EP0600078B1 - Apparatus and method for checking messages in packet form with header constituted by routing information and a crc check sequence - Google Patents

Apparatus and method for checking messages in packet form with header constituted by routing information and a crc check sequence Download PDF

Info

Publication number
EP0600078B1
EP0600078B1 EP93916652A EP93916652A EP0600078B1 EP 0600078 B1 EP0600078 B1 EP 0600078B1 EP 93916652 A EP93916652 A EP 93916652A EP 93916652 A EP93916652 A EP 93916652A EP 0600078 B1 EP0600078 B1 EP 0600078B1
Authority
EP
European Patent Office
Prior art keywords
header
check
crc
field
message
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93916652A
Other languages
German (de)
French (fr)
Other versions
EP0600078A1 (en
Inventor
Peter Leslie Higginson
Anthony Neil Berent
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cabletron Systems Inc
Original Assignee
Cabletron Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cabletron Systems Inc filed Critical Cabletron Systems Inc
Publication of EP0600078A1 publication Critical patent/EP0600078A1/en
Application granted granted Critical
Publication of EP0600078B1 publication Critical patent/EP0600078B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0064Concatenated codes
    • H04L1/0065Serial concatenated codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0083Formatting with frames or packets; Protocol or part of protocol for error control

Definitions

  • the present invention relates to the provision of check quantities for digital data, particularly for data transmission.
  • ECC error detecting and/or correcting codes
  • the data has a check portion or field appended to it to form a packet when it is entered into the storage or transmission means.
  • the check field is used to detect whether errors have occurred and, in some situations, to correct them.
  • a new check field may for example be calculated from the data field of the packet and compared with the check field in the packet. It is convenient to distinguish the data and check portions of the packet, but the check field checks the entire packet, ie itself as well as the data field.
  • ECCs A widely used group of ECCs is cyclic ECCs. These are generally known as CRCs (cyclic redundancy check codes), and can readily be used for checking fields of variable length.
  • CRCs cyclic redundancy check codes
  • a CRC code generates a check field which is termed the CRC field and is normally appended to the end of the data being checked.
  • the present invention finds its main application with CRCs, and will be described in terms of CRCs rather than ECCs generally.
  • a CRC can be regarded as involving the division of the data field (regarded as a binary value) by a fixed binary value termed a polynomial, using arithmetic over the Galois field GF2 (ie modulo 2 and without carries between different positions). The remainder is the CRC or check field.
  • the classical technique for calculating a CRC involves using a shift register with a feedback circuit including XOR gates at the positions corresponding to the 1s (powers of x) in the polynomial. (Details of this can be found in "Error Correcting Codes", 2nd edition, Peterson & Weldon, MIT 1972.)
  • connections may be relatively simple; eg there may be separate connections between each pair of units, or there may be a single master unit to which all other units are connected.
  • connections between the units, together with the interfaces between the units and the connections form a distinct subsystem.
  • Such a subsystem is termed a digital data transmission network.
  • a network may consist of a switching network having a number of switching nodes interconnected with each other, or an area network such as a LAN (Local Area Network), or a combination of switching networks and area networks.
  • LAN Local Area Network
  • An area network has a common communication medium with, normally, a large number of units connected to it.
  • Prior art European Patent Application Publication 0 441 041 A2 teaches method and apparatus for generating a 48-bit frame check sequence.
  • information is encoded by a mechanism such that frames including the encoded information can be correctly interpreted by the nodes operating in the standard 16- or 32-bit operating modes.
  • the encoding mechanism produces a preliminary frame check sequence which is further encoded by adding to it a complementary polynomial.
  • a 48-bit frame check sequence is thus generated, which is added to the information, which are together transmitted over the network as part of a frame.
  • Prior art European Patent Application Publication 0 445 730 A2 teaches an error correction system for use in correcting a packet header, using a Reed-Solomon code.
  • a packet header is preceded by an input signal and is formed by a Reed-Solomon code in the transmitter by adding an error correcting code to a header information signal.
  • an error correction circuit is energized in accordance with a program to locate and correct the error.
  • the present invention is mainly, though not exclusively, concerned with such digital data transmission networks.
  • the switching network therefore normally has to add a header including routing information to the data as received from the source (originating) end unit. This header is either stripped off just before the message is delivered to the destination (receiving) end unit, or is ignored by that unit.
  • the original data, as generated by the originating end unit, will often be generated with its own CRC, and for various reasons, it is often highly desirable for the data to retain this CRC throughout its journey to the receiving end unit.
  • the transmission network must therefore treat this combination of data plus its CRC as a unit (which we will term a packet).
  • the transmission network adds a header to this packet (we will term this combination of header plus packet a message). (It will be realized that terms such as packet and message are used here with specific senses which may not be identical with their usual meanings in the context of message transmission networks.)
  • ECC which means, in practice, CRC
  • One option is not to use a CRC for the header, in the expectation that an error in the header will result in the message failing to reach an end unit or, if it reached the wrong end unit, that end unit rejecting it; the sending end unit will then not receive an acknowledgement of its receipt, and will in due course resend it. This may not be acceptable.
  • a second option is to generate a header CRC for the header, so that the message consists of the header with its CRC, plus the packet (the data with its CRC).
  • a third option is for the packet to be encapsulated, with the header being added to the front of the packet and a combined CRC for the header plus packet being calculated and added at the end of the message.
  • a factor which has to be taken into consideration in selecting an option is whether the transmission network protocol is predetermined. If it is not, then any option may be chosen. But if it is, then the choice of option may be forced.
  • the standard protocols require that the message shall have a CRC at the end which covers the entire message, which forces the adoption of the third option.
  • the main object of the present invention is to provide an improved technique for providing error detection for messages in message networks.
  • the present invention provides a check generating apparatus and method of transmitting data as recited in claims 1 and 7 respectively.
  • the crux of the present invention lies in including, in the header of a message, a check correction field (CCF) which is chosen such that the CRC of the packet is also a valid CRC for the entire message.
  • CCF check correction field
  • the main advantage of this is that the CRC of the message forms a check for both the data of the original packet and the header, so a single CRC check verifies the accuracy of both the message as a whole and the data alone.
  • the header is not checked, and in the second, it is obvious that the header and the data are checked independently.
  • the packet encapsulation technique it is possible for an error to occur in the packet as the CRC for the message (packet plus header) is being calculated; so a CRC check on the entire message, using the CRC of the message, therefore verifies only the message header, and a second CRC check is therefore required on the packet extracted from the message to verify the integrity of the data.
  • the construction of the CCF will normally be performed in the interfacing between the originating end unit and the message network. Although the general functionality of this interfacing may be determined by the predetermined characteristics of the message network, it will normally be controllable by the user to the extent that it can be arranged to generate the CCF.
  • the network nodes where this takes place will normally be controllable by the user to the extent that they can be arranged to generate a CCF for the new header which maintains the CRC of the packet as valid for the whole message.
  • the CCF can be determined without reference to the packet, ie from the header alone. It will be realized that this places a certain constraint on the nature of the ECC used. Broadly, the ECC must be linearly superposable (or be divisible into components which are linearly superposable) rather than being one which performs an encryption (of the kind intended to discourage or prevent unauthorized reading of the information).
  • the process of generating the check field must be linear, in the sense that the sum of the check fields for two different fields (the original data and the header) is the check field for the concatenation of the fields.
  • This constraint is in fact satisfied by most popular ECCs, including in particular CRCs, and also by other codes with the appropriate structure of linear components, such as BCH codes.
  • the simple or basic CRC has been developed into a form known as "modified CRC". This involves the use of a second polynomial which is dependent on the length of the message. This form prevents two concatenated messages with CRCs from forming a single message with a correct CRC.
  • modified CRC The simple or basic CRC has been developed into a form known as "modified CRC". This involves the use of a second polynomial which is dependent on the length of the message. This form prevents two concatenated messages with CRCs from forming a single message with a correct CRC.
  • the X.25 standard uses a polynomial x 15 + x 14 + ... + x 1 + 1)(x k+16 + 1), where the first term in the product is a conventional CRC polynomial (with selected powers of x) and the second term is dependent on the length k of the data field. Although this is not linear, it can be separated into components which behave linearly for present purposes.
  • the calculation of the CCF depends on its location in the header. If it is at the end of the header, the calculation consists of calculating the CRC for the header (eg by using a conventional feedback shift register) and then making a fixed adjustment to it, which can be treated as an inversion (ie XORing with an all 1s subfield).
  • the CCF may be desirable to locate the CCF inside the header, ie not at the end. If this is the case, the calculation of the CRC for the header requires a minor adjustment.
  • the portion of the header following the CCF has to be divided not by the CRC polynomial but, by its reciprocal polynomial, obtained by reading it in the reverse direction (eg the reciprocal polynomial of x 3 + x 2 + x 0 is x 3 + x 1 + x 0 ).
  • the result of this calculation has to be combined with the result for the portion of the header preceding the CCF by exclusive-ORing (without inversion). If the CCF is the last field of the header, then the result of the backwards calculation with the reciprocal polynomial is a constant which depends only on the polynomial, and can easily be combined into the CCF.
  • the routing header will normally consist of a number of subfields, eg destination, source, and message type. In many situations, most or all of these subfields will be known in advance. This means that their contributions to the CCF (check subfields) can be calculated in advance. The CCF can then generally be determined by a relatively simple calculation based on those pre-calculated check subfields (XORing the check subfields together, and incorporating the fixed adjustment described above). Of course, if a new subfield is required, then its check subfield has to be calculated.
  • the combined contribution of these subfields to the CCF can also, of course, be pre-calculated as a single value. Similarly, it may be possible to include the result of the backwards calculation with the reciprocal polynomial (if required) in this value. Calculating the CCF will then involve combining the contribution of the fixed combination of subfields with the check subfields of any further header subfields.
  • the precalculation of the value of a check subfield may be done by calculating it as a normal CRC check field for the header using a feedback shift register (taking all the other header subfields as empty). This check subfield value must then be stored with the associated header subfield.
  • a header with a CCF field may be added at one stage and a second header with its own CCF field added at a later stage, with the original header (with its CCF field) being treated as part of the packet or data.
  • Such a switching network may also require the position of some components of the message to be changed. Such components must also be treated as parts of the new header.
  • a message transmission network is shown as including a source end unit 10 and three routing devices 20, 30, and 40. These illustrate part of the path of a particular data field through the network, which will of course include many such units.
  • the source end unit 10 includes a register 11 in which the data field, which is to be sent to the destination unit 40, is generated.
  • This unit 10 also includes a CRC circuit 13 which is fed with data field and calculates a CRC therefrom, and a CRC register 12 into which the CRC so calculated is fed.
  • the CRC circuit 13 may be a look-up table unit or a feedback shift register unit.
  • the CRC field is concatenated with the data field to form a packet PKT, which is transmitted by the unit 10.
  • the packet is passed to a routing unit 20 which derives, from information provided by unit 10, the source and destination addresses (in the routing network) for transmitting the packet to a destination unit 30.
  • these addresses are combined (possibly after conversion to other forms) to form a route information field RIF which is stored in a register 21.
  • This unit 20 also includes a CCF circuit 23 which is fed with RIF field and calculates a CCF therefrom, and a CCF register 22 into which the CCF so calculated is fed.
  • the RIF field may be generated in register 21 and passed to the CCF circuit 23 for the calculation of the CCF, or it may be generated in the CCF circuit 23 as described below and passed to the RIF register 21.
  • the RIF field in register 21 is concatenated with the CCF field in register 22 to produce a header HDR.
  • the packet itself from unit 10 is fed into a packet register 24, and this is concatenated with the header to produce a message MESS, which is transmitted by the unit 20.
  • Fig. 2 shows the CCF circuit 23 in more detail.
  • This circuit comprises a set of look-up tables 25-1 to 25-3, one for each subfield of the RIF, and an XOR accumulator 26.
  • Each of the look-up tables contains a set of values for its subfield, together with the corresponding check subfield values. (It is convenient to store all three tables in a single memory, as shown, with all three subfields in each location, with each subfield value being accompanied by two unused and empty subfields, shown shaded.)
  • a control unit 27 selects, from each look-up table in turn, the desired subfield value, which is passed to the RIF register 21. The selection of the subfield values may be determined, for example, in accordance with the desired final end unit to which the data is to be sent in combination with stored routing tables maintained by the unit 20 as part of the message network.
  • the final contents of the accumulator 26 are passed to the CCF register 22.
  • the CCF field generated by the CCF circuit 23 is thus concatenated with the CCF field to produce the header HDR as described above.
  • the CCF circuit 23 also includes a check subfield calculation unit 28 for calculating the check subfields for newly generated RIF subfields. (Obviously the calculation of new check subfields may impose some delay on the operation of the unit 20.)
  • the message is sent by routing unit 20 to a second routing unit 30, which cheeks the message.
  • the message has its RIF, CCF, DATA, and CRC fields entered into a register 31.
  • the routing unit also includes a CRC circuit 32 which is fed with contents of register 31 and calculates a CRC from the entire contents of the register 31. The fact that the CRC is included in the calculation means that the result should be a predetermined value.
  • the CRC circuit 32 emits an error signal if some other value results.
  • the CRC circuit 32 can be identical to the CRC circuit 13 of unit 10, apart from the fact that the CRC circuit 32 has to calculate its CRC from a longer quantity than the circuit 13.
  • unit 30 is the final unit in the switching network.
  • the header is stripped off the message by unit 30, which therefore passes only the packet part of the message on to the final destination unit, unit 40.
  • This unit checks the packet, the whole of which (DATA and CRC fields) is entered into a register 41.
  • the routing unit also includes a CRC circuit 42 which is fed with the contents of register 41 and calculates a CRC therefrom. This should yield a predetermined value; the CRC circuit 42 emits an error signal if some other value results.
  • the message may be transmitted through any number of units similar to unit 30, as shown at 30' and 30''.
  • unit 30 may itself be the final unit.
  • the unit 30 will be as shown, but will extract the DATA field directly from register 31, discarding the RIF and CCF fields.
  • the single check performed by the CRC circuit 32 will in this case verify the integrity of both that the DATA field and the header.
  • the header may need to be changed at some stage along the route of the message.
  • a unit combining the features of units 20 and 30 would be required. More specifically, this would involve adding a CRC circuit (like unit 32) to unit 20. The incoming message would be entered into the complete message register, and its CRC checked by the CRC circuit. The incoming header would then be discarded, the new RIF field would then be determined, and finally the new CCF field would be determined by the unit 23.
  • a CRC circuit like unit 32
  • the CRC circuit 42 can be identical to the CRC circuits 13 and 32 of units 10 and 30, apart from the fact that the CRC circuit 42 has to calculate its CRC from a quantity of different length to the quantities dealt with by the circuit 32. Further, the CRC fields which are used to check the message in unit 30 and the packet in unit 40 are identical.
  • the unit 40 may be the destination end unit for the data field; alternatively, the packet may be forwarded further through the network, eg with a new RIF being added by a unit corresponding to unit 20.
  • a packet is originated in a unit 10 as a data field DATA 11 plus a CRC (cyclic redundancy check) check field CRC 12 by a CRC circuit 13.
  • This packet has a header HDR (with a routing information field RIF) added to it in a unit 20, converting it into a message for transmission through a message network.
  • a check correction field CCF is computed by unit 23 in unit 20, by looking up precomputed check subfields stored with the routing subfields (the routing information field being constructed by selecting from the stored subfields), such that the CRC field is a valid CRC check field for the complete message.
  • unit 30 can be the final user unit, checking the entire message and extracting the data field DATA therefrom; the DATA field does not need to be checked, as the CRC field acts as a check both for the data field DATA alone and the entire message.
  • the message can be checked by a final switching unit 30 using a standard CRC check circuit 32 (and similarly at intermediate units 30', 30'') and the original packet can be checked by another standard CRC check circuit 42 in the final user unit 40.

Description

  • The present invention relates to the provision of check quantities for digital data, particularly for data transmission.
  • The use of ECC (error detecting and/or correcting codes) for digital data is well established. ECC is used where the data is to be stored or transmitted by some means which is liable to occasional error. The data has a check portion or field appended to it to form a packet when it is entered into the storage or transmission means. When the packet is retrieved, the check field is used to detect whether errors have occurred and, in some situations, to correct them. A new check field may for example be calculated from the data field of the packet and compared with the check field in the packet. It is convenient to distinguish the data and check portions of the packet, but the check field checks the entire packet, ie itself as well as the data field.
  • A variety of ECC techniques have been proposed. Obviously, ease of implementation is important; for practical utilization, there must be some easily implemented algorithm for calculating the check field from the data field. If the system is to be used for error correction, then there must also be an effective technique for calculating the required corrections to the data field from the (erroneous) packet. However, if only error detection is required, then there is no need for an efficient means of determining the precise nature of the error. Pure error detection, with no correction, is for example commonplace in many message transmission networks, because if an error is detected, the message can be retransmitted.
  • A widely used group of ECCs is cyclic ECCs. These are generally known as CRCs (cyclic redundancy check codes), and can readily be used for checking fields of variable length. A CRC code generates a check field which is termed the CRC field and is normally appended to the end of the data being checked. The present invention finds its main application with CRCs, and will be described in terms of CRCs rather than ECCs generally.
  • For present purposes, a CRC can be regarded as involving the division of the data field (regarded as a binary value) by a fixed binary value termed a polynomial, using arithmetic over the Galois field GF2 (ie modulo 2 and without carries between different positions). The remainder is the CRC or check field. The classical technique for calculating a CRC involves using a shift register with a feedback circuit including XOR gates at the positions corresponding to the 1s (powers of x) in the polynomial. (Details of this can be found in "Error Correcting Codes", 2nd edition, Peterson & Weldon, MIT 1972.)
  • Many digital systems consist of a variety of physically distributed units, and require data to be passed between the various units. In some such systems, the connections may be relatively simple; eg there may be separate connections between each pair of units, or there may be a single master unit to which all other units are connected. In most large multi-unit systems, however, the connections between the units, together with the interfaces between the units and the connections, form a distinct subsystem.
  • Such a subsystem is termed a digital data transmission network. Such a network may consist of a switching network having a number of switching nodes interconnected with each other, or an area network such as a LAN (Local Area Network), or a combination of switching networks and area networks. (An area network has a common communication medium with, normally, a large number of units connected to it.)
  • Prior art European Patent Application Publication 0 441 041 A2 teaches method and apparatus for generating a 48-bit frame check sequence. Therein, information is encoded by a mechanism such that frames including the encoded information can be correctly interpreted by the nodes operating in the standard 16- or 32-bit operating modes. The encoding mechanism produces a preliminary frame check sequence which is further encoded by adding to it a complementary polynomial. A 48-bit frame check sequence is thus generated, which is added to the information, which are together transmitted over the network as part of a frame.
  • Prior art European Patent Application Publication 0 445 730 A2 teaches an error correction system for use in correcting a packet header, using a Reed-Solomon code. A packet header is preceded by an input signal and is formed by a Reed-Solomon code in the transmitter by adding an error correcting code to a header information signal. On detection of at least one error in the packet header, an error correction circuit is energized in accordance with a program to locate and correct the error.
  • The present invention is mainly, though not exclusively, concerned with such digital data transmission networks.
  • With such networks, it is the responsibility of the network to achieve the proper carriage of data between the end units connected to the network. This typically involves determining suitable routing for the data (eg through a suitable sequence of switching nodes). The routing information required for this is a function of the network, independent of the end units. The switching network therefore normally has to add a header including routing information to the data as received from the source (originating) end unit. This header is either stripped off just before the message is delivered to the destination (receiving) end unit, or is ignored by that unit.
  • This complicates the application of ECC.
  • The original data, as generated by the originating end unit, will often be generated with its own CRC, and for various reasons, it is often highly desirable for the data to retain this CRC throughout its journey to the receiving end unit. The transmission network must therefore treat this combination of data plus its CRC as a unit (which we will term a packet). The transmission network adds a header to this packet (we will term this combination of header plus packet a message). (It will be realized that terms such as packet and message are used here with specific senses which may not be identical with their usual meanings in the context of message transmission networks.)
  • Just as for the data generally, it is often desirable for the header to be checkable; ie for ECC to be applied. But the precise manner in which ECC (which means, in practice, CRC) is applied to the message involves various considerations and is not entirely straightforward.
  • One option is not to use a CRC for the header, in the expectation that an error in the header will result in the message failing to reach an end unit or, if it reached the wrong end unit, that end unit rejecting it; the sending end unit will then not receive an acknowledgement of its receipt, and will in due course resend it. This may not be acceptable.
  • A second option is to generate a header CRC for the header, so that the message consists of the header with its CRC, plus the packet (the data with its CRC).
  • A third option is for the packet to be encapsulated, with the header being added to the front of the packet and a combined CRC for the header plus packet being calculated and added at the end of the message.
  • A factor which has to be taken into consideration in selecting an option is whether the transmission network protocol is predetermined. If it is not, then any option may be chosen. But if it is, then the choice of option may be forced. The standard protocols require that the message shall have a CRC at the end which covers the entire message, which forces the adoption of the third option.
  • The main object of the present invention is to provide an improved technique for providing error detection for messages in message networks.
  • The present invention provides a check generating apparatus and method of transmitting data as recited in claims 1 and 7 respectively.
  • The crux of the present invention lies in including, in the header of a message, a check correction field (CCF) which is chosen such that the CRC of the packet is also a valid CRC for the entire message. This means that the message will automatically conform to the usual message network protocol. (It will be realized that the nature of the contents of the header is not relevant, although we have described the header as containing routing information for use in a message network.)
  • The main advantage of this is that the CRC of the message forms a check for both the data of the original packet and the header, so a single CRC check verifies the accuracy of both the message as a whole and the data alone. This is in contrast to the known techniques discussed above. In the first of those, the header is not checked, and in the second, it is obvious that the header and the data are checked independently. In the third, the packet encapsulation technique, it is possible for an error to occur in the packet as the CRC for the message (packet plus header) is being calculated; so a CRC check on the entire message, using the CRC of the message, therefore verifies only the message header, and a second CRC check is therefore required on the packet extracted from the message to verify the integrity of the data.
  • The construction of the CCF will normally be performed in the interfacing between the originating end unit and the message network. Although the general functionality of this interfacing may be determined by the predetermined characteristics of the message network, it will normally be controllable by the user to the extent that it can be arranged to generate the CCF.
  • In some complex message networks, it may be necessary for the header to be changed as the message passes through the network. Again, the network nodes where this takes place will normally be controllable by the user to the extent that they can be arranged to generate a CCF for the new header which maintains the CRC of the packet as valid for the whole message.
  • An essential feature of the present system is that the CCF can be determined without reference to the packet, ie from the header alone. It will be realized that this places a certain constraint on the nature of the ECC used. Broadly, the ECC must be linearly superposable (or be divisible into components which are linearly superposable) rather than being one which performs an encryption (of the kind intended to discourage or prevent unauthorized reading of the information).
  • Broadly, the process of generating the check field must be linear, in the sense that the sum of the check fields for two different fields (the original data and the header) is the check field for the concatenation of the fields. This constraint is in fact satisfied by most popular ECCs, including in particular CRCs, and also by other codes with the appropriate structure of linear components, such as BCH codes.
  • The simple or basic CRC has been developed into a form known as "modified CRC". This involves the use of a second polynomial which is dependent on the length of the message. This form prevents two concatenated messages with CRCs from forming a single message with a correct CRC. For example, the X.25 standard uses a polynomial x15 + x14 + ... + x1 + 1)(xk+16 + 1), where the first term in the product is a conventional CRC polynomial (with selected powers of x) and the second term is dependent on the length k of the data field. Although this is not linear, it can be separated into components which behave linearly for present purposes.
  • This modified CRC has now displaced the standard CRC virtually completely in message networks, and from here on we will work exclusively in terms of this modified CRC.
  • The calculation of the CCF depends on its location in the header. If it is at the end of the header, the calculation consists of calculating the CRC for the header (eg by using a conventional feedback shift register) and then making a fixed adjustment to it, which can be treated as an inversion (ie XORing with an all 1s subfield).
  • It may be desirable to locate the CCF inside the header, ie not at the end. If this is the case, the calculation of the CRC for the header requires a minor adjustment. The portion of the header following the CCF has to be divided not by the CRC polynomial but, by its reciprocal polynomial, obtained by reading it in the reverse direction (eg the reciprocal polynomial of x3 + x2 + x0 is x3 + x1 + x0). The result of this calculation has to be combined with the result for the portion of the header preceding the CCF by exclusive-ORing (without inversion). If the CCF is the last field of the header, then the result of the backwards calculation with the reciprocal polynomial is a constant which depends only on the polynomial, and can easily be combined into the CCF.
  • The routing header will normally consist of a number of subfields, eg destination, source, and message type. In many situations, most or all of these subfields will be known in advance. This means that their contributions to the CCF (check subfields) can be calculated in advance. The CCF can then generally be determined by a relatively simple calculation based on those pre-calculated check subfields (XORing the check subfields together, and incorporating the fixed adjustment described above). Of course, if a new subfield is required, then its check subfield has to be calculated.
  • If the subfields occur largely in fixed or mainly fixed combinations, the combined contribution of these subfields to the CCF can also, of course, be pre-calculated as a single value. Similarly, it may be possible to include the result of the backwards calculation with the reciprocal polynomial (if required) in this value. Calculating the CCF will then involve combining the contribution of the fixed combination of subfields with the check subfields of any further header subfields.
  • The precalculation of the value of a check subfield may be done by calculating it as a normal CRC check field for the header using a feedback shift register (taking all the other header subfields as empty). This check subfield value must then be stored with the associated header subfield.
  • If the message is to pass through two different levels of switching network, a header with a CCF field may be added at one stage and a second header with its own CCF field added at a later stage, with the original header (with its CCF field) being treated as part of the packet or data. Such a switching network may also require the position of some components of the message to be changed. Such components must also be treated as parts of the new header.
  • An embodiment of the invention will now be described, by way of example, with reference to the drawings, in which:
  • Fig. 1 is a block diagram of part of a digital data transmission network; and
  • Fig. 2 is a more detailed block diagram of the CCF unit 23 in unit 20 of that network.
  • Referring now to the Fig. 1, a message transmission network is shown as including a source end unit 10 and three routing devices 20, 30, and 40. These illustrate part of the path of a particular data field through the network, which will of course include many such units.
  • The source end unit 10 includes a register 11 in which the data field, which is to be sent to the destination unit 40, is generated. This unit 10 also includes a CRC circuit 13 which is fed with data field and calculates a CRC therefrom, and a CRC register 12 into which the CRC so calculated is fed. The CRC circuit 13 may be a look-up table unit or a feedback shift register unit. The CRC field is concatenated with the data field to form a packet PKT, which is transmitted by the unit 10.
  • The packet is passed to a routing unit 20 which derives, from information provided by unit 10, the source and destination addresses (in the routing network) for transmitting the packet to a destination unit 30. In this routing unit, these addresses are combined (possibly after conversion to other forms) to form a route information field RIF which is stored in a register 21. This unit 20 also includes a CCF circuit 23 which is fed with RIF field and calculates a CCF therefrom, and a CCF register 22 into which the CCF so calculated is fed. (The RIF field may be generated in register 21 and passed to the CCF circuit 23 for the calculation of the CCF, or it may be generated in the CCF circuit 23 as described below and passed to the RIF register 21.)
  • The RIF field in register 21 is concatenated with the CCF field in register 22 to produce a header HDR. The packet itself from unit 10 is fed into a packet register 24, and this is concatenated with the header to produce a message MESS, which is transmitted by the unit 20.
  • Fig. 2 shows the CCF circuit 23 in more detail. This circuit comprises a set of look-up tables 25-1 to 25-3, one for each subfield of the RIF, and an XOR accumulator 26. Each of the look-up tables contains a set of values for its subfield, together with the corresponding check subfield values. (It is convenient to store all three tables in a single memory, as shown, with all three subfields in each location, with each subfield value being accompanied by two unused and empty subfields, shown shaded.) A control unit 27 selects, from each look-up table in turn, the desired subfield value, which is passed to the RIF register 21. The selection of the subfield values may be determined, for example, in accordance with the desired final end unit to which the data is to be sent in combination with stored routing tables maintained by the unit 20 as part of the message network.
  • At the same time as the RIF subfield value is looked up, its associated check subfield value is also looked up and passed to the accumulator 26, which adds the check subfield values according to polynomial arithmetic (bitwise XORing). A final fixed adjustment has to be made (as discussed above) to adjust the result for the fact that the check system is a modified CRC system. This adjustment is in fact achieved by adjusting the check subfield values in any convenient one of the three look-up tables.
  • The final contents of the accumulator 26 are passed to the CCF register 22. The CCF field generated by the CCF circuit 23 is thus concatenated with the CCF field to produce the header HDR as described above.
  • The CCF circuit 23 also includes a check subfield calculation unit 28 for calculating the check subfields for newly generated RIF subfields. (Obviously the calculation of new check subfields may impose some delay on the operation of the unit 20.)
  • Returning to Fig. 1, the message is sent by routing unit 20 to a second routing unit 30, which cheeks the message. The message has its RIF, CCF, DATA, and CRC fields entered into a register 31. The routing unit also includes a CRC circuit 32 which is fed with contents of register 31 and calculates a CRC from the entire contents of the register 31. The fact that the CRC is included in the calculation means that the result should be a predetermined value. The CRC circuit 32 emits an error signal if some other value results.
  • The CRC circuit 32 can be identical to the CRC circuit 13 of unit 10, apart from the fact that the CRC circuit 32 has to calculate its CRC from a longer quantity than the circuit 13.
  • We will assume that unit 30 is the final unit in the switching network. The header is stripped off the message by unit 30, which therefore passes only the packet part of the message on to the final destination unit, unit 40. This unit checks the packet, the whole of which (DATA and CRC fields) is entered into a register 41. The routing unit also includes a CRC circuit 42 which is fed with the contents of register 41 and calculates a CRC therefrom. This should yield a predetermined value; the CRC circuit 42 emits an error signal if some other value results.
  • Obviously the message may be transmitted through any number of units similar to unit 30, as shown at 30' and 30''.
  • Instead of unit 30 passing the packet to the final unit 40, unit 30 may itself be the final unit. In this case, the unit 30 will be as shown, but will extract the DATA field directly from register 31, discarding the RIF and CCF fields. The single check performed by the CRC circuit 32 will in this case verify the integrity of both that the DATA field and the header.
  • A further possibility is that the header may need to be changed at some stage along the route of the message. For this, a unit combining the features of units 20 and 30 would be required. More specifically, this would involve adding a CRC circuit (like unit 32) to unit 20. The incoming message would be entered into the complete message register, and its CRC checked by the CRC circuit. The incoming header would then be discarded, the new RIF field would then be determined, and finally the new CCF field would be determined by the unit 23.
  • The CRC circuit 42 can be identical to the CRC circuits 13 and 32 of units 10 and 30, apart from the fact that the CRC circuit 42 has to calculate its CRC from a quantity of different length to the quantities dealt with by the circuit 32. Further, the CRC fields which are used to check the message in unit 30 and the packet in unit 40 are identical.
  • The unit 40 may be the destination end unit for the data field; alternatively, the packet may be forwarded further through the network, eg with a new RIF being added by a unit corresponding to unit 20.
  • In summary, in the present system a packet is originated in a unit 10 as a data field DATA 11 plus a CRC (cyclic redundancy check) check field CRC 12 by a CRC circuit 13. This packet has a header HDR (with a routing information field RIF) added to it in a unit 20, converting it into a message for transmission through a message network. A check correction field CCF is computed by unit 23 in unit 20, by looking up precomputed check subfields stored with the routing subfields (the routing information field being constructed by selecting from the stored subfields), such that the CRC field is a valid CRC check field for the complete message. At the destination, unit 30 can be the final user unit, checking the entire message and extracting the data field DATA therefrom; the DATA field does not need to be checked, as the CRC field acts as a check both for the data field DATA alone and the entire message. (Alternatively, the message can be checked by a final switching unit 30 using a standard CRC check circuit 32 (and similarly at intermediate units 30', 30'') and the original packet can be checked by another standard CRC check circuit 42 in the final user unit 40.)

Claims (12)

  1. A check generating apparatus for use in a message transmission system, said check generating apparatus including:
    means for adding, to a packet which comprises data and its cyclic redundancy check field (CRC), a header information field (RIF) to form a message,
    characterised by:
    means for calculating, from the header information field, a check correction field (CCF) which is incorporated in the header (HDR) such that said cyclic redundancy check field (CRC) is valid for the entire message (MESS), which message comprises :
    i. the header including said information field (RIF) and said check correction field (CCF); and
    ii. packets comprising said data (DATA) and its cyclic redundancy check field (CRC).
  2. Check generating apparatus according to claim 1, in which the check field (CRC) is a modified cyclic redundancy check field utilising a CRC polynomial and a second polynomial dependent on the length of the packet.
  3. Check generating apparatus according to claim 2 wherein said header information field is divided into header subfields, the apparatus further comprising:
    means for calculating a check subfield for each said header subfield, including means for dividing by the CRC polynomial.
  4. Check generating apparatus according to claim 3, further comprising means for calculating said check subfields for header information subfields, including means for dividing by the reciprocal of the CRC polynomial.
  5. Check generating apparatus according to claim 1 or claim 2 wherein said header information field is divided into header subfields, the apparatus further comprising:
    look-up table storage means (25) for storing values of said header subfields.
  6. Check generating apparatus according to any preceding claim in which the header information field comprises routing information.
  7. A method of transmitting data comprising the step of:
    adding, to a packet which comprises data and its cyclic redundancy check field (CRC), a header information field (RIF) to form a message,
    characterised by the further step of:
    calculating, from the header information field, a check correction field (CCF) which is incorporated in the header (HDR) such that said cyclic redundancy check field (CRC) is valid for the entire message (MESS), which message comprises:
    i. the header including said information field (RIF) and said check correction field (CCF); and
    ii. packets comprising said data (DATA) and its cyclic redundancy check field (CRC).
  8. The method according to claim 7, in which the check field (CRC) is a modified cyclic redundancy check field utilising a CRC polynomial and a second polynomial dependent on the length of the packet.
  9. The method according to claim 8 wherein said header information field is divided into header subfields, and the method further comprises calculating a check subfield for each said header subfield, including dividing by the CRC polynomial.
  10. The method according to claim 9, further comprising the step of calculating said check subfields for header information subfields, including dividing by the reciprocal of the CRC polynomial.
  11. The method according to claim 7 or claim 8 wherein said header information field is divided into header subfields, and the method further comprises storing values of said header subfields in look-up table storage means (25).
  12. The method according to any one of claims 7 to 11 in which the header information field comprises routing information.
EP93916652A 1992-06-23 1993-06-21 Apparatus and method for checking messages in packet form with header constituted by routing information and a crc check sequence Expired - Lifetime EP0600078B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB929213272A GB9213272D0 (en) 1992-06-23 1992-06-23 Check sequence preservation
GB9213272 1992-06-23
PCT/US1993/005918 WO1994000937A1 (en) 1992-06-23 1993-06-21 Message in packet form with header constituted by routing information and a crc check sequence

Publications (2)

Publication Number Publication Date
EP0600078A1 EP0600078A1 (en) 1994-06-08
EP0600078B1 true EP0600078B1 (en) 2000-07-26

Family

ID=10717561

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93916652A Expired - Lifetime EP0600078B1 (en) 1992-06-23 1993-06-21 Apparatus and method for checking messages in packet form with header constituted by routing information and a crc check sequence

Country Status (5)

Country Link
US (2) US5954835A (en)
EP (1) EP0600078B1 (en)
DE (1) DE69329098T2 (en)
GB (1) GB9213272D0 (en)
WO (1) WO1994000937A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9515741D0 (en) * 1995-08-01 1995-10-04 Plessey Semiconductors Ltd Data transmission systems
GB2304006B (en) * 1995-08-01 1999-08-25 Plessey Semiconductors Ltd Data transmission systems
US6269464B1 (en) * 1997-06-18 2001-07-31 Sutmyn Storage Corporation Error checking technique for use in mass storage systems
US6331978B1 (en) * 1999-03-09 2001-12-18 Nokia Telecommunications, Oy Generic label encapsulation protocol for carrying label switched packets over serial links
US6826197B1 (en) * 1999-04-01 2004-11-30 Sedna Patent Services, Llc Data packet structure for digital information distribution
US6601210B1 (en) * 1999-09-08 2003-07-29 Mellanox Technologies, Ltd Data integrity verification in a switching network
KR100677070B1 (en) * 1999-10-02 2007-02-01 삼성전자주식회사 Error control method for video bitstream data in wireless multimedia communication and computer readable medium therefor
US6691273B2 (en) * 2001-01-17 2004-02-10 Telefonaktiebolaget Lm Ericsson (Publ) Error correction using packet combining during soft handover
US6996658B2 (en) 2001-10-17 2006-02-07 Stargen Technologies, Inc. Multi-port system and method for routing a data element within an interconnection fabric
US20040158794A1 (en) * 2002-07-19 2004-08-12 Niesen Joseph W. Reduced overhead CRC functionality for packets and link layer superframes
US7899030B2 (en) * 2002-09-11 2011-03-01 Jinsalas Solutions, Llc Advanced switching architecture
US7155658B2 (en) * 2002-12-20 2006-12-26 Intel Corporation CRC calculation for data with dynamic header
US20040218623A1 (en) * 2003-05-01 2004-11-04 Dror Goldenberg Hardware calculation of encapsulated IP, TCP and UDP checksums by a switch fabric channel adapter
KR20050057698A (en) * 2003-12-10 2005-06-16 삼성전자주식회사 Apparatus and method for generating checksum
DE10361386B4 (en) * 2003-12-29 2006-02-16 Siemens Ag Method for transmitting digital information packets in a data network
WO2006081215A2 (en) * 2005-01-24 2006-08-03 Daintree Networks Pty.Ltd. Network analysis system and method
US8223745B2 (en) * 2005-04-22 2012-07-17 Oracle America, Inc. Adding packet routing information without ECRC recalculation
JP2009508451A (en) * 2005-09-12 2009-02-26 クゥアルコム・インコーポレイテッド High speed control messaging mechanism for use in wireless network communications
US7712009B2 (en) 2005-09-21 2010-05-04 Semiconductor Energy Laboratory Co., Ltd. Cyclic redundancy check circuit and semiconductor device having the cyclic redundancy check circuit
DE102007029116A1 (en) * 2007-06-25 2009-01-02 Continental Automotive Gmbh Method for operating a microcontroller and an execution unit and a microcontroller and an execution unit
CN106708555B (en) * 2016-06-29 2019-01-22 腾讯科技(深圳)有限公司 A kind of method and apparatus loading plug-in unit
US10225046B2 (en) 2017-01-09 2019-03-05 At&T Intellectual Property I, L.P. Adaptive cyclic redundancy check for uplink control information encoding

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3872430A (en) * 1973-11-23 1975-03-18 Paul Emile Boudreau Method and apparatus of error detection for variable length words using a polynomial code
DE2759106C2 (en) * 1977-12-30 1979-04-05 Siemens Ag, 1000 Berlin Und 8000 Muenchen Circuit arrangement for coding or decoding binary information
US4151510A (en) * 1978-04-27 1979-04-24 Honeywell Information Systems Method and apparatus for an efficient error detection and correction system
CA1196106A (en) * 1982-04-28 1985-10-29 Tsuneo Furuya Method and apparatus for error correction
US4577313A (en) * 1984-06-04 1986-03-18 Sy Kian Bon K Routing mechanism with encapsulated FCS for a multi-ring local area network
US5062104A (en) * 1988-09-26 1991-10-29 Pacific Bell Digital service unit for connecting data processing equipment to a telephone system based computer network
US5121396A (en) * 1988-10-27 1992-06-09 International Business Machines Corp. Preservation of crc integrity upon intentional data alteration during message transmission
US4937828A (en) * 1988-11-04 1990-06-26 Westinghouse Electric Corp. High speed parallel CRC device for concatenated data frames
EP0405041B1 (en) * 1989-06-29 1994-04-20 International Business Machines Corporation Terminal adapter having a multiple HDLC communication channels receiver for processing control network management frames
US5068854A (en) * 1989-09-12 1991-11-26 Cupertino, California U.S.A. Error detection for fiber distributed interfaced optic link
GB2242104B (en) * 1990-02-06 1994-04-13 Digital Equipment Int Method and apparatus for generating a frame check sequence
CA2037527C (en) * 1990-03-05 1999-05-25 Hideki Okuyama Error correction system capable of correcting an error in a packet header by the use of a reed-solomon code
US5251215A (en) * 1992-01-13 1993-10-05 At&T Bell Laboratories Modifying check codes in data packet transmission
GB9213273D0 (en) * 1992-06-23 1992-08-05 Digital Equipment Int Efficient atm cell synchronization

Also Published As

Publication number Publication date
GB9213272D0 (en) 1992-08-05
US6425106B1 (en) 2002-07-23
WO1994000937A1 (en) 1994-01-06
US5954835A (en) 1999-09-21
DE69329098T2 (en) 2001-03-22
EP0600078A1 (en) 1994-06-08
DE69329098D1 (en) 2000-08-31

Similar Documents

Publication Publication Date Title
EP0600078B1 (en) Apparatus and method for checking messages in packet form with header constituted by routing information and a crc check sequence
EP0950300B1 (en) Secondary channel using code violations
US4979174A (en) Error correction and detection apparatus and method
US6014767A (en) Method and apparatus for a simple calculation of CRC-10
US6145109A (en) Forward error correction system for packet based real time media
US6609225B1 (en) Method and apparatus for generating and checking cyclic redundancy code (CRC) values using a multi-byte CRC generator on a variable number of bytes
US6396423B1 (en) Method for coding or decoding and device for coding or decoding
WO1999030462A2 (en) A forward error correction system for packet based real-time media
US5898708A (en) Error correction apparatus and method
JP3404642B2 (en) Method and apparatus for two-stage calculation of CRC-32
JPH07177132A (en) Check data generation system
US20040098655A1 (en) Rolling CRC scheme for improved error detection
JP3283097B2 (en) Communications system
US7581155B2 (en) Apparatus for FEC supporting transmission of variable-length frames in TDMA system and method of using the same
MXPA04007077A (en) Dual chien search blocks in an error-correcting decoder.
CA2364072C (en) Interconnect system with error correction
US7289530B1 (en) System and method for coding a digital wrapper frame
US7941731B2 (en) Data sending device, data receiving device, data sending method, and data receiving method
US6981195B2 (en) Cyclic redundancy check with efficient re-computation of error detection code
KR20090017384A (en) Method of dividing code block considering crc attachment
US6185715B1 (en) Method of product code block encoding applicable to encoding an ATM cell
KR20050086541A (en) An improved communications protocol
JP3329053B2 (en) Error correction method
JPH05183447A (en) Improved error detection coding system
JPH07297817A (en) Data transmission system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19940620

17Q First examination report despatched

Effective date: 19970428

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CABLETRON SYSTEMS, INC.

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20000726

REF Corresponds to:

Ref document number: 69329098

Country of ref document: DE

Date of ref document: 20000831

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040520

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090617

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090625

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100621

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100621