EP0482635A2 - Inducteur électromagnétique à noyau en ferrite servant à chauffer un matériau conducteur d'électricité - Google Patents

Inducteur électromagnétique à noyau en ferrite servant à chauffer un matériau conducteur d'électricité Download PDF

Info

Publication number
EP0482635A2
EP0482635A2 EP91118152A EP91118152A EP0482635A2 EP 0482635 A2 EP0482635 A2 EP 0482635A2 EP 91118152 A EP91118152 A EP 91118152A EP 91118152 A EP91118152 A EP 91118152A EP 0482635 A2 EP0482635 A2 EP 0482635A2
Authority
EP
European Patent Office
Prior art keywords
core
induction
coil
enclosure
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP91118152A
Other languages
German (de)
English (en)
Other versions
EP0482635A3 (en
Inventor
Jean-Luc Dion
Rémy Simard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydro Quebec
Original Assignee
Hydro Quebec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydro Quebec filed Critical Hydro Quebec
Publication of EP0482635A2 publication Critical patent/EP0482635A2/fr
Publication of EP0482635A3 publication Critical patent/EP0482635A3/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/42Cooling of coils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/14Tools, e.g. nozzles, rollers, calenders
    • H05B6/145Heated rollers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/365Coil arrangements using supplementary conductive or ferromagnetic pieces

Definitions

  • the present invention relates to an induction heater that uses an open core made of ferric material with a coil of Litz wire through which an excitation current flows to produce a variable magnetic field which is concentrated between the open core poles by means of magnetic flux concentrators made of electrically conductive tubes in close contact with a heat conductive but non-electrically conductive material in order to drain the heat generated in the coil and the core, while a coolant is circulated in the concentrator tubes.
  • US Patent 2,785,263 discloses the use of cores made of ferrite. Such a material has a relatively high magnetic permeability and low conductivity and has been found to be an ideal material for use in induction heating stations.
  • cores made of ferrite.
  • Such a material has a relatively high magnetic permeability and low conductivity and has been found to be an ideal material for use in induction heating stations.
  • other problems have arisen as a result of the use of such cores and, more particularly, in order to saturate the poles so that they contribute as much as possible to the density of flux generated in a part arranged between them, it it is necessary to substantially saturate the entire core, this being very inefficient and resulting at high frequencies, in huge heat losses.
  • US Patent 4,359,620 attempts to solve this new problem by using a core construction which concentrates a magnetic field with high flux density between its two ends which are separated very little and tapered.
  • a periodic voltage is supplied to the core and a capacitor is connected to the excitation core so as to form a resonant circuit which is used for controlling the frequency and the phase of the periodic voltage supplied to the circuit in order to keep it in resonance.
  • the object of the present invention is to develop an improved induction heating device for heating ferromagnetic materials at temperatures rising at least up to 300 ° C., this device overcoming the disadvantages of the prior art mentioned above. -above.
  • Another object of the present invention is to develop an improved induction heating device for heating ferromagnetic materials to temperatures of at least up to 300 ° C, in which the core is made of ferric material and uses a coil of Litz wire, and in which the improvement resides in magnetic flux concentrator tubes which are positioned around the coil at a short distance from the core while a coolant circulates inside the tubes in order to cool the core and the coil.
  • This allows excitation currents to be applied to the coil in a frequency range of 12 to 25 kHz so that the eddy currents in the magnetic field produced can generate 4 to 20 kW of heat in a conductive surface.
  • the temperature, frequency and power values are only illustrative and in no way limitative.
  • the present invention also aims to develop an improved induction heating device as described above and, in addition, in which the core and the coil are positioned in a material which conducts heat but which does not conduct electricity.
  • a material which conducts heat but which does not conduct electricity which is a composite material made of epoxy and powdered copper or aluminum.
  • the present invention also aims to develop an improved induction heat device as described above and in which the core takes the form of an E which forms two opposite poles and a central pole between which a magnetic field is generated, around the central pole, the coil being wound with concentrator tubes being positioned around the coil and near the opposite poles in order to increase the magnetic flux generated between the poles, outside on the surface to be heated .
  • an advantageous embodiment of the invention provides an induction heating device for heating an electrically conductive and mainly ferromagnetic material at temperatures ranging at least up to 300 ° C.
  • the device includes an open core made of ferric material, a coil of Litz wire wrapped around the core, a power source connected to the coil to produce an excitation current in the coil within a range frequency varying between 12 and 25 kHz in order to generate a magnetic field when magnetized.
  • Magnetic flux concentrator tubes made of an electrically conductive material are positioned around the coil and near the core in a heat conductive but non-electrically conductive material.
  • a coolant circulates in the concentrator tubes to cool the core and the coil.
  • An induction zone is defined by the magnetic field generated between the opposite poles of the core and orientable near an electrically conductive surface in order to heat this surface electromagnetically by means of eddy currents generated between the opposite poles of the core and concentrated therebetween by the concentrator tubes.
  • FIG. 1 there is generally shown at 10 an induction heating device according to the present invention which is shown here as being spaced a little apart from the surface of a calendering roller 11 d 'a paper machine so as to heat the ferromagnetic material positioned on the outer surface of the calendering roller.
  • the heater comprises a ferrite core 12 which has the shape of an E providing opposite arms 13 and 13 'and a central leg 14 around which a coil 15 of Litz wire is wound.
  • the coil 15 has terminals 16 to which a controllable power source 17 (see Figure 2) is connected so as to supply an excitation current to the coil in a frequency range from 12 to 25 kHz.
  • the improvement of the induction heating device according to the present invention lies in the contribution of magnetic flux concentrator tubes 18 which are positioned around the coil 15 very close to the core 12.
  • the concentrator tubes 18 are positioned in a conductive material heat but not electrically conductive 19 and are spaced from the core and the coil.
  • One end of the tubes 18 is electrically isolated from the side plates 22a or 22b illustrated in FIG. 1A.
  • the material 19 is a composite of an epoxy or a synthetic resin generally, and of copper or aluminum powder which is positioned in the enclosure 20.
  • the enclosure 20, as illustrated in FIG. 2, is a rectangular enclosure formed from a powdered ceramic material and fiberglass.
  • a layer of aluminum paint 21 is applied to the induction surface of the enclosure which is positioned a short distance from the electromagnetic surface to be heated so as to reduce the heat transfer by external radiation with return to the surface d induction 21 of the enclosure 20.
  • a metal shield 22, 22a, and 22b is also positioned in the enclosure 20 and, as illustrated here, against the upper wall and the two side walls of the latter in order to electromagnetically shield the inductor.
  • a pressurized water supply 23 is used for the circulation of cooling water through the magnetic flux concentrator tubes 18 so as to cool the core and the coil in the enclosure 20 heated by Joule effect on the surface of the tubes and inside the coil, and heat from the surface of the workpiece.
  • This cooling effect allows the application of an excitation current in a high frequency range varying between 12 and 25 kHz, from where the induction heater 10 can generate approximately between 4 and 25 kW of power while the coolant keeps the internal temperature of the enclosure below 60 ° C, these values being non-limiting.
  • the concentrator tubes 18 also concentrate the magnetic field produced between the poles 24 and 14.
  • the inductance of the core also varies between 40 and 125 ⁇ H depending on the dimensions of the core used and the frequency of the selected source, these values being nonlimiting.
  • a typical application of an electromagnetic induction heating device As illustrated here, a plurality of heaters 10 are alternately positioned, offset and side by side along a heating calendering roller 30 of a paper machine (not shown).
  • the heaters 10 are spaced apart from the roller 30 as illustrated in FIG. 4 and are stationary with respect to the roller 30. Their specific spacing and their mutual relationship make it possible to obtain a controlled temperature along the width of the roller.
  • These heaters 10 can also be supplied with electrical power or parallel power in series alignment or individually.
  • FIGS. 3 to 5 relate to an application in the manufacture of paper, it is pointed out that these induction heating stations have a multitude of other applications and they could, for example, be used in other industries for laminating or glazing a sheet-like material.
  • the efficiency of this heating device has also been calculated as being in the order of 95% when calculated by the proportion of useful heat generated relative to the electric power used.
  • the heating devices according to the present invention can generate approximately 250 kW of heat per meter of length of the electrically conductive material used in the construction of the calendering roller.

Abstract

Le présent dispositif de chauffage par induction (10) sert à chauffer des matériaux conducteurs d'électricité jusqu'à des températures dépassant 300°C. Le dispositif (10) comprend un noyau ouvert (12) fait d'un matériau ferrique. Une bobine de fil de Litz (15) est enroulée autour du noyau (12). Une source de puissance (17) est connectée aux extrémités (16) de la bobine (15) afin de produire un courant d'excitation dans cette dernière, à l'intérieur d'une gamme de fréquence variant de 12 à 25 kHz, de façon à générer un champ magnétique lorsqu'aimantée. Des tubes concentrateurs de flux magnétique (18) faits d'un matériau conducteur d'électricité sont disposés autour de la bobine (15) et près du noyau (12) et sont noyés dans un matériau (19) qui est conducteur de chaleur mais non conducteur d'électricité dans l'intention de maximiser le flux utile. Un fluide de refroidissement circule au travers des tubes concentrateurs (18) afin de refroidir les tubes (18), le noyau (12) et la bobine (15). Une zone d'induction est définie par le champ magnétique, généré entre les pôles opposés (13,13') du noyau (12) et pénétrant à la surface de la pièce à être chauffée. La pièce est chauffée par les courants de Foucault générés par le champ magnétique variable sur la surface. <IMAGE>

Description

  • La présente invention concerne un dispositif de chauffage par induction qui utilise un noyau ouvert fait d'un matériau ferrique muni d'une bobine de fil de Litz dans laquelle circule un courant d'excitation afin de produire un champ magnétique variable qui est concentré entre les pôles du noyau ouvert au moyen de concentrateurs de flux magnétique faits de tubes conducteurs d'électricité en contact rapproché avec un matériau conducteur de chaleur mais non conducteur d'électricité afin de drainer la chaleur générée dans la bobine et le noyau, alors qu'un fluide de refroidissement est circulé dans les tubes concentrateurs.
  • Plusieurs types de dispositifs de chauffage par induction à haute fréquence ont été proposés dans l'art antérieur. Le brevet américain 4.359.620 représente un bon sommaire de la technique antérieure en décrivant que l'un des problèmes rencontrés au niveau des nombreux postes de chauffage par induction utilisant des noyaux magnétiques est celui des hautes pertes de chaleur dans leur noyau. Ceci est particulièrement vrai si l'intensité et la fréquence du champ magnétique fluctuant généré sont augmentées suffisamment afin d'être adéquates pour le soudage du métal, par exemple. Cependant, ceci entraîne le problème d'augmentation de la température du noyau, et le noyau se met à fondre. Les noyaux faits de matériaux magnétiques feuilletés qui sont utilisés dans la plupart des transformateurs ont de grandes pertes dues aux courants de Foucault ainsi qu'à l'effet pelliculaire qui en résulte à des fréquences excédant 20 KHz. De plus, la nature conductrice des feuilles du noyau présente un danger réel de choc électrique lorsqu'utilisées dans des postes de chauffage par induction ayant une grande quantité de puissance fournie à leurs bobines d'excitation.
  • Afin de tenter de réduire ce problème, le brevet américain 2.785.263 divulgue l'utilisation de noyaux faits de ferrite. Un tel matériau possède une perméabilité magnétique relativement élevée et une conductivité faible et s'est avéré comme étant un matériau d'utilisation idéale dans les postes de chauffage par induction. Cependant, d'autres problèmes se sont présentés à la suite de l'utilisation de tels noyaux et, plus particulièrement, afin de saturer les pôles pour qu'ils contribuent au maximum à la densité de flux générée dans une pièce disposée entre eux, il est nécessaire de saturer sensiblement le noyau au complet, ceci étant très inefficace et résultant à hautes fréquences, en d'énormes pertes de chaleur. Le brevet américain 4.359.620 tente de résoudre ce nouveau problème en utilisant une construction de noyau qui concentre un champ magnétique à haute densité de flux entre ses deux extrémités qui sont séparées de très peu et fuselées. Une tension périodique est alimentée au noyau et une capacité est connectée au noyau d'excitation de façon à former un circuit en résonance qui est utilisé pour le contrôle de la fréquence et de la phase de la tension périodique alimentée au circuit afin de le maintenir en résonance. Encore une fois, ce brevet ne s'occupe pas des hautes pertes de chaleur dans le noyau et du problème du noyau et de la bobine qui sont soumis à de hautes températures, restreignant ainsi la grandeur de l'intensité de la densité de flux du champ magnétique généré, ce qui limite l'utilisation du poste de chauffage par induction dû à sa faible résistance à la chaleur et à son manque de constance dans son chauffage.
  • La présente invention a pour but de mettre au point un dispositif de chauffage par induction amélioré pour le chauffage de matériaux ferromagnétiques à des températures s'élevant au moins jusqu'à 300°C, ce dispositif surmontant les désavantages de l'art antérieur mentionnés ci-dessus.
  • La présente invention a aussi pour but de mettre au point un dispositif de chauffage par induction amélioré pour le chauffage de matériaux ferromagnétiques à des températures s'élevant au moins jusqu'à 300°C, dans lequel le noyau est fait d'un matériau ferrique et utilise une bobine de fil de Litz, et dans lequel l'amélioration réside dans des tubes concentrateurs de flux magnétique qui sont positionnés autour de la bobine à faible distance du noyau alors qu un fluide de refroidissement circule à l'intérieur des tubes afin de refroidir le noyau et la bobine. Ceci permet que des courants d'excitation soient appliqués à la bobine dans une gamme de fréquence de 12 à 25 kHz de sorte que les courants de Foucault dans le champ magnétique produit puissent générer de 4 à 20 kW de chaleur dans une surface conductrice d'électricité et principalement ferromagnétique positionnée dans le champ. Les valeurs de température, de fréquence et de puissance ne sont qu'illustratives et en aucun cas limitatives.
  • La présente invention a également pour but de mettre au point un dispositif de chauffage par induction amélioré tel que décrit ci-dessus et, de plus, dans lequel le noyau et la bobine sont positionnés dans un matériau conducteur de chaleur mais non conducteur d'électricité qui est un matériau composite constitué d'époxy et de cuivre ou d'aluminium en poudre.
  • La présente invention a également pour but de mettre au point un dispositif de chaleur par induction amélioré tel que décrit ci-dessus et dans lequel le noyau prend la forme d'un E qui pratique deux pôles opposés et un pôle central entre lesquels un champ magnétique est généré, autour du pôle central, la bobine étant enroulée avec des tubes concentrateurs étant positionnés autour de la bobine et à proximité des pôles opposés afin d'augmenter le flux magnétique généré entre les pôles, à l'extérieur sur la surface à être chauffée.
  • D'après les buts précédents, une forme de réalisation avantageuse de l'invention fournie un dispositif de chauffage par induction pour chauffer un matériau conducteur d'électricité et principalement ferromagnétique à des températures allant au moins jusqu'à 300°C. Le dispositif comprend un noyau ouvert fait d'un matériau ferrique, une bobine de fil de Litz enroulée autour du noyau, une source de puissance connectée à la bobine pour produire un courant d'excitation dans la bobine à l'intérieur d'une gamme de fréquence variant entre 12 et 25 kHz afin de générer un champ magnétique lorsqu'aimantée. Des tubes concentrateurs de flux magnétique faits d'un matériau conducteur d'électricité sont positionnés autour de la bobine et près du noyau dans un matériau conducteur de chaleur mais non conducteur d'électricité. Un fluide de refroidissement circule dans les tubes concentrateurs afin de refroidir le noyau et la bobine. Une zone d'induction est définie par le champ magnétique généré entre les pôles opposés du noyau et orientable près d'une surface conductrice d'électricité afin de chauffer cette surface de façon électromagnétique au moyen de courants de Foucault générés entre les pôles opposés du noyau et concentrés entre ceux-ci par les tubes concentrateurs.
  • Une réalisation préférée de la présente invention sera maintenant décrite en référence aux dessins annexés dans lesquels:
    • Les figures 1 et 1A sont des vues en section illustrant la réalisation d'un dispositif de chauffage par induction suivant la présente invention;
    • la figure 2 est une vue en perspective illustrant la configuration du dispositif de chauffage par induction de la figure 1;
    • la figure 3 est une vue en perspective illustrant l'utilisation du dispositif de chauffage par induction de la présente invention et, sur cette figure, plusieurs de ces dispositifs sont positionnés de façon rapprochée le long d'un rouleau chauffeur de calandrage tel qu'utilisé dans une machine à papier afin de sécher une feuille de papier continue;
    • la figure 4 est une vue en bout de la figure 3, et
    • la figure 5 est une vue en plan illustrant le positionnement des inducteurs le long du cylindre de chauffage.
  • Se référant maintenant à ces dessins, et plus particulièrement à la figure 1, on montre généralement en 10 un dispositif de chauffage par induction suivant la présente invention qui est montré ici comme étant espacé de peu de la surface d'un rouleau de calandrage 11 d'une machine à papier de façon à chauffer le matériau ferromagnétique positionné sur la surface extérieure du rouleau de calandrage. Le dispositif de chauffage comprend un noyau de ferrite 12 qui a la forme d'un E ménageant des bras opposés 13 et 13' et une jambe centrale 14 autour de laquelle une bobine 15 de fil de Litz est enroulée. La bobine 15 a des bornes 16 auxquelles une source de puissance contrôlable 17 (voir figure 2) est connectée de façon à alimenter un courant d'excitation à la bobine dans une gamme de fréquence de 12 à 25 kHz.
  • L'amélioration du dispositif de chauffage par induction suivant la présente invention réside dans la contribution de tubes concentrateurs de flux magnétique 18 qui sont positionnés autour de la bobine 15 de façon très rapprochée du noyau 12. Les tubes concentrateurs 18 sont positionnés dans un matériau conducteur de chaleur mais non conducteur d'électricité 19 et sont espacés du noyau et de la bobine. Une extrémité des tubes 18 est isolée électriquement des plaques de côté 22a ou 22b illustrées dans la figure 1A. Le matériau 19 est un composite d'un époxy ou d'une résine synthétique généralement, et de cuivre ou d'aluminium en poudre qui est positionné dans l'enceinte 20. L'enceinte 20, telle qu'illustrée à la figure 2, est une enceinte rectangulaire formée d'un matériau de céramique en poudre et de fibre de verre. Une couche de peinture d'aluminium 21 est appliquée sur la surface d'induction de l'enceinte qui est positionnée à faible distance de la surface électromagnétique à être chauffée de façon à réduire le transfert de chaleur par radiation externe avec retour à la surface d'induction 21 de l'enceinte 20. Un bouclier en métal 22, 22a, et 22b est également positionné dans l'enceinte 20 et, tel qu'illustré ici, contre le mur supérieur et les deux murs de côté de cette dernière afin de blinder électromagnétiquement l'inducteur.
  • Tel qu'illustré à la figure 2, une alimentation en eau sous pression 23 est utilisée pour la circulation d'eau de refroidissement à travers les tubes concentrateurs de flux magnétique 18 de façon à refroidir le noyau et la bobine dans l'enceinte 20 chauffés par effet Joule à la surface des tubes et à l'intérieur de la bobine, et la chaleur en provenance de la surface de la pièce de travail. Cet effet de refroidissement permet l'application d'un courant d'excitation dans une gamme élevée de fréquence variant entre 12 et 25 kHz, d'où le dispositif de chauffage par induction 10 peut générer approximativement entre 4 et 25 kW de puissance alors que le fluide de refroidissement maintient la température interne de l'enceinte inférieure à 60°C, ces valeurs étant non limitatives. Les tubes concentrateurs 18 concentrent également le champ magnétique produit entre les pôles 24 et 14. L'inductance du noyau varie également entre 40 et 125 µH dépendant des dimensions du noyau utilisé et de la fréquence de la source sélectionnée, ces valeurs étant non limitatives.
  • Maintenant avec référence additionnelle aux figures 3 à 5, il est montré une application typique d'un dispositif de chauffage par induction électromagnétique suivant la présente invention. Tel qu'illustré ici, plusieurs dispositifs de chauffage 10 sont positionnés de façon alternée, décalée et côte-à-côte le long d'un rouleau de calandrage de chauffage 30 d'une machine à papier (non illustrée). Les dispositifs de chauffage 10 sont peu espacés du rouleau 30 tel qu'illustré à la figure 4 et sont stationnaires par rapport au rouleau 30. Leur espacement spécifique et leur relation mutuelle permettent d'obtenir une température contrôlée le long de la largeur du rouleau. Ces dispositifs de chauffage 10 peuvent également être alimentés avec une puissance électrique ou une puissance parallèle dans un alignement en série ou individuellement. On contemple également l'installation de senseurs de température (non illustrés) pour détecter la température le long de la surface du rouleau 30 et leur utilisation pour le contrôle individuel des sources de puissance de façon à varier le courant d'excitation de leur bobine respective afin de contrôler de façon individuelle la chaleur générée par ces inducteurs, de façon à obtenir la disposition requise de la température le long du rouleau de calandrage.
  • Bien que les figures 3 à 5 sont relatives à une application dans la fabrication du papier, il est signalé que ces postes de chauffage par induction ont une multitude d'autres applications et ils pourraient, par exemple, être utilisés dans d'autres industries pour le laminage ou le glaçage d'un matériau en forme de feuille. Le rendement de ce dispositif de chauffage a également été calculé comme étant dans l'ordre de 95% lorsque calculé par la proportion de chaleur utile générée par rapport à la puissance électrique utilisée. Par exemple, dans l'application du rouleau de calandrage, les dispositifs de chauffage suivant la présente invention peuvent générer à peu près 250 kW de chaleur par mètre de longueur du matériau conducteur d'électricité utilisé dans la construction du rouleau de calandrage.
  • Il est entendu que la présente invention n étant d'aucune façon limitée aux formes de réalisations décrites ci-dessus et que toutes modifications évidentes apportées à celles-ci demeurent dans le cadre de l'invention, pourvu que ces modifications tombent dans la portée des revendications ci-jointes.

Claims (11)

  1. Un dispositif de chauffage par induction pour chauffer un matériau conducteur d'électricité et principalement ferromagnétique à des températures allant au moins jusqu'à 300°C, ledit dispositif comprenant un noyau ouvert fait d'un matériau ferrique, une bobine de fil de Litz enroulée autour dudit noyau, une source de puissance connectée à ladite bobine pour produire un courant d'excitation dans ladite bobine à l'intérieur d'une gamme de fréquence variant entre 12 et 25 kHz afin de générer un champ magnétique lorsqu'aimantée, des tubes concentrateurs de flux magnétique faits d'un matériau conducteur d'électricité sont positionnés autour de ladite bobine et près dudit noyau dans un matériau conducteur de chaleur mais non conducteur d'électricité, un fluide de refroidissement circulant dans lesdits tubes concentrateurs afin de refroidir ledit noyau et ladite bobine, une zone d'induction est définie par ledit champ magnétique généré entre les pôles opposés dudit noyau et orientable près d'une surface conductrice d'électricité afin de chauffer ladite surface de façon électromagnétique au moyen de courants de Foucault générés entre lesdits pôles opposés dudit noyau et concentrés entre ceux-ci par lesdits tubes concentrateurs.
  2. Un dispositif de chauffage par induction suivant la revendication 1 dans lequel ledit noyau est un noyau en forme de E et fait d'un matériau ferrique ayant une haute perméabilité magnétique, ledit noyau ayant des bras opposés dont les extrémités constituent lesdits pôles opposés et une jambe centrale autour duquel ladite bobine de fil de Litz est enroulée.
  3. Un dispositif de chauffage par induction suivant la revendication 1 dans lequel ledit noyau est supporté de façon isolée dans une enceinte construite d'un matériau non conducteur d'électricité, lesdits tubes concentrateurs refroidissant également l'intérieur de ladite enceinte.
  4. Un dispositif de chauffage par induction suivant la revendication 3 dans lequel le matériau de ladite enceinte est un composite de céramique moulable et de fibre de verre, ladite enceinte ayant une peinture d'aluminium (non conductrice) sur au moins une surface d'induction afin de réduire le transfert de chaleur par radiation avec retour vers ladite surface d'induction.
  5. Un dispositif de chauffage par induction suivant la revendication 4 dans lequel ladite enceinte est une enceinte rectangulaire ayant une surface inférieure d'induction formée selon la géométrie de la surface de la pièce de travail chauffée, et un bouclier en métal dans au moins un mur supérieur et deux murs de côté de ladite enceinte pour le blindage électromagnétique dudit inducteur.
  6. Un dispositif de chauffage par induction suivant la revendication 1 dans lequel ledit matériau conducteur de chaleur mais non conducteur d'électricité est un matériau composite comprenant des résines synthétiques et du cuivre en poudre.
  7. Un dispositif de chauffage par induction suivant la revendication 1 dans lequel ledit matériau conducteur de chaleur mais non conducteur d'électricité est un matériau composite comprenant des résines synthétiques et de l'aluminium en poudre.
  8. Un dispositif de chauffage par induction suivant la revendication 1 dans lequel lesdits tubes concentrateurs sont connectés à un système de circulation de liquide pour refroidir ledit dispositif de chauffage chauffé par effet Joule à la surface desdits tubes à l'intérieur de ladite bobine, et auquel l'environnement extérieur contribue.
  9. Un système de chauffage pour chauffer une surface mobile faite d'un matériau conducteur d'électricité, ledit système comprenant plusieurs dispositifs de chauffage par induction suivant la revendication 1, lesdits dispositifs de chauffage étant positionnés en travers de la direction de mouvement dudit matériau conducteur d'électricité à partir de ses rebords opposés.
  10. Un système de chauffage suivant la revendication 9 dans lequel ladite surface mobile est une surface extérieure d'un rouleau de chauffage utilisé dans le traitement par chaleur de matériaux en forme de pellicule.
  11. Un dispositif de chauffage par induction suivant la revendication 1 dans lequel lesdits dispositifs de chauffage ont chacun une surface d'induction de forme rectangulaire, lesdites surfaces d'induction desdits plusieurs dispositifs de chauffage étant positionnées de façon alternée, décalée et côte-à-côte le long dudit rouleau de chauffage.
EP19910118152 1990-10-25 1991-10-24 Electromagnetic inductor with ferrite core for heating electric conducting material Withdrawn EP0482635A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/603,150 US5101086A (en) 1990-10-25 1990-10-25 Electromagnetic inductor with ferrite core for heating electrically conducting material
US603150 1990-10-25

Publications (2)

Publication Number Publication Date
EP0482635A2 true EP0482635A2 (fr) 1992-04-29
EP0482635A3 EP0482635A3 (en) 1993-02-03

Family

ID=24414287

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19910118152 Withdrawn EP0482635A3 (en) 1990-10-25 1991-10-24 Electromagnetic inductor with ferrite core for heating electric conducting material

Country Status (3)

Country Link
US (1) US5101086A (fr)
EP (1) EP0482635A3 (fr)
CA (1) CA2093786A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1768462A3 (fr) * 2003-07-02 2007-09-26 iTherm Technologies LP Systemes et procedes de chauffage

Families Citing this family (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3934208C2 (de) * 1989-10-13 1994-02-17 Kuesters Eduard Maschf Spulenkörper für die induktive Beheizung von Walzen
US5847370A (en) * 1990-06-04 1998-12-08 Nordson Corporation Can coating and curing system having focused induction heater using thin lamination cores
US5410132A (en) 1991-10-15 1995-04-25 The Boeing Company Superplastic forming using induction heating
US5793024A (en) 1991-04-05 1998-08-11 The Boeing Company Bonding using induction heating
US5728309A (en) 1991-04-05 1998-03-17 The Boeing Company Method for achieving thermal uniformity in induction processing of organic matrix composites or metals
US5624594A (en) 1991-04-05 1997-04-29 The Boeing Company Fixed coil induction heater for thermoplastic welding
US5645744A (en) 1991-04-05 1997-07-08 The Boeing Company Retort for achieving thermal uniformity in induction processing of organic matrix composites or metals
US5641422A (en) 1991-04-05 1997-06-24 The Boeing Company Thermoplastic welding of organic resin composites using a fixed coil induction heater
US5808281A (en) 1991-04-05 1998-09-15 The Boeing Company Multilayer susceptors for achieving thermal uniformity in induction processing of organic matrix composites or metals
US5723849A (en) 1991-04-05 1998-03-03 The Boeing Company Reinforced susceptor for induction or resistance welding of thermoplastic composites
US7126096B1 (en) 1991-04-05 2006-10-24 Th Boeing Company Resistance welding of thermoplastics in aerospace structure
US5444220A (en) * 1991-10-18 1995-08-22 The Boeing Company Asymmetric induction work coil for thermoplastic welding
US5508496A (en) * 1991-10-18 1996-04-16 The Boeing Company Selvaged susceptor for thermoplastic welding by induction heating
US5500511A (en) * 1991-10-18 1996-03-19 The Boeing Company Tailored susceptors for induction welding of thermoplastic
JPH05115536A (ja) * 1991-10-25 1993-05-14 Tome Sangyo Kk コンタクトレンズ用処理装置およびそれに用いるコンタクトレンズ処理容器
US5613505A (en) * 1992-09-11 1997-03-25 Philip Morris Incorporated Inductive heating systems for smoking articles
US5418069A (en) * 1993-11-10 1995-05-23 Learman; Thomas J. Formable composite magnetic flux concentrator and method of making the concentrator
US5529747A (en) * 1993-11-10 1996-06-25 Learflux, Inc. Formable composite magnetic flux concentrator and method of making the concentrator
US5461215A (en) * 1994-03-17 1995-10-24 Massachusetts Institute Of Technology Fluid cooled litz coil inductive heater and connector therefor
US5710412A (en) * 1994-09-28 1998-01-20 The Boeing Company Fluid tooling for thermoplastic welding
US5660669A (en) * 1994-12-09 1997-08-26 The Boeing Company Thermoplastic welding
US5573613A (en) * 1995-01-03 1996-11-12 Lunden; C. David Induction thermometry
US5486684A (en) * 1995-01-03 1996-01-23 The Boeing Company Multipass induction heating for thermoplastic welding
US5584419A (en) * 1995-05-08 1996-12-17 Lasko; Bernard C. Magnetically heated susceptor
US6602810B1 (en) 1995-06-06 2003-08-05 The Boeing Company Method for alleviating residual tensile strain in thermoplastic welds
US5717191A (en) * 1995-06-06 1998-02-10 The Boeing Company Structural susceptor for thermoplastic welding
US5705795A (en) * 1995-06-06 1998-01-06 The Boeing Company Gap filling for thermoplastic welds
US5756973A (en) * 1995-06-07 1998-05-26 The Boeing Company Barbed susceptor for improviing pulloff strength in welded thermoplastic composite structures
US5829716A (en) * 1995-06-07 1998-11-03 The Boeing Company Welded aerospace structure using a hybrid metal webbed composite beam
US5556565A (en) * 1995-06-07 1996-09-17 The Boeing Company Method for composite welding using a hybrid metal webbed composite beam
US5660753A (en) * 1995-06-16 1997-08-26 Lingnau; David Grant Apparatus for high frequency induction heating for the removal of coatings from metal surfaces
US5660754A (en) * 1995-09-08 1997-08-26 Massachusetts Institute Of Technology Induction load balancer for parallel heating of multiple parts
US5760379A (en) * 1995-10-26 1998-06-02 The Boeing Company Monitoring the bond line temperature in thermoplastic welds
US5786575A (en) * 1995-12-20 1998-07-28 Gas Research Institute Wrap tool for magnetic field-responsive heat-fusible pipe couplings
US5916469A (en) * 1996-06-06 1999-06-29 The Boeing Company Susceptor integration into reinforced thermoplastic composites
US5869814A (en) * 1996-07-29 1999-02-09 The Boeing Company Post-weld annealing of thermoplastic welds
US5902935A (en) * 1996-09-03 1999-05-11 Georgeson; Gary E. Nondestructive evaluation of composite bonds, especially thermoplastic induction welds
US6747252B2 (en) 1996-11-15 2004-06-08 Kenneth J. Herzog Multiple head induction sealer apparatus and method
US6412252B1 (en) * 1996-11-15 2002-07-02 Kaps-All Packaging Systems, Inc. Slotted induction heater
US6633480B1 (en) 1997-11-07 2003-10-14 Kenneth J. Herzog Air-cooled induction foil cap sealer
US6092643A (en) * 1997-11-07 2000-07-25 Herzog; Kenneth Method and apparatus for determining stalling of a procession of moving articles
US6284089B1 (en) 1997-12-23 2001-09-04 The Boeing Company Thermoplastic seam welds
CA2265297C (fr) 1998-03-31 2002-10-29 Illinois Tool Works Inc. Methode et appareil de soudure
US6229126B1 (en) * 1998-05-05 2001-05-08 Illinois Tool Works Inc. Induction heating system with a flexible coil
GB2325982B (en) * 1998-05-20 1999-08-04 Valro Mfg Ltd Portable induction heater
JP2002527227A (ja) 1998-10-15 2002-08-27 ラスコ,バーナード,シー. グルーガンの制御方式
EP1071103B1 (fr) * 1999-07-23 2008-10-08 POWER ONE ITALY S.p.A. Procédé de fabrication d'enroulements pour composants inductifs, et composants ainsi obtenus
US6255633B1 (en) 1999-12-28 2001-07-03 Toshiba Tec Kabushiki Kaisha Fixing device using induction heating
US6512212B1 (en) 2000-10-30 2003-01-28 Thermomedics International Inc. Heater with removable cartridge
FI109958B (fi) * 2000-12-27 2002-10-31 Metso Paper Automation Oy Jäähdytetty induktiokuumennuskäämi
US6713735B2 (en) * 2000-12-29 2004-03-30 Lepel Corp. Induction foil cap sealer
US6727483B2 (en) * 2001-08-27 2004-04-27 Illinois Tool Works Inc. Method and apparatus for delivery of induction heating to a workpiece
US6956189B1 (en) 2001-11-26 2005-10-18 Illinois Tool Works Inc. Alarm and indication system for an on-site induction heating system
US7015439B1 (en) 2001-11-26 2006-03-21 Illinois Tool Works Inc. Method and system for control of on-site induction heating
US6713737B1 (en) 2001-11-26 2004-03-30 Illinois Tool Works Inc. System for reducing noise from a thermocouple in an induction heating system
US8038931B1 (en) 2001-11-26 2011-10-18 Illinois Tool Works Inc. On-site induction heating apparatus
US6911089B2 (en) 2002-11-01 2005-06-28 Illinois Tool Works Inc. System and method for coating a work piece
US20040084443A1 (en) * 2002-11-01 2004-05-06 Ulrich Mark A. Method and apparatus for induction heating of a wound core
EP1416772A1 (fr) * 2002-11-04 2004-05-06 Schärer Schweiter Mettler AG Rouleau chauffé par induction
US7022951B2 (en) * 2002-11-18 2006-04-04 Comaintel, Inc. Induction heating work coil
JP2004206920A (ja) * 2002-12-24 2004-07-22 Canon Inc 加熱装置
US7498549B2 (en) * 2003-10-24 2009-03-03 Raytheon Company Selective layer millimeter-wave surface-heating system and method
US20050092738A1 (en) * 2003-10-31 2005-05-05 Ring Edmund J. Inductive heating device including an inductive coupling assembly
US8803044B2 (en) * 2003-11-05 2014-08-12 Baxter International Inc. Dialysis fluid heating systems
US20050230379A1 (en) * 2004-04-20 2005-10-20 Vianney Martawibawa System and method for heating a workpiece during a welding operation
JP4842946B2 (ja) * 2004-06-10 2011-12-21 エービービー・リミテッド 誘導式カレンダリング・コントロール・アクチュエータ・システムの中の水冷式パワーモジュールのための方法及び装置
US7449663B2 (en) * 2006-08-16 2008-11-11 Itherm Technologies, L.P. Inductive heating apparatus and method
US7723653B2 (en) * 2006-08-16 2010-05-25 Itherm Technologies, Lp Method for temperature cycling with inductive heating
US7718935B2 (en) * 2006-08-16 2010-05-18 Itherm Technologies, Lp Apparatus and method for inductive heating of a material in a channel
US7540316B2 (en) 2006-08-16 2009-06-02 Itherm Technologies, L.P. Method for inductive heating and agitation of a material in a channel
KR101254472B1 (ko) * 2006-08-31 2013-04-12 개리 앤. 소르티노 접합 헤드 조립체 및 시스템
US7731689B2 (en) 2007-02-15 2010-06-08 Baxter International Inc. Dialysis system having inductive heating
DE502008001112D1 (de) 2007-09-21 2010-09-23 Soudronic Ag Vorrichtung und Verfahren zum induktiven Erwärmen eines elektrisch leitenden Werkstücks
EP2100525A1 (fr) 2008-03-14 2009-09-16 Philip Morris Products S.A. Système de génération d'aérosol à chauffage électrique et procédé
EP2110034A1 (fr) 2008-04-17 2009-10-21 Philip Morris Products S.A. Système de fumage chauffé électriquement
EP2253233A1 (fr) 2009-05-21 2010-11-24 Philip Morris Products S.A. Système de fumage chauffé électriquement
EP2327318A1 (fr) 2009-11-27 2011-06-01 Philip Morris Products S.A. Système de fumage chauffé électriquement doté d'un chauffage interne ou externe
WO2012019925A1 (fr) * 2010-08-09 2012-02-16 Tetra Laval Holdings & Finance S.A. Inducteur de scellement de boîtiers
MX2013003285A (es) * 2010-09-23 2013-05-30 Radyne Corp Tratamiento termico por induccion electrica de piezas de trabajo longitudinalmente orientadas.
CN102456475A (zh) * 2010-10-19 2012-05-16 通用电气公司 磁性元件
US10040143B2 (en) 2012-12-12 2018-08-07 Illinois Tool Works Inc. Dabbing pulsed welding system and method
USD719596S1 (en) 2012-12-20 2014-12-16 Sfs Intec Holding Ag Induction apparatus
US10906114B2 (en) 2012-12-21 2021-02-02 Illinois Tool Works Inc. System for arc welding with enhanced metal deposition
US9950383B2 (en) 2013-02-05 2018-04-24 Illinois Tool Works Inc. Welding wire preheating system and method
US10835983B2 (en) 2013-03-14 2020-11-17 Illinois Tool Works Inc. Electrode negative pulse welding system and method
US11045891B2 (en) 2013-06-13 2021-06-29 Illinois Tool Works Inc. Systems and methods for anomalous cathode event control
US10828728B2 (en) 2013-09-26 2020-11-10 Illinois Tool Works Inc. Hotwire deposition material processing system and method
CN103689812A (zh) * 2013-12-30 2014-04-02 深圳市合元科技有限公司 烟雾生成装置以及包括该烟雾生成装置的电子烟
US11154946B2 (en) 2014-06-30 2021-10-26 Illinois Tool Works Inc. Systems and methods for the control of welding parameters
US11198189B2 (en) 2014-09-17 2021-12-14 Illinois Tool Works Inc. Electrode negative pulse welding system and method
US11478870B2 (en) 2014-11-26 2022-10-25 Illinois Tool Works Inc. Dabbing pulsed welding system and method
US10189106B2 (en) 2014-12-11 2019-01-29 Illinois Tool Works Inc. Reduced energy welding system and method
US10638554B2 (en) * 2014-12-23 2020-04-28 Illinois Tool Works Inc. Systems and methods for interchangeable induction heating systems
US11370050B2 (en) 2015-03-31 2022-06-28 Illinois Tool Works Inc. Controlled short circuit welding system and method
US11285559B2 (en) 2015-11-30 2022-03-29 Illinois Tool Works Inc. Welding system and method for shielded welding wires
US10610946B2 (en) 2015-12-07 2020-04-07 Illinois Tool Works, Inc. Systems and methods for automated root pass welding
US10675699B2 (en) 2015-12-10 2020-06-09 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
US10104805B2 (en) 2016-05-09 2018-10-16 The United States Of America As Represented By The Secretary Of The Army Self cooling stretchable electrical circuit having a conduit forming an electrical component and containing electrically conductive liquid
US10766092B2 (en) 2017-04-18 2020-09-08 Illinois Tool Works Inc. Systems, methods, and apparatus to provide preheat voltage feedback loss protection
US10870164B2 (en) 2017-05-16 2020-12-22 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
EP3634683B1 (fr) 2017-06-09 2022-03-23 Illinois Tool Works, Inc. Ensemble de soudage pour un chalumeau de soudage, avec deux pointes de contact et un corps de refroidissement pour refroidir et conduire un courant
US11590598B2 (en) 2017-06-09 2023-02-28 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
US11524354B2 (en) 2017-06-09 2022-12-13 Illinois Tool Works Inc. Systems, methods, and apparatus to control weld current in a preheating system
CN111315524A (zh) 2017-06-09 2020-06-19 伊利诺斯工具制品有限公司 具有两个触头和用于将电流传导至触头的多个液冷组件的焊接炬
WO2018227195A1 (fr) 2017-06-09 2018-12-13 Illinois Tool Works Inc. Chalumeau de soudage doté d'une première pointe de contact pour préchauffer un fil de soudage et d'une seconde pointe de contact
US11020813B2 (en) 2017-09-13 2021-06-01 Illinois Tool Works Inc. Systems, methods, and apparatus to reduce cast in a welding wire
WO2020047438A1 (fr) 2018-08-31 2020-03-05 Illinois Tool Works Inc. Systèmes de soudage à l'arc non apparent et chalumeaux de soudage à l'arc non apparent pour le préchauffage résistif d'un fil d'électrode
US11014185B2 (en) 2018-09-27 2021-05-25 Illinois Tool Works Inc. Systems, methods, and apparatus for control of wire preheating in welding-type systems
CN113474113A (zh) 2018-12-19 2021-10-01 伊利诺斯工具制品有限公司 接触端头、焊丝预加热组件、接触端头组件和自耗电极送给焊接型系统
US11772182B2 (en) 2019-12-20 2023-10-03 Illinois Tool Works Inc. Systems and methods for gas control during welding wire pretreatments
JP7196341B2 (ja) * 2020-01-29 2022-12-26 Primetals Technologies Japan株式会社 圧延機及び金属板の圧延方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB715714A (en) * 1951-06-22 1954-09-22 Deutsche Edelstahlwerke Ag Improvements in and relating to induction heating apparatus
FR2412401A1 (fr) * 1977-11-02 1979-07-20 Kommunarsk Gorno Metallurg Appareil de vulcanisation pour la reparation des articles en caoutchouc et notamment des cables electriques
EP0196264A2 (fr) * 1985-03-27 1986-10-01 Beloit Corporation Configuration d'inducteur pour le chauffage par courant de Foucault dans le processus de fabrication de papier
GB2226221A (en) * 1988-12-15 1990-06-20 Blum Gmbh & Co E Inductively heated apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985001532A1 (fr) * 1983-10-03 1985-04-11 Valmet Oy Procede et dispositif de chauffage electromagnetique d'un cylindre, en particulier un cylindre de calandre, utilise dans la fabrication du papier ou d'autres produits en forme de bande
FR2566986B1 (fr) * 1984-06-28 1986-09-19 Electricite De France Dispositif a induction electromagnetique pour le chauffage d'elements metalliques
US4602140A (en) * 1984-11-01 1986-07-22 Mangels Industrial S.A. Induction fluid heater
GB2205720B (en) * 1987-06-10 1991-01-02 Electricity Council Induction heater
FR2630612B1 (fr) * 1988-04-26 1996-05-24 Siderurgie Fse Inst Rech Dispositif de protection des poles d'inducteurs et inducteur pourvu de ce dispositif

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB715714A (en) * 1951-06-22 1954-09-22 Deutsche Edelstahlwerke Ag Improvements in and relating to induction heating apparatus
FR2412401A1 (fr) * 1977-11-02 1979-07-20 Kommunarsk Gorno Metallurg Appareil de vulcanisation pour la reparation des articles en caoutchouc et notamment des cables electriques
EP0196264A2 (fr) * 1985-03-27 1986-10-01 Beloit Corporation Configuration d'inducteur pour le chauffage par courant de Foucault dans le processus de fabrication de papier
GB2226221A (en) * 1988-12-15 1990-06-20 Blum Gmbh & Co E Inductively heated apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1768462A3 (fr) * 2003-07-02 2007-09-26 iTherm Technologies LP Systemes et procedes de chauffage
US7767941B2 (en) 2003-07-02 2010-08-03 Valery Kagan Inductive heating method utilizing high frequency harmonics and intermittent cooling

Also Published As

Publication number Publication date
EP0482635A3 (en) 1993-02-03
US5101086A (en) 1992-03-31
CA2093786A1 (fr) 1992-04-26

Similar Documents

Publication Publication Date Title
EP0482635A2 (fr) Inducteur électromagnétique à noyau en ferrite servant à chauffer un matériau conducteur d&#39;électricité
BE1013307A3 (fr) Foyer de cuisson par induction modulable a rayonnement reduit et procede de realisation.
CA2620883C (fr) Dispositif de transformation de materiaux utilisant un chauffage par induction
JP5566286B2 (ja) 熱エネルギを電気エネルギに変換する方法
EP2883006B1 (fr) Dispositif de chauffage par induction d&#39;un chauffe-eau et chauffe-eau muni d&#39;un tel dispositif
AU2003283108B2 (en) Apparatus for inductive and resistive heating of an object
US6847019B2 (en) Induction heating roller device, heating roller for induction heating roller device, fixing apparatus and image forming apparatus
FR2726963A1 (fr) Foyer de cuisson a induction
US6781100B2 (en) Method for inductive and resistive heating of an object
AU646466B2 (en) Electromagnetic device for heating metal elements
FR2726961A1 (fr) Foyer de cuisson a inducteur protege en temperature
FR2979047A1 (fr) Dispositf pour l&#39;ajustement du facteur qualite d&#39;un systeme de chauffage par induction notamment un moule a chauffage autonome
WO2015018734A1 (fr) Chauffe-eau
EP2883005B1 (fr) Ensemble formé d&#39;un chauffe-eau comportant un corps de chauffe comprenant un volume d&#39;eau et d&#39;au moins un générateur d&#39;un module inductif dédié à un appareil électrique
WO2004047494B1 (fr) Bobine de travail a chauffage par induction
RU2804020C2 (ru) Устройство выработки аэрозоля и способ его работы
EP0563374A1 (fr) Chauffage a double surface
FR2740645A1 (fr) Bobinage inducteur multibrin a toronnage de type litz pour foyer de cuisson par induction
CN100484341C (zh) 一种集流感应加热器
EP1612620A1 (fr) Unité de fusion de toner avec chauffage par resistance et induction
US20060181270A1 (en) Asynchronous generator with galvano-magnetic-thermal effect
CN206653674U (zh) 一种滚轮
EP0129160A2 (fr) Dispositif de chauffage de produits métalliques au défilé par induction
EP2928266A1 (fr) Chauffage par induction haute puissance
FR2530834A1 (fr) Support d&#39;informations therm

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19930726

17Q First examination report despatched

Effective date: 19940923

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19960820