EP0537431B1 - Einrichtung zum optischen Erkennen von Dokumenten - Google Patents

Einrichtung zum optischen Erkennen von Dokumenten Download PDF

Info

Publication number
EP0537431B1
EP0537431B1 EP92113171A EP92113171A EP0537431B1 EP 0537431 B1 EP0537431 B1 EP 0537431B1 EP 92113171 A EP92113171 A EP 92113171A EP 92113171 A EP92113171 A EP 92113171A EP 0537431 B1 EP0537431 B1 EP 0537431B1
Authority
EP
European Patent Office
Prior art keywords
light
light sources
document
illumination
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92113171A
Other languages
English (en)
French (fr)
Other versions
EP0537431A1 (de
Inventor
Ivo De Man
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mars Inc
Original Assignee
Mars Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=4246491&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0537431(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mars Inc filed Critical Mars Inc
Publication of EP0537431A1 publication Critical patent/EP0537431A1/de
Application granted granted Critical
Publication of EP0537431B1 publication Critical patent/EP0537431B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/121Apparatus characterised by sensor details
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/1205Testing spectral properties
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/20Testing patterns thereon

Definitions

  • the invention relates to a device for optical recognition of documents of the type mentioned in the preamble of claim 1.
  • Such devices for optically recognizing documents are used, for example, in banknote acceptors for optically recognizing banknotes.
  • a device for optically recognizing documents is known from US Pat. No. 4,319,137, which recognizes a printed sheet on the basis of printed features.
  • An elongated source of white light illuminates a narrow strip that extends across the sheet.
  • the light scattered from the sheet in the strip or shining through the sheet there is captured simultaneously by means of three photosensors arranged in a row.
  • Each photosensor only registers light from a narrow spectral range, e.g. B. in the color red, green or blue.
  • the photosensors transmit three electrical signals corresponding to the three colors to an evaluation device.
  • DE-PS 37 05 870 describes a device which can be used as a read head and which enables line-by-line scanning of a sheet.
  • the device has a row of photodiodes, to each of which a pair of light-emitting diodes inclined relative to one another is assigned. Each pair of LEDs illuminates the sheet in an area immediately in front of the associated photodiode.
  • a collimator is arranged in front of each photodiode and blocks all light that does not come from the area of the sheet immediately in front of the photodiode.
  • the reading head produces a monochrome, rasterized image of a print pattern on the sheet.
  • EP-A 338 123 it is known from EP-A 338 123 to form the read head from a group of interchangeable modules arranged in parallel, which form the linear arrangement of photodiodes and Have light sources and optically scan the sheet in strips. Each module works in the light of a predetermined color and produces the signals for a rasterized monochrome image of the print pattern on the sheet.
  • a device for scanning a sheet with a single photosensor is known from CH-PS 573 634, wherein a small circular area on the sheet is successively illuminated with individual light sources of different spectral color arranged at an angle to the sheet plane.
  • the only photosensor receives light in the respective spectral range, which is scattered into the photosensor perpendicular to the sheet plane. Moving the sheet after each cycle enables a narrow strip to be scanned on the sheet.
  • the light sources and the photosensors are arranged in relation to the sheet plane in such a way that no light directly reflected on the sheet surface reaches the photosensors.
  • the invention has for its object to provide an inexpensive device for optically recognizing documents, which enables reliable detection of colored features on the sheet surface of the document.
  • 1 means a sheet-like document with a one-color or multi-color printed identifying pattern, as it is e.g. B. of banknotes is known.
  • a means of transport 2 transports the document 1 flat in a transport plane 3 through a device for recognizing documents 1. Outside the transport plane 3 are photosensitive elements, e.g. B. photosensors 4, arranged, the optical axes of which are perpendicular to the transport plane 3 and define a single sensor plane 5 transverse to a transport direction 6 of the document 1.
  • the photosensors 4 form at least one equidistant row with one another in the sensor plane 5, the distance between the row of the photosensors 4 and the transport plane 3 being predetermined.
  • the photosensors 4 are set up to convert light 7 from a wide spectral range into electrical sensor signals S.
  • the spectral range includes, for example, wavelengths from 0.4 microns to 10 microns, as z. B. is the case with semiconductor photoelectric elements made of silicon.
  • the light 7 can e.g. B. be scattered on document 1.
  • the photosensors 4 have an acceptance angle ⁇ , measured perpendicular to the sensor plane 5, for the incident light 7 and thereby, measured in the transport direction 6, determine the width of an area 8 on the document 1 which essentially overlaps as a narrow strip transversely to the transport direction 6 the width of the document 1 extends. Since the transport means 2 transports the document 1 in the transport direction 6, the area 8 migrates over the entire document 1.
  • the area 8 is formed by at least one, but preferably two symmetrically arranged, light sources Luminous lines 9, 10 illuminated.
  • the optical axes of the light sources in a light line 9 or 10 determine a light level 11 or 12.
  • the light levels 11, 12 intersect at an angle ⁇ in the common intersection line between the transport level 3 and the sensor level 5, which is the bisecting plane between the two light levels 11 and 12 shares the angle ⁇ .
  • the light sources are arranged equidistantly in both luminous lines 9 and 10. Both light lines 9, 10 are at the same distance from the transport plane 3 in the light plane 11, 12 and are symmetrical to the sensor plane 5.
  • the light sources of the two luminous lines 9, 10 together illuminate at least area 8.
  • the mean angle of incidence of a radiation from the light sources illuminating document 1 is ⁇ / 2 and is dimensioned such that, despite the surface structure of document 1, no direct reflections get into photosensors 4 and on the other hand the sensitivity of the device to small variations in the distance of the documents 1 from the transport plane 3 is imperceptible. This is advantageous for reading crumpled documents 1.
  • a control unit 13 is connected to the light sources of the light levels 11, 12 by means of feed lines 14.
  • One signal line 15 each connects the photo sensors 4 and the feed device 13.
  • a control line 16 establishes a connection between the feed device 13 and a drive 17 of the transport means 2.
  • a signal output of the control device 13 is connected to a data line 18 with a data input of an evaluation unit 19.
  • the control device 13 is set up to feed the light sources in the luminous lines 11 and 12 and to amplify and digitize the sensor signals S.
  • the control device 13 preferably enables the light sources to be switched on and off briefly by means of a built-in clock generator 20, the light sources, for example individually or in a cycle Z of work steps t predetermined by the clock generator 20 in groups, illuminate one after the other for a predetermined cycle time t and illuminate document 1 in area 8.
  • the cycle Z repeats itself, the transport means 2, for example, moving the document 1 by the width of the area 8 in the first step t1.
  • the control device 13 has an input with an amplifier 13 ′ for each signal line 15, the gain factor of which can be set with an external signal, and is set up for digitizing the amplified, analog electrical sensor signals S.
  • the sensor signals S proportional to the light intensity of the light received by the photosensors 4 reach the input of the connected amplifier 13 'via each of the signal lines 15.
  • the control unit 13 amplifies and digitizes the sensor signals S arriving at each work step t and passes them in digitized form as a group of numbers via the data line 18 to the evaluation unit 19.
  • the amplifiers 13 'can be Unit 19 receive setting variables generated, which serve as external signals for adjusting the gain factors.
  • the clock 20 controls the drive 17 of the transport means 2, for example in a first step t1 of the cycle Z the document 1 is moved in the transport direction 6 so that the photosensors 4 can scan a new area 8.
  • the evaluation unit 19 receives a predetermined number of groups of numbers characterizing the area 8. As soon as the document 1 has been scanned in the predetermined areas 8, the evaluation unit 19 can compare these groups of numbers with predetermined sample number groups, which are stored in the evaluation unit 19, and can decide whether to accept or return the document 1.
  • Optical means 21 can advantageously be arranged in the beam path in front of the photosensors 4 so that the light 7 scattered on the document 1 is largely independent of the optical properties collect the photosensors 4 and feed them.
  • the optical means 21 are preferably inexpensive aspherical plastic lenses or a diffractive optically effective, holographic optical element which can be embossed in plastic.
  • polyesters, polycarbonates, etc. are suitable as plastics.
  • Additional light sources advantageously increase the discriminatory power of the device for optically recognizing documents 1, since not only the scattered light 7 serves as the only distinguishing feature, but also the transparency of the document 1 and / or the fluorescence of the dyes present on the document 1.
  • a further row of lights 22 can be arranged on the side of the document 1 facing away from the photosensors 4 in the sensor plane 5, the optical axes of the light sources of the row of lights 22 being aligned in the sensor plane 5 such that the area 8 on the side facing away from the photosensors 4 of document 1 is illuminated.
  • the light sources of the row of lights 22 are connected to the control device 13 via supply lines 23.
  • the clock generator 20 controls the switching on and off of the light sources of the light row 22 in additional work steps t.
  • the light 7 which shines through the document 1 is collected by the optical means 21 and fed to the photosensors 4.
  • a source of ultraviolet light a UV source 24, which extends over the entire width of the document 1, can be arranged parallel to the region 8 on the side of the document 1 which faces the photosensors 4. Of course, this UV source 24 must not hinder reception of the light 7 in the photosensor 4.
  • the UV source 24 is supplied with a line from the control unit 13, which is not shown here, and is switched on and off in an additional work step t of the clock generator 20 during a predetermined cycle time.
  • Further optical means can concentrate the light emitted by the light sources on the region 8 as beam optics 21 ', 21 ", 21"'.
  • a plate 25, 25 ' forms the transport plane 3 (FIG. 1) and is part of a transport channel delimited by channel walls 26, in which the flatly spread document 1 is aligned parallel to the one channel wall 26 and can be displaced in the transport direction 6 .
  • the transport means 2 moves the document 1 through the sensor plane 5 under the row of photosensors 4, 4 '.
  • the two luminous lines 9 and 10 for illuminating the area 8 are arranged symmetrically to the sensor level 5. In the drawing, the light sources of the luminous lines 9, 10 are shown as dots.
  • the light lines 9, 10 and the light row 22 (FIG. 1) can extend over the entire width of the transport channel.
  • the optical axes of two adjacent light sources are the same light line 9 or 10 or Luminous row 22 are each spaced apart by a source spacing A or A ', the light sources of the one luminous line 9 preferably being displaced transversely to the transport direction 6 in order to improve uniform illumination.
  • the light sources are divided into color groups, which differ in the spectrum of the emitted radiation.
  • the radiation from the light sources of a color group encompasses a narrow, coherent spectral range.
  • light-emitting diodes 27, 28 are used as light sources, which are supplied with short-term current pulses which are substantially above an approved permanent limit current, since in this operating mode the light yield of the light-emitting diodes 27, 28 is correspondingly increased and the radiation nevertheless has a narrow spectral range .
  • a variety of color groups are available on the LEDs 27, 28 on the market.
  • the photosensors 4, 4 ' are also positioned equidistantly in their row, a sensor distance B being maintained between the optical axes of two adjacent photosensors 4, 4', but which is a multiple of the source distance A or A '.
  • An acceptance angle ⁇ of the photosensors 4, 4 ′ measured in the sensor plane 5 can be many times larger than the acceptance angle ⁇ .
  • the properties of the optical means 21 (FIG. 1) also determine the acceptance angle ⁇ .
  • the neighboring photosensors 4, 4 'receive light 7 from overlapping sections 29 of the area 8. The same point in the area 8 thus simultaneously sends light 7 into a plurality of photosensors 4, 4', the scattering power of this point, the scattering angle, the distance from the Photosensor 4 or 4 ', etc. are different for each photosensor 4 or 4' and are weighted differently by the device in the photosensors 4, 4 '.
  • the extent to which the cutouts 29 overlap is determined by the acceptance angle ⁇ .
  • This device has the advantage that already in the photosensors 4, 4 'an analog signal processing which is dependent on the predetermined acceptance angles ⁇ and ⁇ , on the distances A and B, on the distribution of the light sources and on the color groups used takes place before the conversion into the electrical sensor signals S and their forwarding via the signal lines 15 to the control unit 13.
  • the acceptance angle ⁇ not only reduces the number of photosensors 4, 4 ′ necessary for recognizing document 1, but also the evaluation time required for recognizing document 1.
  • the mechanical requirements for a precise lateral alignment of the document 1 in the transport channel are lower without sacrificing the security of recognizing the documents 1.
  • the transmission properties of the document 1 can advantageously be influenced by a further series of photosensitive elements, e.g. B. photodetectors 30 are detected, which are arranged on the side of the document 1 facing away from the luminous lines 9, 10 in the sensor plane 5.
  • the row of photodetectors 30 in sensor plane 5 forms an image of the row of photosensors 4, 4 ′ that is mirrored at transport plane 3.
  • a window 31 Arranged in the plate 25, 25 ', at least in the region of the sensor plane 5, is a window 31 which is installed transversely across the width of the transport channel and is transparent to the radiation and which has the width of the region 8 in the transport direction 6.
  • the window 31 consists of a transparent material and is embedded flush in the plate 25, 25 'in order to avoid the accumulation of fibers and the like in the window 31.
  • the optical means 21, which bring about predetermined acceptance angles ⁇ ′, ⁇ ′ of the photodetectors 30, are preferably arranged between the window 31 and the photodetectors 30.
  • the window 31 and the optical Means 21 in front of the photodetectors 30 can be combined as a unit.
  • the signal lines 15 ' connect each photodetector 30 to the control device 13.
  • the electrical sensor signals S of the photodetectors 30 are processed in the control device 13 like those of the photosensors 4, 4' and supplement the group of numbers characterizing the area 8.
  • the row of photosensitive elements 4, 4 ', 30 is preferably shorter than the luminous lines 9, 10 and the luminous row 22, for example on both sides by half a sensor distance B. In the transport channel there is sufficient illumination of the area 8 even for the widest document 1 and the two outermost photosensitive elements 4, 4 ', 30 collect relevant data relating to document 1.
  • the plate 25, 25 ' has two diffusing elements 32 which are covered with a diffuse white scattering medium (e.g. titanium dioxide) and which surround the window 31 in the transport channel.
  • the two scattering elements 32 scatter the light from the luminous lines 11, 12 diffusely into the photosensors 4, 4 '.
  • the measured values obtained from the scattering elements 32 enable the sensitivity of the device, which is changed as a result of aging effects or temperature fluctuations, to be compensated.
  • an entire cycle Z of the clock generator 20 (FIG. 1) is run through and the sensor signals S received from the two scattering elements 32 are stored in the evaluation unit 19 (FIG. 1) as standard number groups, which, for. B. serve as parameters for the gain of each amplifier 13 '( Figure 1) in the control unit 13.
  • the light sources illuminate not only the area 8 but also part of the plate 25, 25 'or the two scattering elements 32. Since when scanning document 1 the number groups with the corresponding standard number groups in of the If the evaluation unit 19 is compared, the area-related proportions of the two illuminated scattering elements 32 and of the area 8 illuminated on the document 1 can be determined.
  • the scattering medium can be arranged on the window 31 as a scattering element 32.
  • the infrared light of the row of lights 22 reaches the photosensors 4, 4 'when measuring the document 1 in transmission through the diffuse scattering medium.
  • a predetermined number of radiation sources 33 are arranged in the light row 22 between the photodetectors 30, the optical axes of which lie in the sensor plane 5 and the area 8 on the side of the document 1 facing away from the light levels 11, 12 illuminate with vertically incident radiation 34 when the radiation sources 33 are fed by the control device 13 via the supply lines 23.
  • the light 7 shining through the document 1 serves as a measure of the transparency of the document 1, is received by the photosensors 4, 4 'and converted into the sensor signals S.
  • the radiation sources 33 of the row of lights 22 installed between two adjacent photodetectors 30 can e.g. B. belong to the same color group, the radiation sources 33 advantageously generating infrared light, the radiation 34 of which is particularly suitable for measuring the transparency.
  • FIG. 3 shows the light line 9 with the light-emitting diodes 27 arranged at the source spacing A.
  • the light-emitting diodes 27 are hatched differently in the drawing according to their emission spectrum. If, for example, the light-emitting diodes 27 belong to the three color groups green, red, yellow, a green, a red and a yellow light-emitting diode 27 follow one another in a first period P1 of the light sources.
  • the subsequent periods P in turn each include a green, one red and one yellow LED 27.
  • the light emitting diodes 27, 28 (FIG. 2) of the same color group in the two light rows 9, 10 (FIG. 2) are simultaneously supplied with energy during a working step t of the clock generator 20 (FIG. 1), so that the area 8 (FIG. 2) is illuminated uniformly in the predetermined color.
  • FIG. 4 shows the light line 9 as an example, the light-emitting diodes 27 of which belong to the color groups infrared, red, yellow or green.
  • the arrangement of the light-emitting diodes 27 of the different color groups in the light line 9 is selected such that the light-weaker light-emitting diodes 27 marked with oblique hatching in the drawing occur correspondingly more frequently in the light line 9 in order to illuminate the area 8 with the same intensity by each color group ensure.
  • the green light-emitting diodes 27 are less bright than yellow, red or infrared with the same power consumption.
  • the green light-emitting diodes 27 with the oblique hatching are arranged between two different light-emitting diodes 27 from the three other color groups.
  • the first period P1 of the light emitting diodes 27 comprises z. B. the colors infrared-green-yellow-green-red-green, which are followed by the next similar periods P.
  • the periods P of the light lines 9, 10 or light line 22 can be out of phase with one another.
  • the beam optics 21 ′ are advantageously arranged between the light-emitting diodes 27 and the plate 25, which causes a uniform distribution of the light intensity in the area 8 (FIG. 1) of the document 1, although the light is generated with many almost point-shaped light sources of the same color group.
  • the optically diffractive element is preferably used as beam optics 21 ', since its optical properties, which are dependent on the wavelength of the light beams 35, can be optimally adapted to the spatial distribution of the light-emitting diodes 27 of the different color groups.
  • FIG. 5 shows in connection with FIG. 1 a temporal course of the supply voltage U 0 on the control line 16, the supply voltages U 1 to U 3 on the supply lines 14 or supply lines 23 and the sensor signal S on one of the signal lines 15, 15 ' ( Figure 2).
  • the drive 17 for shifting the document 1 is switched on, in the following three working steps t of the cycle Z the supply voltages U 1 to U 3 are emitted to the light sources of the three color groups in a staggered manner in time.
  • the next cycle Z then follows.
  • the sensor signal S follows the intensity of the light 7, the relative height H of the sensor signal S being dependent on the local reflectivity or transmission of the document 1 in the light of the respective color group.

Description

  • Die Erfindung bezieht sich auf eine Einrichtung zum optischen Erkennen von Dokumenten der im Oberbegriff des Anspruchs 1 genannten Art.
  • Solche Einrichtungen zum optischen Erkennen von Dokumenten werden beispielsweise in Banknoten-Akzeptoren zum optischen Erkennen von Banknoten verwendet.
  • Es ist eine Einrichtung zum optischen Erkennen von Dokumenten aus der US 4 319 137 bekannt, die ein bedrucktes Blatt anhand von aufgedruckten Merkmalen erkennt. Eine längliche Quelle für weisses Licht leuchtet einen schmalen Streifen aus, der sich quer über das Blatt erstreckt. Das vom Blatt im Streifen gestreute bzw. dort durch das Blatt hindurchscheinende Licht wird mittels drei, in einer Reihe angeordneter Photosensoren gleichzeitig aufgefangen. Jeder Photosensor registriert nur das Licht aus einem engen Spektralbereich, z. B. in der Farbe rot, grün oder blau. Für jeden Streifen übermitteln die Photosensoren drei den drei Farben entsprechende elektrische Signale an eine Auswerteeinrichtung.
  • Die DE-PS 37 05 870 beschreibt eine als Lesekopf verwendbare Vorrichtung, die ein zeilenweises Abtasten eines Blatts ermöglicht. Die Vorrichtung weist eine Zeile von Photodioden auf, zu denen jeweils ein Paar von gegeneinander geneigten Leuchtdioden zugeordnet ist. Jedes Leuchtdiodenpaar beleuchtet das Blatt in einem unmittelbar vor der zugeordneten Photodiode gelegenen Gebiet. Ein Kollimator ist vor jeder Photodiode angeordnet und blendet alles Licht aus, das nicht aus dem unmittelbar vor der Photodiode gelegenen Gebiet des Blatts stammt. Der Lesekopf produziert ein einfarbiges, gerastertes Abbild eines Druckmusters auf dem Blatt.
  • Weiter ist aus der EP-A 338 123 bekannt, den Lesekopf aus einer Gruppe von parallel angeordneten auswechselbaren Modulen auszubilden, die die zeilenförmige Anordnung von Photodioden und Lichtquellen aufweisen und das Blatt streifenförmig optisch abtasten. Jedes Modul arbeitet im Licht einer vorbestimmten Farbe und produziert die Signale für ein gerastertes einfarbiges Abbild des Druckmusters auf dem Blatt.
  • Schliesslich ist eine Vorrichtung zum Abtasten eines Blatts mit einem einzigen Photosensor aus der CH-PS 573 634 bekannt, wobei eine kleine kreisförmige Fläche auf dem Blatt nacheinander mit einzelnen, schief zur Blattebene angeordneten Lichtquellen von unterschiedlicher Spektralfarbe wiederholt ausgeleuchtet wird. Synchron zu dieser zyklischen Beleuchtung dieser Fläche empfängt der einzige Photosensor Licht im jeweiligen Spektralbereich, das senkrecht zur Blattebene in den Photosensor gestreut wird. Ein Verschieben des Blatts nach jedem Zyklus ermöglicht ein Abtasten eines schmalen Streifens auf dem Blatt.
  • Als wesentliches Merkmal dieser Einrichtungen sind die Lichtquellen und die Photosensoren in Bezug zur Blattebene so angeordnet, dass in die Photosensoren kein an der Blattoberfläche direkt reflektiertes Licht gelangt.
  • Der Erfindung liegt die Aufgabe zugrunde, eine kostengünstige Einrichtung zum optischen Erkennen von Dokumenten zu schaffen, die ein sicheres Erfassen von farbigen Merkmalen auf der Blattoberfläche des Dokuments ermöglicht.
  • Die genannte Aufgabe wird erfindungsgemäss durch die Merkmale des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den abhängigen Ansprüchen.
  • Nachfolgend werden Ausführungsbeispiele der Erfindung anhand der Zeichnungen näher erläutert.
  • Es zeigt:
  • Figur 1
    eine Einrichtung zum Erkennen von Dokumenten,
    Figur 2
    eine Anordnung von Lichtquellen und Photosensoren,
    Figur 3
    eine erste Gruppierung von Lichtquellen,
    Figur 4
    eine zweite Gruppierung von Lichtquellen und
    Figur 5
    ein Diagramm.
  • In der Figur 1 bedeutet 1 ein blattförmiges Dokument mit einem ein- oder mehrfarbigen aufgedruckten kennzeichnenden Muster, wie es z. B. von Banknoten bekannt ist. Ein Transportmittel 2 befördert das Dokument 1 flach in einer Transportebene 3 durch eine Einrichtung zum Erkennen von Dokumenten 1 hindurch. Ausserhalb der Transportebene 3 sind photoempfindliche Elemente, z. B. Photosensoren 4, angeordnet, deren optische Achsen senkrecht auf der Transportebene 3 stehen und eine einzige Sensorebene 5 quer zu einer Transportrichtung 6 des Dokuments 1 festlegen.
  • Die Photosensoren 4 bilden untereinander in der Sensorebene 5 mindestens eine aequidistante Reihe, wobei der Abstand der Reihe der Photosensoren 4 zur Transportebene 3 vorbestimmt ist. Die Photosensoren 4 sind zum Umwandeln von Licht 7 aus einem breiten Spektralbereich in elektrische Sensorsignale S eingerichtet. Der Spektralbereich umfasst beispielsweise Wellenlängen von 0,4 µm bis 10 µm, wie dies z. B. bei Halbleiterphotoelementen aus Silizium der Fall ist. Das Licht 7 kann z. B. am Dokument 1 gestreut sein. Die Photosensoren 4 weisen einen senkrecht zur Sensorebene 5 gemessenen Akzeptanzwinkel α für das einfallende Licht 7 auf und bestimmen dadurch, in der Transportrichtung 6 gemessen, die Breite eines Bereichs 8 auf dem Dokument 1, der sich als schmaler Streifen quer zur Transportrichtung 6 im wesentlichen über die Breite des Dokumentes 1 erstreckt. Da das Transportmittel 2 das Dokument 1 in der Transportrichtung 6 befördert, wandert der Bereich 8 über das ganze Dokument 1 hinweg.
  • Der Bereich 8 wird von wenigstens einer, vorzugsweise aber zwei symmetrisch angeordneten, aus Lichtquellen gebildeten Leuchtzeilen 9, 10 beleuchtet. Die optischen Achsen der Lichtquellen in einer Leuchtzeile 9 bzw. 10 bestimmen eine Leuchtebene 11 bzw. 12. Die Leuchtebenen 11, 12 schneiden sich gegenseitig unter einem Winkel Θ in der gemeinsamen Schnittlinie zwischen der Transportebene 3 und der Sensorebene 5, die als winkelhalbierende Ebene zwischen den beiden Leuchtebenen 11 und 12 den Winkel Θ teilt.
  • Die Lichtquellen sind in beiden Leuchtzeilen 9 und 10 aequidistant angeordnet. Beide Leuchtzeilen 9, 10 weisen in der Leuchtebene 11, 12 einen gleichen Abstand zur Transportebene 3 auf und sind zur Sensorebene 5 symmetrisch. Die Lichtquellen der beiden Leuchtzeilen 9, 10 beleuchten gemeinsam wenigstens den Bereich 8. Der mittlere Einfallswinkel einer das Dokument 1 beleuchtenden Strahlung der Lichtquellen beträgt Θ/2 und ist so bemessen, dass trotz der Oberflächenstruktur des Dokuments 1 keine direkten Reflexe in die Photosensoren 4 gelangen und andererseits die Empfindlichkeit der Einrichtung auf kleine Variationen des Abstands der Dokumente 1 von der Transportebene 3 unmerklich ist. Dies ist für das Lesen von zerknitterten Dokumenten 1 von Vorteil.
  • Ein Steuergerät 13 ist mittels Speiseleitungen 14 mit den Lichtquellen der Leuchtebenen 11, 12 verbunden. Je eine Signalleitungen 15 verbinden die Photosensoren 4 und das Speisegerät 13. Eine Ansteuerleitung 16 stellt eine Verbindung zwischen dem Speisegerät 13 und einem Antrieb 17 des Transportmittels 2 her. Ein Signalausgang des Steuergeräts 13 ist mit einer Datenleitung 18 mit einem Dateneingang einer Auswerte-Einheit 19 verbunden.
  • Das Steuergerät 13 ist zum Speisen der Lichtquellen in den Leuchtzeilen 11 und 12 sowie zum Verstärken und Digitalisieren der Sensorsignale S eingerichtet. Vorzugsweise ermöglicht das Steuergerät 13 mittels eines eingebauten Taktgebers 20 ein kurzzeitiges Ein- und Ausschalten der Lichtquellen, wobei in einem vom Taktgeber 20 vorgegebenen Zyklus Z von Arbeitsschritten t die Lichtquellen, beispielsweise einzeln oder in Gruppen, für eine vorbestimmte Taktzeit t nacheinander aufleuchten und das Dokument 1 im Bereich 8 beleuchten. Der Zyklus Z wiederholt sich, wobei beispielsweise im ersten Arbeitsschritt t1 das Transportmittel 2 das Dokument 1 um die Breite des Bereichs 8 verschiebt.
  • Das Steuergerät 13 weist für jede Signalleitung 15 einen Eingang mit einem Verstärker 13' auf, dessen Verstärkungsfaktor mit einem externen Signal einstellbar ist, und ist zum Digitalisieren der verstärkten, analogen elektrischen Sensorsignale S eingerichtet. Bei jedem Arbeitsschritt t gelangen über jede der Signalleitungen 15 die der Lichtintensität des von den Photosensoren 4 empfangenen Lichts 7 proportionalen Sensorsignale S an den Eingang des angeschlossenen Verstärkers 13'. Für jeden Photosensor 4 verstärkt und digitalisiert das Steuergerät 13 die bei jedem Arbeitsschritt t eintreffenden Sensorsignale S und leitet sie in digitalisierter Form als Zahlengruppe über die Datenleitung 18 an die Auswerte-Einheit 19. Die Verstärker 13' können über die Datenleitung 18 von der Auswerte-Einheit 19 erzeugte Einstellgrössen empfangen, die als externe Signale zur Anpassung der Verstärkungsfaktoren dienen.
  • Der Taktgeber 20 steuert den Antrieb 17 des Transportmittels 2, wobei Z. B. in einem ersten Arbeitschritt t1 des Zyklus Z das Dokument 1 in der Transportrichtung 6 bewegt wird, damit die Photosensoren 4 einen neuen Bereich 8 abtasten können. Für jeden Zyklus Z erhält die Auswerte-Einheit 19 eine vorbestimmte Anzahl den Bereich 8 kennzeichnenden Zahlengruppen. Sobald das Dokument 1 in den vorbestimmten Bereichen 8 abgetastet ist, kann die Auswerte-Einheit 19 diese Zahlengruppen mit vorbestimmten Musterzahlengruppen vergleichen, die in der Auswerte-Einheit 19 abgespeichert sind, und über eine Annahme oder eine Rückgabe des Dokuments 1 entscheiden.
  • Optische Mittel 21 können mit Vorteil im Strahlengang vor den Photosensoren 4 angebracht sein, um das am Dokument 1 gestreute Licht 7 weitgehend unabhängig von den optischen Eigenschaften der Photosensoren 4 zu sammeln und ihnen zuzuführen. Vorzugsweise sind die optischen Mittel 21 kostengünstige asphärische Kunststofflinsen oder ein beugungsoptisch wirksames, holographisches optischen Element, das in Kunststoff eingeprägt sein kann. Beispielsweise eignen sich Polyester, Polycarbonate usw. als Kunststoffe.
  • Zusätzliche Lichtquellen erhöhen mit Vorteil das Unterscheidungsvermögen der Einrichtung zum optischen Erkennen von Dokumenten 1, da nicht nur das gestreute Licht 7 als einziges Unterscheidungsmerkmal dient, sondern auch die Transparenz des Dokuments 1 und/oder die Fluoreszenz der auf dem Dokument 1 vorhandenen Farbstoffe.
  • Eine weitere Leuchtreihe 22 kann auf der den Photosensoren 4 abgewandten Seite des Dokuments 1 in der Sensorebene 5 angeordnet sein, wobei die optischen Achsen der Lichtquellen der Leuchtreihe 22 derart in der Sensorebene 5 ausgerichtet sind, dass der Bereich 8 auf der den Photosensoren 4 abgewandten Seite des Dokuments 1 beleuchtet wird.
  • Die Lichtquellen der Leuchtreihe 22 sind über Versorgungsleitungen 23 mit dem Steuergerät 13 verbunden. Der Taktgeber 20 steuert in zusätzlichen Arbeitsschritten t das Ein- und Ausschalten der Lichtquellen der Leuchtreihe 22. Das das Dokument 1 durchscheinende Licht 7 wird vom optischen Mittel 21 gesammelt und den Photosensoren 4 zugeführt.
  • Eine sich über die ganze Breite des Dokuments 1 erstreckende Quelle für ultraviolettes Licht, eine UV-Quelle 24, kann parallel zum Bereich 8 auf der Seite des Dokuments 1 angeordnet sein, die den Photosensoren 4 zugewandt ist. Selbstverständlich darf diese UV-Quelle 24 einen Empfang des Lichts 7 im Photosensor 4 nicht behindern. Mit einer hier nicht gezeigten Leitung aus dem Steuergerät 13 wird die UV-Quelle 24 gespeist, wobei sie in einem zusätzlichen Arbeitsschritt t des Taktgebers 20 während einer vorbestimmten Taktzeit ein- und ausgeschaltet wird.
  • Es sind Dokumente 1 bekannt, deren Farbstoffe, z. B. im aufgedruckten Muster, in den Papierfasern usw., im Ultraviolettlicht fluoreszieren. Während der Beleuchtung des Dokuments 1 mit ultraviolettem Licht wandeln allfällig im Bereich 8 vorhandene fluoreszierende Farbstoffe dieses in langwelligeres Licht 7 um. Die Photosensoren 4 können die Verteilung des langwelligeren Lichts 7 im Bereich 8 ohne zusätzliche Filter registrieren, da die Photosensoren 4 für das ultraviolette Licht praktisch blind sind. Die Einrichtung kann daher das Vorhandensein dieser fluoreszierenden Farbstoffe sowie deren Verteilung auf dem Dokument 1 feststellen.
  • Weitere optische Mittel können als Strahlenoptiken 21', 21", 21"' das von den Lichtquellen emittierte Licht auf den Bereich 8 konzentrieren.
  • In der Figur 2 bildet eine Platte 25, 25' die Transportebene 3 (Figur 1) und ist ein Teil eines von Kanalwänden 26 begrenzten Transportkanals, in dem das flach ausgebreitete Dokument 1 parallel zu der einen Kanalwand 26 ausgerichtet und in der Transportrichtung 6 verschiebbar ist. Gehört das Dokument 1 einem vorbestimmten Satz von Blättern mit verschiedenen Abmessungen an, wie z. B. eine Banknote aus einem Satz von Nennwerten, richtet sich der Abstand zwischen den Kanalwänden 26 nach dem Dokument 1 mit den grössten Abmessungen. Das Transportmittel 2 (Figur 1) bewegt das Dokument 1 unter der Reihe von Photosensoren 4, 4' durch die Sensorebene 5 hindurch. Symmetrisch zur Sensorebene 5 sind die beiden Leuchtzeilen 9 und 10 für die Beleuchtung des Bereichs 8 angeordnet. In der Zeichnung sind die Lichtquellen der Leuchtzeilen 9, 10 als Punkte dargestellt. Die Leuchtzeilen 9, 10 und die Leuchtreihe 22 (Figur 1) können sich über die ganze Breite des Transportkanals erstrecken.
  • In den beiden Leuchtzeilen 9 und 10 sowie, falls vorhanden, in der Leuchtreihe 22 sind die optischen Achsen zweier benachbarter Lichtquellen der gleichen Leuchtzeile 9 bzw. 10 oder der Leuchtreihe 22 jeweils um einen Quellenabstand A bzw. A' distanziert, wobei zur Verbesserung einer gleichmässigen Beleuchtung vorzugsweise die Lichtquellen der einen Leuchtzeile 9 gegen die Lichtquellen der anderen Leuchtzeile 10 quer zur Transportrichtung 6 verschoben sind. Die Lichtquellen sind in Farbgruppen eingeteilt, die sich durch das Spektrum der ausgesandten Strahlung unterscheiden. Die Strahlung der Lichtquellen einer Farbgruppe umfasst einen engen, zusammenhängenden Spektralbereich.
  • Es ist von Vorteil, als Lichtquellen Leuchtdioden 27, 28 zu verwenden, die mit kurzzeitigen, wesentlich über einem zugelassenen Dauergrenzstrom liegenden Stromimpulsen gespeist werden, da in dieser Betriebsart die Lichtausbeute der Leuchtdioden 27, 28 entsprechend vergrössert ist und die Strahlung dennoch einen engen Spektralbereich aufweist. Eine Vielzahl von Farbgruppen sind bei den Leuchtdioden 27, 28 auf dem Markt erhältlich.
  • Die Photosensoren 4, 4' sind in ihrer Reihe ebenfalls aequidistant positioniert, wobei zwischen den optischen Achsen zweier benachbarter Photosensoren 4, 4' ein Sensorabstand B eingehalten ist, der aber ein Vielfaches des Quellenabstands A bzw. A' ist.
  • Ein in der Sensorebene 5 gemessener Akzeptanzwinkel β der Photosensoren 4, 4' kann um ein Vielfaches grösser als der Akzeptanzwinkel α sein. Das optische Mittel 21 (Figur 1) bestimmt durch seine Eigenschaften auch den Akzeptanzwinkel β. Die benachbarten Photosensoren 4, 4' empfangen Licht 7 aus sich überlappenden Ausschnitten 29 des Bereichs 8. Die gleiche Stelle im Bereich 8 sendet somit gleichzeitig Licht 7 in mehrere Photosensoren 4, 4', wobei das Streuvermögen dieser Stelle, der Streuwinkel, die Distanz zum Photosensor 4 bzw. 4' usw. für jeden Photosensor 4 bzw. 4' unterschiedlich sind und von der Einrichtung schon in den Photosensoren 4, 4' verschieden gewichtet wird. Das Ausmass der Ueberlappung der Ausschnitte 29 ist durch den Akzeptanzwinkel β bestimmt.
  • Diese Einrichtung weist den Vorteil auf, dass bereits in den Photosensoren 4, 4' eine von den vorbestimmten Akzeptanzwinkeln α und β, von den Abständen A und B, von der Verteilung der Lichtquellen und von den verwendeten Farbgruppen abhängige analoge Signalaufbereitung stattfindet, bevor die Umwandlung in die elektrischen Sensorsignale S und deren Weiterleitung über die Signalleitungen 15 zum Steuergerät 13 erfolgt. Mit Vorteil reduziert der Akzeptanzwinkel β nicht nur die Anzahl der für ein Erkennen des Dokuments 1 notwendigen Anzahl Photosensoren 4, 4' sondern auch die für das Erkennen des Dokuments 1 benötigte Auswertezeit. Ausserdem sind gegenüber dem Stand der Technik die mechanischen Anforderungen an eine genaue seitliche Ausrichtung des Dokuments 1 im Transportkanal geringer, ohne die Sicherheit des Erkennens der Dokumente 1 preiszugeben.
  • Bei dünnen Dokumenten 1 durchdringt ein Teil der Strahlung aus den beiden Leuchtzeilen 9, 10 den Bereich 8. Mit Vorteil kann als weiteres Merkmal die Transmissionseigensschaften des Dokuments 1 von einer weiteren Reihe von photoempfindlichen Elementen, z. B. Photodetektoren 30, erfasst werden, die auf der von den Leuchtzeilen 9, 10 abgewandten Seite des Dokuments 1 in der Sensorebene 5 angeordnet sind. Beispielhaft bildet die Reihe der Photodetektoren 30 in der Sensorebene 5 ein an der Transportebene 3 gespiegeltes Bild der Reihe der Photosensoren 4, 4'.
  • In der Platte 25, 25' ist wenigstens im Bereich der Sensorebene 5 ein quer über die Breite des Transportkanals eingebautes, für die Strahlung durchlässiges Fenster 31 angeordnet, das in der Transportrichtung 6 die Breite des Bereichs 8 aufweist. Das Fenster 31 besteht aus einem transparenten Stoff und ist bündig in die Platte 25, 25' eingelassen, um ein Ansammeln von Fasern und dergleichen im Fenster 31 zu vermeiden. Vorzugsweise sind zwischen dem Fenster 31 und den Photodetektoren 30 die optischen Mittel 21 angeordnet, die vorbestimmte Akzeptanzwinkel α', β' der Photodetektoren 30 bewirken. Das Fenster 31 und das optische Mittel 21 vor den Photodetektoren 30 kann als Einheit kombiniert sein.
  • Die Signalleitungen 15' verbinden jeden Photodetektor 30 mit dem Steuergerät 13. Die elektrischen Sensorsignale S der Photodetektoren 30 werden im Steuergerät 13 wie diejenigen der Photosensoren 4, 4' aufbereitet und ergänzen die den Bereich 8 kennzeichnende Zahlengruppe.
  • Vorzugsweise ist die Reihe der photoempfindlichen Elemente 4, 4', 30 kürzer als die Leuchtzeilen 9, 10 und die Leuchtreihe 22, beispielsweise auf beiden Seiten um einen halben Sensorabstand B. Im Transportkanal ist so eine ausreichende Beleuchtung des Bereichs 8 auch für das breiteste Dokument 1 sichergestellt und die beiden äussersten photoempfindlichen Elemente 4, 4', 30 sammeln relevante, auf das Dokument 1 bezogene Daten.
  • Die Platte 25, 25' weist zwei mit einem diffusen weissen Streumedium (z. B. Titandioxid) belegte Streuelemente 32 auf, die im Transportkanal das Fenster 31 einfassen. Die beiden Streuelemente 32 streuen das Licht der Leuchtzeilen 11, 12 diffus in die Photosensoren 4, 4'. Die von den Streuelementen 32 gewonnenen Messwerte ermöglichen einen Ausgleich der infolge von Alterungseffekten oder Temperaturschwankungen veränderten Empfindlichkeit der Einrichtung. Unmittelbar vor Ankunft des Dokuments 1 wird ein ganzer Zyklus Z des Taktgebers 20 (Figur 1) durchlaufen und die von den beiden Streuelementen 32 erhaltenen Sensorsignale S in der Auswerte-Einheit 19 (Figur 1) als Normzahlengruppen abgespeichert, die z. B. als Einstellgrössen für den Verstärkungsfaktor jedes einzelnen Verstärkers 13' (Figur 1) im Steuergerät 13 dienen.
  • Ist das Dokument 1 schmaler als der Abstand zwischen den beiden Kanalwänden 26, beleuchten die Lichtquellen neben dem Bereich 8 auch einen Teil der Platte 25, 25' bzw. der beiden Streuelemente 32. Da beim Abtasten des Dokuments 1 die Zahlengruppen mit den entsprechenden Normzahlengruppen in der Auswerte-Einheit 19 verglichen werden, sind die flächenmässige Anteile der beiden beleuchteten Streuelemente 32 und des auf dem Dokument 1 beleuchteten Bereichs 8 bestimmbar.
  • Ist das diffuse Streumedium für Infrarotlicht durchlässig, kann das Streumedium als Streuelement 32 auf dem Fenster 31 angeordnet sein. Das infrarote Licht der Leuchtreihe 22 gelangt bei der Messung des Dokumentes 1 in Transmission durch das diffuse Streumedium hindurch zu den Photosensoren 4, 4'.
  • In einer Kombination der bisher beschriebenen Ausführungen ist zwischen den Photodetektoren 30 eine vorbestimmte Anzahl von Strahlenquellen 33 in der Leuchtreihe 22 angeordnet, deren optische Achsen in der Sensorebene 5 liegen und die den Bereich 8 auf der von den Leuchtebenen 11, 12 abgewandten Seite des Dokuments 1 mit senkrecht einfallender Strahlung 34 beleuchten, wenn die Strahlenquellen 33 über die Versorgungsleitungen 23 vom Steuergerät 13 gespeist werden. Das durch das Dokument 1 scheinende Licht 7 dient als Mass für die Transparenz des Dokuments 1, wird von den Photosensoren 4, 4' empfangen und in die Sensorsignale S umgewandelt.
  • Die jeweils zwischen zwei benachbarten Photodetektoren 30 eingebauten Strahlenquellen 33 der Leuchtreihe 22 können z. B. der gleichen Farbgruppe angehören, wobei mit Vorteil die Strahlenquellen 33 Infrarotlicht erzeugen, dessen Strahlung 34 sich für eine Messung der Transparenz besonders gut eignet.
  • Beispielhaft ist in der Figur 3 die Leuchtzeile 9 mit den im Quellenabstand A angeordneten Leuchtdioden 27 gezeigt. Die Leuchtdioden 27 sind in der Zeichnung entsprechend ihrem Emissionsspektrum verschieden schraffiert. Gehören beispielsweise die Leuchtdioden 27 den drei Farbgruppen Grün, Rot, Gelb an, folgen sich in einer ersten Periode P1 der Lichtquellen eine grüne, eine rote, eine gelbe Leuchtdiode 27. Die anschliessend folgenden Perioden P umfassen in der gleichen Reihenfolge wiederum je eine grüne, eine rote und eine gelbe Leuchtdiode 27.
  • Mit Vorteil werden während eines Arbeitsschrittes t des Taktgebers 20 (Figur 1) die Leuchtdioden 27, 28 (Figur 2) der gleichen Farbgruppe in den beiden Leuchtreihen 9, 10 (Figur 2) gleichzeitig mit Energie versorgt, damit der Bereich 8 (Figur 2) gleichmässig in der vorbestimmten Farbe ausgeleuchtet wird.
  • In der Figur 4 ist als Beispiel die Leuchtzeile 9 gezeigt, deren Leuchtdioden 27 den Farbgruppen Infrarot, Rot, Gelb oder Grün angehören. Die Anordnung der Leuchtdioden 27 der verschiedenen Farbgruppen in der Leuchtzeile 9 ist so gewählt, dass die in der Zeichnung mit einer schrägen Schraffur gekennzeichneten, lichtschwächeren Leuchtdioden 27 in der Leuchtzeile 9 entsprechend häufiger vorkommen, um eine Beleuchtung des Bereichs 8 mit gleicher Intensität durch jede Farbgruppe sicherzustellen. Beispielsweise sind die grünen Leuchtdioden 27 bei gleicher aufgenommener Leistung weniger hell als gelbe, rote, oder infrarote. In der Zeichnung sind die grünen Leuchtdioden 27 mit der schrägen Schraffur zwischen zwei verschiedenen Leuchtdioden 27 aus den drei übrigen Farbgruppen angeordnet. Die erste Periode P1 der Leuchtdioden 27 umfasst z. B. die Farben Infrarot-Grün-Gelb-Grün-Rot-Grün, an die sich die nächsten gleichartigen Perioden P anschliessen.
  • Die Perioden P der Leuchtzeilen 9, 10 bzw. der Leuchtzeile 22 können untereinander phasenverschoben sein.
  • Mit Vorteil ist zwischen den Leuchtdioden 27 und der Platte 25 die Strahlenoptik 21' angeordnet, das eine gleichmässige Verteilung der Lichtintensität im Bereich 8 (Figur 1) des Dokuments 1 bewirkt, obwohl das Licht mit vielen fast punktförmigen Lichtquellen der gleichen Farbgruppe erzeugt wird. Vorzugsweise findet das beugungsoptisch wirksame Element als Strahlenoptik 21' Verwendung, da seine von der Wellenlänge der Lichtstrahlen 35 abhängigen optischen Eigenschaften optimal an die räumliche Verteilung der Leuchtdioden 27 der verschiedenen Farbgruppen anpassbar sind.
  • Beispielhaft zeigt die Figur 5 in Verbindung mit der Figur 1 einen zeitlichen Ablauf der Speisespannung U0 auf der Ansteuerleitung 16, der Speisespannungen U1 bis U3 auf den Speiseleitungen 14 bzw. Versorgungsleitungen 23 und das Sensorsignal S auf einer der Signalleitungen 15, 15' (Figur 2). Im ersten Arbeitsschritt t1 des Zyklus Z ist der Antrieb 17 zum Verschieben des Dokuments 1 eingeschaltet, in den folgenden drei Arbeitsschritten t des Zyklus Z werden die Speisespannungen U1 bis U3 an die Lichtquellen der drei Farbgruppen zeitlich gestaffelt abgegeben. Anschliessend folgt der nächste Zyklus Z. Das Sensorsignal S folgt der Intensität des Lichts 7, wobei die relative Höhe H des Sensorsignals S von der lokalen Reflektivität bzw. Transmission des Dokuments 1 im Licht der jeweiligen Farbgruppe abhängig ist.

Claims (10)

  1. Einrichtung zum optischen Erkennen von Dokumenten (1) mit wenigstens einer sich über die Breite des Dokuments (1) erstreckenden Reihe von regelmässig angeordneten photoelektrischen Elementen (4; 4' ; 30), die Licht in einer Richtung empfangen, welche eine zu einer Transportfläche (3) des Dokuments (1) senkrechte Sensorebene (5) festlegt, zum Empfangen von durch das Dokument (1) verändertem Licht (7), und mit mindestens einer zur Sensorebene (5) und zur Transportfläche (3) geneigten Leuchtebene (11; 12) zum Beleuchten eines von der Sensorebene (5) festgelegten-Bereichs (8) des Dokuments (1), wobei die Leuchtebene (11; 12) in einer Leuchtzeile (9; 10) angeordnete Lichtquellen (27; 28) enthält, sowie mit Mitteln (13, 13', 20; 19) zum Ansteuern der Lichtquellen (24; 27; 28; 33) und zum Verarbeiten von Sensorsignalen, dadurch gekennzeichnet, dass zueinander benachbarte Lichtquellen (27; 28) in jeder Leuchtzeile (9; 10) einen Quellenabstand (A) aufweisen, der kleiner ist als ein Sensorabstand (B) zwischen zueinander benachbarten photoelektrischen Elementen (4; 4'; 30), dass die Lichtquellen (24; 27; 28; 33) zum Erzeugen von Licht aus einem engen Spektralbereich ausgebildet sind, wobei die Lichtquellen mit gleichem Spektralbereich einer von mehreren Farbgruppen angehören, und dass die photoelektrischen Elemente (4; 4'; 30) senkrecht zur einzigen Sensorebene (5) einen ersten Akzeptanzwinkel (α) und in der Sensorebene (5) einen zweiten Akzeptanzwinkel (β) aufweisen, wobei der erste Akzeptanzwinkel (α) die Breite des Bereichs (8) festlegt und der zweite Akzeptanzwinkel (β) ein Ueberlappen von Ausschnitten (29) des Bereichs (8) bestimmt.
  2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass Photosensoren (4; 4') in der Sensorebene (5) über dem ausgeleuchteten Bereich (8) und auf der gleichen Seite des Dokuments (1) wie die Leuchtebene (11; 12) angeordnet sind.
  3. Einrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass Photodetektoren (30) in der Sensorebene (5) auf der von den Leuchtebenen (11; 12) abgewandten Seite des Dokuments (1) angeordnet sind.
  4. Einrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass Strahlungsquellen (33) als weitere Lichtquellen in der Sensorebene (5) auf der von den Leuchtebenen (11; 12) abgewandten Seite des Dokuments (1) angeordnet sind und dass das Dokument (1) im Bereich (8) beidseitig beleuchtbar ist.
  5. Einrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Steuergerät (13) zum zyklisches Ein- und Ausschalten der Lichtquellen (24; 27; 28; 33) und zum dazu synchronen Empfang der Sensorsignale eingerichtet ist, wobei immer nur eine einzelne Farbgruppe der Lichtquellen (24; 27; 28; 33) zur gleichen Zeit eingeschaltet ist, so dass der Bereich (8) in mehreren Arbeitsschritten (t) eines Taktgebers (20) im Steuergerät (13) nacheinander mit Licht aus verschiedenen Spektralbereichen abtastbar ist.
  6. Einrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Leuchtzeilen (9; 10) die Lichtquellen von wenigstens drei Farbgruppen umfassen, dass das Steuergerät (13) zum zyklisches Ein- und Ausschalten aller Lichtquellen (24; 27; 28; 33) einer Farbgruppe und zum dazu synchronen Empfang der Sensorsignale aus den photoelektrischen Elementen (4; 4'; 30) eingerichtet ist und dass die Lichtquellen der Farbgruppen periodisch abwechselnd in der Leuchtzeile (9 bzw. 10) angeordnet sind.
  7. Einrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Leuchtzeilen (9; 10) die Lichtquellen von wenigstens drei Farbgruppen umfassen, dass das Steuergerät (13) zum zyklisches Ein- und Ausschalten aller Lichtquellen (24; 27; 28; 33) einer Farbgruppe und zum dazu synchronen Empfang der Sensorsignale aus den photoelektrischen Elementen (4; 4'; 30) eingerichtet ist, dass zum gleichmässigen Ausleuchten des Bereichs (8) die Anzahl der Lichtquellen aus jeder Farbgruppe von der von diesen Lichtquellen erzeugbaren Lichtintensität abhängig ist und dass die Lichtquellen der Farbgruppen periodisch in den Leuchtzeilen (9; 10) angeordnet sind.
  8. Einrichtung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass wenigstens eine Ultraviolettlicht-Quelle (24) als Lichtquelle zum Beleuchten des Bereichs (8) mit Ultraviolettlicht zwischen dem Dokument (1) und den photoelektrischen Elementen (4; 4'; 30) ausserhalb der Sensorebene (5) parallel zur Transportebene (3) angeordnet ist.
  9. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass zum Erzeugen der Akzeptanzwinkel (α; β) optische Mittel (21) vor den photoelektrischen Elementen (4; 4'; 30) angeordnet sind.
  10. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass zur besseren Ausleuchtung des Bereichs (8) eine Strahlenoptik (21'; 21"; 21"') vor den Lichtquellen (24; 27; 28; 33) angeordnet sind.
EP92113171A 1991-10-14 1992-08-03 Einrichtung zum optischen Erkennen von Dokumenten Expired - Lifetime EP0537431B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH300591 1991-10-14
CH3005/91 1991-10-14

Publications (2)

Publication Number Publication Date
EP0537431A1 EP0537431A1 (de) 1993-04-21
EP0537431B1 true EP0537431B1 (de) 1997-05-28

Family

ID=4246491

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92113171A Expired - Lifetime EP0537431B1 (de) 1991-10-14 1992-08-03 Einrichtung zum optischen Erkennen von Dokumenten

Country Status (8)

Country Link
US (2) US5304813A (de)
EP (1) EP0537431B1 (de)
JP (1) JP3152372B2 (de)
DE (1) DE59208542D1 (de)
ES (1) ES2103330T3 (de)
FI (1) FI924620A (de)
HK (1) HK1007019A1 (de)
NO (1) NO923966L (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1587030A1 (de) * 2003-01-23 2005-10-19 Aruze Corp. Identifikationssensor

Families Citing this family (195)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5295196A (en) * 1990-02-05 1994-03-15 Cummins-Allison Corp. Method and apparatus for currency discrimination and counting
US5790693A (en) * 1990-02-05 1998-08-04 Cummins-Allison Corp. Currency discriminator and authenticator
US6311819B1 (en) 1996-05-29 2001-11-06 Cummins-Allison Corp. Method and apparatus for document processing
US5905810A (en) 1990-02-05 1999-05-18 Cummins-Allison Corp. Automatic currency processing system
US5992601A (en) * 1996-02-15 1999-11-30 Cummins-Allison Corp. Method and apparatus for document identification and authentication
US5640463A (en) * 1994-10-04 1997-06-17 Cummins-Allison Corp. Method and apparatus for authenticating documents including currency
US5960103A (en) * 1990-02-05 1999-09-28 Cummins-Allison Corp. Method and apparatus for authenticating and discriminating currency
US6913130B1 (en) 1996-02-15 2005-07-05 Cummins-Allison Corp. Method and apparatus for document processing
US5966456A (en) * 1990-02-05 1999-10-12 Cummins-Allison Corp. Method and apparatus for discriminating and counting documents
US6241069B1 (en) 1990-02-05 2001-06-05 Cummins-Allison Corp. Intelligent currency handling system
US5790697A (en) 1990-02-05 1998-08-04 Cummins-Allion Corp. Method and apparatus for discriminating and counting documents
US6959800B1 (en) * 1995-12-15 2005-11-01 Cummins-Allison Corp. Method for document processing
ES2103330T3 (es) * 1991-10-14 1997-09-16 Mars Inc Dispositivo para el reconocimiento optico de documentos.
US6866134B2 (en) * 1992-05-19 2005-03-15 Cummins-Allison Corp. Method and apparatus for document processing
EP0622762B1 (de) * 1993-04-27 1998-07-01 The Furukawa Electric Co., Ltd. Vorrichtung zum Nachweis von Fluoreszenz
US5918960A (en) * 1994-01-04 1999-07-06 Mars Incorporated Detection of counterfeit objects, for instance counterfeit banknotes
CA2179994A1 (en) * 1994-01-04 1995-07-13 John Geoffrey Hopwood Detection of counterfeits objects, for instance counterfeits banknotes
GB2291705A (en) * 1994-07-12 1996-01-31 Mars Inc Detection of counterfeit bank notes
US6915893B2 (en) * 2001-04-18 2005-07-12 Cummins-Alliston Corp. Method and apparatus for discriminating and counting documents
US6220419B1 (en) 1994-03-08 2001-04-24 Cummins-Allison Method and apparatus for discriminating and counting documents
US5806649A (en) * 1994-06-15 1998-09-15 Coin Bill Validator, Inc. Paper currency validator
ES2106672B1 (es) * 1994-12-23 1998-06-01 Azkoyen Ind Sa Metodo y aparato para la caracterizacion y discriminacion de billetes y documentos de curso legal.
GB9501921D0 (en) * 1995-02-01 1995-03-22 At & T Global Inf Solution Apparatus for authenticating documents
US6363164B1 (en) 1996-05-13 2002-03-26 Cummins-Allison Corp. Automated document processing system using full image scanning
US6748101B1 (en) 1995-05-02 2004-06-08 Cummins-Allison Corp. Automatic currency processing system
US5982918A (en) 1995-05-02 1999-11-09 Cummins-Allison, Corp. Automatic funds processing system
CA2175261A1 (en) * 1995-05-24 1996-11-25 Jonathan Burrell Detection of authenticity of security documents
GB9510678D0 (en) * 1995-05-25 1995-07-19 At & T Global Inf Solution Method and apparatus for authenticating documents
AU6122196A (en) * 1995-06-20 1997-01-22 Bellcon I/S Method for testing of bank notes, especially dollar bills, and equipment for the implementation of the method
US6278795B1 (en) 1995-12-15 2001-08-21 Cummins-Allison Corp. Multi-pocket currency discriminator
US6880692B1 (en) * 1995-12-15 2005-04-19 Cummins-Allison Corp. Method and apparatus for document processing
ES2108647B1 (es) * 1995-12-21 1998-07-01 Azkoyen Ind Sa Metodo y aparato para la caracterizacion y discriminacion de billetes y documentos de curso legal.
GB2309299B (en) * 1996-01-16 2000-06-07 Mars Inc Sensing device
GB2332768B (en) * 1996-02-15 2000-07-19 Cummins Allison Corp Method and apparatus for document identification
CA2169865C (en) * 1996-02-20 2007-07-03 Vitold A. Khvostov Optical reflection sensing arrangement for scanning devices
US6661910B2 (en) 1997-04-14 2003-12-09 Cummins-Allison Corp. Network for transporting and processing images in real time
US8950566B2 (en) 1996-05-13 2015-02-10 Cummins Allison Corp. Apparatus, system and method for coin exchange
US7187795B2 (en) 2001-09-27 2007-03-06 Cummins-Allison Corp. Document processing system using full image scanning
US8162125B1 (en) 1996-05-29 2012-04-24 Cummins-Allison Corp. Apparatus and system for imaging currency bills and financial documents and method for using the same
US7903863B2 (en) 2001-09-27 2011-03-08 Cummins-Allison Corp. Currency bill tracking system
US20050276458A1 (en) 2004-05-25 2005-12-15 Cummins-Allison Corp. Automated document processing system and method using image scanning
US6860375B2 (en) * 1996-05-29 2005-03-01 Cummins-Allison Corporation Multiple pocket currency bill processing device and method
PE73298A1 (es) * 1996-06-04 1998-11-13 Coin Bill Validator Inc Validador de billetes de banco
JP3469038B2 (ja) * 1996-06-10 2003-11-25 ローレルバンクマシン株式会社 紙幣判別装置
US6235094B1 (en) * 1996-06-28 2001-05-22 Xerox Corporation Phase change ink formulations, colorant formulations, and methods of forming colorants
JP3266807B2 (ja) * 1996-08-27 2002-03-18 旭光学工業株式会社 画像読取装置
US6026175A (en) * 1996-09-27 2000-02-15 Cummins-Allison Corp. Currency discriminator and authenticator having the capability of having its sensing characteristics remotely altered
US7584883B2 (en) * 1996-11-15 2009-09-08 Diebold, Incorporated Check cashing automated banking machine
US7559460B2 (en) * 1996-11-15 2009-07-14 Diebold Incorporated Automated banking machine
US5923413A (en) 1996-11-15 1999-07-13 Interbold Universal bank note denominator and validator
US6573983B1 (en) 1996-11-15 2003-06-03 Diebold, Incorporated Apparatus and method for processing bank notes and other documents in an automated banking machine
US7513417B2 (en) * 1996-11-15 2009-04-07 Diebold, Incorporated Automated banking machine
US8478020B1 (en) 1996-11-27 2013-07-02 Cummins-Allison Corp. Apparatus and system for imaging currency bills and financial documents and method for using the same
AU7159098A (en) 1997-05-07 1998-11-27 Cummins-Allison Corp. Intelligent currency handling system
IT1293952B1 (it) * 1997-05-13 1999-03-11 Stefano Gatto Dispositivo per il rilevamento di banconote false
US6039645A (en) 1997-06-24 2000-03-21 Cummins-Allison Corp. Software loading system for a coin sorter
GB9714083D0 (en) * 1997-07-04 1997-09-10 Ncr Int Inc Document recognition apparatus
US5940623A (en) 1997-08-01 1999-08-17 Cummins-Allison Corp. Software loading system for a coin wrapper
FR2770011B1 (fr) * 1997-10-20 2004-10-01 Azzedine Bahou Detection de fausse monnaie avec unite centrale pour l'analyse spectometrique
GB2332270A (en) 1997-12-10 1999-06-16 Mars Inc Charge storage photoelectric measurement
EP0935223A1 (de) 1998-02-05 1999-08-11 Ascom Autelca Ag Vorrichtung zum Prüfen von Wertpapieren
WO1999041710A1 (de) * 1998-02-12 1999-08-19 Hkr Sensorsysteme Gmbh Pr�fverfahren und pr�feinrichtung f�r echtheitskontrolle von echtheitsmarken
DE19808652A1 (de) * 1998-03-02 1999-09-16 Bundesdruckerei Gmbh Verifikationssystem für ein Wert- und Sicherheitserzeugnis
US6721442B1 (en) 1998-03-17 2004-04-13 Cummins-Allison Corp. Color scanhead and currency handling system employing the same
US6256407B1 (en) 1998-03-17 2001-07-03 Cummins-Allison Corporation Color scanhead and currency handling system employing the same
US6493461B1 (en) 1998-03-17 2002-12-10 Cummins-Allison Corp. Customizable international note counter
GB9806914D0 (en) * 1998-03-31 1998-05-27 Rue De Int Ltd Methods and apparatus for monitoring articles
US6044952A (en) * 1998-05-18 2000-04-04 Mars, Incorporated Multi-function optical sensor for a document acceptor
GB2341263B (en) 1998-08-14 2002-12-18 Mars Inc Method and apparatus for validating currency
GB2340931A (en) * 1998-08-21 2000-03-01 Celestica Ltd Object colour validation
DE19840482A1 (de) 1998-09-04 2000-03-09 Giesecke & Devrient Gmbh Verfahren und Vorrichtung zum Prüfen von Wertpapieren
DE69803459T2 (de) 1998-10-30 2003-02-13 Datalogic Spa Optisches Gerät und Verfahren zum Anvisieren und visuellen Anzeigen eines Auslesebereichs
AU772395B2 (en) * 1999-02-17 2004-04-29 Crane Canada Co. Optical sensor with planar wall
CN1209314C (zh) * 1999-02-17 2005-07-06 欧洲工业技术开发公司 生产基于无水石膏Ⅲ或α无水石膏的水硬粘结剂的方法和所获得的水硬粘结剂
JP2002538559A (ja) * 1999-03-03 2002-11-12 キャッシュコード カンパニー インコーポレーテッド 紙幣鑑定機
US6142284A (en) * 1999-03-22 2000-11-07 Cashcode Company Inc. Modular bill acceptor
DE19924750C2 (de) 1999-04-08 2002-11-14 Ovd Kinegram Ag Zug Leseanordnung für Informationsstreifen mit optisch kodierter Information
US6637576B1 (en) 1999-04-28 2003-10-28 Cummins-Allison Corp. Currency processing machine with multiple internal coin receptacles
WO2000065546A1 (en) 1999-04-28 2000-11-02 Cummins-Allison Corp. Currency processing machine with multiple coin receptacles
DE19930651C2 (de) * 1999-07-02 2003-04-10 Giesecke & Devrient Gmbh Verfahren und Vorrichtung zum Lesen blattförmiger Aufzeichnungsträger
GB9920501D0 (en) * 1999-09-01 1999-11-03 Ncr Int Inc Imaging system
US6621916B1 (en) 1999-09-02 2003-09-16 West Virginia University Method and apparatus for determining document authenticity
ES2159254B1 (es) * 1999-10-25 2002-04-01 Normalizacion Europ S A Dispositivo identificador de grafismos y su procedimiento.
EP1096441A3 (de) * 1999-10-25 2001-08-22 Normalizacion Europea, S.A. Vorrichtung und Verfahren zur Überprüfung von Drucksachen
US6665060B1 (en) 1999-10-29 2003-12-16 Cytyc Corporation Cytological imaging system and method
FR2801125B1 (fr) * 1999-11-17 2002-02-22 Montage Et Cablage Electroniqu Appareil et procede pour verifier l'authenticite de documents, par exemple des billets de banque ou des cheques
US6473165B1 (en) 2000-01-21 2002-10-29 Flex Products, Inc. Automated verification systems and methods for use with optical interference devices
GB0001561D0 (en) * 2000-01-24 2000-03-15 Rue De Int Ltd Document momitoring system and method
DE10005514A1 (de) * 2000-02-07 2001-08-09 Giesecke & Devrient Gmbh Vorrichtung und Verfahren zur Überprüfung von Banknoten
US8701857B2 (en) 2000-02-11 2014-04-22 Cummins-Allison Corp. System and method for processing currency bills and tickets
US6398000B1 (en) 2000-02-11 2002-06-04 Cummins-Allison Corp. Currency handling system having multiple output receptacles
US6588569B1 (en) 2000-02-11 2003-07-08 Cummins-Allison Corp. Currency handling system having multiple output receptacles
US6843418B2 (en) * 2002-07-23 2005-01-18 Cummin-Allison Corp. System and method for processing currency bills and documents bearing barcodes in a document processing device
US6601687B1 (en) 2000-02-11 2003-08-05 Cummins-Allison Corp. Currency handling system having multiple output receptacles
GB2361765A (en) 2000-04-28 2001-10-31 Ncr Int Inc Media validation by diffusely reflected light
DE10027726A1 (de) * 2000-06-03 2001-12-06 Bundesdruckerei Gmbh Sensor für die Echtheitserkennung von Signets auf Dokumenten
AU2006230739B2 (en) * 2000-09-04 2009-04-23 Mei, Incorporated Document sensing apparatus and method
GB2366371A (en) 2000-09-04 2002-03-06 Mars Inc Sensing documents such as currency items
GB0028263D0 (en) * 2000-11-20 2001-01-03 Rue De Int Ltd Document handling apparatus
GB0029157D0 (en) * 2000-11-29 2001-01-17 Rue De Int Ltd Method and apparatus for obtaining information about documents
US7057723B2 (en) * 2000-12-21 2006-06-06 De La Rue International Limited Optical sensor device and method for spectral analysis
JP4552331B2 (ja) * 2001-01-30 2010-09-29 沖電気工業株式会社 媒体判別装置
GB0106816D0 (en) * 2001-03-19 2001-05-09 Rue De Int Ltd Sheet handling apparatus and method
US7647275B2 (en) 2001-07-05 2010-01-12 Cummins-Allison Corp. Automated payment system and method
US8944234B1 (en) 2001-09-27 2015-02-03 Cummins-Allison Corp. Apparatus and system for imaging currency bills and financial documents and method for using the same
US8437530B1 (en) 2001-09-27 2013-05-07 Cummins-Allison Corp. Apparatus and system for imaging currency bills and financial documents and method for using the same
US8428332B1 (en) 2001-09-27 2013-04-23 Cummins-Allison Corp. Apparatus and system for imaging currency bills and financial documents and method for using the same
US8433123B1 (en) 2001-09-27 2013-04-30 Cummins-Allison Corp. Apparatus and system for imaging currency bills and financial documents and method for using the same
US8437529B1 (en) 2001-09-27 2013-05-07 Cummins-Allison Corp. Apparatus and system for imaging currency bills and financial documents and method for using the same
US20030067774A1 (en) * 2001-10-04 2003-04-10 Nanovia, L.P. Illumination systems and methods employing diffractive holographic optical elements
US6903340B1 (en) * 2001-10-23 2005-06-07 Juan Cesar Scaiano Thin film analyzer
US6896118B2 (en) 2002-01-10 2005-05-24 Cummins-Allison Corp. Coin redemption system
US7551764B2 (en) * 2002-03-25 2009-06-23 Cummins-Allison Corp. Currency bill and coin processing system
US7269279B2 (en) * 2002-03-25 2007-09-11 Cummins-Allison Corp. Currency bill and coin processing system
US6838687B2 (en) * 2002-04-11 2005-01-04 Hewlett-Packard Development Company, L.P. Identification of recording media
DE10234084B4 (de) * 2002-07-26 2006-06-14 Koenig & Bauer Ag Vorrichtung zur Inspektion von bogenförmigen Material
US6970236B1 (en) 2002-08-19 2005-11-29 Jds Uniphase Corporation Methods and systems for verification of interference devices
US8171567B1 (en) 2002-09-04 2012-05-01 Tracer Detection Technology Corp. Authentication method and system
WO2004027719A1 (en) * 2002-09-17 2004-04-01 O.R.M.A.G. S.P.A. Inspecting system for security supports
US8627939B1 (en) 2002-09-25 2014-01-14 Cummins-Allison Corp. Apparatus and system for imaging currency bills and financial documents and method for using the same
DE10246563A1 (de) * 2002-10-05 2004-04-15 november Aktiengesellschaft Gesellschaft für Molekulare Medizin Vorrichtung und Verfahren zur Bestimmung der Farbe/n auf einer Oberfläche
TW564377B (en) * 2002-11-01 2003-12-01 Star News Network Co Ltd Pattern identification system
RU2305323C2 (ru) * 2002-12-27 2007-08-27 Джэпэн Кэш Машин Ко., Лтд. Оптическое воспринимающее устройство для обнаружения оптических признаков ценных бумаг
US20040182675A1 (en) * 2003-01-17 2004-09-23 Long Richard M. Currency processing device having a multiple stage transport path and method for operating the same
US7222712B2 (en) * 2003-03-24 2007-05-29 Valtech International, Llc Document validator with locking cassette
US20040196363A1 (en) * 2003-04-01 2004-10-07 Gary Diamond Video identification verification system
JP2004326624A (ja) * 2003-04-25 2004-11-18 Aruze Corp 識別センサ
US7016767B2 (en) * 2003-09-15 2006-03-21 Cummins-Allison Corp. System and method for processing currency and identification cards in a document processing device
JP2005100197A (ja) * 2003-09-26 2005-04-14 Aruze Corp 識別センサ及び識別装置
US6966668B2 (en) * 2003-11-07 2005-11-22 Noah Systems, Llc Wearable light device with optical sensor
US20050169511A1 (en) * 2004-01-30 2005-08-04 Cummins-Allison Corp. Document processing system using primary and secondary pictorial image comparison
US20050221504A1 (en) * 2004-04-01 2005-10-06 Petruno Patrick T Optoelectronic rapid diagnostic test system
US7521259B2 (en) 2004-04-01 2009-04-21 Alverix, Inc. Assay test strips with multiple labels and reading same
US8128871B2 (en) 2005-04-22 2012-03-06 Alverix, Inc. Lateral flow assay systems and methods
US20050256807A1 (en) * 2004-05-14 2005-11-17 Brewington James G Apparatus, system, and method for ultraviolet authentication of a scanned document
KR100602262B1 (ko) 2004-07-20 2006-07-19 삼성전자주식회사 화상형성장치 및 화상형성장치의 인쇄매체 인식 방법
JP4507806B2 (ja) * 2004-10-01 2010-07-21 三菱電機株式会社 指紋画像撮像装置
DE102004053293A1 (de) * 2004-11-04 2006-05-11 Giesecke & Devrient Gmbh Abtastvorrichtung für Barcodes
JP4073907B2 (ja) * 2004-11-16 2008-04-09 株式会社日本コンラックス 紙葉類識別装置
US20060128034A1 (en) * 2004-12-10 2006-06-15 Petruno Patrick T Diagnostic test using gated measurement of fluorescence from quantum dots
US10041941B2 (en) * 2005-04-22 2018-08-07 Alverix, Inc. Assay test strips with multiple labels and reading same
DE102005031957B4 (de) 2005-07-08 2007-03-22 Koenig & Bauer Ag Vorrichtung zur Inspektion eines Bedruckstoffes mit uneinheitlich reflektierenden Oberflächen
US7946406B2 (en) 2005-11-12 2011-05-24 Cummins-Allison Corp. Coin processing device having a moveable coin receptacle station
US7980378B2 (en) 2006-03-23 2011-07-19 Cummins-Allison Corporation Systems, apparatus, and methods for currency processing control and redemption
TWM299901U (en) * 2006-04-19 2006-10-21 Int Currency Tech Paper money detection apparatus and paper money recognition system
EP1868166A3 (de) * 2006-05-31 2007-12-26 MEI, Inc. Verfahren und Vorrichtung zur Validierung von Banknoten
JP4659691B2 (ja) * 2006-07-03 2011-03-30 株式会社日立製作所 特徴パターン検出装置
AT503667B1 (de) * 2006-07-04 2007-12-15 Arc Seibersdorf Res Gmbh Verfahren und einrichtung zur aufnahme von transluzente teilbereiche aufweisenden gegenständen
US7996173B2 (en) 2006-07-31 2011-08-09 Visualant, Inc. Method, apparatus, and article to facilitate distributed evaluation of objects using electromagnetic energy
US8081304B2 (en) 2006-07-31 2011-12-20 Visualant, Inc. Method, apparatus, and article to facilitate evaluation of objects using electromagnetic energy
JP4370317B2 (ja) 2006-09-04 2009-11-25 三菱重工業株式会社 ラインセンサ及び印刷機
US7929749B1 (en) 2006-09-25 2011-04-19 Cummins-Allison Corp. System and method for saving statistical data of currency bills in a currency processing device
DE202006017363U1 (de) * 2006-11-13 2007-04-19 3R Machines B.V. Vorrichtung zum Erkennen und Analysieren eines aus Farben im Spektral- und Infrarot-Wellenbereich bestehenden Sicherheitszeichens
ATE487990T1 (de) * 2007-01-05 2010-11-15 Nordson Benelux B V Optischer sensor zum detektieren eines kodes auf einem substrat
EP1953709A1 (de) * 2007-01-24 2008-08-06 International Currency Technologies Corporation Wertpapierprüfer
US8538123B1 (en) 2007-03-09 2013-09-17 Cummins-Allison Corp. Apparatus and system for imaging currency bills and financial documents and method for using the same
CA2677714C (en) 2007-03-09 2014-12-23 Cummins-Allison Corp. Document imaging and processing system
US8417017B1 (en) 2007-03-09 2013-04-09 Cummins-Allison Corp. Apparatus and system for imaging currency bills and financial documents and method for using the same
DE102007037923A1 (de) * 2007-08-10 2009-02-12 Giesecke & Devrient Gmbh Optischer Sensor zur Erfassung von Wertdokumenten und Verfahren zur Reinhaltung eines Sensorfensters des Sensors
DE102008000774A1 (de) * 2008-03-19 2009-09-24 Voith Patent Gmbh Optisches Verfahren und Messvorrichtung für eine Fasern beinhaltende Bahn
JP5210067B2 (ja) * 2008-07-22 2013-06-12 株式会社ユニバーサルエンターテインメント 紙葉類処理装置
JP4719284B2 (ja) * 2008-10-10 2011-07-06 トヨタ自動車株式会社 表面検査装置
US8265346B2 (en) 2008-11-25 2012-09-11 De La Rue North America Inc. Determining document fitness using sequenced illumination
US8780206B2 (en) * 2008-11-25 2014-07-15 De La Rue North America Inc. Sequenced illumination
JP5205292B2 (ja) * 2009-01-16 2013-06-05 ローレル機械株式会社 紙幣処理機
JP5268667B2 (ja) * 2009-01-16 2013-08-21 ローレル機械株式会社 紙幣処理機
US8929640B1 (en) 2009-04-15 2015-01-06 Cummins-Allison Corp. Apparatus and system for imaging currency bills and financial documents and method for using the same
US8437528B1 (en) 2009-04-15 2013-05-07 Cummins-Allison Corp. Apparatus and system for imaging currency bills and financial documents and method for using the same
US8391583B1 (en) 2009-04-15 2013-03-05 Cummins-Allison Corp. Apparatus and system for imaging currency bills and financial documents and method for using the same
US8749767B2 (en) 2009-09-02 2014-06-10 De La Rue North America Inc. Systems and methods for detecting tape on a document
US8194237B2 (en) * 2009-10-15 2012-06-05 Authentix, Inc. Document sensor
DE102009058805A1 (de) * 2009-12-18 2011-06-22 Giesecke & Devrient GmbH, 81677 Spektralsensor zur Prüfung von Wertdokumenten
US8509492B2 (en) * 2010-01-07 2013-08-13 De La Rue North America Inc. Detection of color shifting elements using sequenced illumination
US8433124B2 (en) * 2010-01-07 2013-04-30 De La Rue North America Inc. Systems and methods for detecting an optically variable material
DE102010014912A1 (de) * 2010-04-14 2011-10-20 Giesecke & Devrient Gmbh Sensor zur Prüfung von Wertdokumenten
US8303074B2 (en) * 2010-06-30 2012-11-06 Eastman Kodak Company Printer with uniform illumination for media identification
CN101976477A (zh) * 2010-10-25 2011-02-16 深圳市怡化电脑有限公司 多光谱多角度检测光变油墨和全息图像的鉴伪方法及装置
CN101986353A (zh) * 2010-11-02 2011-03-16 北京新岸线软件科技有限公司 一种多角度光学特征检测方法及装置
CN102982606B (zh) * 2011-09-07 2015-09-02 深圳兆日科技股份有限公司 一种利用物理特征识别的防伪方法和系统
US9335254B2 (en) * 2011-08-25 2016-05-10 Glory Ltd. Paper sheet recognition apparatus, light guide and light guide casing for use in spectrometric measurement of paper sheet
DE102011113670A1 (de) * 2011-09-20 2013-03-21 Schott Ag Beleuchtungsvorrichtung, Inspektionsvorrichtung und Inspektionsverfahren für die optische Prüfung eines Objekts
WO2013119824A1 (en) 2012-02-10 2013-08-15 Visualant, Inc. Systems, methods and articles related to machine-readable indicia and symbols
KR101397791B1 (ko) * 2012-05-08 2014-05-20 주식회사 엘지씨엔에스 매체 인식 장치 및 금융기기
US9053596B2 (en) 2012-07-31 2015-06-09 De La Rue North America Inc. Systems and methods for spectral authentication of a feature of a document
US9316581B2 (en) 2013-02-04 2016-04-19 Visualant, Inc. Method, apparatus, and article to facilitate evaluation of substances using electromagnetic energy
US9041920B2 (en) 2013-02-21 2015-05-26 Visualant, Inc. Device for evaluation of fluids using electromagnetic energy
US9141876B1 (en) 2013-02-22 2015-09-22 Cummins-Allison Corp. Apparatus and system for processing currency bills and financial documents and method for using the same
US9664610B2 (en) 2013-03-12 2017-05-30 Visualant, Inc. Systems for fluid analysis using electromagnetic energy that is reflected a number of times through a fluid contained within a reflective chamber
WO2016052749A1 (ja) * 2014-10-03 2016-04-07 グローリー株式会社 紙葉類識別装置及び紙葉類識別方法
CN104766402B (zh) * 2015-04-28 2017-07-25 广州广电运通金融电子股份有限公司 一种纸币位置检测装置
US10325436B2 (en) 2015-12-31 2019-06-18 Hand Held Products, Inc. Devices, systems, and methods for optical validation
JP6625901B2 (ja) * 2016-02-29 2019-12-25 株式会社Screenホールディングス 照明装置、および検査装置
CN109564154A (zh) * 2016-08-10 2019-04-02 夏普株式会社 图像形成装置以及判别方法
RU177966U1 (ru) * 2017-04-19 2018-03-16 Общество С Ограниченной Ответственностью "Конструкторское Бюро "Дорс" (Ооо "Кб "Дорс") Устройство для обработки банкнот с возможностью проверки защитных антистоксовых меток
CN110458998B (zh) * 2019-07-11 2021-11-16 深圳怡化电脑股份有限公司 票据检测方法、票据检测装置及终端

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3112468A (en) * 1959-04-14 1963-11-26 Bell Telephone Labor Inc Character recognition system
US3480785A (en) * 1965-07-26 1969-11-25 Vendit Inc Method and apparatus for validating documents by spectral analysis of light reflected therefrom
US3496370A (en) * 1966-05-16 1970-02-17 Advance Data Systems Corp Bill validation device with transmission and color tests
GB1410823A (en) * 1972-10-06 1975-10-22 Inst Fuer Grafische Technik Method and a device for rapidly sensing and providing signals characteristic of colour tones of opaque or transparent material
CH573634A5 (de) * 1974-07-04 1976-03-15 Landis & Gyr Ag
DE2647285B2 (de) * 1976-10-20 1980-07-17 Helmut 7210 Rottweil Steinhilber Auflicht-Leser für mehrstellige, binärcodierte Informationen
US4204765A (en) * 1977-12-07 1980-05-27 Ardac, Inc. Apparatus for testing colored securities
US4319137A (en) * 1978-05-23 1982-03-09 Tokyo Shibaura Denki Kabushiki Kaisha Apparatus for identifying sheet-like printed matters
JPS5532132A (en) * 1978-08-28 1980-03-06 Laurel Bank Machine Co Bill discriminator
JPS5698634A (en) * 1980-01-09 1981-08-08 Dainippon Printing Co Ltd Printed matter testing device
EP0072237B1 (de) * 1981-08-11 1987-04-29 De La Rue Systems Limited Einrichtung zum Abtasten von Dokumenten
DE3276777D1 (en) * 1981-08-11 1987-08-20 De La Rue Syst Apparatus for detecting tape on sheets
US4587434A (en) * 1981-10-22 1986-05-06 Cubic Western Data Currency note validator
GB2122743B (en) * 1982-06-29 1986-01-08 Bergstroem Arne Apparatus for authenticating bank notes
US4518856A (en) * 1982-09-14 1985-05-21 Sheltered Workshop For The Disabled, Inc. Line sensing method and apparatus
US4618257A (en) * 1984-01-06 1986-10-21 Standard Change-Makers, Inc. Color-sensitive currency verifier
GB2158232B (en) * 1984-04-25 1987-11-18 Matsushita Electric Works Ltd Object detecting apparatus including photosensors for restricted detection area
DE3713279C2 (de) * 1987-04-18 1994-01-20 Laser Sorter Gmbh Verfahren zum Erfassen von Dimensionsfehlern und/oder dem Verzug von Papierbahnen oder Formatpapieren
GB8725034D0 (en) * 1987-10-26 1987-12-02 De La Rue Syst Detecting inks
CH690471A5 (de) * 1988-04-18 2000-09-15 Mars Inc Einrichtung zum Erkennen der Echtheit von Dokumenten.
CH689523A5 (de) * 1989-05-01 1999-05-31 Mars Inc Pruefeinrichtung fuer ein blattfoermiges Gut.
ES2103330T3 (es) * 1991-10-14 1997-09-16 Mars Inc Dispositivo para el reconocimiento optico de documentos.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1587030A1 (de) * 2003-01-23 2005-10-19 Aruze Corp. Identifikationssensor
EP1587030A4 (de) * 2003-01-23 2011-05-18 Aruze Corp Identifikationssensor

Also Published As

Publication number Publication date
HK1007019A1 (en) 1999-03-26
US5304813A (en) 1994-04-19
NO923966L (no) 1993-04-15
FI924620A0 (fi) 1992-10-13
US5498879A (en) 1996-03-12
FI924620A (fi) 1993-04-15
JP3152372B2 (ja) 2001-04-03
JPH05282432A (ja) 1993-10-29
ES2103330T3 (es) 1997-09-16
DE59208542D1 (de) 1997-07-03
NO923966D0 (no) 1992-10-13
EP0537431A1 (de) 1993-04-21

Similar Documents

Publication Publication Date Title
EP0537431B1 (de) Einrichtung zum optischen Erkennen von Dokumenten
EP0824736B1 (de) Vorrichtung und verfahren zur prüfung von blattgut, wie z.b. banknoten oder wertpapiere
EP0466119B1 (de) Vorrichtung und Verfahren zur Prüfung von Dokumenten
EP0338123B1 (de) Einrichtung zum Erkennnen von Dokumenten
EP0718809B1 (de) Verfahren und Vorrichtung zum Kennzeichnen und Unterscheiden von Banknoten und legalen Zahlungsmitteln
DE4338780C2 (de) Mustererkennungsvorrichtung
DE60314667T3 (de) Optische messvorrichtung zur bestimmung optischer merkmale von wertpapieren
DE2913565C2 (de) Optischer Informationshandabtaster
EP1730500B1 (de) Optische systeme zur erzeugung eines beleuchtungsstreifens
EP0395833B1 (de) Verfahren und Vorrichtung zum Prüfen von Dokumenten
EP2513875B1 (de) Spektralsensor zur prüfung von wertdokumenten
EP1037173A1 (de) Detektionsvorrichtung
EP1805978A1 (de) Verfahren zur korrektur von bildmesswerten
DE19924750A1 (de) Leseanordnung für Informationsstreifen mit optisch kodierter Information
DE60225962T2 (de) Geldscheinprüfgerät
US20010055409A1 (en) Step difference detection apparatus and processing apparatus using the same
EP1154225A1 (de) Erfassen der Randkante, Markierung einer laufenden Warenbahn mit zweiter diffuser Lichtquelle sowie Lichtzeiger
DE102009058804A1 (de) Sensor zur Prüfung von Wertdokumenten
DE10000030A1 (de) Kamerasystem für die Bearbeitung von Dokumenten
WO2011072864A1 (de) Sensor zur prüfung von wertdokumenten
WO2022157174A1 (de) Vorrichtung und verfahren zum verbessern der reproduzierbarkeit von aufnahmen
EP3220112B1 (de) Vorrichtung mit wenigstens einem optischen sensormodul und betriebsverfahren hierfür

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19930608

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MARS INCORPORATED

17Q First examination report despatched

Effective date: 19951017

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970528

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE SA

Ref country code: CH

Ref legal event code: EP

ITF It: translation for a ep patent filed

Owner name: FUMERO BREVETTI S.N.C.

REF Corresponds to:

Ref document number: 59208542

Country of ref document: DE

Date of ref document: 19970703

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970804

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2103330

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: GIESECKE & DEVRIENT GMBH

Effective date: 19980227

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000811

Year of fee payment: 9

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010730

Year of fee payment: 10

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20010512

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020806

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030804

EUG Se: european patent has lapsed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040728

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040812

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040825

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050803

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050803

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050804