EP0521764A1 - Liquid projecting process and high resolution printing device in a continuous ink jet printer to perform this process - Google Patents

Liquid projecting process and high resolution printing device in a continuous ink jet printer to perform this process Download PDF

Info

Publication number
EP0521764A1
EP0521764A1 EP92401840A EP92401840A EP0521764A1 EP 0521764 A1 EP0521764 A1 EP 0521764A1 EP 92401840 A EP92401840 A EP 92401840A EP 92401840 A EP92401840 A EP 92401840A EP 0521764 A1 EP0521764 A1 EP 0521764A1
Authority
EP
European Patent Office
Prior art keywords
drops
jet
ink
microdrop
ink jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92401840A
Other languages
German (de)
French (fr)
Other versions
EP0521764B1 (en
Inventor
Stéphane Cabinet Ballot-Schmit Vago
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Markem Imaje SAS
Original Assignee
Imaje SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imaje SA filed Critical Imaje SA
Publication of EP0521764A1 publication Critical patent/EP0521764A1/en
Application granted granted Critical
Publication of EP0521764B1 publication Critical patent/EP0521764B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/02Ink jet characterised by the jet generation process generating a continuous ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/075Ink jet characterised by jet control for many-valued deflection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/02Ink jet characterised by the jet generation process generating a continuous ink jet
    • B41J2/025Ink jet characterised by the jet generation process generating a continuous ink jet by vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/115Ink jet characterised by jet control synchronising the droplet separation and charging time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/02Ink jet characterised by the jet generation process generating a continuous ink jet
    • B41J2/03Ink jet characterised by the jet generation process generating a continuous ink jet by pressure
    • B41J2002/033Continuous stream with droplets of different sizes

Definitions

  • the present invention relates to a high-precision liquid spraying method and its implementation by a high-resolution printing device in a stimulated continuous inkjet printer.
  • Such a liquid spraying method therefore applies in the field of high-resolution printing, but can also be applied in the field of microdosing of substances used, for example, during the tracing of printed microcircuits or during the application of microdroplets of conductive adhesive to mount electronic components on a support or to assemble grains of material according to a given geometry.
  • Another interesting application relates to the microdosing of chemical or biological reagents in the manufacture of drugs.
  • this printing method has another drawback due to its high sensitivity to the ink jet stimulation process. It is difficult to control the reproducibility of the characteristics of the stimulation device without individually adjusting the mechanical response of each device.
  • a continuous ink jet is divided into drops G N which are substantially equidistant and equidimentional.
  • V n an appropriate electric voltage
  • a voltage V n + 1 of amplitude substantially equal to V n so that the satellite drop S n remains long enough in the jet between the drops G n and G n + 1 to cross the electric deflection field located downstream and thus be deflected towards the printing medium.
  • the main drops with little deviation are recycled in the ink circuit.
  • the implementation of this method has several drawbacks.
  • the frequency of use of satellite drops is only worth a third of this employee for stimulating the jet: in fact, the drop G n + 1 , whose electrical charge is substantially equal to that of the drop G n , also generates a satellite drop not used for printing, since the value of its charge does not generally correspond to a point in the pattern to be printed.
  • the proposed electrostatic confinement places the satellite drop in an unstable equilibrium situation, affecting the precision of the deflection. This problem is further aggravated by the length of the path taken by these satellite drops which pass between the charge electrodes and then in the electric deflection field.
  • the object of the present invention is to overcome these drawbacks by proposing a method of spraying liquid by continuous jet, generating microdrops other than by acting on the amplitude or the frequency of the excitation leading to the breaking of the jet and n using no additional deflection means other than that created by the interaction between the drops in the jet.
  • the object of the invention is a high resolution liquid spraying method comprising a first step of splitting the jet of liquid into drops, in the vicinity of an electrostatic device for charging the drops, creating an asymmetrical electric field by in relation to the axis of the jet, a second step of creating a single microdrop at the upstream end of a main drop by applying a voltage V M determined in the charging device and finally a step of deflecting the microdrop intended for use by application of another voltage of load V c , lower than the voltage V M , on the main drop immediately following the microdrop.
  • liquid spraying method according to the invention will be described through its application to a high resolution printer.
  • Figure 1 is a schematic view of an exemplary embodiment of a printing device in a high-resolution continuous inkjet printer, implementing the method according to the invention.
  • It comprises a reservoir (3) of pressurized ink provided with an ejection nozzle (2) from which an ink jet (1) escapes.
  • a resonator circuit (4) electrically connected to a modulation circuit (5) stimulates the ink jet (1) and fixes its breaking point (6).
  • an electrical charging device (7) is placed connected to its supply circuit (8), this device having the characteristic of inducing an asymmetric electric field with respect to the axis (D) jet.
  • a detection circuit (9) is placed in the vicinity of the path of the ink drops and is connected to a circuit (10) for processing the captured information.
  • the main ink drops (11), not used for printing, are collected in a gutter (12) and returned by a pipe to the circuit (13) for general ink supply.
  • the projection method according to the invention uses a property which a drop of conductive liquid possesses, demonstrated by Lord Rayleigh in 1882 (see Adrian G. Bailey in Electrostatic Spraying of Liquids - Research Studies Press Ltd 1988): there is an upper limit to the amount of charge a drop of conductive liquid can receive. This limit is called Rayleigh limit in the case where the drop does not undergo any external influence. Beyond this load limit value, the drop, called mother drop, becomes unstable and ejects one or more highly charged microdrops, which has the effect of bringing its load below the critical Rayleigh value.
  • the method according to the invention controls and uses this phenomenon of electrostatic instability of a drop of conductive liquid in the case of a continuous jet and stimulated in order to obtain a perfectly repetitive ejection of a microdrop unique at the upstream end of a mother drop.
  • FIG. 2a The diagram illustrating this process of creation of the micro-drops according to the invention is given in FIG. 2a.
  • the charging electrode device (7) produces an electric field that is not symmetrical with respect to the axis (D) of the jet and assigns to the mother drops (20, 22 and 24) an electrical charge V M of determined value in order to each expel a microdrop, namely the microdrops (26 and 27) respectively associated with the mother drops (22 and 24), the microdrop resulting from the drop (20) being more visible.
  • the main drops (21, 23, and 25) receive no electrical charge, so the electrostatic repulsion forces existing between the mother drops (22 and 24) and the associated microdrops (26 and 27) respectively , cause these to be very quickly picked up by the main uncharged drops (23 and 25) respectively.
  • the deflection of the microdrops used for printing is obtained by electrically charging, in an appropriate manner, the main drop which immediately follows each mother drop having created a microdrop: such a main drop is called a drop of deflection.
  • a drop of deflection is obtained by electrically charging, in an appropriate manner, the main drop which immediately follows each mother drop having created a microdrop: such a main drop.
  • Vc min of the voltage applied to the drop of deflection the electrostatic repulsion created between this drop and the microdrop preceding it, in the ink jet, is sufficient to eject the latter from the axis (D) of the jet, in the direction defined by l asymmetry of the electric field created by the charging electrode (7).
  • a continuous variation of the angle of deflection thus obtained can be controlled by variation of the amount of load applied to the drop of deflection.
  • Vc min of charge of the deflection drops there is a minimum voltage Vc min of charge of the deflection drops to obtain the deflection of the printing microdrops, there is also a maximum voltage Vc max beyond which the strong electrostatic interaction between the deflection drops and the drops -mothers then prevents the expulsion of the microdrops by the latter, although the voltage V M applied to the mother-drops is greater than the Rayleigh voltage, strictly defined in the absence of any influence.
  • this voltage Vc, applied to the deflection drops is chosen to be less than the Rayleigh voltage, so that they do not expel unusable microdrops, giving the process according to the invention a good printing speed.
  • FIG. 3a is the diagram illustrating the process of creation and deflection of the printing drops and FIG. 3b is the diagram illustrating the values of the charge voltages applied to the drops of the ink jet, according to the invention.
  • the inkjet (1) is broken into main drops (30 to 35).
  • the drops (30, 32 and 34) are electrically charged by a voltage V M greater than the Rayleigh voltage to create microdrops (36, 37 and 38) respectively.
  • Two of these microdrops (36 and 37) are deflected respectively by the drops of deflection (31 and 33) which are respectively charged by the voltages (Vc31 and Vc33).
  • the main drop (35) not being electrically charged, it will absorb the microdrop (38) from the drop (34).
  • the deflection angle of the microdrops depends on the voltage Vc which is applied to the deflection drops.
  • the charging voltage (Vc33) of the drop (33) higher than that (Vc31) of the drop (31), explains the strong deflection of the microdrop (37) compared to that of the microdrop (36).
  • the printing of a determined point on the support requires the participation of two drops of the ink jet associated with the following sequence: charging voltage of over-critical value V M , greater than the voltage of Rayleigh, to create the printing microdrop, then charging voltage of subcritical value V c between Vc min and Vc max , to deflect this microdrop.
  • FIGS. 4a to 4c are schematically represented exemplary embodiments of the device for charging ink drops, according to three different geometries but all inducing an electric field that is not symmetrical with respect to the axis (D) of the ink jet ( 1).
  • the electrode (70) has the shape of a half-cylinder with an axis coincident with the axis (D) of the ink jet (1); the electrostatic influence is strong between this electrode (70) and the jet (1), allowing the operation of the printer with low charge voltages of ink drops.
  • the electrode (71) has the shape of a single rectangular plate, of longitudinal axis parallel to the axis (D) of the jet (1). The electrostatic influence between the electrode (71) and the jet (1) is lower than in the previous case but the simple shape and the small size of the electrode facilitates its production and integration at high density.
  • the third example, according to FIG. 4c, represents a compromise solution between the efficiency of the first geometry and the simplicity of the second.
  • the charging electrode (72) consists of two half-planes intersecting in a direction parallel to the axis (D) of the ink jet.
  • the projection method according to the invention has the advantage of allowing an impact of the drops of liquid on the support much smaller than the diameter of the ejection nozzle consequently increasing the precision of the implementation device, therefore the resolution. of the printer in the particular case described.
  • the method makes it possible to reduce the number of elements of the liquid projection head and to simplify each of the elements - only one charge electrode is sufficient.
  • Another advantage lies in the printing of the only micro-drops with a low sensitivity to variations in the amplitude of stimulation of the ink jet, since these microdrops are not generated by action on the amplitude or frequency of the excitation leading to the breaking of the ink jet.
  • Another important advantage of the method according to the invention is that it allows the printing of ink drops in screen mode, unlike the methods described in the prior art, that is to say only one ink jet allows the printing of several lines of points corresponding to the modulation of the deflection of said drops.
  • the invention it is possible to envisage interesting industrial applications.
  • the extremely small diameter of the printing microdrop allows the design of a printer usable in all areas requiring a quality of quasi-photographic printing.
  • a printer prototype produced by the Applicant has made it possible to obtain printing microdrops with a diameter of less than 10 microns for an ejection nozzle diameter equal to 35 microns.
  • the invention is in no way limited to the embodiment which has just been described, obviously including the technical equivalents of the means and their combinations if they are carried out in the spirit of the invention and implemented in the context of the following claims.
  • the invention can be implemented in a printing device with several simultaneous continuous ink jets which would be ejected by the same number of nozzles associated with the same reservoir.
  • the invention can also be applied in the layout of printed circuits, the mounting of electronic components or in the manufacture of medicaments as has been said before.

Abstract

The present invention relates to a liquid projection method and a high-resolution printing device in a continuous, stimulated ink jet printer. A jet of ink (1) is split up into drops (11) in the vicinity of an electrostatic charge device (7) for these drops creating an electric field which is asymmetric with respect to the axis (D) of the jet (1). The method comprises, first of all, creation of a single microdrop (14) at the upstream end of a main drop, by application of a charge voltage (VM) greater than the Rayleigh voltage, in the charge device at the appearance of this main drop. Next, deflection of the microdrop intended for printing is brought about by application of a charge voltage (Vc) to the following main drop, lower than the charge voltage (VM) and the Rayleigh voltage, which is modulable as a function of the trajectory chosen for the microdrop towards the printing medium (15). <IMAGE>

Description

La présente invention concerne un procédé de projection haute-précision de liquide et sa mise en oeuvre par un dispositif d'impression haute-résolution dans une imprimante à jet d'encre continu stimulé.The present invention relates to a high-precision liquid spraying method and its implementation by a high-resolution printing device in a stimulated continuous inkjet printer.

Un tel procédé de projection de liquide s'applique donc dans le domaine de l'impression haute-résolution, mais peut aussi s'appliquer dans le domaine du microdosage de substances utilisé, par exemple, lors du traçage de microcircuits imprimés ou lors de l'application de microgouttelettes de colle conductrice pour monter des composants électroniques sur un support ou pour assembler des grains de matière suivant une géométrie donnée. Une autre application intéressante concerne le microdosage de réactifs chimiques ou biologiques dans la fabrication de médicaments.Such a liquid spraying method therefore applies in the field of high-resolution printing, but can also be applied in the field of microdosing of substances used, for example, during the tracing of printed microcircuits or during the application of microdroplets of conductive adhesive to mount electronic components on a support or to assemble grains of material according to a given geometry. Another interesting application relates to the microdosing of chemical or biological reagents in the manufacture of drugs.

Dans le domaine des imprimantes haute-résolution, un procédé connu, décrit dans le brevet US 4068 241 d'Hitachi, se fonde sur l'apparition de petites gouttes, dites satellites, issues d'un court filament d'encre apparaissant à l'extrémité amont ou aval d'une goutte principale en fonction de la valeur de l'amplitude de la stimulation conduisant à la brisure du jet d'encre. Avant déflexion, le jet d'encre est constitué alors d'une suite alternée de gouttes principales et de gouttes satellites, le rapport des diamètres valant approximativement trois. Les gouttes satellites sont ensuite défléchies selon une technique de déflexion de type "binaire" : à chaque buse du système ne correspond qu'un seul point du motif à imprimer. En conséquence, de nombreux mouvements relatifs entre la tête d'impression et le support sont nécessaires pour recouvrir une surface donnée, ce qui constitue un inconvénient.In the field of high-resolution printers, a known method, described in US Pat. No. 4,068,241 to Hitachi, is based on the appearance of small drops, called satellites, resulting from a short filament of ink appearing at the upstream or downstream end of a main drop depending on the value of the amplitude of the stimulation leading to the breaking of the ink jet. Before deflection, the ink jet then consists of an alternating series of main drops and satellite drops, the ratio of the diameters being approximately three. The satellite drops are then deflected using a "binary" type deflection technique: each point of the system corresponds to only one point of the pattern to be printed. As a result, many relative movements between the print head and the support are necessary to cover a given surface, which is a drawback.

Quant aux gouttes principales non ou faiblement chargées, elles sont récupérées et recyclées par une gouttière vers le circuit d'encre.As for the main drops that are not or are lightly charged, they are recovered and recycled by a gutter to the ink circuit.

De plus, ce procédé d'impression présente un autre inconvénient dû à sa forte sensibilité au processus de stimulation du jet d'encre. Il est difficile de maîtriser la reproductibilité des caractéristiques du dispositif de stimulation sans ajuster individuellement la réponse mécanique de chaque dispositif.In addition, this printing method has another drawback due to its high sensitivity to the ink jet stimulation process. It is difficult to control the reproducibility of the characteristics of the stimulation device without individually adjusting the mechanical response of each device.

Dans la demande de brevet EP 0365454, déposée par la Demanderesse, est décrite une méthode d'impression haute-résolution mise en oeuvre dans une imprimante à jet d'encre continu stimulé, au moyen de gouttes satellites.In patent application EP 0365454, filed by the Applicant, a high-resolution printing method implemented in a continuous stimulated ink jet printer, using satellite drops, is described.

Un jet d'encre continu est fractionné en gouttes GN sensiblement équidistantes et équidimentionnelles. Lors du passage d'une goutte principale Gn dans des électrodes de charge, l'application d'une tension électrique Vn appropriée permet, sous certaines conditions précises d'exploitation du jet, de détacher le filament amont de cette goutte principale Gn et donc de créer une goutte satellite Sn. On applique, pendant le temps de formation de la goutte principale suivante Gn+1, une tension Vn+1 d'amplitude sensiblement égale à Vn de façon à ce que la goutte satellite Sn reste suffisamment longtemps dans le jet entre les gouttes Gn et Gn+1 pour traverser le champ électrique de déflexion situé en aval et être ainsi déviée vers le support d'impression. Les gouttes principales peu déviées sont recyclées dans le circuit d'encre.A continuous ink jet is divided into drops G N which are substantially equidistant and equidimentional. When a main drop G n passes through the charging electrodes, the application of an appropriate electric voltage V n makes it possible, under certain precise operating conditions for the jet, to detach the upstream filament from this main drop G n and therefore to create a satellite drop S n . Is applied, during the time of formation of the next main drop G n + 1 , a voltage V n + 1 of amplitude substantially equal to V n so that the satellite drop S n remains long enough in the jet between the drops G n and G n + 1 to cross the electric deflection field located downstream and thus be deflected towards the printing medium. The main drops with little deviation are recycled in the ink circuit.

La mise en oeuvre de ce procédé présente plusieurs inconvénients. Tout d'abord, la spécificité des conditions requises pour l'exploitation désirée du jet d'encre. D'autre part, la fréquence d'utilisation des gouttes satellites ne vaut que le tiers de cette employée pour la stimulation du jet : en effet, la goutte Gn+1, dont la charge électrique est sensiblement égale à celle de la goutte Gn, génère elle aussi une goutte satellite non utilisée pour l'impression, puisque la valeur de sa charge ne correspond généralement pas à un point du motif à imprimer. De plus, le confinement électrostatique proposé place la goutte satellite en situation d'équilibre instable, nuisant à la précision de la déflexion. Ce problème se trouve d'ailleurs aggravé par la longueur du trajet effectué par ces gouttes satellites qui passent entre les électrodes de charge puis dans le champ électrique de déflexion.The implementation of this method has several drawbacks. First, the specificity of conditions required for the desired operation of the inkjet. On the other hand, the frequency of use of satellite drops is only worth a third of this employee for stimulating the jet: in fact, the drop G n + 1 , whose electrical charge is substantially equal to that of the drop G n , also generates a satellite drop not used for printing, since the value of its charge does not generally correspond to a point in the pattern to be printed. In addition, the proposed electrostatic confinement places the satellite drop in an unstable equilibrium situation, affecting the precision of the deflection. This problem is further aggravated by the length of the path taken by these satellite drops which pass between the charge electrodes and then in the electric deflection field.

Le but de la présente invention est de pallier ces inconvénients en proposant un procédé de projection de liquide par jet continu, générant des microgouttes autrement qu'en agissant sur l'amplitude ou la fréquence de l'excitation conduisant à la brisure du jet et n'utilisant pas de moyen de déflexion supplémentaire en dehors de celle créée par l'interaction entre les gouttes dans le jet.The object of the present invention is to overcome these drawbacks by proposing a method of spraying liquid by continuous jet, generating microdrops other than by acting on the amplitude or the frequency of the excitation leading to the breaking of the jet and n using no additional deflection means other than that created by the interaction between the drops in the jet.

Pour cela, l'objet de l'invention est un procédé de projection de liquide haute résolution comportant une première étape de fractionnement du jet de liquide en gouttes, au voisinage d'un dispositif de charge électrostatique des gouttes, créant un champ électrique asymétrique par rapport à l'axe du jet, une seconde étape de création d'une microgoutte unique à l'extrémité amont d'une goutte principale par application d'une tension VM déterminée dans le dispositif de charge et enfin une étape de déflexion de la microgoutte destinée à être utilisée par application d'une autre tension de charge Vc, inférieure à la tension VM, sur la goutte principale suivant immédiatement la microgoutte.For this, the object of the invention is a high resolution liquid spraying method comprising a first step of splitting the jet of liquid into drops, in the vicinity of an electrostatic device for charging the drops, creating an asymmetrical electric field by in relation to the axis of the jet, a second step of creating a single microdrop at the upstream end of a main drop by applying a voltage V M determined in the charging device and finally a step of deflecting the microdrop intended for use by application of another voltage of load V c , lower than the voltage V M , on the main drop immediately following the microdrop.

L'invention concerne également un dispositif d'impression haute résolution dans une imprimante à jet d'encre continu stimulé mettant en oeuvre le procédé décrit ci-dessus comprenant :

  • un réservoir d'encre sous pression doté d'au moins une buse d'éjection du jet d'encre selon la direction,
  • des moyens de stimulation du jet fixant son point de brisure en gouttes d'encre au voisinage d'un dispositif de charge électrostatique connecté à un circuit d'alimentation,
  • un circuit de détection connecté à un circuit de traitement des informations captées, placé au voisinage des gouttes d'encre, après leur charge électrostatique par le dispositif, et
  • une gouttière de récupération des gouttes non utilisées pour l'impression, aboutissant au circuit d'alimentation générale en encre,
  • caractérisé en ce que le dispositif de charge comporte une électrode unique créant un champ électrique asymétrique par rapport à l'axe du jet d'encre.
The invention also relates to a high resolution printing device in a stimulated continuous ink jet printer implementing the method described above comprising:
  • a pressurized ink tank provided with at least one ink jet ejection nozzle in the direction,
  • means for stimulating the jet fixing its breaking point in drops of ink in the vicinity of an electrostatic charging device connected to a supply circuit,
  • a detection circuit connected to a circuit for processing the information received, placed in the vicinity of the ink drops, after their electrostatic charge by the device, and
  • a gutter for recovering the drops not used for printing, leading to the general ink supply circuit,
  • characterized in that the charging device comprises a single electrode creating an asymmetrical electric field with respect to the axis of the ink jet.

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante d'exemples particuliers de réalisation, ladite description étant faite en relation avec les dessins ci-annexés dans lesquels :

  • la figure 1 est une vue schématique d'un exemple de réalisation d'un dispositif d'impression dans une imprimante à jet d'encre continu stimulé, dans lequel est mis en oeuvre le procédé selon l'invention ;
  • la figure 2a est un schéma illustrant le processus de création des microgouttes selon l'invention ;
  • la figure 2b est un diagramme illustrant la forme des tensions électriques de charge appliquées aux gouttes d'encre principales, en vue de la création des microgouttes d'impression ;
  • la figure 3a est un schéma illustrant le processus de création et de déflexion des microgouttes selon l'invention ;
  • la figure 3b est un diagramme illustrant la forme des tensions électriques de charge appliquées aux gouttes d'encre, selon le procédé de l'invention ;
  • les figures 4a à 4c sont des schémas d'exemples de réalisation du dispositif de charge des gouttes d'encre, selon l'invention.
Other characteristics and advantages of the invention will appear on reading the following description of particular embodiments, said description being made in relation to the appended drawings in which:
  • FIG. 1 is a schematic view of an exemplary embodiment of a printing device in a stimulated continuous inkjet printer, in which the method according to the invention is implemented;
  • FIG. 2a is a diagram illustrating the process for creating the microdrops according to the invention;
  • Figure 2b is a diagram illustrating the shape of the electrical charge voltages applied to the main ink drops, for the purpose of creating printing microdrops;
  • FIG. 3a is a diagram illustrating the process of creation and deflection of the microdrops according to the invention;
  • FIG. 3b is a diagram illustrating the shape of the electrical charge voltages applied to the ink drops, according to the method of the invention;
  • FIGS. 4a to 4c are diagrams of exemplary embodiments of the device for charging ink drops, according to the invention.

Les éléments portant les mêmes références dans les différentes figures remplissent les mêmes fonctions en vue des mêmes résultats.The elements bearing the same references in the different figures fulfill the same functions for the same results.

Le procédé de projection de liquide selon l'invention va être décrit à travers son application à une imprimante haute résolution.The liquid spraying method according to the invention will be described through its application to a high resolution printer.

La figure 1 est une vue schématique d'un exemple de réalisation d'un dispositif d'impression dans une imprimante haute-résolution à jet d'encre continu, mettant en oeuvre le procédé selon l'invention.Figure 1 is a schematic view of an exemplary embodiment of a printing device in a high-resolution continuous inkjet printer, implementing the method according to the invention.

Il comporte un réservoir (3) d'encre sous pression doté d'une buse d'éjection (2) d'où s'échappe un jet d'encre (1). Un circuit résonateur (4), relié électriquement à un circuit de modulation (5) stimule le jet d'encre (1) et fixe son point de brisure (6). Au voisinage de ce point de brisure, on place un dispositif de charge électrique (7) connecté à son circuit d'alimentation (8), ce dispositif ayant la particularité d'induire un champ électrique asymétrique par rapport à l'axe (D) du jet. Afin de réaliser de façon permanente la synchronisation entre la fragmentation du jet d'encre (1) en gouttes (11) et l'application des tensions de charge sur ces gouttes, un circuit de détection (9) est placé au voisinage du trajet des gouttes d'encre et est relié à un circuit (10) de traitement des informations captées.It comprises a reservoir (3) of pressurized ink provided with an ejection nozzle (2) from which an ink jet (1) escapes. A resonator circuit (4), electrically connected to a modulation circuit (5) stimulates the ink jet (1) and fixes its breaking point (6). In the vicinity of this breaking point, an electrical charging device (7) is placed connected to its supply circuit (8), this device having the characteristic of inducing an asymmetric electric field with respect to the axis (D) jet. In order to achieve permanent synchronization between the fragmentation of the ink jet (1) in drops (11) and the application of the voltages charge on these drops, a detection circuit (9) is placed in the vicinity of the path of the ink drops and is connected to a circuit (10) for processing the captured information.

Les gouttes d'encre principales (11), non utilisées pour l'impression, sont récupérées dans une gouttière (12) et renvoyées par une canalisation vers le circuit (13) d'alimentation générale en encre.The main ink drops (11), not used for printing, are collected in a gutter (12) and returned by a pipe to the circuit (13) for general ink supply.

Quant aux microgouttes (14) dont on va voir le procédé de génération et de déflexion, elles poursuivent leur trajectoire jusqu'au support d'impression (15). Le procédé de projection selon l'invention utilise une propriété que possède une goutte de liquide conducteur, démontrée par Lord Rayleigh en 1882 (voir Adrian G. Bailey dans Electrostatic Spraying of Liquids - Research Studies Press Ltd 1988) : il existe une limite supérieure à la quantité de charge que peut recevoir une goutte de liquide conducteur. Cette limite est appelée limite de Rayleigh dans le cas où la goutte ne subit aucune influence extérieure. Au-delà de cette valeur limite de charge, la goutte, appelée goutte-mère, devient instable et éjecte une ou plusieurs microgouttes fortement chargées, ce qui a pour effet de ramener sa charge sous la valeur critique de Rayleigh.As for the microdrops (14) of which we will see the generation and deflection process, they continue their trajectory as far as the printing medium (15). The projection method according to the invention uses a property which a drop of conductive liquid possesses, demonstrated by Lord Rayleigh in 1882 (see Adrian G. Bailey in Electrostatic Spraying of Liquids - Research Studies Press Ltd 1988): there is an upper limit to the amount of charge a drop of conductive liquid can receive. This limit is called Rayleigh limit in the case where the drop does not undergo any external influence. Beyond this load limit value, the drop, called mother drop, becomes unstable and ejects one or more highly charged microdrops, which has the effect of bringing its load below the critical Rayleigh value.

Le procédé selon l'invention contrôle et utilise ce phénomène d'instabilité électrostatique d'une goutte de liquide conducteur dans le cas d'un jet continu et stimulé dans le but d'obtenir de façon parfaitement répétitive, l'éjection d'une microgoutte unique à l'extrémité amont d'une goutte-mère.The method according to the invention controls and uses this phenomenon of electrostatic instability of a drop of conductive liquid in the case of a continuous jet and stimulated in order to obtain a perfectly repetitive ejection of a microdrop unique at the upstream end of a mother drop.

Le schéma illustrant ce processus de création des micro-gouttes selon l'invention est donné par la figure 2a.The diagram illustrating this process of creation of the micro-drops according to the invention is given in FIG. 2a.

Au voisinage du point de brisure (6) du jet de liquide conducteur (1), de l'encre en particulier, le dispositif d'électrodes de charge (7) produit un champ électrique non symétrique par rapport à l'axe (D) du jet et assigne aux gouttes-mères (20, 22 et 24) une charge électrique VM de valeur déterminée afin d'expulser chacune une microgoutte, savoir les microgouttes (26 et 27) respectivement associées aux gouttes-mères (22 et 24), la microgoutte issue de la goutte (20) n'étant plus visible. Entre-temps, les gouttes principales (21, 23, et 25) ne reçoivent aucune charge électrique, de sorte que les forces de répulsion électrostatique existant entre les gouttes-mères (22 et 24) et les microgouttes associées (26 et 27) respectivement, conduisent celles-ci à être très rapidement captées par les gouttes principales non chargées (23 et 25) respectivement. En raison de l'asymétrie induite par la géométrie du dispositif de charge (7), - une simple électrode plane sur la figure 2a -, le point de capture (28) d'une microgoutte (26) par la goutte principale (23) immédiatement derrière se trouve légèrement dévié de l'axe (D) du jet d'encre.In the vicinity of the breaking point (6) of the liquid jet conductor (1), of ink in particular, the charging electrode device (7) produces an electric field that is not symmetrical with respect to the axis (D) of the jet and assigns to the mother drops (20, 22 and 24) an electrical charge V M of determined value in order to each expel a microdrop, namely the microdrops (26 and 27) respectively associated with the mother drops (22 and 24), the microdrop resulting from the drop (20) being more visible. Meanwhile, the main drops (21, 23, and 25) receive no electrical charge, so the electrostatic repulsion forces existing between the mother drops (22 and 24) and the associated microdrops (26 and 27) respectively , cause these to be very quickly picked up by the main uncharged drops (23 and 25) respectively. Due to the asymmetry induced by the geometry of the charging device (7), - a simple planar electrode in FIG. 2a -, the capture point (28) of a microdrop (26) by the main drop (23) immediately behind is slightly deviated from the axis (D) of the inkjet.

Les valeurs des tensions électriques, transmises au dispositif de charge (7) par son circuit d'alimentation (8), sont représentées sur la figure 2b. En vis-à-vis de chaque goutte de la figure 2a est portée la tension de charge qui lui est affectée : VM pour les gouttes-mères et zéro pour les gouttes principales.The values of the electrical voltages, transmitted to the charging device (7) by its supply circuit (8), are shown in Figure 2b. Opposite each drop of FIG. 2a, the charge voltage which is assigned to it is brought: V M for the mother drops and zero for the main drops.

Suivant le procédé de l'invention, la déflexion des microgouttes servant à l'impression est obtenue en chargeant électriquement, de manière appropriée, la goutte principale qui suit immédiatement chaque goutte-mère ayant créé une microgoutte : une telle goutte principale est appelée goutte de déflexion. En effet, à partir d'une valeur minimum Vcmin de la tension électrique appliquée à la goutte de déflexion, la répulsion électrostatique créée entre cette goutte et la microgoutte la précédant, dans le jet d'encre, est suffisante pour éjecter cette dernière de l'axe (D) du jet, dans le sens défini par l'asymétrie du champ électrique créé par l'électrode de charge (7). Une variation continue de l'angle de la déflexion ainsi obtenue peut être contrôlée par variation de la quantité de charge appliquée à la goutte de déflexion.According to the method of the invention, the deflection of the microdrops used for printing is obtained by electrically charging, in an appropriate manner, the main drop which immediately follows each mother drop having created a microdrop: such a main drop is called a drop of deflection. Indeed, from a minimum value Vc min of the voltage applied to the drop of deflection, the electrostatic repulsion created between this drop and the microdrop preceding it, in the ink jet, is sufficient to eject the latter from the axis (D) of the jet, in the direction defined by l asymmetry of the electric field created by the charging electrode (7). A continuous variation of the angle of deflection thus obtained can be controlled by variation of the amount of load applied to the drop of deflection.

S'il existe une tension minimum Vcmin de charge des gouttes de déflexion pour obtenir la déflexion des microgouttes d'impression, il existe également une tension maximum Vcmax au-delà de laquelle la forte interaction électrostatique entre les gouttes de déflexion et les gouttes-mères empêche alors l'expulsion des microgouttes par ces dernières, bien que la tension VM appliquée aux gouttes-mères soit supérieure à la tension de Rayleigh, strictement définie en l'absence de toute influence. De plus, cette tension Vc, appliquée aux gouttes de déflexion est choisie inférieure à la tension de Rayleigh, de sorte qu'elles n'expulsent pas de microgouttes inutilisables, procurant une bonne vitesse d'impression au procédé selon l'invention.If there is a minimum voltage Vc min of charge of the deflection drops to obtain the deflection of the printing microdrops, there is also a maximum voltage Vc max beyond which the strong electrostatic interaction between the deflection drops and the drops -mothers then prevents the expulsion of the microdrops by the latter, although the voltage V M applied to the mother-drops is greater than the Rayleigh voltage, strictly defined in the absence of any influence. In addition, this voltage Vc, applied to the deflection drops is chosen to be less than the Rayleigh voltage, so that they do not expel unusable microdrops, giving the process according to the invention a good printing speed.

La figure 3a est le schéma illustrant le processus de création et de déflexion des gouttes d'impression et la figure 3b est le diagramme illustrant les valeurs des tensions de charge appliquées aux gouttes du jet d'encre, selon l'invention.FIG. 3a is the diagram illustrating the process of creation and deflection of the printing drops and FIG. 3b is the diagram illustrating the values of the charge voltages applied to the drops of the ink jet, according to the invention.

Le jet d'encre (1) est brisé en gouttes principales (30 à 35). Les gouttes (30, 32 et 34) sont chargées électriquement par une tension VM supérieure à la tension de Rayleigh pour créer des microgouttes (36, 37 et 38) respectivement. Deux de ces microgouttes (36 et 37) sont défléchies respectivement par les gouttes de déflexion (31 et 33) qui sont respectivement chargées par les tensions (Vc₃₁ et Vc₃₃). La goutte principale (35) n'étant pas chargée électriquement, elle absorbera la microgoutte (38) issue de la goutte (34). On remarquera que l'angle de déflexion des microgouttes dépend de la tension Vc qui est appliquée aux gouttes de déflexion. Ainsi la tension de charge (Vc₃₃) de la goutte (33), plus élevée que celle (Vc₃₁) de la goutte (31), explique la forte déflexion de la microgoutte (37) par rapport à celle de la microgoutte (36).The inkjet (1) is broken into main drops (30 to 35). The drops (30, 32 and 34) are electrically charged by a voltage V M greater than the Rayleigh voltage to create microdrops (36, 37 and 38) respectively. Two of these microdrops (36 and 37) are deflected respectively by the drops of deflection (31 and 33) which are respectively charged by the voltages (Vc₃₁ and Vc₃₃). The main drop (35) not being electrically charged, it will absorb the microdrop (38) from the drop (34). It will be noted that the deflection angle of the microdrops depends on the voltage Vc which is applied to the deflection drops. Thus the charging voltage (Vc₃₃) of the drop (33), higher than that (Vc₃₁) of the drop (31), explains the strong deflection of the microdrop (37) compared to that of the microdrop (36).

Quant aux gouttes-mères (30, 32 et 34), aux gouttes de déflexion (31 et 33) et à la goutte (35) non chargée, étant non déviées vers le support, elles seront récupérées par la gouttière et recyclées dans le circuit d'encre.As for the mother drops (30, 32 and 34), the deflection drops (31 and 33) and the unloaded drop (35), being not diverted towards the support, they will be recovered by the gutter and recycled in the circuit ink.

On constate donc que l'impression d'un point déterminé du support (15) nécessite la participation de deux gouttes du jet d'encre associées à la séquence suivante : tension de charge de valeur sur-critique VM, supérieure à la tension de Rayleigh, pour créer la microgoutte d'impression, puis tension de charge de valeur sous-critique Vc comprise entre Vcmin et Vcmax, pour défléchir cette microgoutte.It can therefore be seen that the printing of a determined point on the support (15) requires the participation of two drops of the ink jet associated with the following sequence: charging voltage of over-critical value V M , greater than the voltage of Rayleigh, to create the printing microdrop, then charging voltage of subcritical value V c between Vc min and Vc max , to deflect this microdrop.

Sur les figures 4a à 4c sont représentés schématiquement des exemples de réalisation du dispositif de charge des gouttes d'encre, selon trois géométries différentes mais induisant toutes un champ électrique non symétrique par rapport à l'axe (D) du jet d'encre (1).In FIGS. 4a to 4c are schematically represented exemplary embodiments of the device for charging ink drops, according to three different geometries but all inducing an electric field that is not symmetrical with respect to the axis (D) of the ink jet ( 1).

Selon le premier exemple de la figure 4a, l'électrode (70) a la forme d'un demi-cylindre d'axe confondu avec l'axe (D) du jet d'encre (1) ; l'influence électrostatique est forte entre cette électrode (70) et le jet (1), permettant le fonctionnement de l'imprimante avec de faibles tensions de charge des gouttes d'encre. Selon le second exemple de la figure 4b, l'électrode (71) a la forme d'une plaque unique rectangulaire, d'axe longitudinal parallèle à l'axe (D) du jet (1). L'influence électrostatique entre l'électrode (71) et le jet (1) est moins élevée que dans le cas précédent mais la forme simple et le faible encombrement de l'électrode en facilite la réalisation et l'intégration à haute densité.According to the first example of FIG. 4a, the electrode (70) has the shape of a half-cylinder with an axis coincident with the axis (D) of the ink jet (1); the electrostatic influence is strong between this electrode (70) and the jet (1), allowing the operation of the printer with low charge voltages of ink drops. According to the second example of FIG. 4b, the electrode (71) has the shape of a single rectangular plate, of longitudinal axis parallel to the axis (D) of the jet (1). The electrostatic influence between the electrode (71) and the jet (1) is lower than in the previous case but the simple shape and the small size of the electrode facilitates its production and integration at high density.

Le troisième exemple, selon la figure 4c, représente une solution de compromis entre l'efficacité de la première géométrie et la simplicité de la seconde. L'électrode de charge (72) est constituée de deux demi-plans se coupant suivant une direction parallèle à l'axe (D) du jet d'encre.The third example, according to FIG. 4c, represents a compromise solution between the efficiency of the first geometry and the simplicity of the second. The charging electrode (72) consists of two half-planes intersecting in a direction parallel to the axis (D) of the ink jet.

Le procédé de projection selon l'invention présente l'avantage de permettre un impact des gouttes de liquide sur le support beaucoup plus petit que le diamètre de la buse d'éjection accroissant par conséquent la précision du dispositif de mise en oeuvre, donc la résolution de l'imprimante dans le cas particulier décrit.The projection method according to the invention has the advantage of allowing an impact of the drops of liquid on the support much smaller than the diameter of the ejection nozzle consequently increasing the precision of the implementation device, therefore the resolution. of the printer in the particular case described.

Il permet également une haute intégration du système de projection de liquide avec de moindres tolérances en comparaison de ses performances.It also allows high integration of the liquid projection system with lower tolerances compared to its performance.

De plus, n'utilisant pas de moyen de déflexion supplémentaire, en dehors de celle créée par l'interaction électrostatique entre les gouttes du jet, le procédé permet de réduire le nombre d'éléments de la tête de projection de liquide et de simplifier chacun de es éléments - une seule électrode de charge suffit -.In addition, not using any additional deflection means, apart from that created by the electrostatic interaction between the drops of the jet, the method makes it possible to reduce the number of elements of the liquid projection head and to simplify each of the elements - only one charge electrode is sufficient.

Un autre avantage réside dans l'impression des seules micro-gouttes avec une faible sensibilité aux variations de l'amplitude de stimulation du jet d'encre, puisque ces microgouttes ne sont pas générées par action sur l'amplitude ou la fréquence de l'excitation conduisant à la brisure du jet d'encre.Another advantage lies in the printing of the only micro-drops with a low sensitivity to variations in the amplitude of stimulation of the ink jet, since these microdrops are not generated by action on the amplitude or frequency of the excitation leading to the breaking of the ink jet.

Un autre avantage important du procédé selon l'invention est de permettre l'impression des gouttes d'encre en mode trame, contrairement aux procédés décrits dans l'art antérieur, c'est-à-dire qu'un seul jet d'encre permet l'impression de plusieurs lignes de points correspondant à la modulation de la déflexion desdites gouttes.Another important advantage of the method according to the invention is that it allows the printing of ink drops in screen mode, unlike the methods described in the prior art, that is to say only one ink jet allows the printing of several lines of points corresponding to the modulation of the deflection of said drops.

Grâce à l'invention, il est possible d'envisager des applications industrielles intéressantes. Tout d'abord le diamètre extrêmement petit des microgouttes d'impression autorise la conception d'une imprimante utilisable dans tous les domaines requérant une qualité d'impression quasi-photographique. Un prototype d'imprimante réalisé par la Demanderesse a permis d'obtenir des microgouttes d'impression de diamètre inférieur à 10 microns pour un diamètre de buse d'éjection valant 35 microns.Thanks to the invention, it is possible to envisage interesting industrial applications. First of all, the extremely small diameter of the printing microdrop allows the design of a printer usable in all areas requiring a quality of quasi-photographic printing. A printer prototype produced by the Applicant has made it possible to obtain printing microdrops with a diameter of less than 10 microns for an ejection nozzle diameter equal to 35 microns.

De plus, la possibilité de moduler sélectivement l'angle de déflexion de chaque microgoutte d'impression permettra, grâce à un algorithme de commande approprié, une impression de très grande qualité sur des supports de forme complexe.In addition, the possibility of selectively modulating the deflection angle of each printing microdrop will allow, thanks to an appropriate control algorithm, very high quality printing on supports of complex shape.

Le marché de la décoration industrielle, nécessitant à la fois une haute résolution et une grande vitesse d'impression, peut également être abordé puisque le faible nombre et la simplicité des éléments requis pour le procédé d'impression selon l'invention autorisent leur intégration à haute densité au sein de modules multijet.The industrial decoration market, requiring both high resolution and high printing speed, can also be approached since the small number and simplicity of the elements required for the printing process according to the invention allow their integration into high density within multijet modules.

L'invention n'est nullement limitée au mode de réalisation qui vient d'être décrit, comprenant bien évidemment les équivalents techniques des moyens et de leurs combinaisons si elles sont effectuées dans l'esprit de l'invention et mises en oeuvre dans le cadre des revendications suivantes. C'est ainsi que l'invention peut être mise en oeuvre dans un dispositif d'impression à plusieurs jets d'encre continu simultanés qui seraient éjectés par un même nombre de buses associées à un même réservoir.The invention is in no way limited to the embodiment which has just been described, obviously including the technical equivalents of the means and their combinations if they are carried out in the spirit of the invention and implemented in the context of the following claims. Thus, the invention can be implemented in a printing device with several simultaneous continuous ink jets which would be ejected by the same number of nozzles associated with the same reservoir.

L'invention peut aussi être appliquée dans le traçage de circuits imprimés, le montage de composants électroniques ou dans la fabrication de médicaments comme cela a été dit auparavant.The invention can also be applied in the layout of printed circuits, the mounting of electronic components or in the manufacture of medicaments as has been said before.

Claims (6)

Procédé de projection de liquide mis en oeuvre dans un dispositif à jet continu stimulé, comportant une première étape de fractionnement du jet (1) sortant d'une buse (2) en gouttes (11) au voisinage d'un dispositif de charge électrostatique (7) des gouttes (11), caractérisé en ce qu'il comprend les autres étapes successives suivantes : - création dans ledit dispositif de charge électrostatique (7) d'un champ électrique asymétrique par rapport à un axe de propagation (D) du jet (1) de la buse (2), - création d'une microgoutte (14) unique à l'extrémité amont d'une goutte principale (11) par application audit dispositif de charge électrostatique (7) d'une tension de charge (VM) déterminée, supérieure à la tension de Rayleigh lors de l'apparition de cette goutte principale (11), et - déflexion de la microgoutte (14), destinée à être utilisée, par application d'une tension de charge (Vc), inférieure à la tension de charge (VM) et à la tension de Rayleigh, sur la goutte principale qui suit immédiatement la microgoutte créée. Liquid spraying method implemented in a stimulated continuous jet device, comprising a first step of fractionating the jet (1) leaving a nozzle (2) in drops (11) in the vicinity of an electrostatic charging device ( 7) drops (11), characterized in that it comprises the following successive other steps: - Creation in said electrostatic charging device (7) of an asymmetric electric field with respect to an axis of propagation (D) of the jet (1) of the nozzle (2), - Creation of a single microdrop (14) at the upstream end of a main drop (11) by application to said electrostatic charging device (7) of a determined charging voltage (V M ), greater than the voltage of Rayleigh when this main drop appears (11), and - deflection of the microdrop (14), intended to be used, by application of a charging voltage (Vc), lower than the charging voltage (V M ) and the Rayleigh voltage, on the main drop which immediately follows the microdrop created. Procédé de projection selon la revendication 1 caractérisé en ce que la tension de charge (Vc), servant à la déflexion de ladite microgoutte (14) est modulable en amplitude en fonction de la trajectoire choisie pour ladite microgoutte vers un support d'utilisation.Projecting method according to claim 1 characterized in that the charging voltage (Vc), serving for the deflection of said microdrop (14) is adjustable in amplitude as a function of the path chosen for said microdrop towards a support for use. Dispositif d'impression haute résolution dans une imprimante à jet d'encre continu stimulé mettant en oeuvre le procédé selon l'une des revendications 1 à 2, comprenant : - un réservoir (3) d'encre sous pression doté d'au moins une buse (2) d'éjection du jet d'encre (1) selon la direction (D), - des moyens (4, 5) de stimulation du jet (1) fixant son point de brisure (6) en gouttes d'encre (11) au voisinage d'un dispositif de charge électrostatique (7) connecté à un circuit d'alimentation (8), - un circuit de détection (9) connecté à un circuit (10) de traitement des informations captées, placé au voisinage des gouttes d'encre, après leur charge électrostatique par le dispositif (7), et - une gouttière (12) de récupération des gouttes non utilisées pour l'impression, aboutissant au circuit (13) d'alimentation générale en encre, - caractérisé en ce que le dispositif de charge (7) comporte une électrode unique créant un champ électrique asymétrique par rapport à l'axe (D) du jet d'encre (1). High resolution printing device in a stimulated continuous ink jet printer implementing the method according to one of claims 1 to 2, including: - a pressurized ink tank (3) provided with at least one nozzle (2) for ejecting the ink jet (1) in the direction (D), - means (4, 5) for stimulating the jet (1) fixing its breaking point (6) in drops of ink (11) in the vicinity of an electrostatic charging device (7) connected to a supply circuit (8), a detection circuit (9) connected to a circuit (10) for processing the information received, placed in the vicinity of the ink drops, after their electrostatic charge by the device (7), and a gutter (12) for recovering the drops not used for printing, leading to the circuit (13) for general ink supply, - characterized in that the charging device (7) comprises a single electrode creating an asymmetrical electric field with respect to the axis (D) of the ink jet (1). Dispositif selon la revendication 3, caractérisé en ce que l'électrode de charge (70) a la forme d'un demi-cylindre d'axe parallèle à l'axe (D) du jet d'encre (1).Device according to claim 3, characterized in that the charging electrode (70) has the shape of a half-cylinder with an axis parallel to the axis (D) of the ink jet (1). Dispositif selon la revendication 3, caractérisé en ce que l'électrode de charge (71) a la forme d'une plaque parallèle à l'axe (D) du jet d'encre (1).Device according to claim 3, characterized in that the charging electrode (71) has the form of a plate parallel to the axis (D) of the ink jet (1). Dispositif selon la revendication 3, caractérisé en ce que l'électrode de charge (71) a la forme de deux demi-plans se coupant selon une direction parallèle à l'axe (D) du jet d'encre (1).Device according to claim 3, characterized in that the charging electrode (71) has the form of two half-planes intersecting in a direction parallel to the axis (D) of the ink jet (1).
EP92401840A 1991-07-05 1992-06-29 Liquid projecting process and high resolution printing device in a continuous ink jet printer to perform this process Expired - Lifetime EP0521764B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9108482 1991-07-05
FR9108482A FR2678549B1 (en) 1991-07-05 1991-07-05 HIGH-RESOLUTION PRINTING METHOD AND DEVICE IN A CONTINUOUS INK JET PRINTER.

Publications (2)

Publication Number Publication Date
EP0521764A1 true EP0521764A1 (en) 1993-01-07
EP0521764B1 EP0521764B1 (en) 1995-06-28

Family

ID=9414781

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92401840A Expired - Lifetime EP0521764B1 (en) 1991-07-05 1992-06-29 Liquid projecting process and high resolution printing device in a continuous ink jet printer to perform this process

Country Status (12)

Country Link
US (1) US5489929A (en)
EP (1) EP0521764B1 (en)
JP (1) JPH05246035A (en)
KR (1) KR100227153B1 (en)
CN (1) CN1029302C (en)
AU (1) AU655037B2 (en)
BR (1) BR9202488A (en)
DE (1) DE69203166T2 (en)
DK (1) DK0521764T3 (en)
ES (1) ES2075650T3 (en)
FR (1) FR2678549B1 (en)
IL (1) IL102293A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7938516B2 (en) 2008-08-07 2011-05-10 Eastman Kodak Company Continuous inkjet printing system and method for producing selective deflection of droplets formed during different phases of a common charge electrode
CN102922891A (en) * 2012-10-26 2013-02-13 厦门大学 Electro-hydraulic jet printing device of metal micro-nanometer structure
US8740359B2 (en) 2008-08-07 2014-06-03 Eastman Kodak Company Continuous inkjet printing system and method for producing selective deflection of droplets formed from two different break off lengths
CN104153012A (en) * 2014-07-14 2014-11-19 厦门大学 Conical micro-nanofiber preparation device and conical micro-nanofiber preparation method

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2716010B1 (en) * 1994-02-04 1996-04-19 Toxot Science & Appl Device and methods for manufacturing and repairing colored filters.
WO1998042512A1 (en) * 1997-03-26 1998-10-01 Predtechensky Mikhail Rudolfov Inkjet printing process and apparatus
JPH11138951A (en) * 1997-11-14 1999-05-25 Canon Inc Recorder with charging function and charging method therefor
US6270204B1 (en) 1998-03-13 2001-08-07 Iris Graphics, Inc. Ink pen assembly
CN1089296C (en) * 1998-10-30 2002-08-21 财团法人工业技术研究院 Pressure controller
US6234620B1 (en) 1999-06-29 2001-05-22 Eastman Kodak Company Continuous ink jet printer catcher and method for making same
DE19931952B4 (en) * 1999-07-09 2007-06-06 Maier, Claus, Dipl.-Phys. Method for the microdosing of liquids onto substrates close to the substrate
US7080897B2 (en) * 2003-10-31 2006-07-25 Hewlett-Packard Development Company, L.P. System for delivering material onto a substrate
US7144102B2 (en) * 2004-05-05 2006-12-05 Eastman Kodak Company Supression of Marangoni Effect on the catcher face
JP4834981B2 (en) * 2004-12-03 2011-12-14 大日本印刷株式会社 Method for producing pattern forming body
US7763848B2 (en) * 2005-01-18 2010-07-27 Phoenix S&T, Inc. Apparatus and method for controlling an electrostatically induced liquid spray
US7402798B2 (en) * 2005-01-18 2008-07-22 Phoenix S&T, Inc. Apparatus and method for controlling an electrostatically induced liquid spray
FR2890595B1 (en) * 2005-09-13 2009-02-13 Imaje Sa Sa GENERATION OF DROPS FOR INK JET PRINTING
US20090095057A1 (en) * 2007-10-16 2009-04-16 Phoenix S&T, Inc. Integrated microfluidic nozzle device for chromatographic sample preparation for mass spectrometry applications
WO2009108538A2 (en) * 2008-02-26 2009-09-03 Phoenix S & T, Inc. Method and apparatus to increase throughput of liquid chromatography-mass spectrometry
DE102008055999B3 (en) * 2008-11-05 2010-03-11 Kba-Metronic Aktiengesellschaft Printhead with integrated deflection electrodes
ES1069143Y (en) * 2008-11-27 2009-05-01 Aloy Jordi Nadal SELF-HELPED BRAKE DISK
KR101180729B1 (en) 2010-05-07 2012-09-07 제주대학교 산학협력단 ESD apparatus having sloping dielectric nozzle and method for ink circulating
DE102011113664A1 (en) * 2011-09-20 2013-03-21 Simaco GmbH Method and device for homogenizing ink for inkjet devices
JP6657625B2 (en) * 2014-09-05 2020-03-04 ソニー株式会社 Droplet sorting apparatus, drop sorting method and program
CN105772722B (en) * 2016-03-11 2018-01-23 嘉兴学院 A kind of control device and apparatus and method for of control electric current body dynamics print resolution
CN109397880B (en) * 2018-12-14 2019-09-20 北京赛腾标识系统股份公司 Device, method and the ink-jet system of nozzle driving are set
CN109808310B (en) * 2019-03-07 2020-11-06 浙江鸣春纺织股份有限公司 Continuous ink jet printing device of ink jet printer
GB2585921A (en) * 2019-07-24 2021-01-27 Linx Printing Tech Continuous Ink Jet printer and print head assembly therefor
KR20210077060A (en) * 2019-12-16 2021-06-25 삼성디스플레이 주식회사 Inkjet print device, method of aligning dipoles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4068241A (en) * 1975-12-08 1978-01-10 Hitachi, Ltd. Ink-jet recording device with alternate small and large drops
US4367476A (en) * 1980-03-10 1983-01-04 Hitachi, Ltd. Ink jet printing apparatus
EP0365454A1 (en) * 1988-10-18 1990-04-25 Imaje S.A. High-resolution printing method using satellite ink drops in a continuous ink jet printer

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54142B2 (en) * 1974-10-31 1979-01-06
US4350986A (en) * 1975-12-08 1982-09-21 Hitachi, Ltd. Ink jet printer
JPS5843028B2 (en) * 1978-09-25 1983-09-24 株式会社リコー Charge deflection type multi inkjet plotter
JPS5655268A (en) * 1979-10-11 1981-05-15 Sharp Corp Controller for particle of ink in ink jet printer
JPS5662164A (en) * 1979-10-29 1981-05-27 Fuji Xerox Co Ltd Liquid drop charger
US4318111A (en) * 1980-10-03 1982-03-02 Xerox Corporation Two section charging electrodes for binary ink drop printers
JPS57173168A (en) * 1981-04-17 1982-10-25 Fuji Xerox Co Ltd Electrifying method for ink jet liquid-drop
US4550323A (en) * 1982-06-30 1985-10-29 Burlington Industries, Inc. Elongated fluid jet printing apparatus
US4491852A (en) * 1982-07-02 1985-01-01 Ricoh Company, Ltd. Ink jet printing apparatus using guard drops
JPS618358A (en) * 1984-06-22 1986-01-16 Hitachi Ltd Inkjet recorder
JPH0829590B2 (en) * 1985-03-04 1996-03-27 株式会社日立製作所 Inkjet recording device
JPS6256149A (en) * 1985-09-06 1987-03-11 Hitachi Ltd Ink jet recording apparatus
US4734705A (en) * 1986-08-11 1988-03-29 Xerox Corporation Ink jet printer with satellite droplet control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4068241A (en) * 1975-12-08 1978-01-10 Hitachi, Ltd. Ink-jet recording device with alternate small and large drops
US4367476A (en) * 1980-03-10 1983-01-04 Hitachi, Ltd. Ink jet printing apparatus
EP0365454A1 (en) * 1988-10-18 1990-04-25 Imaje S.A. High-resolution printing method using satellite ink drops in a continuous ink jet printer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7938516B2 (en) 2008-08-07 2011-05-10 Eastman Kodak Company Continuous inkjet printing system and method for producing selective deflection of droplets formed during different phases of a common charge electrode
US8740359B2 (en) 2008-08-07 2014-06-03 Eastman Kodak Company Continuous inkjet printing system and method for producing selective deflection of droplets formed from two different break off lengths
US8840229B2 (en) 2008-08-07 2014-09-23 Eastman Kodak Company Continuous inkjet printing system and method for producing selective deflection of droplets formed from two different break off lengths
CN102922891A (en) * 2012-10-26 2013-02-13 厦门大学 Electro-hydraulic jet printing device of metal micro-nanometer structure
CN102922891B (en) * 2012-10-26 2014-08-06 厦门大学 Electro-hydraulic jet printing device of metal micro-nanometer structure
CN104153012A (en) * 2014-07-14 2014-11-19 厦门大学 Conical micro-nanofiber preparation device and conical micro-nanofiber preparation method

Also Published As

Publication number Publication date
CN1070610A (en) 1993-04-07
IL102293A (en) 1994-10-21
FR2678549B1 (en) 1993-09-17
AU655037B2 (en) 1994-12-01
JPH05246035A (en) 1993-09-24
US5489929A (en) 1996-02-06
BR9202488A (en) 1993-03-16
IL102293A0 (en) 1993-01-14
AU1930492A (en) 1993-01-07
CN1029302C (en) 1995-07-12
FR2678549A1 (en) 1993-01-08
DE69203166T2 (en) 1996-01-25
DK0521764T3 (en) 1995-11-06
KR930002098A (en) 1993-02-22
KR100227153B1 (en) 1999-10-15
DE69203166D1 (en) 1995-08-03
ES2075650T3 (en) 1995-10-01
EP0521764B1 (en) 1995-06-28

Similar Documents

Publication Publication Date Title
EP0521764B1 (en) Liquid projecting process and high resolution printing device in a continuous ink jet printer to perform this process
EP1628832B1 (en) Inkjet printer
EP1469997B1 (en) Converging axis dual-nozzled print head and printer fitted therewith
FR2892052A1 (en) Inkjet printing method in which an inket&#39;s hydraulic trajectory is controlled by the application of an electric field upstream of a point at which a continuous jet is broken up into jet sections
EP1234670B1 (en) Printhead and printer with improved deflection electrodes
EP0365454B1 (en) High-resolution printing method using satellite ink drops in a continuous ink jet printer
FR2906755A1 (en) Liquid jet e.g. ink jet, deflecting method for use during ink-jet printing, involves generating variable electric field along hydraulic path, and deflecting liquid jet by field by mobilization of charges within jet
FR2471278A1 (en) METHODS AND APPARATUS FOR PRODUCING DROPLET FILE AND INKJET PRINTING
FR2952851A1 (en) CONTINUOUS INK JET PRINTER WITH IMPROVED QUALITY AND AUTONOMY OF PRINTING
JPH11216867A (en) Continuous ink jet printer with binary electrostatic deflection
FR2956061A1 (en) INDUSTRIAL INK JET PRINTER WITH DIGITAL COMMUNICATION
FR2938207A1 (en) PRINTER HAVING AN OPTIMUM BINARY CONTINUOUS JET DROP GENERATOR WITH OPTIMAL PRINT SPEED
GB2200869A (en) Ink jet recording head and ink jet recording apparatus having the ink jet recording head
Martin et al. Fundamentals of inkjet technology
FR2890595A1 (en) Ink drop formation and projection method for use in inkjet printing, particularly suited to use with a piezoelectric printer, in which jets are temporarily interrupted by application of a stimulation impulse
EP1092542B1 (en) Ink jet printer and printing process
EP0106802B1 (en) Device for projecting droplets of an electrically conductive liquid
EP0012887B1 (en) Ink jet printer for vertical and horizontal printing
FR2975632A1 (en) BINARY CONTINUOUS INKJET PRINTER
FR2676022A1 (en) RECORDING HEAD WITH INK JET.
WO1998016389A1 (en) Method and device for controlled discharging of liquid, its application in printing
JPH09239987A (en) Image recording device
JP2003226015A (en) Electrostatic inkjet recorder
EP0262004A1 (en) Ink jet print head and industrial recorder equipped with same
JPH10230598A (en) Liquid droplet ejection apparatus

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK ES GB IT NL SE

17P Request for examination filed

Effective date: 19930121

17Q First examination report despatched

Effective date: 19941124

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK ES GB IT NL SE

REF Corresponds to:

Ref document number: 69203166

Country of ref document: DE

Date of ref document: 19950803

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2075650

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950906

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19980611

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19980630

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19990609

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990630

Year of fee payment: 8

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000628

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000720

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010101

EUG Se: european patent has lapsed

Ref document number: 92401840.1

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010629

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010629

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050629