particularly favorable.
  • a particularly advantageous molar ratio of the structural units (A + B + D): C is 1: 1 in the copolymer according to the invention.
  • the starting products which form the structural elements C and D in the copolymer are used according to the invention in the form of the corresponding monomers G and H.
  • Structural element A is composed of monoesterified dicarboxylic acid structures, where M preferably represents hydrogen or sodium, m preferably 2, n preferably 5 to 20 and R 1 preferably represents a linear or branched alkyl group with 1 to 3 carbon atoms.
  • M preferably represents hydrogen or sodium
  • m preferably represents hydrogen or sodium
  • n preferably 5 to 20
  • R 1 preferably represents a linear or branched alkyl group with 1 to 3 carbon atoms.
  • Anhydride units remaining in the copolymer are represented by the structural element D, which according to the invention can be present either as an anhydride ring Da) or in hydrolyzed form Db), where M is preferably hydrogen or sodium.
  • the structural unit B is present according to formula Ba) as a 5-membered, preferably N-substituted imide ring, which can already be predetermined by the structure of the monomers used to prepare the copolymer or in the course of the process according to the invention by reacting compounds carrying primary amino groups with the Anhydride group of maleic anhydride is generated.
  • R 2 radicals which carry hydrophilic groups, in particular sulfonic acid groups, are particularly preferred.
  • Examples of preformed monomers which provide structural element group B are: N-phenyl maleimide, N- (2,6-dimethylphenyl) maleimide, N-hydroxyethyl maleimide, N- (4-sulfophenyl) maleimide.
  • the structural unit B can also be in the form of the corresponding half-amide according to formulas Bb and Bc.
  • the monomers G which form the structural element C are preferably those compounds which have a high tendency to copolymerize with maleic anhydride.
  • Examples of such monomers are: ethylene, propylene, n-butylene, isobutylene, diisobutylene, cyclohexene, styrene, alpha-methylstyrene, indene, 4-methoxystyrene, 4-methylstyrene, vinyl acetate, vinyl propionate, methyl vinyl ether, ethyl vinyl ether, isobutyl vinyl ether, tetrahydrophthalic anhydride, Butyl acrylate, methyl methacrylate, hydroxymethyl methacrylate or methacrylic acid.
  • These monomers or structural elements can optionally also be used as a mixture with one another or with other monomers.
  • either the polyalkylene glycol monoether required to build up substructure A or the macromeric maleic semiester or a mixture of both, which is produced in a preceding reaction from maleic anhydride and the polyalkylene glycol monoether, can serve as the reaction medium.
  • the half-ester is preferably produced at 120 ° C.-140 ° C. over a period of 2 to 4 hours using preferably 0.5 to 1.0% by weight of an esterification catalyst, such as, for. B. sulfuric acid or toluenesulfonic acid.
  • a linear or branched alkoxypolyalkylene glycol amine or a mixture of polyalkylene glycol monoether and polyalkylene glycol amine ether required for the construction of substructure B can also serve as the reaction medium.
  • the procedure is preferably such that the polyalkylene glycol monoether is initially introduced in whole or in part and is mixed with all or part of the maleic anhydride.
  • the polymerization temperature is set and the copolymerization is carried out by adding the monomers forming the structural units C, which may optionally contain the polymerization initiator in dissolved form.
  • this monomer feed may also contain the monomers which supply structural unit B in the event that they are miscible with one another.
  • the process can also be carried out with 2 separate monomer feeds, in particular if the polymer-analogous formation of structural element B is not possible owing to the insolubility of the amino compound in the polymer, such as, for. B. when using sulfanilic acid.
  • Typical additives as are known to the person skilled in the art in polymerization technology are suitable as polymerization auxiliaries.
  • these are polymerization initiators, such as. B. azo-bis-isobutyronitrile, azo-bis-2-methylvaleronitrile, dibenzoyl peroxide, lauroyl peroxide, dicylohexylperoxodicarbonate, tert. Butyl peroxy-2-ethylhexanoate and tert. Butyl perbenzoate, as well as polymerization accelerators or activators, such as. B. Na bisulfite, ascorbic acid or salts of heavy metals, or molecular weight regulators, such as. B. n-dodecyl mercaptan, tert. Dodecyl mercaptan or diisopropylxanthogen disulfite.
  • the polymerizations are preferably carried out at temperatures from about 40 to 120, particularly preferably from 60 to 100 ° C.
  • the temperatures for the after-reaction to complete the formation of ester, half amide and / or imide are preferably from 100 to 150 ° C.
  • a portion of the polyalkylene glycol monoether required to form structural element A is initially introduced together with a deficit of maleic anhydride.
  • the amino group-containing monomers required to build up structural unit B particularly preferred is N- (4-sulfophenyl) maleic acid monoamide, are dissolved in a stirrable feed vessel by dissolving 4-sulfanilic acid, preferably as a salt, in the remaining amount of polyglycol and then adding maleic anhydride with stirring educated.
  • the amount of initiator required for the polymerization is then also dissolved in this mixture. After the reactor template has been brought to the polymerization temperature, the addition of the mixture is started.
  • the addition of the monomer or monomer mixture forming the structural unit C is started from a separate feed vessel and the polymerization is carried out. After the end of the polymerization, the polymer-analogous esterification and amide or imide formation are completed at elevated temperature.
  • the polymerization produces a viscous reaction mass which, however, is very easy to stir and, after cooling to 50-80 ° C., is usually diluted with water and neutralized by adding lye.
  • the process according to the invention is characterized above all by high yields, low residual monomer proportions in the end product, and by its simplicity, environmental friendliness and safety-related safety. All starting materials used are part of the end product, which is therefore free of undesirable solvent residues.
  • the polyalkylene glycol monoether initially serves as a reaction medium for the formation of certain monomers, such as. B. sulfophenyl maleic acid monoamide, later as a polymerization medium with a positive effect on the heat dissipation and stirrability of the polymer and is finally incorporated as a component in the copolymer itself via the free OH group.
  • the copolymers according to the invention are suitable as additives for aqueous slurries of powdery substances such as, for. B. clays, porcelain slurry, silicate flour, chalk, soot, rock flour, pigments, talc and plastic powders, but especially of hydraulic binders, such as Portland cement, blast furnace cement, iron and fly ash cement, alumina cement, magnesia cement, anhydrite and gypsum, in which they are used in particular as dispersants to serve.
  • hydraulic binders such as Portland cement, blast furnace cement, iron and fly ash cement, alumina cement, magnesia cement, anhydrite and gypsum, in which they are used in particular as dispersants to serve.
  • the use of the copolymers as an additive to hydraulic binders such. B. Portland cement, blast furnace cement, tress and fly ash cement, anhydrite, gypsum, is further preferred.
  • the copolymers according to the invention can also be added to the
  • the copolymers according to the invention can be in the form of their aqueous solutions or in anhydrous form directly to the cement mixtures such as cement pastes, mortar or concrete in an amount of about 0.01 to 10%, preferably 0.05 to 3% solids, based on the weight of the cement, be added.
  • cement mixtures such as cement pastes, mortar or concrete
  • the processability time of the Binder mixtures can be extended due to the reduced "slump loss".
  • the setting process for the finished building material is only slightly delayed.
  • Another decisive advantage of the polymers according to the invention is that they do not lose their high initial dispersing capacity even if they are stored in the form of their aqueous preparations for a long time.
  • the invention further relates to binder mixtures which contain hydraulic binders and the copolymers according to the invention, and, if appropriate, water, customary additives and additives, and a building material based on these binder mixtures.
  • Example 1 was repeated, with the difference that the N (4-sulfophenyl) maleic acid monoamide contained in feed vessel 1 was used as a preformed monomer in the form of the monosodium salt in an amount of 35.7 g (0.122 mol). It became a clear, yellow-orange colored aqueous copolymer solution with a solids content of 36.0 wt%, 0.2 wt% styrene, 0.07 wt. % Maleic acid and an average molecular weight of 16,000 g / mol.
  • the clear deep brown colored polymer solution with a solids content of 35.9% by weight contained 0.22% by weight of free styrene and 0.10% by weight of free maleic acid with an average molecular weight of 17,500 g / mol.
  • Example 6 instead of 5-amino-2-naphthalenesulfonic acid Na as in Example 5, 43.6 g of 1-amino-3,6-naphthalenedisulfonic acid disodium salt (0.125 mol) were used in Example 6.
  • the black-brown, clear polymer solution contained 35.5% by weight of solid, 0.37% by weight of styrene, 0.21% by weight of maleic acid and had an average molecular weight of 19,500 g / mol.
  • the imidization following the polymerization was carried out by adding 24.5 g of cyclohexylamine (0.25 mol) and reaction at 140 ° C. for 2 hours.
  • the aqueous solution of the neutralized copolymer with a molecular weight of 2500 g / mol was colored deep red, contained 37.0% by weight of solid, 0.31% by weight of free styrene and 0.03% by weight of free maleic acid.
  • Example 9 was repeated, but with 32.3 g of 2-ethylhexylamine (0.25 mol) instead of cyclohexylamine.
  • the copolymer had an average molecular weight of 3000 g / mol in the form of its sodium salt in aqueous solution with a solids content of 38.0% by weight and residual monomer contents of 0.28% by weight of styrene and 0.05% by weight of maleic acid in front.
  • Example 7 was repeated, but with the following changes: Template: 552 g Methoxypolyethylene glycol (1.105 mol) 167 g Maleic anhydride (1,700 mol) Intake: 221 g Styrene (2.125 mol) 11.6 g n-dodecyl mercaptan 9.7 g Azo-bis-isobutyronitrile 1.9 g Azo-bis-cyclohexane carbonitrile
  • the polymerization was carried out at 105 ° C. with a feed time of 60 minutes. Following a 2-hour post-reaction at 115 ° C., 56.5 g of di-2-methoxyethylamine (0.425 mol) were added over 15 minutes and the mixture was stirred at 140 ° C. for 2 hours to complete the formation of esters and half amides.
  • the crude product obtained was neutralized by adding water and Ca (OH) 2 .
  • Example 7 was repeated, but with the following changes.
  • Template 600 g Methoxypolyethylene block propylene glycol with an average EO number of 10 and 3 PO units (0.958 moles) 125 g Maleic anhydride (1.278 mol)
  • Intake 160 g Styrene (1.534 moles) 8.6 g n-dodecyl mercaptan 7.1 g Azo-bis-isobutyronitrile 1.4 g Azo-bis-cyclohexane carbonitrile
  • the polymerization was carried out at 105 ° C.
  • the feed time was 1 hour.
  • 17.0 g of di-2-methoxyethylamine (0.128 mol) were added and the mixture was stirred at 140 ° C. for a further 2 hours.
  • a 40% solution of the polymer was prepared by adding water and calcium hydroxide.
  • the polymerization was carried out at 105 ° C. (feed time: 1 hour). Following a 120-minute post-reaction, 250 g of methoxypolyethylene glycol-block propylene glycolamine with an average EO. Number of 13 and an average PO number of 3 units per mole were added over a period of 30 minutes. After the addition, the reaction mixture was heated to 140 ° C and stirred at 140 ° C for 2 hours. The copolymer, cooled to 100 ° C., was then diluted with water and neutralized with calcium hydroxide.
  • a copolymer of methoxypolyethylene glycol mono-maleinate and N-vinylpyrrolidone was prepared by the process described in EP-A-402 563 (preparation example 7).
  • a copolymer was prepared from methoxypolyethylene glycol mono-maleinate and styrene.
  • the copolymers from Examples 1 to 14 were subjected to a comparative test as flow agents for cement mixtures in order to demonstrate their increased and longer-lasting effectiveness compared to known flow agents.
  • a comparative test As flow agents for cement mixtures in order to demonstrate their increased and longer-lasting effectiveness compared to known flow agents.
  • the dosing of the inventive and the comparative products was carried out in such a way that the consistency of the mixtures was comparable to one another.
  • the slump and its change over time was determined over a period of 90 minutes.
  • Table 1 Flow and setting behavior of mortar mixtures with copolymers and comparison mixtures according to the invention. Additive according to Dosage% solid with respect to cement Spread in mm after Tie beginning The End E.g. 0 min 15 minutes 30 min 45min 60min 75min 90min h: min h: min 1 0.17 202 185 176 171 164 159 152 8:00 9:30 2nd 0.20 203 186 178 170 163 158 150 7:55 9:20 3rd 0.20 196 190 178 169 162 154 148 7:30 a.m.
  • Table 2 shows the slump dimensions according to DIN 1164/7 according to different storage times: Table 2: Dispersion behavior of inventive and comparative copolymers as a function of the storage period of the aqueous preparations at 60 ° C. Additive according to the example Dosage% solid with respect to cement Spread in mm after 0 days 2 days 7 days 1 0.20 222 215 220 2nd 0.25 221 223 218 6 0.40 237 230 229 9 0.25 215 220 223 11 0.25 225 229 221 12th 0.20 223 213 226 13 0.25 235 239 233 14 0.20 206 212 206 V 4 0.20 227 220 197

Description

  • Die Erfindung betrifft Copolymere auf Basis von Maleinsäurederivaten und Vinylmonomeren, deren Herstellung und Verwendung sowie Bindemittelmischungen und Baustoffe mit einem Gehalt an den Copolymeren.
  • Copolymere auf Basis von Maleinsäureanhydrid sind beispielsweise aus der DE-A-33 44 470 oder DE-A-38 09 964 bekannt und werden u. a. auch als Zusatzmittel für hydraulische Bindemittel, z. B. Zemente, Anhydrit oder Gips, verwendet, in denen sie insbesondere die Fließfähigkeit während der Verarbeitung erhöhen bzw. die mechanischen Eigenschaften des erhärteten Baustoffes verbessern. Besonders gute Fließeigenschaften besitzen Zusatzmittel auf Basis von Naphthalinsulfonsäure-Formaldehyd-Kondensaten, wie sie in der EP-A-214 412 beschrieben sind. Diese als Verflüssiger, Superverflüssiger, Fließmittel, Dispergiermittel oder Wasserreduziermittel bezeichneten Zusatzmittel haben jedoch den Nachteil, daß die Fließfähigkeit der Bindemittelmischung nicht über eine ausreichend lange Zeitspanne aufrechterhalten werden kann. Da eine zunehmende Menge Beton als vorgemischter oder Transportbeton an die Baustelle geliefert wird, stellt dieser Verlust der Verarbeitbarkeit ("slump loss") in einem relativ kurzen Zeitraum ein dringend zu lösendes Problem dar.
  • Aus der EP-A-402.563 und DE-A-41 42 388 sind Superverflüssiger auf Basis von Maleinsäurederivaten bzw. aus der DE-A-42 17 181 auf Basis von Melamin und Glyoxylsäure bekannt, die bereits eine gewisse Regelung des Fließverhaltens von Zementmischungen erlauben. Allerdings sind die Eigenschaften dieser Zementmischungen für erhöhte Anforderungen in der Praxis nicht ausreichend. Auch sind die eingesetzten Ausgangssubstanzen zum Teil nur aufwendig herstellbar.
  • Auf dem Gebiet der Bindemittelverflüssiger und Dispergiermittel für Feststoffsuspensionen stellte sich demnach weiterhin die Aufgabe, verbesserte Zusatzmittel zu finden, die eine optimale Eigenschaftskombination, insbesondere im Hinblick auf die Fließ- und Abbindeeigenschaften, sowie im Hinblick auf die Aufrechterhaltung ihrer Wirksamkeit auch bei längerer Lagerung in Form ihrer wäßrigen Zubereitungen, ergeben, d. h. insbesondere eine gute dispergierende und verflüssigende Wirkung für die Bindemittelsuspensionen ergeben, eine optimale und praxisgerechte Regelung des Verarbeitungszeitraumes ermöglichen und trotzdem den Abbindevorgang nicht zu stark verzögern.
  • Es wurde gefunden, daß neue Copolymere mit spezieller Zusammensetzung auf Basis von Maleinsäure-, Maleinsäureester-, Maleinsäureamid- bzw. Maleinsäureimidderivaten und Vinylpolymeren diese Nachteile nicht aufweisen und als Zusatzmittel zu Bindemitteln die gewünschten positiven Eigenschaften ergeben.
  • Gegenstand der Erfindung sind demnach Copolymere, mit einem mittleren Molekulargewicht von 1000 bis 100 000 g/mol, die im wesentlichen aus den Strukturelementen
    Figure imgb0001
    Figure imgb0002
    Figure imgb0003
    sowie gegebenenfalls
    Figure imgb0004
    aufgebaut sind, wobei
  • M:
    H oder ein Kation wie z. B. Alkali- oder Erdalkalimetall, eine Ammoniumgruppe oder den Rest einer organischen Aminogruppe,
    R1:
    C1- bis C20-Alkyl-, C5- bis C8-Cycloalkyl- oder Arylrest
    R2:
    H, C1- bis C20-Alkyl- oder Hydroxyalkyl, C5- bis C8- Cycloalkyl- oder Arylrest, in welchem 1 oder mehrere H-Atome durch die Strukturelemente - COOM,SO3M und/oder PO3M2 substituiert sein können, sowie sich gegebenenfalls wiederholende Struktureinheiten der allgemeinen Formel (CmH2mO)n R1,
    R3:
    H, Methyl- oder Methylengruppe, die gegebenenfalls substituiert sein kann und unter Einbeziehung von R5 einen 5- bis 8-gliedrigen Ring bzw. einen Indenring bildet,
    R4:
    H, Methyl- oder Ethylgruppe,
    R5:
    H, C1 - C20-Alkyl-, C5-C8-Cycloalkyl- oder Arylrest, der gegebenenfalls substitutiert sein kann, Alkoxycarbonylgruppe, Alkoxygruppe, Alkyl- oder Arylcuboxylatgruppe, Carboxylatgruppe, Hydroxyalkoxycarbonylgruppe,
    m:
    eine ganze Zahl von 2 bis 4,
    n:
    eine ganze Zahl von 0 - 100, bevorzugt von 1 - 20 bedeuten.
  • Als Reste M von organischen Aminogruppen sind beispielsweise Mono-, Di- oder Tri-alkyl- oder -alkanolamine mit 1 bis 8 C-Atomen möglich.
    Die Strukturelemente A, Ba, Bb, Bc, C und D können jeweils einheitliche Zusammensetzungen darstellen, sie können aber auch als Gemische verschiedener Zusammensetzungen vorliegen. Das gewichtsmittlere Molekulargewicht der erfindungsgemäßen Copolymere liegt bevorzugt bei etwa 2000 bis 50 000 g/Mol.
  • Bevorzugt liegen in den erfindungsgemäßen Copolymeren die Strukturelemente A in einer Menge von etwa 1 bis 85, besonders bevorzugt 20 bis 55 Mol%, die Strukturelemente B in einer Menge von etwa 1 bis 85, besonders bevorzugt 2 bis 25 Mol%, die Strukturelemente C in einer Menge von etwa 1 bis 90, besonders bevorzugt 40 bis 60 Mol% und die Strukturelemente D in einer Menge von 0 bis 50, besonders bevorzugt 1 bis 10 Mol% vor. Besonders günstig erweist sich eine Zusammensetzung von 35 bis 40 Mol% der Strukturelemente A, 5 bis 10 Mol% der Strukturelemente B, 50 Mol% der Strukturelemente C und 2 bis 5 Mol% der Strukturelemente D. Ein besonders vorteilhaftes molares Verhältnis der Struktureinheiten (A + B + D) : C liegt im erfindungsgemäßen Copolymer bei 1 : 1.
  • Die Ausgangsprodukte, die die Strukturelemente C und D im Copolymer bilden, werden erfindungsgemäß in Form der entsprechenden Monomere G und H eingesetzt.
    Figure imgb0005
    Figure imgb0006
  • Dagegen können die Strukturelemente A und B entweder in Form der vorgebildeten Einheiten E oder F eingesetzt werden,
    Figure imgb0007
    Figure imgb0008
    Figure imgb0009
    oder aber sie werden während bzw. nach der Polymerisation durch eine polymeranaloge Umsetzung gebildet. Strukturelement A setzt sich aus monoveresterten Dicarbonsäurestrukturen zusammen, wobei M vorzugsweise Wasserstoff oder Natrium, m vorzugsweise 2, n vorzugsweise 5 bis 20 und R1 bevorzugt eine lineare oder verzweigte Alkylgruppe mit 1 bis 3 Kohlenstoffatomen darstellt. Besonders bevorzugt sind monoveresterte Maleinsäureanhydrideinheiten mit Monomethoxypolyethylenglykol oder Monomethoxypolyethylen-block-propylenglykol des mittleren Molekulargewichtes von 250 g/Mol (n = 5) bis 750 g/Mol (n = 17).
  • Im Copolymerisat verbleibende Anhydrideinheiten werden durch das Strukturelement D wiedergegeben, welches erfindungsgemäß entweder als Anhydridring Da) oder in hydrolysierter Form Db) vorliegen kann, wobei M vorzugsweise Wasserstoff oder Natrium darstellt.
  • Die Struktureinheit B liegt gemäß Formel Ba) als 5-gliedriger, vorzugsweise N-substituierter Imidring vor, der bereits durch die Struktur der zur Herstellung des Copolymerisats eingesetzten Monomere vorgegeben sein kann oder im Verlauf des erfindungsgemäßen Verfahrens durch Umsetzung von primäre Aminogruppen tragenden Verbindungen mit der Anhydridgruppe des Maleinsäureanhydrids erzeugt wird. R2 ist dabei vorzugsweise eine lineare oder verzweigte C4- bis C12-Alkylgruppe, ein Cyclohexylring, eine gegebenenfalls substituierte Phenyl- oder Naphthylgruppe oder ein lineares oder verzweigtes, endständig verschlossenes Polyoxyalkylenglykol der allgemeinen Formel (CmH2mO)nR1 mit m = 2 - 4, n = 0 - 100 und R1 = C1 - C20-Alkyl, C5 - C8-Cycloalkyl oder Aryl. Besonders bevorzugt sind R2-Reste, die hydrophile Gruppen, insbesondere Sulfonsäuregruppen tragen. Als Beispiele für die Strukturelementgruppe B liefernde vorgebildete Monomere seien genannt: N-Phenylmaleimid, N-(2,6-Dimethylphenyl)-maleimid, N-Hydroxyethylmaleimid, N-(4-Sulfophenyl)-maleimid. Beispiele für Verbindungen, welche im Verlauf des erfindungsgemäßen Verfahrens durch Reaktion mit den Anhydrideinheiten das Strukturelement C bilden sind: Cyclohexylamin, 2-Ethylhexylamin, n-Laurylamin, Glutaminsäure, Glycin, Morpholin, Sulfanilsäure, Taurin, Aminonaphthalinsulfonsäure, Aminonaphthalindisulfonsäure, Aminoethanphosphonsäure und Phosphanilsäure. Die Struktureinheit B kann gemäß Formel Bb und Bc auch in Form des entsprechenden Halbamids vorliegen.
  • Bei den Monomeren G, die das Strukturelement C ergeben, handelt es sich vorzugsweise um solche Verbindungen, die eine hohe Tendenz zur Copolymerisation mit Maleinsäureanhydrid aufweisen. Beispiele für solche Monomere sind: Ethylen, Propylen, n-Butylen, Isobutylen, Diisobutylen, Cyclohexen, Styrol, alpha-Methylstyrol, Inden, 4-Methoxystyrol, 4-Methylstyrol, Vinylacetat, Vinylpropionat, Methylvinylether, Ethylvinylether, Isobutylvinylether, Tetrahydrophthalsäureanhydrid, n-Butylacrylat, Methylmethacrylat, Hydroxymethylmethacrylat oder Methacrylsäure.
  • Diese Monomere bzw. Strukturelemente können gegebenenfalls auch als Gemisch miteinander oder mit anderen Monomeren eingesetzt werden.
  • Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung der durch die Struktureinheiten A bis D charakterisierten Copolymere unter Verzicht auf die sonst üblichen organischen Lösungsmittel, wobei die Copolymere in einem einfach zu führenden Verfahren mit hohen Ausbeuten erhalten werden. Zur Herstellung der Copolymere wird
    • a) ein Maleinsäurehalbester gemäß Formel E) oder ein Gemisch aus einem Polyalkylenglykolmonoether und Maleinsäureanhydrid, welches bei etwa 100 bis 140°C unter Einsatz eines Veresterungskatalysators ebenfalls zum Maleinsäurehalbester gemäß Formel E reagiert, oder ein Gemisch aus Maleinsäurehalbester, Polyalkylenglycolmonoether und Maleinsäureanhydrid vorgelegt,
    • b) die Monomerbestandteile gemäß Formel F bzw. deren Ausgangssubstanzen, G und gegebenenfalls H, sowie gegebenenfalls weiterer Polyalkylenglykolmonoether, sowie gegebenenfalls übliche Polymerisationshilfsmitteln bei etwa 40 bis 120°C unter Rühren zugesetzt,
    • c) das Gemisch bei 40 bis 150°C zur Vervollständigung der Polymerisationsreaktion und polymeranalogen Umsetzung weiter gerührt und
    • d) die Reaktionsmischung nach Abkühlen auf etwa 50 bis 80°C üblicherweise mit einer Base neutralisiert und mit Wasser auf die gewünschte Konzentration verdünnt.
  • Als Reaktionsmedium kann erfindungsgemäß entweder der zum Aufbau der Teilstruktur A erforderliche Polyalkylenglykolmonoether oder der in einer vorgelagerten Reaktion aus Maleinsäureanhydrid und dem Polyalkylenglykolmonoether erzeugte makromere Maleinsäurehalbester bzw. ein Gemisch aus beiden dienen. Die Erzeugung des Halbesters erfolgt vorzugsweise bei 120°C - 140°C über einen Zeitraum von 2 bis 4 Stunden unter Einsatz von vorzugsweise 0,5 bis 1,0 Gew.% eines Veresterungskatalysators, wie z. B. Schwefelsäure oder Toluolsulfonsäure. Als Reaktionsmedium kann erfindungsgemäß auch ein zum Aufbau der Teilstruktur B erforderliches lineares oder verzweigtes Alkoxypolyalkylenglykolamin bzw. ein Gemisch aus Polyalkylenglykolmonoether und Polyalkylenglykolaminmonoether dienen.
  • Zur Verknüpfung der Struktureinheiten A bis D wird bevorzugt so verfahren, daß der Polyalkylenglykolmonoether vollständig oder teilweise vorgelegt wird und mit der gesamten oder einer Teilmenge von Maleinsäureanhydrid vermischt wird. Nach Beendigung der gegebenenfalls durchgeführten Vorreaktion unter den oben genannten Bedingungen wird die Polymerisationstemperatur eingestellt und die Copolymerisation durch Zugabe der die Struktureinheiten C bildenden Monomere, die gegebenenfalls den Polymerisationsinitiator in gelöster Form enthalten können, durchgeführt. Dieser Monomerzulauf kann jedoch auch die die Struktureinheit B liefernden Monomere in dem Fall enthalten, daß sie miteinander mischbar sind. Das Verfahren kann jedoch auch mit 2 separaten Monomerzuläufen erfolgen, insbesondere dann, wenn die polymeranaloge Bildung des Strukturelementes B infolge Unlöslichkeit der Aminoverbindung im Polymerisat nicht möglich ist, wie z. B. bei Verwendung von Sulfanilsäure.
  • Als Polymerisationshilfsmittel kommen übliche Additive, wie sie dem Fachmann in der Polymerisationstechnik bekannt sind, in Frage. Insbesondere handelt es sich dabei um Polymerisationsinitiatoren, wie z. B. Azo-bis-isobutyronitril, Azo-bis-2-methylvaleronitril, Dibenzoylperoxid, Lauroylperoxid, Dicylohexylperoxodicarbonat, tert. Butylperoxy-2-ethylhexanoat und tert. Butylperbenzoat, sowie um Polymerisationsbeschleuniger oder Aktivatoren, wie z. B. Na-Bisulfit, Ascorbinsäure oder Salze von Schwermetallen, oder um Molekulargewichtsregler, wie z. B. n-Dodecylmercaptan, tert. Dodecylmercaptan oder Diisopropylxanthogendisulfit.
  • Die Polymerisationen werden vorzugsweise bei Temperaturen von etwa 40 bis 120, besonders bevorzugt von 60 bis 100°C durchgeführt. Die Temperaturen für die Nachreaktion zur Vervollständigung von Ester-, Halbamid- und/oder Imidbildung liegen vorzugsweise bei 100 bis 150°C.
  • Bei einem besonders bevorzugten Verfahren zur Herstellung der erfindungsgemäßen Copolymere wird
    • a) ein Polyalkylenglykolmonoether und ein molarer Unterschuß von Maleinsäureanhydrid vorgelegt,
    • b) als Monomerbestandteil F ein Gemisch aus einer Lösung des entsprechenden Amins in Polyalkylenglykolmonoether, dem unter Rühren Maleinsäureanhydrid zugesetzt wird, eingesetzt und daß der Monomerenbestandteil gemäß Formel G gegebenenfalls aus einem separaten Zulaufgefäß dem vorgelegten Gemisch gemäß a) zudosiert.
  • Dabei wird eine Teilmenge des zur Bildung des Strukturelementes A erforderlichen Polyalkylenglykolmonoethers zusammen mit einem Maleinsäureanhydridunterschuß vorgelegt. Das zum Aufbau der Struktureinheit B benötigte aminogruppenhaltige Monomere, besonders bevorzugt ist N-(4-Sulfophenyl)-maleinsäuremonoamid, wird in einem rührbaren Zulaufgefäß durch Auflösen von 4-Sulfanilsäure, bevorzugt als Salz, in der restlichen Polyglykolmenge und anschließendem Zusatz von Maleinsäureanhydrid unter Rühren gebildet. Die zur Polymerisation erforderliche Initiatormenge wird anschließend ebenfalls in diesem Gemisch aufgelöst. Nachdem die Reaktorvorlage auf die Polymerisationstemperatur gebracht wurde, wird mit der Zugabe des Gemisches begonnen. Gleichzeitig wird die Zugabe des die Struktureinheit C bildenden Monomeren bzw. Monomerengemisches aus einem separaten Zulaufgefäßes gestartet und die Polymerisation durchgeführt. Nach Beendigung der Polymerisation wird die polymeranaloge Veresterung und Amid- bzw. Imid-Bildung bei erhöhter Temperatur vervollständigt.
    Bei der Polymerisation entsteht eine viskose Reaktionsmasse, die jedoch sehr gut rührbar ist und nach dem Abkühlen auf 50 - 80°C üblicherweise mit Wasser verdünnt und durch Zugabe von Lauge neutralisiert wird.
  • Das erfindungsgemäße Verfahren zeichnet sich vor allem durch hohe Ausbeuten, geringe Restmonomeranteile im Endprodukt, sowie durch seine Einfachheit, Umweltfreundlichkeit und sicherheitstechnische Unbedenklichkeit aus.
    Alle eingesetzten Ausgangsstoffe sind Bestandteil des Endproduktes, welches daher frei von unerwünschten Lösungsmittelresten ist. Der Polyalkylenglykolmonoether dient zunächst als Reaktionsmedium für die Bildung bestimmter Monomere, wie z. B. Sulfophenylmaleinsäuremonoamid, später als Polymerisationsmedium mit einer positiven Wirkung auf die Wärmeabführung und Rührbarkeit des Polymerisats und wird schließlich über die freie OH-Gruppe als Bestandteil in das Copolymerisat selbst eingebaut. Im Gegensatz zu bekannten Verfahren, bei denen die Erzeugung von Carbonsäureimidstrukturen mit Sulfonsäuregruppen tragenden Substituenten in Polymeren polymeranalog nur in wäßriger Lösung unter Druck erfolgen kann und unvollständig ist, gelingt die Reaktion mit Hilfe des erfindungsgemäßen Verfahrens drucklos und in hohen Ausbeuten.
  • Die erfindungsgemäßen Copolymerisate eignen sich als Zusatz für wäßrige Aufschlämmungen von pulverförmigen Substanzen wie z. B. Tonen, Porzellanschlicker, Silikatmehl, Kreide, Ruß, Gesteinsmehl, Pigmenten, Talkum und Kunststoffpulvern, insbesondere aber von hydraulischen Bindemitteln, wie Portlandzement, Hochofenzement, Traß- und Flugaschenzement, Tonerdezement, Magnesiazement, Anhydrit und Gips, in denen sie insbesondere als Dispergiermittel dienen. Die Verwendung der Copolymere als Zusatzmittel zu hydraulischen Bindemitteln wie z. B. Portlandzement, Hochofenzement, Traß- und Flugaschezement, Anhydrit, Gips, ist weiters bevorzugt. Die erfindungsgemäßen Copolymere können den hydraulischen Bindemitteln auch als Mahlhilfsmittel zur Verbesserung der Mahleigenschaften zugesetzt werden, wodurch sich der Mahlvorgang effizienter gestaltet.
  • Die erfindungsgemäßen Copolymere können in Form ihrer wäßrigen Lösungen oder in wasserfreier Form direkt den Zementmischungen wie Zementpasten, Mörtel oder Beton in einer Menge von etwa 0,01 bis 10 %, bevorzugt 0,05 bis 3 % Feststoff, bezogen auf das Gewicht des Zementes, zugesetzt werden. Sie zeigen im Vergleich zu bekannten Zusatzmitteln eine deutlich höhere Dispergierleistung, verbesserte Fließeigenschaften, verbesserte Abbindeeigenschaften, sind frei von Formaldehyd und können die Fließfähigkeit der Bindemittelmischungen über einen längeren Zeitraum aufrecht erhalten. Dadurch kann mit Hilfe der erfindungsgemäßen Copolymere die Verarbeitbarkeitsdauer der Bindemittelmischungen aufgrund des reduzierten "slump loss" verlängert werden. Gleichzeitig aber wird der Abbindevorgang zum fertigen Baustoff nur geringfügig verzögert. Ein weiterer entscheidender Vorteil der erfindungsgemäßen Polymerisate liegt darin, daß sie ihre hohe Ausgangsdispergierleistung auch dann nicht verlieren, wenn sie über längere Zeit in Form ihrer wäßrigen Zubereitungen gelagert werden.
  • Ein weiterer Gegenstand der Erfindung sind Bindemittelmischungen, die hydraulische Bindemittel und die erfindungsgemäßen Copolymere, sowie gegebenenfalls Wasser, übliche Zuschlagstoffe und Additive enthalten, sowie ein Baustoff auf Basis dieser Bindemittelmischungen.
  • A) Herstellungsbeispiele Beispiel 1:
  • In einem Reaktionsgefäß mit Thermometer, Rührer, Gaseinleitungsrohr, RückflußküHer und 2 Anschlüssen für separate Zuläufe, wurden 282 g Methoxypolyethylenglykol (Fa. Hoechst) mit einem mittleren Molekulargewicht (M) von 500 g/Mol (0,564 Mol) vorgelegt und mit 6,1 g Maleinsäureanhydrid (0,062 Mol) unter Rühren vermischt. Die eingeschlossene Luft wurde durch Stickstoff ersetzt und der Kolbeninhalt auf 95°C erwärmt.
  • Gleichzeitig wurde in einem separaten rührbaren Zulaufgefäß (Zulauf 1) unter Stickstoff eine Lösung aus 282 Methoxypolyethylenglykol (M = 500 g/Mol, 0,564 Mol) und 43,5 g 4-Sulfanilsäure-Natriumsalzdihydrat (0,188 Mol) bereitet, in welche 122,8 g Maleinsäureanhydrid (1,253 Mol) unter Rühren eingetragen wurden. Hierbei bildete sich sofort unter intensiver Gelbfärbung N-(4-Sulfophenyl)-maleinsäure-monoamid, wozu 15 Mol% der eingesetzten Maleinsäureanhydridmenge benötigt wurden. Anschließend wurden 5,5 g Azo-bis-isobutyronitril (0,0335 Mol) unter Rühren zugesetzt und solange gerührt, bis eine vollständig klare Lösung entstand. Nachdem im Polymerisationsgefäß die Reaktionstemperatur von 95°C erreicht war, wurde die im Zulaufgefäß 1 bereitete Monomerlösung sowie 137,1 g Styrol (1,318 Mol) aus einem zweiten Zulaufgefäß (Zulauf 2) kontinuierlich und simultan über einen Zeitraum von 2 Stunden in den Reaktor dosiert. Nach Beendigung der Zugabe wurde noch 2 h bei 95°C gerührt, anschließend auf 140°C erhitzt und 2 Stunden zur Vervollständigung der Veresterung und Imidbildung gerührt. Die klare, orange gefärbte Polymerschmelze wurde unter weiterem Rühren auf 50°C abgekühlt und durch Zugabe von 1300 g destilliertem Wasser verdünnt. Abschließend wurde durch Zugabe von 174 g einer wäßrigen 20 %igen Natronlauge und weiteren 180 g destilliertem Wasser ein pH-Wert von 6,95 und ein Feststoffgehalt von 36 Gew.% eingestellt. Es wurde eine klare gelborange gefärbte Lösung erhalten mit einem Gehalt von 0,39 Gew.% an freiem Styrol und einem freien Maleinsäureanteil von 0,17 Gew.%. (Bestimmung mittels HPLC).
    Das gewichtsmittlere Molekulargewicht, welches durch Gelpermationschromatographie unter Verwendung von Polyacrylsäure als Standard ermittelt wurde, lag bei 22.000 g/Mol.
  • Beispiel 2:
  • Es wurde analog zu Beispiel 1 verfahren, jedoch mit dem Unterschied, daß die Zuläufe folgende Bestandteile enthielten:
    Zulauf 1: 282,0 g Methoxypolyethylenglykol (M=500; 0,564 Mol)
    110,0 g Maleinsäureanhydrid (1,122 Mol)
    3,1 g n-Dodecylmercaptan
    5,5 g Azo-bis-isobutyronitril (0,0335 Mol)
    Zulauf 2: 125,5 g Styrol (1,207 Mol)
    22,7 g N-Phenylmaleimid (0,131 Mol)
  • Nach Verdünnung und Neutralisation der rotbraun gefärbten Polymerschmelze wurde eine klare, gelblich gefärbte Lösung erhalten, mit einem Feststoffgehalt von 33,9 Gew.%, 0,06 Gew.% nichtumgesetztem Styrol, 0,02 Gew.% freier Maleinsäure und einem durchschnittlichen Molekulargewicht des Copolymerisates von 11.000 g/mol.
  • Beispiel 3:
  • Die Umsetzung gemäß den Beispielen 1 und 2 wurde wiederholt, jedoch wurde anstelle von N-Phenylmaleimid (Beispiel 2) N-(2,6-Dimethylphenyl)-maleimid in einer Menge von 26,3 g (0,131 Mol), gelöst in 125,5 g Styrol, eingesetzt. Das als klare, gelbe wäßrige Lösung vorliegende Endprodukt enthielt 34,4 Gew.% Feststoff, 0,41 Gew.% freies Styrol und 0,17 Gew.% freie Maleinsäure. Das mittlere Molekulargewicht betrug 9000 g/Mol.
  • Beispiel 4:
  • Beispiel 1 wurde wiederholt, jedoch mit dem Unterschied, daß das im Zulaufgefäß 1 enthaltene N(4-Sulfophenyl)-maleinsäuremonoamid als vorgebildetes Monomer in Form des Mononatriumsalzes in einer Menge von 35,7 g (0,122 Mol) eingesetzt wurde. Es wurde eine klare, gelborange gefärbte wäßrige Copolymerisatlösung mit einem Feststoffgehalt von 36,0 Gew.%, 0,2 Gew.% Styrol, 0,07Gew. % Maleinsäure und einem durchschnittlichen Molekulargewicht von 16.000 g/Mol erhalten.
  • Beispiel 5:
  • Die Copolymerisation wurde analog zu Beispiel 1 mit folgenden Mengen und Zusammensetzungen der Zuläufe wiederholt:
    Zulauf 1: 282,0 g Methoxypolyethylenglykol (M=500; 0,564 Mol)
    122,8 g Maleinsäureanhydrid (1,253 Mol)
    33,1 g 5-Amino-2-naphthalinsulfonsäurenatriumsalz (0,125 Mol)
    5,5 g Azo-bis-isobutyronitril (0,0335 Mol)
    Zulauf 2: 137,1 g Styrol (1,318 Mol)
  • Die klare tiefbraun gefärbte Polymerlösung mit einem Feststoffanteil von 35,9 Gew.% enthielt 0,22 Gew.% freies Styrol und 0,10 Gew% freie Maleinsäure bei einem durchschnittlichen Molekulargewicht von 17.500 g/mol.
  • Beispiel 6:
  • Anstelle 5-Amino-2-naphthalinsulfonsäure-Na wie gemäß Beispiel 5, wurden in Beispiel 6 43,6 g 1-Amino-3,6-naphthalindisulfonsäuredinatriumsalz (0,125 Mol) eingesetzt. Die schwarzbraune, klare Polymerisatlösung enthielt 35,5 Gew.% Feststoff, 0,37 Gew.% Styrol, 0,21 Gew.% Maleinsäure und hatte ein mittleres Molekulargewicht von 19.500 g/Mol.
  • Beispiel 7:
  • Im selben Reaktionsgefäß wie gemäß Beispiel 1, das jedoch nur einen Zulaufanschluß aufwies, wurden 600 g Methoxypolyethylenglykol (M= 500, 1,20 Mol) vorgelegt und 147 g Maleinsäureanhydrid (1,50 Mol) unter Rühren aufgelöst. Die eingeschlossene Luft wurde durch Spülen mit Stickstoff beseitigt und der Kolbeninhalt auf 95°C erwärmt. Anschließend wurden aus einem Zulaufgefäß 156 g Styrol (1,50 Mol), welches 6,45 g Azo-bis-isobutyronitril (0,0393 Mol) in gelöster Form enthielt, über einen Zeitraum von 2 Stunden gleichmäßig zudosiert und die Temperatur nach beendeter Zugabe noch weitere 2 Stunden bei 95°C gehalten. Anschließend wurde eine Mischung aus 11,1 g n-Butanol (0,15 Mol) und 14,9 g Cyclohexylamin (0,15 Mol) innerhalb von 10 Minuten zu der gerührten Reaktionsmasse gegeben und die Temperatur auf 140°C erhöht. Nach Erreichen dieser Temperatur wurde zur Vervollständigung der polymeranalogen Ester- und Imidbildung weitere 2 Stunden bei 140°C gerührt, wobei ein klares tieforange gefärbtes Polymerisat entstand, das nach Abkühlen auf 50°C mit 1000 g destilliertem Wasser verdünnt, bei Raumtemperatur mit 180 g 20%iger wäßriger Natronlauge auf einen pH-Wert von 7,01 und durch Zugabe weiterer 450 g Wasser auf einen Feststoffgehalt von 36,1 Gew.% eingestellt wurde. Der Anteil an nicht umgesetztem Styrol lag bei 0,58 Gew.%, die freie Maleinsäure bei 0,16 Gew.%. Das Copolymere hatte ein mittleres Molekulargewicht von 23.000 g/Mol.
  • Beispiel 8:
  • Nach dem in Beispiel 7 beschriebenen Verfahren wurde mit dem Unterschied, daß anstelle von Cyclohexylamin, 2-Ethylhexylamin in einer Menge von 19,4 g (0,15 Mol) eingesetzt wurden, eine wäßrige Copolymerisatlösung erhalten, mit 35,7 Gew.% Feststoff, 0,22 Gew.% Styrol, 0,22 Gew.% Maleinsäure und M= 23.500 g/Mol.
  • Beispiel 9:
  • Es wurde analog zu Beispiel 7 verfahren, jedoch mit folgenden Änderungen:
    Vorlage: 500,0 g Methoxypolyethylenglykol (1,00 Mol)
    147,0 g Maleinsäureanhydrid (1,50 Mol)
    Der Inhalt der Vorlage wurde vor der Polymerisation 1 Stunde bei 130°C zur teilweisen Veresterung gerührt.
    Zulauf: 156,0 g Styrol (1,50 Mol)
    6,45 g Azo-bis-isobutyronitril (0,0393 Mol)
    3,6 g n-Dodecylmercaptan
  • Die Imidisierung im Anschluß an die Polymerisation wurde durch Zugabe von 24,5 g Cyclohexylamin (0,25 Mol) und 2-stündige Umsetzung bei 140°C durchgeführt. Die wäßrige Lösung des neutralisierten Copolymerisates mit einem Molekulargewicht von 2500 g/Mol war tiefrot gefärbt, enthielt 37,0 Gew.% Feststoff, 0,31 Gew.% freies Styrol und 0,03 Gew.% freie Maleinsäure.
  • Beispiel 10:
  • Beispiel 9 wurde wiederholt, jedoch mit 32,3 g 2-Ethylhexylamin (0,25 Mol) anstelle von Cyclohexylamin. Nach der Aufarbeitung lag das Copolymerisat mit einem mittleren Molekulargewicht von 3000 g/Mol in Form seines Natriumsalzes in wäßriger Lösung mit einem Feststoffanteil von 38,0 Gew.% und Restmonomeranteilen von 0,28 Gew.% Styrol und 0,05 Gew.% Maleinsäure vor.
  • Beispiel 11:
  • Beispiel 7 wurde wiederholt, jedoch mit folgenden Änderungen:
    Vorlage: 552 g Methoxypolyethylenglykol (1,105 Mol)
    167 g Maleinsäureanhydrid (1,700 Mol)
    Zulauf: 221 g Styrol (2,125 Mol)
    11,6 g n-Dodecylmercaptan
    9,7 g Azo-bis-isobutyronitril
    1,9 g Azo-bis-cyclohexancarbonitril
  • Die Polymerisation wurde bei 105°C durchgeführt bei einer Zulaufzeit von 60 Minuten. Im Anschluß an eine 2-stündige Nachreaktion bei 115°C wurden 56,5 g Di-2-methoxyethylamin (0,425 Mol) über 15 Min. zugesetzt und zur Vervollständigung von Ester- und Halbamidbildung noch 2 h bei 140°C gerührt. Das erhaltene Rohprodukt wurde durch Zugabe von Wasser und Ca(OH)2 neutralisiert.
  • Beispiel 12:
  • Es wurde analog zu Beispiel 11 verfahren, wobei jedoch 28,3g Di-2-methoxyethylamin (0,217 Mol) eingesetzt wurden.
  • Beispiel 13:
  • Beispiel 7 wurde wiederholt, jedoch mit folgenden Änderungen.
    Vorlage: 600 g Methoxypolyethylen-block-propylenglykol mit einer durchschnittlichen EO-Zahl von 10 und 3 PO-Einheiten (0,958 Mol)
    125 g Maleinsäureanhydrid (1,278 Mol)
    Zulauf: 160 g Styrol (1,534 Mol)
    8,6 g n-Dodecylmercaptan
    7,1 g Azo-bis-isobutyronitril
    1,4 g Azo-bis-cyclohexancarbonitril
  • Die Polymerisation wurde bei 105°C durchgeführt. Die Zulaufzeit betrug 1 Stunde. Im Anschluß an eine 2-stündige Nachreaktionszeit bei 115°C wurden 17,0 g Di-2-methoxyethylamin (0,128 Mol) zugesetzt und weitere 2 h bei 140°C gerührt. Durch Zugabe von Wasser und Calciumhydroxid wurde eine 40 %ige Lösung des Polymerisats hergestellt.
  • Beispiel 14:
  • Beispiel 7 wurde wiederholt, jedoch mit folgenden Änderungen:
    Figure imgb0010
    Figure imgb0011
  • Die Polymerisation erfolgte bei 105°C (Zulaufzeit: 1 Stunde). Im Anschluß an eine 120-minütige Nachreaktion erfolgte die Zugabe von 250 g Methoxypolyethylenglykol-blockpropylenglykolamin mit einer durchschnittlichen EO.-Zahl von 13 und einer durchschnittlichen PO-Zahl von 3 Einheiten pro Mol über einen Zeitraum von 30 Minuten. Nach der Zugabe wurde das Reaktionsgemisch auf 140°C erhitzt und 2 Stunden bei 140°C gerührt. Anschließend wurde das auf 100°C abgekühlte Copolymerisat mit Wasser verdünnt und mit Calciumhydroxid neutralisiert.
  • Vergleichsbeispiel V1:
  • Handelsübliches Naphthalinsulfonsäure-Formaldehyd-Polykondensat ("LIQUIMENT N" der Chemie Linz Ges.m.b.H.)
  • Vergleichsbeispiel V2:
  • Handelsübliches Melaminsulfonsäure-Formaldehyd-Polykondensat ("LIQUIMENT MP-K" der Chemie Linz Ges.m.b.H.)
  • Vergleichsbeispiel V3:
  • Nach dem in der EP-A-402 563 beschriebenen Verfahren (Herstellungsbeispiel 7) wurde ein Copolymerisat aus Methoxypolyethylenglykol-mono-maleinat und N-Vinylpyrrolidon hergestellt.
  • Vergleichsbeispiel V4:
  • Nach dem in der DE-A-41 42 388 beschriebenen Verfahren (Herstellungsbeispiel 1) wurde ein Copolymerisat aus Methoxypolyethylenglykol-mono-maleinat und Styrol hergestellt.
  • B) Anwendungsbeispiele
  • Die Copolymerisate aus den Beispielen 1 bis 14 wurden einer vergleichenden Testung als Fließmittel für Zementmischungen unterzogen, um ihre im Vergleich zu bekannten Fließmitteln erhöhte und länger andauernde Wirksamkeit nachzuweisen.
    Nach DIN 1164/7 wurden 450 g Portlandzement der Firma Holderbank AG, Rekingen mit 1350 g Normensand (Grobanteil:Feinanteil = 2:1) und 225 g Wasser, welches das erfindungsgemäße Copolymerisat in gelöster Form enthielt, in einem Mischer normgerecht angerührt. Bei einem konstanten Wasser/Element-Anteil von 0,50 erfolgte die Dosierung der erfindungsgemäßen und der Vergleichsprodukte derart, daß die Konsistenz der Mischungen untereinander vergleichbar war. Unmittelbar nach Herstellung des Mörtels wurde das Ausbreitmaß sowie dessen zeitliche Veränderung über einen Zeitraum von 90 Minuten bestimmt. Darüber hinaus wurde das Abbindeverhalten bei gleicher Konsistenz der Mörtelmischungen ermittelt.
    Die Ergebnisse dieser vergleichenden Testung sind in Tabelle 1 zusammengestellt: Tabelle 1:
    Fließ- und Abbindeverhalten von Mörtelmischungen mit erfindungsgemäßen Copolymerisaten und Vergleichsmischungen.
    Zusatzmittel gem. Dosierung % Feststoff bzgl. Zement Ausbreitmaß in mm nach Abbinde
    beginn ende
    Bsp. 0 min 15min 30min 45min 60min 75min 90min h:min h:min
    1 0,17 202 185 176 171 164 159 152 8:00 9:30
    2 0,20 203 186 178 170 163 158 150 7:55 9:20
    3 0,20 196 190 178 169 162 154 148 7:30 9:00
    4 0,20 208 191 179 172 167 160 154 8:00 9.25
    5 0,20 190 180 175 170 163 157 151 7:15 8:45
    6 0,30 196 191 187 179 175 170 164 7:20 8:45
    7 0,16 202 188 182 172 166 160 150 7:50 9:20
    8 0,17 203 183 174 170 164 160 148 7:50 9:20
    9 0,20 208 195 187 176 170 166 159 8:00 9:20
    10 0,20 195 185 177 169 164 160 156 7:25 9:00
    11 0,175 196 183 178 171 168 162 157 7:35 9:05
    12 0,175 202 192 186 181 171 167 164 8:20 9:50
    13 0,175 202 188 175 171 162 156 148 7:00 8:30
    14 0,20 206 198 191 184 180 174 168 8:30 10:00
    V 1 0,40 191 174 160 150 5:20 6:40
    V 2 0,40 190 168 146 5:30 7:00
    V 3 0,40 205 201 197 191 186 184 178 13:10 14:40
  • Um das Lagerungsverhalten der erfindungsgemäßen Produkte in Form ihrer wäßrigen Zubereitungen im Vergleich zu herkömmlichen Zementfließmitteln zu charakterisieren, wurden einige Produkte bei einer konstanten Temperatur von 60°C über einen Zeitraum von 7 Tagen gelagert und nach bestimmten Zeiten hinsichtlich ihrer Wirksamkeit als Zementfließmittel untersucht.
  • In Tabelle 2 sind die Ausbreitmaße nach DIN 1164/7 nach verschiedenen Lagerzeiten zusammengestellt: Tabelle 2:
    Dispergierverhalten von erfindungsgemäßen und Vergleichscopolymerisaten als Funktion des Lagerzeitraumes der wäßrigen Zubereitungen bei 60°C.
    Zusatzmittel gemäß Beispiel Dosierung % Feststoff bzgl. Zement Ausbreitmaß in mm nach
    0 Tagen 2 Tagen 7 Tagen
    1 0,20 222 215 220
    2 0,25 221 223 218
    6 0,40 237 230 229
    9 0,25 215 220 223
    11 0,25 225 229 221
    12 0,20 223 213 226
    13 0,25 235 239 233
    14 0,20 206 212 206
    V 4 0,20 227 220 197

Claims (10)

  1. Copolymere, mit einem mittleren Molekulargewicht von 1 000 bis 100 000 g/mol, die im wesentlichen aus den Strukturelementen
    Figure imgb0012
    Figure imgb0013
    Figure imgb0014
    sowie gegebenenfalls
    Figure imgb0015
    aufgebaut sind, wobei
    M:   H oder ein Kation wie z. B. Alkali- oder Erdalkalimetall, eine Ammoniumgruppe oder den Rest einer organischen Aminogruppe,
    R1:   C1- bis C20-Alkyl-, C5- bis C8-Cycloalkyl- oder Arylrest
    R2:   H, C1- bis C20-Alkyl- oder Hydroxyalkyl, C5- bis C8-Cycloalkyl- oder Arylrest, in welchem 1 oder mehrere H-Atome durch die Strukturelemente - COOM, -SO3M und/oder PO3M2 substituiert sein können, sowie sich gegebenenfalls wiederholende Struktureinheiten der allgemeinen Formel (CmH2mO)nR1,
    R3:   H, Methyl- oder Methylengruppe, die gegebenenfalls substituiert sein kann und unter Einbeziehung von R5 einen 5- bis 8-gliedrigen Ring bzw. einen Indenring bildet,
    R4:   H, Methyl- oder Ethylgruppe,
    R5:   H, C1 - C20-Alkyl-, C5-C8-Cycloalkyl- oder Arylrest, der gegebenenfalls substituiert sein kann, Alkoxycarbonylgruppe, Alkoxygruppe, Alkyl- oder Arylcarboxylatgruppe, Carboxylatgruppe, Hydroxyalkoxycarbonylgruppe,
    m:   eine ganze Zahl von 2 bis 4,
    n:   eine ganze Zahl von 0 - 100, bevorzugt von 1 - 20 bedeuten.
  2. Copolymere gemäß Anspruch 1, dadurch gekennzeichnet, daß sie aus
    1 bis 85 Mol% Strukturelement A,
    1 bis 85 Mol% Strukturelement B,
    1 bis 90 Mol% Strukturelement C,
    0 bis 50 Mol% Strukturelement D
    aufgebaut sind.
  3. Copolymere gemäß Anspruch 2, dadurch gekennzeichnet, daß sie aus
    20 bis 55 Mol% Strukturelement A,
    2 bis 25 Mol% Strukturelement B,
    40 bis 60 Mol% Strukturelement C,
    1 bis 10 Mol% Strukturelement D
    aufgebaut sind.
  4. Verfahren zur Herstellung von Copolymeren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß
    a) ein Maleinsäurehalbester gemäß Formel
    Figure imgb0016
    oder ein Gemisch aus einem Polyalkylenglykolmonoether und Maleinsäureanhydrid, welches bei etwa 100 bis 140°C unter Einsatz eines Veresterungskatalysators ebenfalls zum Maleinsäurehalbester gemäß Formel E reagiert, oder ein Gemisch aus Maleinsäurehalbester,Polyalkylenglykolmonoether und Maleinsäureanhydrid vorgelegt wird,
    b) die Monomerbestandteile gemäß Formel
    Figure imgb0017
    bzw. deren Ausgangssubstanzen,
    Figure imgb0018
    und gegebenenfalls
    Figure imgb0019
    wobei M, R1, R2, R3, R4, R5, m und n die in Anspruch 1 angeführte Bedeutung besitzen,
    sowie gegebenenfalls weiterer Polyalkylenglykolmonoether, sowie gegebenenfalls übliche Polymerisationshilfsmitteln bei etwa 40 bis 120°C unter Rühren zugesetzt werden,
    c) das Gemisch bei 40 bis 150°C zur Vervollständigung der Polymerisationsreaktion und polymeranalogen Umsetzung weiter gerührt wird und
    d) die Reaktionsmischung nach Abkühlen auf etwa 50 bis 80°C üblicherweise mit einer Base neutralisiert und mit Wasser auf die gewünschte Konzentration verdünnt wird.
  5. Verfahren zur Herstellung von Copolymeren gemäß Anspruch 4, dadurch gekennzeichnet, daß
    a) ein Polyalkylenglykolmonoether und ein molarer Unterschuß von Maleinsäureanhydrid vorgelegt wird,
    b) als Monomerbestandteil F ein Gemisch aus einer Lösung des entsprechenden Amins in Polyalkylenglykolmonoether, dem unter Rühren Maleinsäureanhydrid zugesetzt wird, eingesetzt wird, und daß der Monomerenbestandteil gemäß Formel G gegebenenfalls aus einem separaten Zulaufgefäß dem vorgelegten Gemisch gemäß a) zudosiert wird.
  6. Verwendung von Copolymeren gemäß einem der Ansprüche 1 bis 5 als Zusatzmittel zu wäßrigen Suspensionen von anorganischen oder organischen Substanzen.
  7. Verwendung von Copolymeren gemäß einem der Ansprüche 1 bis 5, als Zusatzmittel zu hydraulischen Bindemitteln.
  8. Verfahren zur Verbesserung der Fließ- und Abbindeeigenschaften und/oder der Mahleigenschaften von hydraulischen Bindemitteln, dadurch gekennzeichnet, daß man den hydraulischen Bindemitteln Copolymere gemäß einem der Ansprüche 1 bis 5 zusetzt.
  9. Bindemittelmischung, die hydraulische Bindemittel und Copolymere gemäß einem der Ansprüche 1 bis 5, sowie gegebenenfalls Wasser, übliche Zuschlagstoffe und Additive enthält.
  10. Baustoff auf Basis eines hydraulischen Bindemittels, das ein Copolymer gemäß einem der Ansprüche 1 bis 5 enthält.
EP94100854A 1993-02-01 1994-01-21 Copolymere auf Basis von Maleinsäurederivaten und Vinylmonomeren, deren Herstellung und Verwendung Expired - Lifetime EP0610699B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT0016293A AT399340B (de) 1993-02-01 1993-02-01 Copolymere auf basis von maleinsäurederivaten und vinylmonomeren, deren herstellung und verwendung
AT162/93 1993-02-01
DE4304109A DE4304109A1 (de) 1993-02-01 1993-02-11 Copolymere auf Basis von Maleinsäurederivaten, und Vinylmonomeren, deren Herstellung und Verwendung

Publications (2)

Publication Number Publication Date
EP0610699A1 EP0610699A1 (de) 1994-08-17
EP0610699B1 true EP0610699B1 (de) 1996-12-18

Family

ID=25591694

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94100854A Expired - Lifetime EP0610699B1 (de) 1993-02-01 1994-01-21 Copolymere auf Basis von Maleinsäurederivaten und Vinylmonomeren, deren Herstellung und Verwendung

Country Status (18)

Country Link
US (1) US5369198A (de)
EP (1) EP0610699B1 (de)
JP (1) JPH06322041A (de)
AT (2) AT399340B (de)
AU (1) AU672461B2 (de)
BR (1) BR9400401A (de)
CA (1) CA2114688A1 (de)
CZ (1) CZ20494A3 (de)
DE (2) DE4304109A1 (de)
DK (1) DK0610699T3 (de)
ES (1) ES2098066T3 (de)
FI (1) FI940468A (de)
HU (1) HUT67873A (de)
MA (1) MA23100A1 (de)
NO (1) NO302479B1 (de)
SI (1) SI9400051A (de)
SK (1) SK10294A3 (de)
ZA (1) ZA94643B (de)

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0628578A3 (de) * 1993-06-11 1995-09-27 Chemie Linz Gmbh 2,6-Dimethylphenylphenymaleinimid als Comonomeres für Styrolcopolymerisate und Vinylchloridcopolymerisate.
US5753744A (en) * 1995-02-27 1998-05-19 W.R. Grace & Co.-Conn. Cement and cement composition having improved rheological properties
DE19513126A1 (de) * 1995-04-07 1996-10-10 Sueddeutsche Kalkstickstoff Copolymere auf Basis von Oxyalkylenglykol-Alkenylethern und ungesättigten Dicarbonsäure-Derivaten
AU704079B2 (en) * 1995-06-21 1999-04-15 W.R. Grace & Co.-Conn. Air controlling superplasticizers
US5703174A (en) * 1995-06-21 1997-12-30 W. R. Grace & Co.-Conn. Air controlling superplasticizers
US5665158A (en) * 1995-07-24 1997-09-09 W. R. Grace & Co.-Conn. Cement admixture product
GB9602084D0 (en) * 1996-02-02 1996-04-03 Sandoz Ltd Improvements in or relating to organic compounds
GB9607570D0 (en) * 1996-04-12 1996-06-12 Sandoz Ltd Improvements in or relating to organic compounds
DE69629030T2 (de) * 1996-10-27 2004-04-22 Sika Schweiz Ag Dispergiermittel für hoch fliessfähigen, selbstkompaktierenden Beton
US6384111B1 (en) * 1996-12-20 2002-05-07 Basf Aktiengesellschaft Polymers containing carboxyl groups and polyalkylene ether side- chains as additives in mineral building materials
US6139623A (en) * 1997-01-21 2000-10-31 W. R. Grace & Co.-Conn. Emulsified comb polymer and defoaming agent composition and method of making same
AT404730B (de) * 1997-04-07 1999-02-25 Holderchem Ag Acryl-copolymere und polymerzusammensetzungen sowie deren verwendung als additive oder beimischungen zur verbesserung der eigenschaften von dispersionen und baustoffen
RU2187479C2 (ru) 1997-06-25 2002-08-20 В.Р. Грейс энд Ко.-Конн Способ оптимизации введения суперпластификатора типа eo/po в бетон, содержащий заполнитель из смектитовой глины, и присадка
US5985989A (en) * 1997-07-09 1999-11-16 Arco Chemical Technology, Lp Method of making a water reducing additive for cement
DE19834173A1 (de) 1997-08-01 1999-02-04 Sueddeutsche Kalkstickstoff Copolymere auf Basis von ungesättigten Dicarbonsäure-Derivaten und Oxyalkylenglykol-Alkenylethern
FR2781806B1 (fr) * 1998-07-30 2000-10-13 Rhodia Chimie Sa Poudres redispersables dans l'eau de polymeres filmogenes prepares a partir de monomeres a insaturation ethylenique
WO2000009460A1 (en) 1998-08-14 2000-02-24 Mbt Holding Ag High pozzolan cement mixtures
WO2000009459A1 (en) 1998-08-14 2000-02-24 Mbt Holding Ag Cementitious dry cast mixture
US6310143B1 (en) 1998-12-16 2001-10-30 Mbt Holding Ag Derivatized polycarboxylate dispersants
JP3336456B2 (ja) * 1998-12-25 2002-10-21 日本シーカ株式会社 セメント分散剤および該分散剤を含むコンクリート組成物
FR2815342B1 (fr) 2000-10-13 2003-08-01 Francais Ciments Composition cimentaire, son utilisation pour la realisation de chape liquide autonivelante et chape ainsi obtenue
DE10060738A1 (de) 2000-12-07 2002-06-27 Skw Polymers Gmbh Verwendung von Fließmitteln auf Polycarboxylat-Basis für Tonerdeschmelzzement-haltige, caseinfreie bzw. caseinarme selbstverlaufende Spachtel- und Ausgleichsmassen
DE10063291A1 (de) * 2000-12-19 2002-06-20 Skw Polymers Gmbh Verwendung von Fließmitteln auf Polycarboxylat-Basis für Anhydrit-basierte Fließestriche
JP4209685B2 (ja) * 2001-05-01 2009-01-14 ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット 減水剤混和剤用消泡剤
CA2477709C (en) * 2002-03-27 2011-02-01 United States Gypsum Company High molecular weight additives for calcined gypsum and cementitious compositions
US7338990B2 (en) * 2002-03-27 2008-03-04 United States Gypsum Company High molecular weight additives for calcined gypsum and cementitious compositions
US20030230407A1 (en) * 2002-06-13 2003-12-18 Vijn Jan Pieter Cementing subterranean zones using cement compositions containing biodegradable dispersants
EP1537058B1 (de) * 2002-09-09 2008-06-04 Construction Research & Technology GmbH Verflüssigende zusammensetzung
US20040226620A1 (en) 2002-09-26 2004-11-18 Daniel Therriault Microcapillary networks
US7053125B2 (en) * 2002-11-14 2006-05-30 The Board Of Trustees Of The University Of Illinois Controlled dispersion of colloidal suspension by comb polymers
US6800129B2 (en) 2003-01-30 2004-10-05 W. R. Grace & Co.-Conn. High solids pumpable cement additives
US7141617B2 (en) 2003-06-17 2006-11-28 The Board Of Trustees Of The University Of Illinois Directed assembly of three-dimensional structures with micron-scale features
CN101065338A (zh) * 2004-06-21 2007-10-31 Sika技术股份公司 水泥助磨剂
US7544242B2 (en) 2005-06-14 2009-06-09 United States Gypsum Company Effective use of dispersants in wallboard containing foam
US8088218B2 (en) * 2005-06-14 2012-01-03 United States Gypsum Company Foamed slurry and building panel made therefrom
US20060280899A1 (en) * 2005-06-14 2006-12-14 United States Gypsum Company Method of making a gypsum slurry with modifiers and dispersants
US7572328B2 (en) * 2005-06-14 2009-08-11 United States Gypsum Company Fast drying gypsum products
US7875114B2 (en) * 2005-06-14 2011-01-25 United States Gypsum Company Foamed slurry and building panel made therefrom
CA2607976A1 (en) * 2005-06-14 2006-12-28 United States Gypsum Company Gypsum products utilizing a two-repeating unit dispersant and a method for making them
US20060280898A1 (en) * 2005-06-14 2006-12-14 United States Gypsum Company Modifiers for gypsum slurries and method of using them
US20060278127A1 (en) * 2005-06-14 2006-12-14 United States Gypsum Company Gypsum products utilizing a two-repeating unit dispersant and a method for making them
US20060278128A1 (en) * 2005-06-14 2006-12-14 United States Gypsum Company Effective use of dispersants in wallboard containing foam
US7504165B2 (en) * 2005-06-14 2009-03-17 United States Gypsum Company High strength flooring compositions
JP4724843B2 (ja) * 2005-07-08 2011-07-13 東ソー株式会社 マレイミド系重合体
US7956102B2 (en) 2007-04-09 2011-06-07 The Board Of Trustees Of The University Of Illinois Sol-gel inks
EP2090596A1 (de) * 2008-02-13 2009-08-19 Construction Research and Technology GmbH Copolymer mit Polyetherseitenketten und Hydroxyalkyl- und Säurebausteinen
DE102008021511A1 (de) * 2008-04-30 2009-11-05 Clariant International Limited Pigmentdispergatoren und leicht dispergierbare feste Pigmentzubereitungen
US8519029B2 (en) * 2008-06-16 2013-08-27 Construction Research & Technology Gmbh Copolymer admixture system for workability retention of cementitious compositions
US7922939B2 (en) 2008-10-03 2011-04-12 The Board Of Trustees Of The University Of Illinois Metal nanoparticle inks
US8187500B2 (en) 2008-10-17 2012-05-29 The Board Of Trustees Of The University Of Illinois Biphasic inks
JP5673961B2 (ja) 2009-01-21 2015-02-18 ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット セメント材料の粉砕調製のためのエーテル結合を含む堅牢なポリカルボキシレート
WO2010105979A1 (de) * 2009-03-19 2010-09-23 Henkel Ag & Co. Kgaa Polymermodifizierter zement
KR101612725B1 (ko) * 2009-04-14 2016-04-15 라헤짜르 코미토프 Lcd 배향막용 말레이미드―n―비닐락탐계 측쇄 폴리머
US8058377B1 (en) 2010-06-24 2011-11-15 W. R. Grace & Co.-Conn. Phosphate-containing polycarboxylate polymer dispersants
EP2468698A1 (de) * 2010-12-24 2012-06-27 Sika Technology AG Magnesiumzement
JP5834923B2 (ja) * 2012-01-11 2015-12-24 Dic株式会社 繊維集束剤、コーティング剤及び繊維材料
JP6581575B2 (ja) 2013-10-18 2019-09-25 ジーシーピー・アプライド・テクノロジーズ・インコーポレーテッド 水和可能なコンクリートミックス中の化学流動化混和剤の早い応答時間を達成し、そして監視するためのシステム及びその方法
DE102014210214A1 (de) 2014-05-28 2015-12-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verwendung von Oxyimid-enthaltenden Copolymeren oder Polymeren als Flammschutzmittel, Stabilisatoren, Rheologiemodifikatoren für Kunststoffe, Initiatoren für Polymerisations- und Pfropfprozesse, Vernetzungs- oder Kopplungsmittel sowie solche Copolymere oder Polymere enthaltende Kunststoffformmassen
US9919968B2 (en) 2014-09-30 2018-03-20 Gcp Applied Technologies Inc. Low-to-mid-range water reduction using polycarboxylate comb polymers
CN106478855A (zh) * 2015-08-31 2017-03-08 华东理工大学 一种侧链接枝苯磺酸基的二元共聚物水煤浆添加剂
JP2019515064A (ja) * 2016-04-26 2019-06-06 ダウ グローバル テクノロジーズ エルエルシー 粘土非感受性コンクリート超可塑剤
EP3549961A1 (de) 2018-04-03 2019-10-09 Evonik Röhm GmbH Beton-fliessverbesserer und wasserreduktionsmittel
DE102017213600A1 (de) 2017-08-04 2019-02-07 Evonik Röhm Gmbh Beton-Fließverbesserer
CN110997739B (zh) 2017-08-04 2022-12-16 罗姆化学有限责任公司 混凝土流动改进剂和减水剂
DE102017213607A1 (de) 2017-08-04 2019-02-07 Evonik Röhm Gmbh Fließverbesserer und Wasserreduktionsmittel
US11021395B2 (en) 2018-01-29 2021-06-01 Lawrence L Kuo Method for low-to-mid-range water reduction of cementitious compositions
US10538484B1 (en) * 2018-09-12 2020-01-21 China Petroleum & Chemical Corporation Maleamic acid monomer and preparation method and use thereof
EP4203378A1 (de) 2021-12-21 2023-06-28 Basf Se Vorrichtung zur erzeugung eines digitalen zugangselements in zusammenhang mit einer polystyrolzusammensetzung

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD71072A (de) *
DE1182828B (de) * 1960-12-02 1964-12-03 Hoechst Ag Verfahren zur Herstellung wasserloeslicher Copolymerisate
FR1371715A (fr) * 1963-10-19 1964-09-04 Cement Marketing Company Ltd Nouvelles compositions de ciment et leurs préparations
US3563930A (en) * 1968-04-01 1971-02-16 Atlantic Richfield Co Cement composition
US3544344A (en) * 1968-04-18 1970-12-01 Sinclair Research Inc Set retarded plaster composition
US3923717A (en) * 1974-08-19 1975-12-02 Dow Chemical Co A kiln feed slurry for making portland cement containing an inorganic slat of a styrene-maleic anhydride copolymer
GB1555521A (en) * 1975-08-07 1979-11-14 Crouzet P A Composition for use as a concrete substitute
DD218699B1 (de) * 1982-04-12 1989-07-26 Wolfen Filmfab Veb Elektrofotografischer fluessigentwickler
US4478727A (en) * 1982-09-13 1984-10-23 Exxon Research & Engineering Co. Sodium styrene sulfonate-co-sodium-n-(4-sulfophenyl)-maleimide- an improved viscosity control additive
EP0171189A3 (de) * 1984-07-09 1986-12-30 Texaco Development Corporation Polymerzusammensetzung und diese enthaltende Mineralölzusamensetzung des Fliesspunktes
US4663386A (en) * 1984-12-24 1987-05-05 Atlantic Richfield Company Flame-retardant molded composition which incorporates a poly(styrene-co-N-phenylmaleimide-co-dibromostyrene)copolymer
DE3530258A1 (de) * 1985-08-23 1987-02-26 Lentia Gmbh Verwendung von salzen wasserloeslicher naphtalinsulfonsaeure-formaldehydkondensate als zusatzmittel fuer anorganische bindemittel und baustoff
US4972025A (en) * 1987-03-24 1990-11-20 Nippon Shokubai Kagaku Kogyo, Co., Ltd. Cement dispersant
DE3728786A1 (de) * 1987-08-28 1989-03-09 Sandoz Ag Polymere verbindungen, deren herstellung und verwendung
DE3800091A1 (de) * 1987-08-28 1989-07-13 Sandoz Ag Copolymere verbindungen, deren herstellung und verwendung
JPH0248453A (ja) * 1988-08-09 1990-02-19 Nisso Masutaabirudaazu Kk 覆工コンクリート用のコンクリートの製造方法
JP2676854B2 (ja) * 1988-12-16 1997-11-17 日本油脂株式会社 ポリオキシアルキレン不飽和エーテルーマレイン酸エステル共重合体およびその用途
EP0402563B1 (de) * 1989-05-17 1994-08-10 Sika AG, vorm. Kaspar Winkler & Co. Wasserlösliche Copolymere, ein Verfahren zu ihrer Herstellung und ihre Verwendung als Fliessmittel in Feststoffsuspensionen
US5162060A (en) * 1989-12-14 1992-11-10 Rohm And Haas Company Polymer-modified cements with improved chemical resistance
US5066709A (en) * 1990-09-20 1991-11-19 Gaf Chemicals Corporation Bioadhesive composition
DE4135956C2 (de) * 1990-11-06 2001-10-18 Mbt Holding Ag Zuerich Zusatzmittel für Zementmischungen und deren Verwendung
CH682237A5 (en) * 1990-12-29 1993-08-13 Sandoz Ag Styrene]-maleic acid half-ester copolymer, used as cement additive

Also Published As

Publication number Publication date
US5369198A (en) 1994-11-29
DE59401289D1 (de) 1997-01-30
ATE146489T1 (de) 1997-01-15
AU5480694A (en) 1994-08-04
HU9400270D0 (en) 1994-05-30
NO940327L (no) 1994-08-02
NO302479B1 (no) 1998-03-09
MA23100A1 (fr) 1994-10-01
AT399340B (de) 1995-04-25
SK10294A3 (en) 1994-11-09
FI940468A0 (fi) 1994-02-01
DK0610699T3 (da) 1997-01-06
CZ20494A3 (en) 1994-08-17
ZA94643B (en) 1994-09-19
DE4304109A1 (de) 1994-08-18
AU672461B2 (en) 1996-10-03
SI9400051A (en) 1994-09-30
JPH06322041A (ja) 1994-11-22
ES2098066T3 (es) 1997-04-16
CA2114688A1 (en) 1994-08-02
BR9400401A (pt) 1994-08-23
EP0610699A1 (de) 1994-08-17
FI940468A (fi) 1994-08-02
HUT67873A (en) 1995-05-29
ATA16293A (de) 1994-09-15
NO940327D0 (no) 1994-01-31

Similar Documents

Publication Publication Date Title
EP0610699B1 (de) Copolymere auf Basis von Maleinsäurederivaten und Vinylmonomeren, deren Herstellung und Verwendung
EP1189955B1 (de) Copolymere auf basis von ungesättigten mono- oder dicarbonsäure-derivaten und oxyalkylenglykol-alkenylethern, verfahren zu deren herstellung und ihre verwendung
EP0736553B1 (de) Copolymere auf Basis von Oxyalkylenglykol-Alkenyl-ethern und ungesättigten Dicarbonsäure-Derivaten
DE19834173A1 (de) Copolymere auf Basis von ungesättigten Dicarbonsäure-Derivaten und Oxyalkylenglykol-Alkenylethern
DE69631885T2 (de) Verbessertes zementzusatzmittelprodukt
EP0402563B1 (de) Wasserlösliche Copolymere, ein Verfahren zu ihrer Herstellung und ihre Verwendung als Fliessmittel in Feststoffsuspensionen
KR950007706B1 (ko) 시멘트용 분산제
EP1963020B1 (de) Verwendung von kammpolymeren als mahlhilfsmittel für zementhaltige zubereitungen
AT404730B (de) Acryl-copolymere und polymerzusammensetzungen sowie deren verwendung als additive oder beimischungen zur verbesserung der eigenschaften von dispersionen und baustoffen
WO2005075529A2 (de) Copolymere auf basis von ungesättigten mono- oder dicarbonsäure-derivaten und oxyalkylenglykol-alkenylethern, verfahren zu deren herstellung und ihre verwendung
DE102005061153A1 (de) Copolymere auf Basis von ungesättigten Mono- oder Dicarbonsäure-Derivaten und Oxyalkylenglykol-Alkenylethern, Verfahren zu deren Herstellung und ihre Verwendung
WO2006089759A1 (de) Phosphor-haltige copolymere, verfahren zu ihrer herstellung und deren verwendung
EP2321233B1 (de) Dispergiermittel für gipszusammensetzungen
EP2242781B1 (de) Wässrige lösung enthaltend copolymer mit polyetherseitenketten
DE10237286A1 (de) Verwendung von Blockcopolymeren als Dilpergiermittel für wässrige Feststoff-Suspensionen
EP2331478A1 (de) Wasserreduzierte hydraulisch abbindende zusammensetzungen mit zeitlich verlängerter fliessfähigkeit
DE3809964C2 (de) Zement-Dispergiermittel, Verfahren zu seiner Herstellung und seine Verwendung
EP3353131A1 (de) Copolymere mit gradientenstruktur als dispergiermittel für alkalisch aktivierte bindemittel
EP2550240B1 (de) Verwendung eines kammpolymers zur verbesserung der verarbeitbarkeit von hydraulisch abbindenden zusammensetzungen
DE4406822C2 (de) Redispergierbare Polymerisat-Pulver, Verfahren zu deren Herstellung und deren Verwendung
EP2986580B1 (de) Verwendung von kammpolymeren zur kontrolle der rheologie von mineralischen bindemittelzusammensetzungen
WO2021105188A1 (de) Verzweigte copolymere als dispergiermittel für mineralische bindemittel
WO2017050902A1 (de) Blockcopolymere als dispergiermittel für alkalisch aktivierte bindemittel
EP3544937A1 (de) Herstellung von dispergiermitteln durch nitroxid-vermittelte lösungspolymerisation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

K1C3 Correction of patent application (complete document) published

Effective date: 19940817

17P Request for examination filed

Effective date: 19941217

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960228

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HOLDERCHEM HOLDING AG

Owner name: DSM CHEMIE LINZ GMBH

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 146489

Country of ref document: AT

Date of ref document: 19970115

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REF Corresponds to:

Ref document number: 59401289

Country of ref document: DE

Date of ref document: 19970130

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Effective date: 19970318

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2098066

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUEA

Free format text: HOLDERCHEM HOLDING AG;DSM CHEMIE LINZ GMBH TRANSFER- HOLDERCHEM HOLDING AG;SKW TROSTBERG AKTIENGESELLSCHAFT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980121

NLS Nl: assignments of ep-patents

Owner name: SKW TROSTBERG AKTIENGESELLSCHAFT;HOLDERCHEM HOLDIN

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980121

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUEA

Free format text: HOLDERCHEM HOLDING AG;SKW TROSTBERG AKTIENGESELLSCHAFT TRANSFER- SKW TROSTBERG AKTIENGESELLSCHAFT;CEMENT INTELLECTUAL PROPERTY LTD.

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19991216

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991217

Year of fee payment: 7

Ref country code: CH

Payment date: 19991217

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19991220

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19991221

Year of fee payment: 7

Ref country code: AT

Payment date: 19991221

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000107

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20000126

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010122

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010131

BERE Be: lapsed

Owner name: CEMENT INTELLECTUAL PROPERTY LTD

Effective date: 20010131

Owner name: SKW POLYMERS G.M.B.H.

Effective date: 20010131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010801

EUG Se: european patent has lapsed

Ref document number: 94100854.2

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010928

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20021016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050121