EP0537055A2 - Priming device for secondary explosive charge - Google Patents

Priming device for secondary explosive charge Download PDF

Info

Publication number
EP0537055A2
EP0537055A2 EP92402694A EP92402694A EP0537055A2 EP 0537055 A2 EP0537055 A2 EP 0537055A2 EP 92402694 A EP92402694 A EP 92402694A EP 92402694 A EP92402694 A EP 92402694A EP 0537055 A2 EP0537055 A2 EP 0537055A2
Authority
EP
European Patent Office
Prior art keywords
optical
switch
electronic
switching
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP92402694A
Other languages
German (de)
French (fr)
Other versions
EP0537055A3 (en
Inventor
André Winaver
Dominique Broussoux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thomson Brandt Armements SA
Original Assignee
Thomson Brandt Armements SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Brandt Armements SA filed Critical Thomson Brandt Armements SA
Publication of EP0537055A2 publication Critical patent/EP0537055A2/en
Publication of EP0537055A3 publication Critical patent/EP0537055A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/10Initiators therefor
    • F42B3/113Initiators therefor activated by optical means, e.g. laser, flashlight

Definitions

  • the present invention relates to a device for initiating a secondary explosive charge comprising at least one energy reservoir coupled to an energy switching element coupled to a fused primer with a projected film, characterized in that the switching element of energy is constituted by an electronic semiconductor-based switch, its switching on closing being activated by an optical pulse signal.
  • a high security ignition system generally consists of an energy reservoir, an energy switch, control circuits and verification of switching orders, and d 'a initiation of detonation.
  • High security detonation primers require, to ensure proper operation, the switching of energies equal to several hundred milli-joules, or even a joule, in a few tens of nanoseconds. This switching results in electrical circuits by the passage of a current equal to several kilo-amperes under an applied voltage of several kilo-volts.
  • the switching element currently used is a gas or vacuum spark gap.
  • the delays and jitter phenomena obtained with the spark gaps, at gas or no-load, are incompatible with synchronous or sequenced multi-point ignition systems which require perfect control of the delays and phenomena of gigues and require reaching switching times of the order of a few nanoseconds.
  • one solution consists in using the optical energy coming from a pulsed laser to trigger the switching of energy. through the spark gap.
  • This triggering method has been widely described in the following publications: VA VUYLSTEKI JAP 34, 1615 (1963), LL STEINMETZ - The Review of Scientific Instrument 39 n ° 6 (1968) pages 9041/909, HC HARGES Texas University Report n ° LLL 2257509-1 (1979), RA DOUGAL et all J. Phys. D. App. Phy. 17 (1984) pages 903/918.
  • the main disadvantage of the spark gap triggered by optical pulse is that it requires the use of pulsed laser of high powers, for example between 100 kW and 1 MW corresponding to energies between 1 and 10 milli-joules transmitted in around 10 ns, each spark gap having its own associated laser.
  • the most compact laser sources known limit the operating rates to around a frequency of the order of one kilo-hertz and thus do not allow fast sequenced operations, for example such that there are 100 ns between each pulse.
  • the powers, more than 100 kW in particular, used for triggering the spark gaps require the use, if the architecture of the system so requires, of special optical fibers of large diameters, fragile and difficult to use. made of the small radius of curvature that they accept without breaking.
  • the object of the invention is to overcome the aforementioned drawbacks.
  • the subject of the invention is a priming device for a secondary explosive charge comprising at least one energy reservoir coupled to an energy switching element coupled to a fusible primer with a projected layer, characterized in that the energy switching element consists of an electronic semiconductor based switch.
  • the main advantages of the invention are that it requires a low trigger energy, typically a few micro-joules, and that it allows short priming times, typically less than 1 ns, thanks in particular to the disappearance of the jitter phenomena. that it protects the ignitions from electromagnetic radiation, finally that it allows a greater compactness of the ignition means as well as a greater ease of operation.
  • Figure la presents an elementary priming device according to the invention. It includes a reservoir of electrical energy 1, a capacitor for example whose capacity is between 0.1 and 0.2 ⁇ F and charged under a few kilo-volts, having an electrode connected by via a line 3 at a reference potential 4 and its other electrode connected on the one hand to an input point 2 of the charging current of the energy reservoir 1 via a line 5, 6, and on the other hand to an electrode 9 of an electronic energy switch 8, based on a semiconductor of gallium arsenide for example, operating in photo-conduction mode for example, by means of a line 5, 7.
  • the other electrode 10 of the switch 8 is connected to a pole of a fused primer with projected layer 13 via a line 12, the other pole of the primer 13 being connected to the reference potential 4 via a line 14.
  • the lines 3, 5, 7, 12 and 14 can be formed for example of flat conductors in order to reduce the parasitic self-inductances and thus reduce parasitic overvoltages at the terminals of the switch 8. Switching on closing, that is to say for the passage of energy, is controlled by a low level optical pulse 11.
  • the switch 8 can switch currents of a few kilo-amperes at a voltage of a few kilo-volts at its terminals.
  • the optical energy required to activate the switch 8 is very low, around 100 ⁇ J for example, because the presence of the optical pulse is not compulsory over the entire duration of the switching of energy through the switch, thus for a switching time of approximately 100 ns, an optical pulse of approximately 10 ns is sufficient to trigger the closing of the switch, this is maintained after the optical pulse 11 disappears until the current flowing the switch is canceled, that is to say in fact until the energy tank 1 is completely discharged.
  • This property of the optical switch allows, for example, the use of laser diodes as optical sources, capable for example of delivering an optical power of approximately 1 kW for 10 ns. It is possible to envisage a triggering of the switch 8 by a signal which is not optical, this could for example be replaced by an electrical signal of low power.
  • FIG. 1b shows an example of a switch structure 8 with gallium arsenide produced for the ignition device according to the invention. It is composed of a semiconductor substrate 15 of gallium arsenide with a resistivity equal to approximately 107 ⁇ cm, with a thickness of 1 mm and a width of approximately 1 cm on which are deposited two electrodes 9, 10 made for example of four successive layers of metals: a layer of 50 A nickel, 750 ⁇ gold, 750 ⁇ nickel and 2000 ⁇ gold so as to create ohmic contacts between the metal and the arsenide of gallium and to let appear a difference between the electrodes adapted to the voltage applied to the terminals of the circuit, for example 1mm for 3 to 4 kilo-volts.
  • the switching pulse optical beam 11 comes for example from a laser optical source emitting at wavelengths between 0.8 and 1.06 ⁇ m.
  • a layer of approximately 5 to 10 ⁇ m of polymer dielectric, for example a polyimide is deposited on the surface of the switch 8 containing the electrodes 9, 10.
  • FIG. 2a shows a multi-channel priming device according to the invention. It includes for example n elementary circuits of the type described in FIG. 1a.
  • EN1, EN2, EN3 and EN are the energy inputs for the capacitors C1, C2, C3 and Cn. The energy stored in these capacitors is switched to the fused primers F1, F2, F3 and Fn via the switches based on gallium arsenide PC1, PC2, PC3 and PCn of the type of that of FIG. 1b.
  • These switches are respectively controlled by the signals optical pulses 21, 22, 23 and 24.
  • the capacitors C1, C2, C3 and Cn on the one hand, and the fuses F1, F2, F3 and Fn on the other hand each have a pole connected to the same reference potential 4.
  • the optical control pulse can be brought to each of the switches according to several methods described below.
  • FIG. 2b For a synchronous priming mode, a possible structure is shown in Figure 2b.
  • the device has three priming paths.
  • a common optical source 25 with laser for example, sends synchronous pulses to the switches PC1, PC2 and PC3. These optical pulses are transmitted by means of optical fibers 26, 27 and 28 of the same length. These optical fibers can be for example plastic or silica.
  • a possible structure is shown in Figure 3; it is identical to the structure of FIG. 2b with the exception of the lengths of the optical fibers 31, 32 and 33 which are no longer identical.
  • the length of each of the fibers 31, 32 and 33 is adapted to the time required between priming.
  • a meter of optical fiber generates a delay of around 3 ns, depending on the nature of the optical fibers, this delay can be defined precisely.
  • FIGS. 4a and 4b For a sequenced boot mode programmed during the mission and adapted for example, according to the target to be destroyed, two possible structures are presented in FIGS. 4a and 4b.
  • the structure of FIG. 4a comprises a common optical source 25, for example with a laser.
  • Optical fibers 41, 42 and 43 guide an optical pulse signal to each of the three inputs EN1, EN2 and EN3 of an optical matrix 44.
  • This optical matrix 44 is made up of an optical switching system which makes it possible to obtain a certain number of pre-established sequences based for example on information acquired during the mission.
  • At outputs SO1, SO2, SO3 of the matrix 44, three optical fibers 45, 46, 47 of the same length allow the routing of the optical pulse signals to the PC1, PC2 and PC3 switches.
  • Figure 4b shows a possible structure where there are as many laser sources L1, L2, L3 as there are switches PC1, PC2 and PC3. These laser sources are triggered according to programmable sequences by electronic control circuits 48, the production of which is known to those skilled in the art.
  • the lasers L1, L2, L3 respectively transmit optical pulses 491, 492, 493 to the switches PC1, PC2 and PC3.
  • FIGS. 5a and 5b show a possible structure containing several energy switches and designed to be used for example in the multi-channel ignition devices described in FIGS. 2a and 4b.
  • FIG. 5a represents a top view of a semiconductor substrate 51 of gallium arsenide for example, on which is deposited a network of metal electrodes 511, 512, 513, 521, 522 and 523 forming three switches, the electrodes 511 and 521 forming a first switch connected at the input to a line 531 and at the output to a line 541, the electrodes 512 and 522 forming a second switch connected at the input to a line 532 and at the output to a line 522, and the electrodes 513 and 523 forming a third switch connected at the input to a line 533 and at the output to a line 543.
  • the geometric parameters of the electrodes are a function of the electrical stresses of the firing circuits, in particular with regard to the current intensity, the voltage and switching times.
  • On line 5a are represented three switches but it is obviously possible to create more, in fact as many as there are priming paths.
  • FIG. 5b represents a view of the substrate 51 of FIG. 5a covered with the electrodes 511, 512, 513, 521, 522 and 523 according to the arrow 56 of Figure 5a.
  • the switches are placed opposite arrays 53, 54, 55 of laser diodes arranged in a strip 52 and capable of emitting optical pulses 57, 51 and 59 to trigger these switches.
  • Each of the networks can be controlled separately by associated control electronics, the production of which is known to those skilled in the art, which makes it possible to ensure synchronous or sequenced initiation as the case may be.
  • This structure presented in FIGS. 5a and 5b has the advantage of being a compact and very flexible structure with regard to the different possibilities of starting mode. However, if the number of switches is too large, the structure presented in Figures 6a and 6b appears more satisfactory in terms of compactness.
  • FIG. 6a represents a network of six switches intended for a starting device according to the invention and deposited on a substrate 61 made of gallium arsenide.
  • a first switch is formed by electrodes E1 and S1, a second switch by other electrodes E2 and S2, a third switch by electrodes E3 and S3, a fourth switch by other electrodes E4 and S4, a fifth switch by other electrodes E5 and S5 and a sixth switch by other electrodes E6 and S6.
  • a difference 63 between the electrodes of the same switch is a function of the voltage applied to the terminals of this switch.
  • FIG. 6b shows the substrate 61 of the switches placed opposite a set of arrays of laser diodes placed on a support 62. These arrays of laser diodes activate, by their emission of optical pulses, the switches placed on the substrate 61.
  • set of arrays of laser diodes on the support 62 can be obtained by stacking bars similar to the bar 52 of FIG. 5b. It can also, for example, be in the form of surface emission networks.
  • the production of the switches on the substrate 61 uses microelectronic techniques known to those skilled in the art;
  • Figures 7a and 7b show a monolithic structure of a set of switches and their optical sources intended for a starting device according to the invention.
  • Figure 7a shows a sectional view of Figure 7b.
  • FIGS. 7a and 7b show only two switches made up on the one hand, of the electrodes 73, 74 and their associated lasser diode networks 77 and on the other hand, of the electrodes 78, 79 and their associated laser diode networks 80.
  • These electrodes are placed on a substrate 71 of gallium arsenide and situated in a plane inclined at 45 ° relative to the optical emission 72 delivered by the laser diode networks 77, 80 from the output layers 76.
  • These networks of laser diodes 77, 80 are fixed on a bar 75 which is itself integral with the substrate 71.
  • the structure presented in FIGS. 7a and 7b can be enlarged along axes Y or X parallel to the sides of the substrate 71, by repeating the patterns shown on these two figures. This structure has the advantage of being very compact and very resistant mechanically. In addition, it optimizes the optical coupling, thus increasing the efficiency and reproducibility, between the source and the switch.

Abstract

The priming device according to the invention comprises at least one energy store (1) and a fuse primer with a sprayed layer (13) which are separated by an electronic switch (18) containing gallium arsenide operating in a photoconductive mode (11). Application: high-safety firing systems. <IMAGE>

Description

La présente invention concerne un dispositif d'amorçage pour charge explosive secondaire comportant au moins un réservoir d'énergie couplé à un élément de commutation d'énergie couplé à une amorce fusible à couche projetée, caractérisé en ce que l'élément de commutation d'énergie est constitué par un commutateur électronique à base de semi-conducteur, sa commutation à la fermeture étant activée par un signal optique impulsionnel.The present invention relates to a device for initiating a secondary explosive charge comprising at least one energy reservoir coupled to an energy switching element coupled to a fused primer with a projected film, characterized in that the switching element of energy is constituted by an electronic semiconductor-based switch, its switching on closing being activated by an optical pulse signal.

Selon l'état de l'art , un système d'amorçage de haute sécurité est composé généralement d'un réservoir d'énergie, d'un commutateur d'énergie, de circuits de commande et de vérification des ordres de commutation, et d'une amorce de détonation. Les amorces de détonation de haute sécurité nécessitent, pour assurer un bon fonctionnement, la commutation d'énergies égales à plusieurs centaines de milli-joules, voire un joule, en quelques dizaines de nanosecondes. Cette commutation se traduit dans les circuits électriques par le passage d'un courant égal à plusieurs kilo-ampères sous une tension appliquée de plusieurs kilo-volts. L'élément de commutation actuellement utilisé est un éclateur à gaz ou à vide. Il permet le passage de plusieurs kilo-ampères sous plusieurs kilovolts lorsqu'il est en mode fermé, mais le passage du mode ouvert au mode fermé comporte un temps de commutation trop long pour certaines applications. En effet, le passage du mode ouvert au mode fermé se fait par activation d'une troisième électrode appelée "gâchette" et portée à un fort potentiel, 3 à 4 kv par exemple, cette gâchette provoque une décharge disruptive entre les électrodes principales de l'éclateur, accompagnée de battements selon un phénomène appelé "gigue" en français et généralement connu sous l'appellation anglaise "jitter". Ces "gigues" ou "jitters" retardent l'établissement du mode fermé et provoquent des délais de commutation généralement supérieurs à 100 ns. Les délais et phénomènes de gigue obtenus avec les éclateurs, à gaz ou à vide, sont incompatibles des systèmes d'amorçage multipoints synchrones ou séquencés qui nécessitent une parfaite maîtrise des délais et phénomènes de gigues et nécessitent d'atteindre des temps de commutation de l'ordre de quelques nanosecondes.According to the state of the art, a high security ignition system generally consists of an energy reservoir, an energy switch, control circuits and verification of switching orders, and d 'a initiation of detonation. High security detonation primers require, to ensure proper operation, the switching of energies equal to several hundred milli-joules, or even a joule, in a few tens of nanoseconds. This switching results in electrical circuits by the passage of a current equal to several kilo-amperes under an applied voltage of several kilo-volts. The switching element currently used is a gas or vacuum spark gap. It allows the passage of several kilo-amperes under several kilovolts when it is in closed mode, but the passage from open mode to closed mode involves a switching time too long for certain applications. Indeed, the passage from the open mode to the closed mode is done by activation of a third electrode called "trigger" and brought to a high potential, 3 to 4 kv for example, this trigger causes a disruptive discharge between the main electrodes of the sparkler, accompanied by beats according to a phenomenon called "jitter" in French and generally known by the English name "jitter". These "jigs" or "jitters" delay the establishment of the closed mode and cause switching delays generally greater than 100 ns. The delays and jitter phenomena obtained with the spark gaps, at gas or no-load, are incompatible with synchronous or sequenced multi-point ignition systems which require perfect control of the delays and phenomena of gigues and require reaching switching times of the order of a few nanoseconds.

Afin d'améliorer la dispersion chronométrique entre les différents amorçages, c'est-à-dire en fait réduire les temps de commutation, une solution consiste à utiliser l'énergie optique issue d'un laser à impulsions pour déclencher la commutation d'énergie au travers de l'éclateur. Ce moyen de déclenchement a été largement décrit dans les publications suivantes: V.A. VUYLSTEKI JAP 34, 1615 (1963), L.L. STEINMETZ - The Review of Scientific Instrument 39 n° 6 (1968) pages 9041/909, H.C. HARGES Texas University Report n° LLL 2257509-1 (1979), R.A. DOUGAL et all J. Phys. D.Appli. Phy. 17 (1984) pages 903/918.In order to improve the chronometric dispersion between the different starts, that is to say in fact reduce the switching times, one solution consists in using the optical energy coming from a pulsed laser to trigger the switching of energy. through the spark gap. This triggering method has been widely described in the following publications: VA VUYLSTEKI JAP 34, 1615 (1963), LL STEINMETZ - The Review of Scientific Instrument 39 n ° 6 (1968) pages 9041/909, HC HARGES Texas University Report n ° LLL 2257509-1 (1979), RA DOUGAL et all J. Phys. D. App. Phy. 17 (1984) pages 903/918.

Le principal inconvénient de l'éclateur à déclenchement par impulsion optique est qu'il nécessite l'utilisation de laser à impulsions de fortes puissances, comprises par exemple entre 100 kW et 1 MW correspondant à des énergies comprises entre 1 et 10 milli-joules transmises en 10 ns environ, chaque éclateur ayant un laser associé qui lui est propre.The main disadvantage of the spark gap triggered by optical pulse is that it requires the use of pulsed laser of high powers, for example between 100 kW and 1 MW corresponding to energies between 1 and 10 milli-joules transmitted in around 10 ns, each spark gap having its own associated laser.

A ce jour, les sources à laser les plus compactes connues, dont le volume représente quelques dizaines de centimètres cubes, limitent les cadences de fonctionnement aux environs d'une fréquence de l'ordre d'un kilo-hertz et ainsi ne permettent pas des fonctionnements séquencés rapides, par exemple tels qu'il y ait 100 ns entre chaque impulsion. De plus, les puissances, supérieures à 100 kW notamment, mises en oeuvre pour le déclenchement des éclateurs, nécessitent l'utilisation, si l'architecture du système l'impose, de fibres optiques spéciales de forts diamètres, fragiles et difficiles à utiliser du fait du faible rayon de courbure qu'elles acceptent sans se briser.To date, the most compact laser sources known, the volume of which represents a few tens of cubic centimeters, limit the operating rates to around a frequency of the order of one kilo-hertz and thus do not allow fast sequenced operations, for example such that there are 100 ns between each pulse. In addition, the powers, more than 100 kW in particular, used for triggering the spark gaps, require the use, if the architecture of the system so requires, of special optical fibers of large diameters, fragile and difficult to use. made of the small radius of curvature that they accept without breaking.

Le but de l'invention est de pallier les inconvénients précités.The object of the invention is to overcome the aforementioned drawbacks.

A cet effet l'invention a pour objet un dispositif d'amorçage pour charge explosive secondaire comportant au moins un réservoir d'énergie couplé à un élément de commutation d'énergie couplé à une amorce fusible à couche projetée, caractérisé en ce que l'élément de commutation d'énergie est constitué par un commutateur électronique à base de semi-conducteur.To this end, the subject of the invention is a priming device for a secondary explosive charge comprising at least one energy reservoir coupled to an energy switching element coupled to a fusible primer with a projected layer, characterized in that the energy switching element consists of an electronic semiconductor based switch.

L'invention a pour principaux avantages qu'elle nécessite une faible énergie de déclenchement, typiquement quelques micro-joules, qu'elle permet de faibles délais d'amorçage, typiquement inférieurs à 1 ns, grâce notamment à la disparition des phénomènes de gigue, qu'elle protège les amorçages des rayonnements électromagnétiques, enfin qu'elle permet une plus grande compacité des moyens d'amorçages ainsi qu'une plus grande facilité d'exploitation.The main advantages of the invention are that it requires a low trigger energy, typically a few micro-joules, and that it allows short priming times, typically less than 1 ns, thanks in particular to the disappearance of the jitter phenomena. that it protects the ignitions from electromagnetic radiation, finally that it allows a greater compactness of the ignition means as well as a greater ease of operation.

D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit faite en regard des dessins annexés représentant :

  • la figure 1a, un dispositif d'amorçage élémentaire selon l'invention,
  • la figure 1b, un exemple de structure de commutateur d'énergie,
  • les figures 2a, 2b, 3, 4a, et 4b, des dispositifs d'amorçage multivoies, selon l'invention,
  • les figures 5a, 5b, 6a et 6b, des structures possibles contenant plusieurs commutateurs d'énergie pour des dispositifs d'amorçage selon l'invention,
  • les figures 7a et 7b, une structure compacte contenant plusieurs commutateurs d'énergie pour des dispositifs d'amorçage selon l'invention.
Other characteristics and advantages of the invention will become apparent from the following description given with reference to the appended drawings representing:
  • FIG. 1a, an elementary priming device according to the invention,
  • FIG. 1b, an example of an energy switch structure,
  • FIGS. 2a, 2b, 3, 4a, and 4b, multi-channel priming devices according to the invention,
  • FIGS. 5a, 5b, 6a and 6b, possible structures containing several energy switches for ignition devices according to the invention,
  • Figures 7a and 7b, a compact structure containing several energy switches for ignition devices according to the invention.

La figure la présente un dispositif d'amorçage élémentaire selon l'invention. Il comprend un réservoir d'énergie électrique 1, un condensateur par exemple dont la capacité vaut entre 0,1 et 0,2 µF et chargé sous quelques kilo-volts, ayant une électrode connectée par l'intermédiaire d'une ligne 3 à un potentiel de référence 4 et son autre électrode connectée d'une part à un point d'entrée 2 du courant de charge du réservoir d'énergie 1 par l'intermédiaire d'une ligne 5,6, et d'autre part à une électrode 9 d'un commutateur d'énergie 8 électronique, à base de semi-conducteur en arséniure de gallium par exemple, fonctionnant en mode de photo-conduction par exemple, par l'intermédiaire d'une ligne 5, 7. L'autre électrode 10 du commutateur 8 est reliée à un pôle d'une amorce fusible à couche projetée 13 par l'intermédiaire d'une ligne 12, l'autre pôle de l'amorce 13 étant relié au potentiel de référence 4 par l'intermédiaire d'une ligne 14. Les lignes 3, 5, 7, 12 et 14 peuvent être constituées par exemple de conducteurs plans afin de réduire les self-inductances parasites et diminuer ainsi des surtensions parasites aux bornes du commutateur 8. La commutation à la fermeture, c'est-à-dire pour le passage d'énergie, est commandée par une impulsion optique 11 de faible niveau. Le commutateur 8 peut commuter des courants de quelques kilo-ampères sous une tension de quelques kilo-volts à ses bornes. L'énergie optique nécessaire à l'activation du commutateur 8 est très faible, environ 100 µJ par exemple, car la présence de l'impulsion optique n'est pas obligatoire sur toute la durée de la commutation d'énergie à travers le commutateur, ainsi pour une durée de commutation d'environ 100 ns, une impulsion optique d'environ 10 ns est suffisante pour déclencher la fermeture du commutateur, celle-ci se maintient une fois l'impulsion optique 11 disparue jusqu'à ce que le courant traversant le commutateur s'annule, c'est-à-dire en fait jusqu'à ce que le réservoir d'énergie 1 soit totalement déchargé. Cette propriété du commutateur optique permet par exemple l'utilisation de diodes laser comme sources optiques, capables par exemple de délivrer une puissance optique d'environ 1kW pendant 10 ns. Il est possible d'envisager un déclenchement du commutateur 8 par un signal qui n'est pas optique, celui-ci pourrait par exemple être remplacé par un signal électrique de faible puissance.Figure la presents an elementary priming device according to the invention. It includes a reservoir of electrical energy 1, a capacitor for example whose capacity is between 0.1 and 0.2 µF and charged under a few kilo-volts, having an electrode connected by via a line 3 at a reference potential 4 and its other electrode connected on the one hand to an input point 2 of the charging current of the energy reservoir 1 via a line 5, 6, and on the other hand to an electrode 9 of an electronic energy switch 8, based on a semiconductor of gallium arsenide for example, operating in photo-conduction mode for example, by means of a line 5, 7. The other electrode 10 of the switch 8 is connected to a pole of a fused primer with projected layer 13 via a line 12, the other pole of the primer 13 being connected to the reference potential 4 via a line 14. The lines 3, 5, 7, 12 and 14 can be formed for example of flat conductors in order to reduce the parasitic self-inductances and thus reduce parasitic overvoltages at the terminals of the switch 8. Switching on closing, that is to say for the passage of energy, is controlled by a low level optical pulse 11. The switch 8 can switch currents of a few kilo-amperes at a voltage of a few kilo-volts at its terminals. The optical energy required to activate the switch 8 is very low, around 100 μJ for example, because the presence of the optical pulse is not compulsory over the entire duration of the switching of energy through the switch, thus for a switching time of approximately 100 ns, an optical pulse of approximately 10 ns is sufficient to trigger the closing of the switch, this is maintained after the optical pulse 11 disappears until the current flowing the switch is canceled, that is to say in fact until the energy tank 1 is completely discharged. This property of the optical switch allows, for example, the use of laser diodes as optical sources, capable for example of delivering an optical power of approximately 1 kW for 10 ns. It is possible to envisage a triggering of the switch 8 by a signal which is not optical, this could for example be replaced by an electrical signal of low power.

La figure 1b présente un exemple de structure de commutateur 8 à l'arséniure de gallium réalisé pour le dispositif d'amorçage selon l'invention. Il est composé d'un substrat semi-conducteur 15 en arséniure de gallium de résistivité égale à 10⁷ Ω cm environ, d'épaisseur de 1 mm et de largeur de 1 cm environ sur lequel sont déposées deux électrodes 9, 10 constituées par exemple de quatre couches de métaux successives suivantes : une couche de nickel d'épaisseur 50 A, d'or de 750 Å, de nickel de 750 Å et d'or de 2000 Å de façon à créer des contacts ohmiques entre le métal et l'arséniure de gallium et à laisser paraître un écart entre les électrodes adapté à la tension appliquée aux bornes du circuit, par exemple 1mm pour 3 à 4 kilo-volts. Dès l'apparition du faisceau optique impulsionnel 11, un contact électrique s'établit entre les deux électrodes 10 et 19 par l'intermédiaire du substrat semi-conducteur 15 en arséniure de gallium. Il se crée alors un phénomène de type avalanche qui entretient la fermeture du commutateur. Ces électrodes 9, 10 sont connectées aux circuits extérieures par des liaisons métalliques 16, 17 soudées sur les bords 18, 19 des électrodes 9, 10 selon des techniques connues de l'homme de l'art. Le faisceau optique impulsionnel de commutation 11 est issu par exemple d'une source optique laser émettant suivant des longueurs d'onde comprises entre 0,8 et 1,06 µm. Afin d'éliminer les claquages diélectriques de surface, une couche d'environ 5 à 10 µm de diélectrique polymère, par exemple un polyimide, est déposé sur la surface du commutateur 8 contenant les électrodes 9, 10.FIG. 1b shows an example of a switch structure 8 with gallium arsenide produced for the ignition device according to the invention. It is composed of a semiconductor substrate 15 of gallium arsenide with a resistivity equal to approximately 10⁷ Ω cm, with a thickness of 1 mm and a width of approximately 1 cm on which are deposited two electrodes 9, 10 made for example of four successive layers of metals: a layer of 50 A nickel, 750 Å gold, 750 Å nickel and 2000 Å gold so as to create ohmic contacts between the metal and the arsenide of gallium and to let appear a difference between the electrodes adapted to the voltage applied to the terminals of the circuit, for example 1mm for 3 to 4 kilo-volts. As soon as the pulse optical beam 11 appears, an electrical contact is established between the two electrodes 10 and 19 via the semiconductor substrate 15 made of gallium arsenide. This creates an avalanche type phenomenon which keeps the switch closed. These electrodes 9, 10 are connected to the external circuits by metal links 16, 17 welded to the edges 18, 19 of the electrodes 9, 10 according to techniques known to those skilled in the art. The switching pulse optical beam 11 comes for example from a laser optical source emitting at wavelengths between 0.8 and 1.06 μm. In order to eliminate the surface dielectric breakdowns, a layer of approximately 5 to 10 μm of polymer dielectric, for example a polyimide, is deposited on the surface of the switch 8 containing the electrodes 9, 10.

La figure 2a présente un dispositif d'amorçage multivoies selon l'invention. Il comprend par exemple n circuits élémentaires du type de celui décrit par la figure 1a. EN1, EN2, EN3 et EN sont les entrées d'énergie pour les condensateurs C1, C2, C3 et Cn. L'énergie stockée dans ces condensateurs est commutée vers les amorces fusibles F1, F2, F3 et Fn par l'intermédiaire des commutateurs à base d'arséniure de gallium PC1, PC2, PC3 et PCn du type de celui de la figure 1b. Ces commutateurs sont respectivement commandés par les signaux impulsionnels optiques 21, 22, 23 et 24. Les condensateurs C1, C2, C3 et Cn d'une part, et les fusibles F1, F2, F3 et Fn d'autre part ont chacun un pôle relié au même potentiel de référence 4. L'impulsion optique de commande peut être amenée sur chacun des commutateurs selon plusieurs méthodes décrites ci-dessous.FIG. 2a shows a multi-channel priming device according to the invention. It includes for example n elementary circuits of the type described in FIG. 1a. EN1, EN2, EN3 and EN are the energy inputs for the capacitors C1, C2, C3 and Cn. The energy stored in these capacitors is switched to the fused primers F1, F2, F3 and Fn via the switches based on gallium arsenide PC1, PC2, PC3 and PCn of the type of that of FIG. 1b. These switches are respectively controlled by the signals optical pulses 21, 22, 23 and 24. The capacitors C1, C2, C3 and Cn on the one hand, and the fuses F1, F2, F3 and Fn on the other hand each have a pole connected to the same reference potential 4. The optical control pulse can be brought to each of the switches according to several methods described below.

Pour un mode d'amorçage synchrone, une structure possible est présentée par la figure 2b. A titre d'exemple, le dispositif comporte trois voies d'amorçage. Une source optique commune 25 à laser par exemple, envoie des impulsions synchrones vers les commutateurs PC1, PC2 et PC3. Ces impulsions optiques sont transmises au moyen de fibres optiques 26, 27 et 28 de mêmes longueurs. Ces fibres optiques peuvent être par exemple en plastique ou en silice.For a synchronous priming mode, a possible structure is shown in Figure 2b. For example, the device has three priming paths. A common optical source 25 with laser for example, sends synchronous pulses to the switches PC1, PC2 and PC3. These optical pulses are transmitted by means of optical fibers 26, 27 and 28 of the same length. These optical fibers can be for example plastic or silica.

Pour un mode d'amorçage séquencé pré-programmé, une structure possible est présentée par la figure 3 ; elle est identique à la structure de la figure 2b à l'exception des longueurs des fibres optiques 31, 32 et 33 qui ne sont plus identiques. Pour ce mode de fonctionnement, la longueur de chacune des fibres 31, 32 et 33 est adaptée aux délais nécessaires entre les amorçages. Généralement, un mètre de fibre optique engendre un retard d'environ 3 ns, selon la nature des fibres optiques, ce retard peut être défini précisément.For a pre-programmed sequenced boot mode, a possible structure is shown in Figure 3; it is identical to the structure of FIG. 2b with the exception of the lengths of the optical fibers 31, 32 and 33 which are no longer identical. For this mode of operation, the length of each of the fibers 31, 32 and 33 is adapted to the time required between priming. Generally, a meter of optical fiber generates a delay of around 3 ns, depending on the nature of the optical fibers, this delay can be defined precisely.

Pour un mode d'amorçage séquencé programmé en cours de mission et adapté par exemple, selon la cible à détruire, deux structures possibles sont présentées par les figures 4a et 4b. La structure de la figure 4a comprend une source optique commune 25, à laser par exemple. Des fibres optiques 41, 42 et 43 guident un signal impulsionnel optique vers chacune des trois entrées EN1, EN2 et EN3 d'une matrice optique 44. Cette matrice optique 44 est constitué d'un système de commutations optiques qui permet d'obtenir un certain nombre de séquences pré-établies en fonction par exemple d'informations acquises en cours de mission. En sorties SO1, SO2, SO3 de la matrice 44, trois fibres optiques 45, 46, 47 de mêmes longueurs permettent l'acheminement des signaux impulsionnels optiques vers les commutateurs PC1, PC2 et PC3. La publication Aérospatiale "4ème Congrès International de Pyrotechnie Spatiale" relative à la conférence organisée par le Groupe Technique de Pyrotechnie Spatiale (GPTS) du 05 au 09 Juin 1989, pages 207 à 213, fait état d'un certain nombre de moyens pour obtenir les séquences précitées par commutation optique.For a sequenced boot mode programmed during the mission and adapted for example, according to the target to be destroyed, two possible structures are presented in FIGS. 4a and 4b. The structure of FIG. 4a comprises a common optical source 25, for example with a laser. Optical fibers 41, 42 and 43 guide an optical pulse signal to each of the three inputs EN1, EN2 and EN3 of an optical matrix 44. This optical matrix 44 is made up of an optical switching system which makes it possible to obtain a certain number of pre-established sequences based for example on information acquired during the mission. At outputs SO1, SO2, SO3 of the matrix 44, three optical fibers 45, 46, 47 of the same length allow the routing of the optical pulse signals to the PC1, PC2 and PC3 switches. The Aerospace publication "4th International Congress of Space Pyrotechnics" relating to the conference organized by the Technical Group of Space Pyrotechnics (GPTS) from 05 to 09 June 1989, pages 207 to 213, describes a number of means for obtaining the said sequences by optical switching.

La figure 4b présente une structure possible où il y a autant de sources à laser L1, L2, L3 qu'il y a de commutateurs PC1, PC2 et PC3. Ces sources laser sont déclenchées selon des séquences programmables par des circuits électroniques de commande 48 dont la réalisation est connue de l'homme de l'art. Les lasers L1, L2, L3 émettent respectivement des impulsions optiques 491, 492, 493 vers les commutateurs PC1, PC2 et PC3.Figure 4b shows a possible structure where there are as many laser sources L1, L2, L3 as there are switches PC1, PC2 and PC3. These laser sources are triggered according to programmable sequences by electronic control circuits 48, the production of which is known to those skilled in the art. The lasers L1, L2, L3 respectively transmit optical pulses 491, 492, 493 to the switches PC1, PC2 and PC3.

Les figures 5a et 5b présentent une structure possible contenant plusieurs commutateurs d'énergie et réalisée pour être par exemple utilisée dans les dispositifs d'amorçage multivoies décrits par les figures 2a et 4b.FIGS. 5a and 5b show a possible structure containing several energy switches and designed to be used for example in the multi-channel ignition devices described in FIGS. 2a and 4b.

La figure 5a représente une vue de dessus d'un substrat 51 semi-conducteur en arséniure de gallium par exemple, sur lequel est déposé un réseau d'électrodes métalliques 511, 512, 513, 521, 522 et 523 formant trois commutateurs, les électrodes 511 et 521 formant un premier commutateur relié en entrée à une ligne 531 et en sortie à une ligne 541, les électrodes 512 et 522 formant un deuxième commutateur relié en entrée à une ligne 532 et en sortie à une ligne 522, et les électrodes 513 et 523 formant un troisième commutateur relié en entrée à une ligne 533 et en sortie à une ligne 543. Les paramètres géométriques des électrodes sont fonction des contraintes électriques des circuits de mise à feu, notamment en ce qui concerne l'intensité de courant, la tension et les temps de commutation. Sur la ligne 5a sont représentés trois commutateurs mais il est évidemment possible d'en créer plus, en fait autant qu'il y a de voies d'amorçage.FIG. 5a represents a top view of a semiconductor substrate 51 of gallium arsenide for example, on which is deposited a network of metal electrodes 511, 512, 513, 521, 522 and 523 forming three switches, the electrodes 511 and 521 forming a first switch connected at the input to a line 531 and at the output to a line 541, the electrodes 512 and 522 forming a second switch connected at the input to a line 532 and at the output to a line 522, and the electrodes 513 and 523 forming a third switch connected at the input to a line 533 and at the output to a line 543. The geometric parameters of the electrodes are a function of the electrical stresses of the firing circuits, in particular with regard to the current intensity, the voltage and switching times. On line 5a are represented three switches but it is obviously possible to create more, in fact as many as there are priming paths.

La figure 5b représente une vue du substrat 51 de la figure 5a recouvert des électrodes 511, 512, 513, 521, 522 et 523 suivant la flèche 56 de la figure 5a. Les commutateurs sont placés en regard de réseaux 53, 54, 55 de diodes lasers disposées en barrette 52 et capables d'émettre des impulsions optiques 57, 51 et 59 pour déclencher ces commutateurs. Chacun des réseaux peut être commandé séparément par une électronique de commande associée dont la réalisation est connue de l'homme de l'art, ce qui permet d'assurer un amorçage synchrone ou séquencé selon les cas. Cette structure présentée par les figures 5a et 5b a l'avantage d'être une structure compacte et très souple en ce qui concerne les différentes possibilités de mode d'amorçage. Néanmoins, si le nombre de commutateurs est trop grand, la structure présentée par les figures 6a et 6b apparaît plus satisfaisante au niveau de la compacité.FIG. 5b represents a view of the substrate 51 of FIG. 5a covered with the electrodes 511, 512, 513, 521, 522 and 523 according to the arrow 56 of Figure 5a. The switches are placed opposite arrays 53, 54, 55 of laser diodes arranged in a strip 52 and capable of emitting optical pulses 57, 51 and 59 to trigger these switches. Each of the networks can be controlled separately by associated control electronics, the production of which is known to those skilled in the art, which makes it possible to ensure synchronous or sequenced initiation as the case may be. This structure presented in FIGS. 5a and 5b has the advantage of being a compact and very flexible structure with regard to the different possibilities of starting mode. However, if the number of switches is too large, the structure presented in Figures 6a and 6b appears more satisfactory in terms of compactness.

La figure 6a représente un réseau de six commutateurs destinés à un dispositif d'amorçage selon l'invention et déposés sur un substrat 61 en arséniure de gallium. Un premier commutateur est formé par des électrodes E1 et S1, un deuxième commutateur par d'autres électrodes E2 et S2, un troisième commutateur par les électrodes E3 et S3, un quatrième commutateur par d'autres électrodes E4 et S4, un cinquième commutateur par d'autres électrodes E5 et S5 et un sixième commutateur par d'autres électrodes E6 et S6. Un écart 63 entre les électrodes d'un même commutateur est fonction de la tension appliquée aux bornes de ce commutateur.FIG. 6a represents a network of six switches intended for a starting device according to the invention and deposited on a substrate 61 made of gallium arsenide. A first switch is formed by electrodes E1 and S1, a second switch by other electrodes E2 and S2, a third switch by electrodes E3 and S3, a fourth switch by other electrodes E4 and S4, a fifth switch by other electrodes E5 and S5 and a sixth switch by other electrodes E6 and S6. A difference 63 between the electrodes of the same switch is a function of the voltage applied to the terminals of this switch.

La figure 6b présente le substrat 61 des commutateurs placés en regard d'un ensemble de réseaux de diodes laser placées sur un support 62. Ces réseaux de diodes laser activent par leurs émissions d'impulsions optiques les commutateurs placés sur le substrat 61. L'ensemble de réseaux de diodes laser sur le support 62 peut être obtenu par empilement de barrettes semblables à la barrette 52 de la figure 5b. Il peut aussi par exemple être sous forme de réseaux d'émission surfacique. La réalisation des commutateurs sur le substrat 61 fait appel à des techniques de micro-électronique connues de l'homme de l'art;
   Les figures 7a et 7b présentent une structure monolithique d'un ensemble de commutateurs et de leurs sources optiques destinés à un dispositif d'amorçage selon l'invention. La figure 7a représente une vue en coupe de la figure 7b. La figure 7b ne montre que deux commutateurs constitués d'une part, des électrodes 73, 74 et de leurs réseaux de diodes lasser 77 associés et d'autre part, des électrodes 78, 79 et de leurs réseaux de diodes laser 80 associés. Ces électrodes sont placées sur un substrat 71 en arséniure de gallium et situées dans un plan incliné à 45 ° par rapport à l'émission optique 72 délivrées par les réseaux de diodes laser 77, 80 à partir des couches de sortie 76. Ces réseaux de diodes laser 77, 80 sont fixés sur une barrette 75 elle-même solidaire du substrat 71. La structure présentée par les figures 7a et 7b peut être agrandie suivant des axes Y ou X parallèles aux côtés du substrat 71, en répétant les motifs représentés sur ces deux figures. Cette structure a l'avantage d'être très compacte et très résistante sur le plan mécanique. De plus, elle permet d'optimiser le couplage optique, donc d'augmenter le rendement et la reproductibilité, entre la source et le commutateur.
FIG. 6b shows the substrate 61 of the switches placed opposite a set of arrays of laser diodes placed on a support 62. These arrays of laser diodes activate, by their emission of optical pulses, the switches placed on the substrate 61. set of arrays of laser diodes on the support 62 can be obtained by stacking bars similar to the bar 52 of FIG. 5b. It can also, for example, be in the form of surface emission networks. The production of the switches on the substrate 61 uses microelectronic techniques known to those skilled in the art;
Figures 7a and 7b show a monolithic structure of a set of switches and their optical sources intended for a starting device according to the invention. Figure 7a shows a sectional view of Figure 7b. FIG. 7b shows only two switches made up on the one hand, of the electrodes 73, 74 and their associated lasser diode networks 77 and on the other hand, of the electrodes 78, 79 and their associated laser diode networks 80. These electrodes are placed on a substrate 71 of gallium arsenide and situated in a plane inclined at 45 ° relative to the optical emission 72 delivered by the laser diode networks 77, 80 from the output layers 76. These networks of laser diodes 77, 80 are fixed on a bar 75 which is itself integral with the substrate 71. The structure presented in FIGS. 7a and 7b can be enlarged along axes Y or X parallel to the sides of the substrate 71, by repeating the patterns shown on these two figures. This structure has the advantage of being very compact and very resistant mechanically. In addition, it optimizes the optical coupling, thus increasing the efficiency and reproducibility, between the source and the switch.

Enfin, il est possible d'intégrer complètement sur un substrat en silicium une électronique de commande, des mémoires de travail et de programme, puis par épitaxie de l'arséniure de gallium sur le silicium, d'intégrer la structure décrite par les figures 7a et 7b avec l'électronique de commande. Une compacité maximum peut être obtenue par métallisation des circuits électriques de liaison avec les réservoirs d'énergie et les amorces, en lignes triplaques adaptées en impédance.Finally, it is possible to completely integrate on a silicon substrate control electronics, working and program memories, then by epitaxy of gallium arsenide on silicon, to integrate the structure described in FIGS. 7a and 7b with the control electronics. Maximum compactness can be obtained by metallization of the electrical circuits for connection with the energy reservoirs and the primers, in triplate lines adapted in impedance.

Claims (10)

Dispositif d'amorçage pour charge explosive secondaire comportant au moins un réservoir d'énergie (1) couplé à un élément de commutation d'énergie (8) couplé à une amorce fusible à couche projetée (13), caractérisé en ce que l'élément de commutation d'énergie (8, PC1, PC2, PC3, PCn) est constitué par un commutateur électronique à base de semi-conducteur, sa commutation à la fermeture étant activée par un signal optique impulsionnel (11).Ignition device for secondary explosive charge comprising at least one energy reservoir (1) coupled to an energy switching element (8) coupled to a fused primer with projected layer (13), characterized in that the element switching power (8, PC1, PC2, PC3, PCn) consists of an electronic semiconductor-based switch, its switching on closing being activated by an optical pulse signal (11). Dispositif selon la revendication 1 caractérisé en ce que le commutateur électronique (8) est constitué au moins d'un substrat en arséniure de gallium (15) sur lequel sont déposées deux électrodes métalliques (9, 10).Device according to claim 1 characterized in that the electronic switch (8) consists at least of a gallium arsenide substrate (15) on which are deposited two metal electrodes (9, 10). Dispositif selon l'une quelconque des revendications précédentes caractérisé en ce qu'il comprend plusieurs voies d'amorçage, chaque voie d'amorçage ayant un commutateur électronique (PC1, PC2, PC3, PCn).Device according to any one of the preceding claims, characterized in that it comprises several priming channels, each priming channel having an electronic switch (PC1, PC2, PC3, PCn). Dispositif selon l'une quelconque des revendications précédentes caractérisé en ce que les commutateurs électroniques (PC1, PC2, PC3) sont activés par des impulsions optiques guidées par des fibres optiques (26, 27, 28) de mêmes longueurs et fournies par une source optique (25) unique.Device according to any one of the preceding claims, characterized in that the electronic switches (PC1, PC2, PC3) are activated by optical pulses guided by optical fibers (26, 27, 28) of the same length and supplied by an optical source (25) unique. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que les commutateurs électroniques (PC1, PC2, PC3) sont activés par des impulsions optiques guidées par des fibres optiques (31, 32, 33) et fournies par une source optique unique (25), la longueur des fibres optiques (31, 32, 33) dépendant des délais entre les amorçages des voies.Device according to any one of the preceding claims, characterized in that the electronic switches (PC1, PC2, PC3) are activated by optical pulses guided by optical fibers (31, 32, 33) and supplied by a single optical source ( 25), the length of the optical fibers (31, 32, 33) depending on the delays between the priming of the channels. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend une source optique (25) couplée à des fibres optiques (41, 42, 43) guidant un signal optique vers les entrées (EN1, EN2, EN3) d'une matrice optique (44) constituée d'un système de commutation optique permettant d'obtenir des séquences pré-établies en fonction d'informations mémorisées, les sorties (SO1, SO2, SO3) de la matrice optique (44) étant couplées à des fibres optiques (45, 46, 47) de mêmes longueurs pour l'acheminement de signaux optiques vers des commutateurs électroniques (PC1, PC2, PC3).Device according to any one of the preceding claims, characterized in that it comprises an optical source (25) coupled to optical fibers (41, 42, 43) guiding an optical signal towards the inputs (EN1, EN2, EN3) of an optical matrix (44) made up of an optical switching system making it possible to obtain pre-established sequences according to stored information, the outputs (SO1, SO2, SO3) of the optical matrix (44) being coupled to optical fibers (45, 46, 47) of the same length for the routing of optical signals to electronic switches (PC1, PC2, PC3). Dispositif selon l'une quelconque des revendications 1 à 3 caractérisé en ce que chaque commutateur électronique (PC1, PC2, PC3) reçoit des impulsions optiques (491, 492, 493) d'une source laser (L1, L2, L3) qui lui est propre, les sources laser (L1, L2, L3) étant déclenchées par des circuits électroniques de commande (48) selon des séquences programmables.Device according to any one of Claims 1 to 3, characterized in that each electronic switch (PC1, PC2, PC3) receives optical pulses (491, 492, 493) from a laser source (L1, L2, L3) which gives it is clean, the laser sources (L1, L2, L3) being triggered by electronic control circuits (48) according to programmable sequences. Dispositif selon l'une quelconque des revendications précédentes caractérisé en ce que les commutateurs électroniques sont réalisés sur un même substrat semi-conducteur (51, 61, 71).Device according to any one of the preceding claims, characterized in that the electronic switches are produced on the same semiconductor substrate (51, 61, 71). Dispositif selon l'une quelconque des revendications 1 à 3 ou 7 ou 8, caractérisé en ce que les sources optiques sont constituées de réseaux de diodes laser (53, 54, 55, 77, 80) disposés en barrettes (51, 75).Device according to any one of claims 1 to 3 or 7 or 8, characterized in that the optical sources consist of arrays of laser diodes (53, 54, 55, 77, 80) arranged in bars (51, 75). Dispositif selon la revendication 9, caractérisé en ce que les électrodes (78, 79) sont placées sur un substrat (71) en arséniure de gallium et situées dans un plan incliné par rapport à l'émission optique (72) délivrée par les réseaux de diodes laser (77, 80) à partir de couches de sortie (76), les réseaux de diodes laser (77, 80) étant fixés sur une barrette (75) elle-même solidaire du substrat (71).Device according to claim 9, characterized in that the electrodes (78, 79) are placed on a substrate (71) of gallium arsenide and situated in a plane inclined with respect to the optical emission (72) delivered by the networks of laser diodes (77, 80) from output layers (76), the arrays of laser diodes (77, 80) being fixed on a strip (75) itself secured to the substrate (71).
EP19920402694 1991-10-11 1992-10-02 Priming device for secondary explosive charge Withdrawn EP0537055A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9112566A FR2682472B1 (en) 1991-10-11 1991-10-11 PRIMING DEVICE FOR SECONDARY EXPLOSIVE CHARGE.
FR9112566 1991-10-11

Publications (2)

Publication Number Publication Date
EP0537055A2 true EP0537055A2 (en) 1993-04-14
EP0537055A3 EP0537055A3 (en) 1993-08-11

Family

ID=9417837

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19920402694 Withdrawn EP0537055A3 (en) 1991-10-11 1992-10-02 Priming device for secondary explosive charge

Country Status (4)

Country Link
US (1) US5317973A (en)
EP (1) EP0537055A3 (en)
CA (1) CA2080290A1 (en)
FR (1) FR2682472B1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5479860A (en) * 1994-06-30 1996-01-02 Western Atlas International, Inc. Shaped-charge with simultaneous multi-point initiation of explosives
DE4427295A1 (en) * 1994-08-02 1996-02-08 Dynamit Nobel Ag Electric detonator
US6327978B1 (en) 1995-12-08 2001-12-11 Kaman Aerospace Corporation Exploding thin film bridge fracturing fragment detonator
US6047643A (en) * 1997-12-12 2000-04-11 Eg&G Star City, Inc. Hermetically sealed laser actuator/detonator and method of manufacturing the same
US6178888B1 (en) 1998-01-20 2001-01-30 Eg&G Star City, Inc. Detonator
US6430861B1 (en) * 2000-06-12 2002-08-13 Tyler Ayers Electronically controlled firearm
US6637187B2 (en) 2000-09-08 2003-10-28 Techland Research, Inc. Rotary inlet flow controller for pulse detonation combustion engines
US6718881B2 (en) * 2001-09-07 2004-04-13 Alliant Techsystems Inc. Ordnance control and initiation system and related method
CN100453960C (en) * 2006-06-06 2009-01-21 西安理工大学 Optical control nano second electric igniter
US8695505B2 (en) * 2009-10-05 2014-04-15 Detnet South Africa (Pty) Ltd. Detonator
WO2013147980A1 (en) 2012-01-13 2013-10-03 Los Alamos National Security, Llc Detonation control
US10273792B2 (en) 2013-07-15 2019-04-30 Triad National Security, Llc Multi-stage geologic fracturing
WO2015009752A1 (en) 2013-07-15 2015-01-22 Los Alamos National Security, Llc Fluid transport systems for use in a downhole explosive fracturing system
WO2015009749A1 (en) 2013-07-15 2015-01-22 Los Alamos National Security, Llc Casings for use in a system for fracturing rock within a bore

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1578436A1 (en) * 1966-05-03 1970-12-10 Avimat Ab Ignition device for projectile with explosive charge, especially for projectile with hollow charge
FR2545600A1 (en) * 1974-09-16 1984-11-09 France Etat Armement Improvements to projectiles carrying a payload which can be activated in flight by pyrotechnic initiation
US4700629A (en) * 1986-05-02 1987-10-20 The United States Of America As Represented By The United States Department Of Energy Optically-energized, emp-resistant, fast-acting, explosion initiating device
US4843964A (en) * 1988-02-01 1989-07-04 The United States Of America As Represented By The United States Department Of Energy Smart explosive igniter
US4862802A (en) * 1988-07-11 1989-09-05 Spectra Diode Laboratories, Inc. Method of initiating a sequence of pyrotechnic events
EP0394562A2 (en) * 1989-04-24 1990-10-31 Kms Fusion, Inc. Laser ignition of explosives
EP0396465A1 (en) * 1989-05-02 1990-11-07 Schlumberger Limited Ignition system for shaped charge perforating gun
US5005462A (en) * 1990-01-16 1991-04-09 The United States Of America As Represented By The Secretary Of The Army Laser controlled semiconductor armature for electromagnetic launchers

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2019032B (en) * 1978-01-14 1982-08-25 Festivate Ltd Detonation of explosive charges using optical fibres
EP0305453A1 (en) * 1987-03-17 1989-03-08 YARRINGTON, Arthur George Optic detonator coupled to a remote optic triggering means
DE4130646C2 (en) * 1990-09-28 2000-02-03 Dynamit Nobel Ag Process for triggering an explosive device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1578436A1 (en) * 1966-05-03 1970-12-10 Avimat Ab Ignition device for projectile with explosive charge, especially for projectile with hollow charge
FR2545600A1 (en) * 1974-09-16 1984-11-09 France Etat Armement Improvements to projectiles carrying a payload which can be activated in flight by pyrotechnic initiation
US4700629A (en) * 1986-05-02 1987-10-20 The United States Of America As Represented By The United States Department Of Energy Optically-energized, emp-resistant, fast-acting, explosion initiating device
US4843964A (en) * 1988-02-01 1989-07-04 The United States Of America As Represented By The United States Department Of Energy Smart explosive igniter
US4862802A (en) * 1988-07-11 1989-09-05 Spectra Diode Laboratories, Inc. Method of initiating a sequence of pyrotechnic events
EP0394562A2 (en) * 1989-04-24 1990-10-31 Kms Fusion, Inc. Laser ignition of explosives
EP0396465A1 (en) * 1989-05-02 1990-11-07 Schlumberger Limited Ignition system for shaped charge perforating gun
US5005462A (en) * 1990-01-16 1991-04-09 The United States Of America As Represented By The Secretary Of The Army Laser controlled semiconductor armature for electromagnetic launchers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPIL Section Ch, Week 8643, Derwent Publications Ltd., London, GB; Class K03, AN 86-281791 *

Also Published As

Publication number Publication date
FR2682472A1 (en) 1993-04-16
US5317973A (en) 1994-06-07
EP0537055A3 (en) 1993-08-11
FR2682472B1 (en) 1995-03-31
CA2080290A1 (en) 1993-04-12

Similar Documents

Publication Publication Date Title
EP0537055A2 (en) Priming device for secondary explosive charge
EP0369856B1 (en) Optoelectronic device with a high output, and its production method
EP0506567B1 (en) Quickly reconfigurable wavelength division muliplexer
FR2738358A1 (en) Linear extension and compression device for short coherent light pulses
EP0292383A1 (en) Photopyrotechnic priming device, and photopyrotechnic chain using such a device
EP1245062B1 (en) Network structure using high dispersion volume holography
WO2005104310A1 (en) Tunable laser source with optical wavelength addressing
EP0806065B1 (en) Active q-switching microchip laser
EP0435739B1 (en) Magic microwave source and its application in an antenna with electronic scanning
EP0751594B1 (en) Solid state microlaser, actively Q-switched by a micromodulator
EP0058389B1 (en) Capacitor discharge excited gas laser
EP0014634A1 (en) Active coupler between an optical bus line and one of the subscribers, and bus line having such active couplers
FR2679640A1 (en) Multipoint climbing appliance for a detonation wave shaper
EP1259022B1 (en) Optical device for the clock recovery of an optical signal
EP1038202B1 (en) Pockels cell and optical switch with pockels cell
EP1306942A1 (en) Short optical pulse generator
EP0833418B1 (en) Electrooptically switched microlaser with independent electrodes and manufacturing method
FR2661293A1 (en) IMPULSE ENERGY EMISSION CIRCUIT.
FR2824632A1 (en) DEVICE FOR SEQUENTIALLY CONTROLLING PYROTECHNIC ELEMENTS INTEGRATED IN AN ELECTRONIC MODULE
EP0814563B1 (en) Pulsed power supply with a network of coils
EP0303539A1 (en) Firing circuit selection- and actuating apparatus
EP0165640A1 (en) Device for the galvanic insulation between a pulse generator and a load
EP0648997B1 (en) High energy fuse
EP0608165A1 (en) Semi-conductor optical pulse source using gain switching and a soliton transmission system
FR2672163A1 (en) LASER POWER SUPPLY SOURCE.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE GB IT LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE GB IT LI SE

17P Request for examination filed

Effective date: 19931123

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19950503