EP0479482B1 - Electrosurgical laparoscopic cauterisation electrode - Google Patents

Electrosurgical laparoscopic cauterisation electrode Download PDF

Info

Publication number
EP0479482B1
EP0479482B1 EP91308724A EP91308724A EP0479482B1 EP 0479482 B1 EP0479482 B1 EP 0479482B1 EP 91308724 A EP91308724 A EP 91308724A EP 91308724 A EP91308724 A EP 91308724A EP 0479482 B1 EP0479482 B1 EP 0479482B1
Authority
EP
European Patent Office
Prior art keywords
electrode
blade
shaft
electrical
electrode according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91308724A
Other languages
German (de)
French (fr)
Other versions
EP0479482A1 (en
Inventor
Peter Fan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MegaDyne Medical Products Inc
Original Assignee
MegaDyne Medical Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MegaDyne Medical Products Inc filed Critical MegaDyne Medical Products Inc
Publication of EP0479482A1 publication Critical patent/EP0479482A1/en
Application granted granted Critical
Publication of EP0479482B1 publication Critical patent/EP0479482B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1482Probes or electrodes therefor having a long rigid shaft for accessing the inner body transcutaneously in minimal invasive surgery, e.g. laparoscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00107Coatings on the energy applicator
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1412Blade

Definitions

  • the present invention relates to a surgical electrode for use in laparoscopic surgery.
  • Laparoscopy has long been a standard form of treatment for gynecologic diseases and more recently has shown some promise in general surgical disorders. For example, certain abdominal disorders such as cholelithiasis, appendicitis, and intra-abdominal adhesions.
  • abdominal disorders such as cholelithiasis, appendicitis, and intra-abdominal adhesions.
  • the use of laparoscopy in general surgery has increased in recent years with the increased usage of laser energy for cutting and coagulation.
  • Other modes of cutting energy include scissors, endothermic and electrical energy.
  • trocars are sleeves which are inserted through a body opening which may be a surgically made opening or portal through the skin, muscle and peritoneal membrane.
  • the trocar typically has an inside diameter of 10 millimeters.
  • the instrument for insertion through the trocar typically has an outside diameter of about 5 millimeters.
  • the body cavity, such as the abdominal peritoneal area is inflated with low pressure carbon dioxide.
  • An insufflation pressure of about 12 millimeters of HG or less is maintained during the operation by a sealing membrane located in the trocar opening comprising a thin rubber material having a small diameter hole of approximately 3 millimeters therein.
  • the 5 millimeter diameter instrument is inserted through the membrane hole which stretches to accommodate the larger size thereby forming and effective seal.
  • Scissors are useful and can be manipulated within the body cavity, however, the dissection with the use of scissors does not simultaneously cauterize and requires additional steps to stop the bleeding and to keep the operating area clear of blood. Where electrical cauterizing energy is used at the scissor blades, tissue sticks to the blades and pulls loose causing bleeding and requiring a repeated removal of the scissors for cleaning.
  • hook electrodes are used to go around a structure or tissue such as a duct or an artery, thereby pulling the structure away from surrounding tissue while the electrical energy is applied. This often results in cumbersome procedures for engaging and then disengaging the electrode to complete the surgical procedure.
  • a Hook electrode may be used to pull tissue sideways to the right or to the left, but in changing from one to the other, the hook electrode must be turned 180° along its long axis, making it inconvenient to use.
  • Spatula electrodes are pointed instruments having one concave surface and an opposed convex surface, and typically have a hole through the face of the spade-shaped tip to allow smoke to escape. Spatula electrodes are not well adapted for pushing or pulling tissues for the separation thereof because of the curved edges of the blade which terminates at a point and also because of the surface convexity and concavity, and they cannot pull tissue edgeways, or hold tissue with a edgeways pull.
  • the invention comprises a cauterizing and dissecting electrode with a specially designed operative means such as a tip or blade.
  • the electrode is specially elongated and is insulated along its length for use in deep laparoscopic procedures. The effective use is facilitated with a hand operated switch for applying electrical energy from a power source.
  • the various features of the electrode in one or more unique combinations provide unique and obvious advantages for laparoscopic surgery.
  • an electrode for performing laparoscopic procedures comprising an electrically conductive electrode shaft, having a proximal end and a distal end, the proximal end being adapted for electrical connection to a power source and the distal end having a blade associated therewith, and insulating means for providing both electrical and thermal insulation and abrasion resistance along the electrode shaft between the proximal and distal ends thereof, wherein the blade has substantially parallel flat sides, substantially parallel straight side edges, a blunt nose and rounded corners between the nose and the straight edges, and is entirely coated in non-stick material.
  • the laparoscopic instrument allows the laparoscopic instrument to be used for multiple functions during surgery rather than just for a single function as with previously known electrodes.
  • the broad surface of the flat blade can be used for electro-cautery of large bleeder areas.
  • the thin edge of the blade can be used simultaneously for cutting and cauterizing, the blunt and almost square nose can be used effectively for blunt dissection, allowing the proper plane of separation to be easily followed; as for example, when a Gall-bladder is removed from its bed within the liver.
  • the entire length of the long electrode shaft is provided with an insulative coating between the proximal end and the distal end of the electrode.
  • the insulative coating advantageously extends downward partially along the length of the thin flat blade surface leaving only a short portion of the blade exposed for application of RF electrical energy during surgery.
  • the long electrically insulated shaft allows sufficient leverage for manual manipulation of tissues into proper position and for blunt dissection.
  • the straight flat edge of the blade can be used to hold fibrous strands or the peritoneal coat in position while cautery is applied at the exposed tip, especially in an edgeways manner.
  • the unique and advantageous configuration is further facilitated in that tip is coated with a non-stick coating such as teflon, having a substantially uniform thickness which permits the application of RF electrical energy for cauterization.
  • the entire electrode including length, insulated shaft and teflon coated blade is designed to minimize tissue charring and tissue sticking to the electrode, continuous and repeated withdrawal for cleaning is not required as with exposed metal cauterization electrodes.
  • Adapting the electro-surgical laparoscopic instrument for use with a hand switch as opposed to previously known foot switches advantageously permits the use of only hand-eye coordination and does not require hand-eye-foot coordination which is typically less precise. Often when using a foot switch, much time is wasted in fumbling around with the foot and having to take the eyes away from the video screen to look for the foot switch.
  • firing of the laser almost invariably results in the blurring of the laparoscopic video screen because of the high energy discharge, molecular ionization, and high frequency electromagnetic wave forms resulting from the laser.
  • the complexity of a laser machine reduces its reliability and break downs can result in the middle of a surgical procedure.
  • the time to repair of "down-time" is usually significant.
  • the target for laser cauterization has to be clearly and directly exposed as laser light will not go sideways, around corners, or up and under and around soft tissues.
  • the inventive long leverage solid insulated probe can easily push past soft tissues, hold them in place and cut and cauterize only the intended area.
  • Fig. 1 shows a schematic prospective view of an electro surgical laparoscopic cauterization electrode 10.
  • the electrode has a proximal end 12 adapted for electrical connection with a hand-held RF electrical source pencil 14.
  • a hand-held pencil is used with a hand or finger operated switch (not shown) for returning the transfer of RF electrical energy to the electrode.
  • a blade 16 is formed on the distal end of the electrode so that an over all length 18 is provided which is sufficiently long to extend from the exterior to the interior of a body cavity for performing a deep laparoscopic surgery.
  • the over all length 18 includes the electrical connection end 12 length 19 plus the electrode body 10 length 20 plus the blade 16 length 21.
  • the electrode shaft body 10 can be formed of stainless steel and is preferably a solid rod or a sufficiently thick-walled tube to provide adequate strength for the leverage provided by the uniquely long length, preferably the length will be in the range of about 18 cm (7 inches) to about 41 cm (about 16 inches).
  • An insulating coating 22 which may advantageously be formed of an electrically insulative plastic tubing which is tightly fitted onto electrode shaft 10 as for example by shrink-fitting where otherwise shrinking the insulation material tightly onto the shaft hand once it is in position. While the insulation 22 need only extend along length 20 to blade 16 in order to be useful (as will be explained further with respect to Fig. 6 below) it has been found to be advantageous to provide extended insulation material 24 partially along the length 21 of blade 16. Again, insulative coating 24 is tightly fitted and flattened onto the blade surface 26 as by thermal or heat shrink-fit as with insulative coating 22.
  • insulative coating 24 is integrally formed with coating 22 and extends close to the end of Blade 16; preferably, within about 5 mm (about 1/4 inch) from the end of blade 16.
  • Fig. 2 is a partial side plan view of blade 16 of electrode 10 and Fig. 3 is a cross-sectional view of blade 16 of electrode 10 taken along section line 3-3, further details of the construction of the preferred embodiment can be seen.
  • the blade 16 has a portion which extends beyond insulative coating 22 and extended insulative coating portion 24.
  • the blade 16 has a substantially parallel flat side portions 26 and 27 and a thin blunted edge portions 28 and 29. There is a blunted almost square tip portion which interconnects with edge 28 at rounded corners 31 and 32.
  • Fig. 2 is a partial side plan view of blade 16 of electrode 10
  • Fig. 3 is a cross-sectional view of blade 16 of electrode 10 taken along section line 3-3
  • blade 16 is physically configured according to the present invention to advantageously perform electro-surgical operations including having the extended insulative coating 24 which allows the use of an insulated side portion 33 and an insulated edge portion 35 for pushing and holding tissues without applying electrical energy there too. Yet the nose portion 30 which is exposed metal for application of RF frequency electricity allows application of RF electrical energy to the tissues to be cut or cauterized.
  • the further advantageous construction including a non-stick coating 34 is depicted in partial cross-sectional view of Fig. 4 and in cross-sectional view of Fig. 5 taken along section line 5-5.
  • the non-stick coating 34 which may be a teflon or fluorinated hydrocarbon material coating 24 according to U.S. Patent Nos. 4,785,807 and 4,876,110 and completely surrounds the exposed portion of blade 16.
  • the non-stick Teflon coating 34 tapers at 36 so that it is under insulative extension 24 as at 38 thereby avoiding any exposed bare metal electrode 10 which may inadvertently stick to tissues during laparoscopic surgical procedures.
  • the length 18 is sufficiently long for deep surgical operations.
  • the length will be greater than about 18 cm (7 inches) and shorter than about 41 cm (16 inches). This length range allows for sufficient extension into the body cavity for most of the deepest body cavity operations yet allows the operator sufficiently precise blade tip control from a hand held RF electrically energy source pencil.
  • the insulative plastic coating 22 terminates at a distal end 40 substantially adjacent to the blade 16 at a length 21 from the distal tip 30.
  • the electrical connector portion 12 has a smaller diameter than the length 20 and has a taper portion 42 expanding the diameter sufficient such that in combination with the thickness of coating 22 a standard diameter shaft 46 results.
  • the entire diameter 46 and surface of plastic coating 22 is the same diameter along the entire length 20 and is sufficiently smooth to provide an air tight inter-connection through the sealing membrane of a standard trocar with which it may be used (trocar and sealing membrane not shown).

Abstract

A laparoscopic cauterization electrode for connection to a source of appropriate electical power for performing deep surgical operations through an opening in a body such as thorax, perineal abdomen, rectum, or deep gynecological organs or similar body operations, comprising an electrically conductive electrode shaft (18) of a width sized for insertion through the body opening having a proximal (19) and a distal end (21), the proximal the of said electrode adapted for electrical connectivity to the power source and the distal end having teflon-coated operative tip (26) associated therewidth, insulation (24,22) for providing both electrical and thermal insulation and abrasion resistance along the electrode shaft between the proximal and distal ends of the electrode and the electrode shaft being of a sufficient length to extend from the exterior into the interior of a body for performing the deep surgical operations. <IMAGE>

Description

  • The present invention relates to a surgical electrode for use in laparoscopic surgery.
  • Laparoscopy has long been a standard form of treatment for gynecologic diseases and more recently has shown some promise in general surgical disorders. For example, certain abdominal disorders such as cholelithiasis, appendicitis, and intra-abdominal adhesions. The use of laparoscopy in general surgery has increased in recent years with the increased usage of laser energy for cutting and coagulation. Other modes of cutting energy include scissors, endothermic and electrical energy.
  • In general laparoscopy is performed by inserting a scope through one trocar or sheath and a surgical instrument through one or more other trocars or sheaths. The trocars are sleeves which are inserted through a body opening which may be a surgically made opening or portal through the skin, muscle and peritoneal membrane. The trocar typically has an inside diameter of 10 millimeters. The instrument for insertion through the trocar typically has an outside diameter of about 5 millimeters. Often the body cavity, such as the abdominal peritoneal area is inflated with low pressure carbon dioxide. An insufflation pressure of about 12 millimeters of HG or less is maintained during the operation by a sealing membrane located in the trocar opening comprising a thin rubber material having a small diameter hole of approximately 3 millimeters therein. The 5 millimeter diameter instrument is inserted through the membrane hole which stretches to accommodate the larger size thereby forming and effective seal.
  • Each of the forms of cutting energy used in laparoscopy have certain limitations and drawbacks. In particular, laser cutting and coagulation is a slow tedious, time consuming and costly procedure. The instrumentation required is highly sophisticated and expensive. Each pass of the laser beam at safe energy levels results in a shallow cut. Any smoke resulting from the cut and cauterization can interfere with subsequent laser beam passes. The smoke diffuses the energy from the cut area requiring additional time and/or procedures for clearing the body cavity of smoke.
  • Scissors, of course, are useful and can be manipulated within the body cavity, however, the dissection with the use of scissors does not simultaneously cauterize and requires additional steps to stop the bleeding and to keep the operating area clear of blood. Where electrical cauterizing energy is used at the scissor blades, tissue sticks to the blades and pulls loose causing bleeding and requiring a repeated removal of the scissors for cleaning.
  • Endothermic has limited applications and requires complex procedures for its proper usage.
  • The use of electrical energy with prior known blade configurations including hook electrodes and spade electrodes are subject to various common drawbacks as well as specific drawbacks with respect to each type of electrode. Both electrodes can accomplish cutting and cauterizing to a certain degree simultaneously. However, the electrode cutting result in substantial charring of the tissue cut. There is a significant amount of smoke generated within the body cavity, thereby obstructing the view of the surgeon through the laparoscope. Further, on prior known laparoscopic instruments the charred tissue sticks to either the hook or the spatula electrode surface which often causes tearing and pulling of the tissue, thereby re-opening the previous cauterized cut area to bleeding. The build up of tissue on the electrode surface interferes with transfer of electrical energy so that the electrode must be withdrawn periodically and repeatedly for cleaning before continuing the operation.
  • Specifically, hook electrodes, as the name implies, are used to go around a structure or tissue such as a duct or an artery, thereby pulling the structure away from surrounding tissue while the electrical energy is applied. This often results in cumbersome procedures for engaging and then disengaging the electrode to complete the surgical procedure. A Hook electrode may be used to pull tissue sideways to the right or to the left, but in changing from one to the other, the hook electrode must be turned 180° along its long axis, making it inconvenient to use.
  • Spatula electrodes are pointed instruments having one concave surface and an opposed convex surface, and typically have a hole through the face of the spade-shaped tip to allow smoke to escape. Spatula electrodes are not well adapted for pushing or pulling tissues for the separation thereof because of the curved edges of the blade which terminates at a point and also because of the surface convexity and concavity, and they cannot pull tissue edgeways, or hold tissue with a edgeways pull.
  • The invention comprises a cauterizing and dissecting electrode with a specially designed operative means such as a tip or blade. The electrode is specially elongated and is insulated along its length for use in deep laparoscopic procedures. The effective use is facilitated with a hand operated switch for applying electrical energy from a power source. The various features of the electrode in one or more unique combinations provide unique and obvious advantages for laparoscopic surgery.
  • According to the present invention, there is provided an electrode for performing laparoscopic procedures, comprising an electrically conductive electrode shaft, having a proximal end and a distal end, the proximal end being adapted for electrical connection to a power source and the distal end having a blade associated therewith, and insulating means for providing both electrical and thermal insulation and abrasion resistance along the electrode shaft between the proximal and distal ends thereof, wherein the blade has substantially parallel flat sides, substantially parallel straight side edges, a blunt nose and rounded corners between the nose and the straight edges, and is entirely coated in non-stick material.
  • This special shape allows the laparoscopic instrument to be used for multiple functions during surgery rather than just for a single function as with previously known electrodes. For example, the broad surface of the flat blade can be used for electro-cautery of large bleeder areas. The thin edge of the blade can be used simultaneously for cutting and cauterizing, the blunt and almost square nose can be used effectively for blunt dissection, allowing the proper plane of separation to be easily followed; as for example, when a Gall-bladder is removed from its bed within the liver. The entire length of the long electrode shaft is provided with an insulative coating between the proximal end and the distal end of the electrode. The insulative coating advantageously extends downward partially along the length of the thin flat blade surface leaving only a short portion of the blade exposed for application of RF electrical energy during surgery. The long electrically insulated shaft allows sufficient leverage for manual manipulation of tissues into proper position and for blunt dissection. The straight flat edge of the blade can be used to hold fibrous strands or the peritoneal coat in position while cautery is applied at the exposed tip, especially in an edgeways manner. The unique and advantageous configuration is further facilitated in that tip is coated with a non-stick coating such as teflon, having a substantially uniform thickness which permits the application of RF electrical energy for cauterization. The entire electrode including length, insulated shaft and teflon coated blade is designed to minimize tissue charring and tissue sticking to the electrode, continuous and repeated withdrawal for cleaning is not required as with exposed metal cauterization electrodes.
  • Adapting the electro-surgical laparoscopic instrument for use with a hand switch as opposed to previously known foot switches advantageously permits the use of only hand-eye coordination and does not require hand-eye-foot coordination which is typically less precise. Often when using a foot switch, much time is wasted in fumbling around with the foot and having to take the eyes away from the video screen to look for the foot switch.
  • The use of electro-cautery blades in the deep body cavity laparoscopic procedures avoids the high cost of a laser machine including the high cost of maintenance, the high cost of disposable single-use yag laser fibers and saves much wasted nuisance and time. Surgeons are required to be "privileged" in laser use in their own hospital which requires the extra expense of special laser nurses, the need to take special precautions, posting of signs, wearing of special mask, wearing of special goggles and the use of special smoke evacuators as small amounts of cauterization smoke will interfere with the laser beam. Hook up of the machine, warm up and testing also require additional time and technicians in the operating room. Further, firing of the laser almost invariably results in the blurring of the laparoscopic video screen because of the high energy discharge, molecular ionization, and high frequency electromagnetic wave forms resulting from the laser. Further, the complexity of a laser machine reduces its reliability and break downs can result in the middle of a surgical procedure. The time to repair of "down-time" is usually significant. Further, the target for laser cauterization has to be clearly and directly exposed as laser light will not go sideways, around corners, or up and under and around soft tissues. The inventive long leverage solid insulated probe can easily push past soft tissues, hold them in place and cut and cauterize only the intended area.
  • An embodiment of the present invention will now be described with reference to the accompanying drawings, in which:
    • Fig. 1 is a schematic prospective view of the electrode according to the preferred embodiment with a hand-held pencil RF electrical source shown in phantom lines;
    • Fig. 2 is an enlarged side view of the tip of the electrode shown in partial cross-section;
    • Fig. 3 is a cross-sectional view of the enlarged top of Figure 2 along section line 3-3;
    • Fig. 4 is an enlarged side view shown in partial cross-section of a teflon coated tip according to the present prenst invention;
    • Fig 5. is a schematic view of the electrode tip of Figure 4 shown in partial cross-section; and
    • Fig 6. is a side plan view of an alternative embodiment of an electrode according to the present invention.
  • The various other advantages of the inventive laparoscopic cauterization electrode will be described in connection with the drawings and in particular, in connection with Gall-bladder removal or Cholecystectomy.
  • Fig. 1 shows a schematic prospective view of an electro surgical laparoscopic cauterization electrode 10. The electrode has a proximal end 12 adapted for electrical connection with a hand-held RF electrical source pencil 14. Advantageously a hand-held pencil is used with a hand or finger operated switch (not shown) for returning the transfer of RF electrical energy to the electrode. A blade 16 is formed on the distal end of the electrode so that an over all length 18 is provided which is sufficiently long to extend from the exterior to the interior of a body cavity for performing a deep laparoscopic surgery. The over all length 18 includes the electrical connection end 12 length 19 plus the electrode body 10 length 20 plus the blade 16 length 21. The electrode shaft body 10 can be formed of stainless steel and is preferably a solid rod or a sufficiently thick-walled tube to provide adequate strength for the leverage provided by the uniquely long length, preferably the length will be in the range of about 18 cm (7 inches) to about 41 cm (about 16 inches).
  • The shaft body along length 19 is typically exposed so that direct electrical connection can be made between connector end 12 and RF source 14. An insulating coating 22 which may advantageously be formed of an electrically insulative plastic tubing which is tightly fitted onto electrode shaft 10 as for example by shrink-fitting where otherwise shrinking the insulation material tightly onto the shaft hand once it is in position. While the insulation 22 need only extend along length 20 to blade 16 in order to be useful (as will be explained further with respect to Fig. 6 below) it has been found to be advantageous to provide extended insulation material 24 partially along the length 21 of blade 16. Again, insulative coating 24 is tightly fitted and flattened onto the blade surface 26 as by thermal or heat shrink-fit as with insulative coating 22. Advantageously, insulative coating 24 is integrally formed with coating 22 and extends close to the end of Blade 16; preferably, within about 5 mm (about 1/4 inch) from the end of blade 16.
  • With reference to Figures 2 and 3, in which Fig. 2 is a partial side plan view of blade 16 of electrode 10 and Fig. 3 is a cross-sectional view of blade 16 of electrode 10 taken along section line 3-3, further details of the construction of the preferred embodiment can be seen. The blade 16 has a portion which extends beyond insulative coating 22 and extended insulative coating portion 24. In the embodiment shown, the blade 16 has a substantially parallel flat side portions 26 and 27 and a thin blunted edge portions 28 and 29. There is a blunted almost square tip portion which interconnects with edge 28 at rounded corners 31 and 32. In the embodiment as shown in Fig. 3, blade 16 is physically configured according to the present invention to advantageously perform electro-surgical operations including having the extended insulative coating 24 which allows the use of an insulated side portion 33 and an insulated edge portion 35 for pushing and holding tissues without applying electrical energy there too. Yet the nose portion 30 which is exposed metal for application of RF frequency electricity allows application of RF electrical energy to the tissues to be cut or cauterized.
  • With reference to Figures 4 and 5, the further advantageous construction including a non-stick coating 34 is depicted in partial cross-sectional view of Fig. 4 and in cross-sectional view of Fig. 5 taken along section line 5-5. It is seen that the non-stick coating 34 which may be a teflon or fluorinated hydrocarbon material coating 24 according to U.S. Patent Nos. 4,785,807 and 4,876,110 and completely surrounds the exposed portion of blade 16. Preferably the non-stick Teflon coating 34 tapers at 36 so that it is under insulative extension 24 as at 38 thereby avoiding any exposed bare metal electrode 10 which may inadvertently stick to tissues during laparoscopic surgical procedures.
  • With reference to Figure 6, which is a side plan view of a long electro-surgical laparoscopic electrode according to an alternative embodiment of the present invention it can be seen again that the length 18 is sufficiently long for deep surgical operations. Preferably the length will be greater than about 18 cm (7 inches) and shorter than about 41 cm (16 inches). This length range allows for sufficient extension into the body cavity for most of the deepest body cavity operations yet allows the operator sufficiently precise blade tip control from a hand held RF electrically energy source pencil. In the embodiment shown, the insulative plastic coating 22 terminates at a distal end 40 substantially adjacent to the blade 16 at a length 21 from the distal tip 30. In this embodiment the electrical connector portion 12 has a smaller diameter than the length 20 and has a taper portion 42 expanding the diameter sufficient such that in combination with the thickness of coating 22 a standard diameter shaft 46 results. Preferably the entire diameter 46 and surface of plastic coating 22 is the same diameter along the entire length 20 and is sufficiently smooth to provide an air tight inter-connection through the sealing membrane of a standard trocar with which it may be used (trocar and sealing membrane not shown).
  • While the invention has been described in connection with preferred embodiments, it is not intended to limit the scope of the invention to the particular set forth, but, on the contrary, is intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.

Claims (7)

  1. A electrode for performing laparoscopic procedures, comprising an electrically conductive electrode shaft (10), having a proximal end (12) and a distal end (16), the proximal end (12) being adapted for electrical connection to a power source and the distal end having a blade (16) associated therewith, and insulating means (22) for providing both electrical and thermal insulation and abrasion resistance along the electrode shaft (10) between the proximal and distal ends thereof, wherein the blade (16) has substantially parallel flat sides, substantially parallel straight side edges, a blunt nose and rounded corners between the nose and the straight edges, and is entirely coated in non-stick material.
  2. An electrode according to claim 1, wherein said electrode shaft (10) has a length within the range of about 18cm to about 41cm.
  3. An electrode according to claim 1 or 2, wherein the non-stick coating (34) of the blade (16) comprises a layer of polytetraflouroethylene.
  4. An electrode according to claim 1, 2 or 3, wherein the insulating means (22) is a smooth continuous coating of electrical and thermal insulation which terminates adjacent to the proximal end (12) of the shaft so that the shaft is exposed to provide for electrical connection and terminates adjacent the coated blade (16) so that the coated blade (16) is exposed.
  5. An electrode according to any one of claims 1 to 4, wherein the insulating means (22) has an extension terminating partially onto the coated blade (16) such that only a portion of the blade is exposed.
  6. An apparatus for performing laparoscopic procedures, comprising: a trocar or catheter for placing in a body opening, said trocar or catheter having a flexible sealing opening therethrough; and
    an electrode according to any preceding claim, having a circular cross-section shaft (10) sized for sealing slip-fit through said flexible sealing opening in said trocar or catheter.
  7. An apparatus for performing laparoscopic procedures, comprising:
    an RF electrical energy source;
    a handheld pencil (14) electrically connected to said energy source and having an electrical connector for coupling to a working electrode and a hand operated switch for selectively activating or deactivating transmission of RF energy from the energy source to the electrical connector; and
    an electrode according to any one of claims 1 to 5 electrically connected to the pencil by the electrical connector.
EP91308724A 1990-10-05 1991-09-25 Electrosurgical laparoscopic cauterisation electrode Expired - Lifetime EP0479482B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US593194 1990-10-05
US07/593,194 US5100402A (en) 1990-10-05 1990-10-05 Electrosurgical laparoscopic cauterization electrode

Publications (2)

Publication Number Publication Date
EP0479482A1 EP0479482A1 (en) 1992-04-08
EP0479482B1 true EP0479482B1 (en) 1996-05-01

Family

ID=24373769

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91308724A Expired - Lifetime EP0479482B1 (en) 1990-10-05 1991-09-25 Electrosurgical laparoscopic cauterisation electrode

Country Status (7)

Country Link
US (1) US5100402A (en)
EP (1) EP0479482B1 (en)
JP (1) JPH06339485A (en)
AT (1) ATE137399T1 (en)
AU (1) AU637755B2 (en)
CA (1) CA2052657C (en)
DE (1) DE69119177T2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350262B1 (en) 1997-10-22 2002-02-26 Oratec Interventions, Inc. Method and apparatus for applying thermal energy to tissue asymetrically
US6391028B1 (en) 1997-02-12 2002-05-21 Oratec Interventions, Inc. Probe with distally orientated concave curve for arthroscopic surgery
US6461353B1 (en) 1995-02-17 2002-10-08 Oratec Interventions, Inc. Orthopedic apparatus for controlled contraction of collagen tissue
US6482204B1 (en) 1994-05-06 2002-11-19 Oratec Interventions, Inc Method and apparatus for controlled contraction of soft tissue
US6517568B1 (en) 1996-08-13 2003-02-11 Oratec Interventions, Inc. Method and apparatus for treating intervertebral discs
US6638276B2 (en) 2001-06-06 2003-10-28 Oratec Interventions, Inc. Intervertebral disc device employing prebent sheath
US6645203B2 (en) 1997-02-12 2003-11-11 Oratec Interventions, Inc. Surgical instrument with off-axis electrode
US6695839B2 (en) 2001-02-08 2004-02-24 Oratec Interventions, Inc. Method and apparatus for treatment of disrupted articular cartilage
US6726685B2 (en) 2001-06-06 2004-04-27 Oratec Interventions, Inc. Intervertebral disc device employing looped probe
US6733496B2 (en) 2001-06-06 2004-05-11 Oratec Interventions, Inc. Intervertebral disc device employing flexible probe
US6749605B2 (en) 1996-10-23 2004-06-15 Oratec Interventions, Inc. Catheter for delivery of energy to a surgical site
US6832997B2 (en) 2001-06-06 2004-12-21 Oratec Interventions, Inc. Electromagnetic energy delivery intervertebral disc treatment devices
US7718212B2 (en) 2002-12-12 2010-05-18 Innovatech, Llc Anti-microbial electrosurgical electrode and method of manufacturing same
US8814863B2 (en) 2005-05-12 2014-08-26 Innovatech, Llc Electrosurgical electrode and method of manufacturing same
US8814861B2 (en) 2005-05-12 2014-08-26 Innovatech, Llc Electrosurgical electrode and method of manufacturing same

Families Citing this family (230)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6770071B2 (en) * 1995-06-07 2004-08-03 Arthrocare Corporation Bladed electrosurgical probe
US7297145B2 (en) 1997-10-23 2007-11-20 Arthrocare Corporation Bipolar electrosurgical clamp for removing and modifying tissue
US5267994A (en) * 1992-02-10 1993-12-07 Conmed Corporation Electrosurgical probe
US5300070A (en) * 1992-03-17 1994-04-05 Conmed Corporation Electrosurgical trocar assembly with bi-polar electrode
US5762609A (en) * 1992-09-14 1998-06-09 Sextant Medical Corporation Device and method for analysis of surgical tissue interventions
US5772597A (en) * 1992-09-14 1998-06-30 Sextant Medical Corporation Surgical tool end effector
US5380321A (en) * 1992-11-04 1995-01-10 Yoon; Inbae Shielded energy transmitting surgical instrument and methods therefor
US5360427A (en) * 1992-12-18 1994-11-01 Heshmat Majlessi Retractable electro-suction device
US5417687A (en) * 1993-04-30 1995-05-23 Medical Scientific, Inc. Bipolar electrosurgical trocar
US5507742A (en) * 1993-12-02 1996-04-16 Laser Centers Of America Multifunction laser-powered surgical tool with optical electrocautery capability
US5792139A (en) * 1993-12-02 1998-08-11 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with interchangeable surgical tools
CA2138076A1 (en) * 1993-12-17 1995-06-18 Philip E. Eggers Monopolar electrosurgical instruments
US5382247A (en) * 1994-01-21 1995-01-17 Valleylab Inc. Technique for electrosurgical tips and method of manufacture and use
US20050187599A1 (en) * 1994-05-06 2005-08-25 Hugh Sharkey Method and apparatus for controlled contraction of soft tissue
US6837888B2 (en) * 1995-06-07 2005-01-04 Arthrocare Corporation Electrosurgical probe with movable return electrode and methods related thereto
US5702387A (en) * 1995-09-27 1997-12-30 Valleylab Inc Coated electrosurgical electrode
USD377524S (en) * 1995-10-05 1997-01-21 Megadyne Medical Products, Inc. Insulated electrosurgical needle
US5980504A (en) * 1996-08-13 1999-11-09 Oratec Interventions, Inc. Method for manipulating tissue of an intervertebral disc
US6283960B1 (en) 1995-10-24 2001-09-04 Oratec Interventions, Inc. Apparatus for delivery of energy to a surgical site
US6007570A (en) * 1996-08-13 1999-12-28 Oratec Interventions, Inc. Apparatus with functional element for performing function upon intervertebral discs
US5693050A (en) * 1995-11-07 1997-12-02 Aaron Medical Industries, Inc. Electrosurgical instrument
US7267675B2 (en) 1996-01-05 2007-09-11 Thermage, Inc. RF device with thermo-electric cooler
US7473251B2 (en) * 1996-01-05 2009-01-06 Thermage, Inc. Methods for creating tissue effect utilizing electromagnetic energy and a reverse thermal gradient
US20030212393A1 (en) * 1996-01-05 2003-11-13 Knowlton Edward W. Handpiece with RF electrode and non-volatile memory
US7115123B2 (en) * 1996-01-05 2006-10-03 Thermage, Inc. Handpiece with electrode and non-volatile memory
US7229436B2 (en) * 1996-01-05 2007-06-12 Thermage, Inc. Method and kit for treatment of tissue
US7189230B2 (en) * 1996-01-05 2007-03-13 Thermage, Inc. Method for treating skin and underlying tissue
US7452358B2 (en) * 1996-01-05 2008-11-18 Thermage, Inc. RF electrode assembly for handpiece
US7141049B2 (en) * 1999-03-09 2006-11-28 Thermage, Inc. Handpiece for treatment of tissue
US7006874B2 (en) 1996-01-05 2006-02-28 Thermage, Inc. Treatment apparatus with electromagnetic energy delivery device and non-volatile memory
US7022121B2 (en) * 1999-03-09 2006-04-04 Thermage, Inc. Handpiece for treatment of tissue
US7069087B2 (en) 2000-02-25 2006-06-27 Oratec Interventions, Inc. Apparatus and method for accessing and performing a function within an intervertebral disc
US6068628A (en) * 1996-08-20 2000-05-30 Oratec Interventions, Inc. Apparatus for treating chondromalacia
US5800427A (en) * 1996-12-26 1998-09-01 Zamba; Gene Electro-surgical blade
JP2001511048A (en) 1997-02-12 2001-08-07 オーレイテック インターヴェンションズ インコーポレイテッド Electrode for electrosurgical removal of tissue and method of manufacturing the same
US5954716A (en) * 1997-02-19 1999-09-21 Oratec Interventions, Inc Method for modifying the length of a ligament
US5925043A (en) * 1997-04-30 1999-07-20 Medquest Products, Inc. Electrosurgical electrode with a conductive, non-stick coating
DE19741054C1 (en) 1997-09-18 1998-12-17 Aesculap Ag & Co Kg Surgical tubular shaft instrument
US6004320A (en) 1997-09-19 1999-12-21 Oratec Interventions, Inc. Clip on electrocauterizing sheath for orthopedic shave devices
US6214001B1 (en) 1997-09-19 2001-04-10 Oratec Interventions, Inc. Electrocauterizing tool for orthopedic shave devices
US6007533A (en) 1997-09-19 1999-12-28 Oratec Interventions, Inc. Electrocauterizing tip for orthopedic shave devices
US6494881B1 (en) 1997-09-30 2002-12-17 Scimed Life Systems, Inc. Apparatus and method for electrode-surgical tissue removal having a selectively insulated electrode
US6270831B2 (en) 1998-04-30 2001-08-07 Medquest Products, Inc. Method and apparatus for providing a conductive, amorphous non-stick coating
US6132427A (en) * 1998-09-21 2000-10-17 Medicor Corporation Electrosurgical instruments
US6090107A (en) * 1998-10-20 2000-07-18 Megadyne Medical Products, Inc. Resposable electrosurgical instrument
US7449019B2 (en) * 1999-01-25 2008-11-11 Smith & Nephew, Inc. Intervertebral decompression
US20020156471A1 (en) * 1999-03-09 2002-10-24 Stern Roger A. Method for treatment of tissue
US6070444A (en) * 1999-03-31 2000-06-06 Sherwood Services Ag Method of mass manufacturing coated electrosurgical electrodes
US6293946B1 (en) 1999-08-27 2001-09-25 Link Technology, Inc. Non-stick electrosurgical forceps
US6511479B2 (en) 2000-02-28 2003-01-28 Conmed Corporation Electrosurgical blade having directly adhered uniform coating of silicone release material and method of manufacturing same
DE60113150T2 (en) * 2000-12-15 2006-06-29 Sherwood Services Ag ELECTRO-SURGICAL ELECTRODE PROTECTION COLLAR
US6997926B2 (en) * 2002-02-04 2006-02-14 Boston Scientific Scimed, Inc. Resistance heated tissue morcellation
US6757565B2 (en) 2002-02-08 2004-06-29 Oratec Interventions, Inc. Electrosurgical instrument having a predetermined heat profile
AU2003218050A1 (en) 2002-02-11 2003-09-04 Arthrocare Corporation Electrosurgical apparatus and methods for laparoscopy
CA2493556C (en) * 2002-07-25 2012-04-03 Thomas L. Ii Buchman Electrosurgical pencil with drag sensing capability
US6747218B2 (en) 2002-09-20 2004-06-08 Sherwood Services Ag Electrosurgical haptic switch including snap dome and printed circuit stepped contact array
US7244257B2 (en) * 2002-11-05 2007-07-17 Sherwood Services Ag Electrosurgical pencil having a single button variable control
US7150747B1 (en) 2003-01-22 2006-12-19 Smith & Nephew, Inc. Electrosurgical cutter
US7235072B2 (en) * 2003-02-20 2007-06-26 Sherwood Services Ag Motion detector for controlling electrosurgical output
JP4076019B2 (en) * 2003-03-11 2008-04-16 株式会社日本エム・ディ・エム Biological tissue treatment electrode
US7217270B2 (en) * 2003-09-08 2007-05-15 Mectra Labs, Inc. Method and material for coating electro-cautery probes and lubricating surgical instruments
US7241294B2 (en) * 2003-11-19 2007-07-10 Sherwood Services Ag Pistol grip electrosurgical pencil with manual aspirator/irrigator and methods of using the same
US7156844B2 (en) * 2003-11-20 2007-01-02 Sherwood Services Ag Electrosurgical pencil with improved controls
US7156842B2 (en) * 2003-11-20 2007-01-02 Sherwood Services Ag Electrosurgical pencil with improved controls
US7879033B2 (en) 2003-11-20 2011-02-01 Covidien Ag Electrosurgical pencil with advanced ES controls
US7503917B2 (en) 2003-11-20 2009-03-17 Covidien Ag Electrosurgical pencil with improved controls
US20050283149A1 (en) * 2004-06-08 2005-12-22 Thorne Jonathan O Electrosurgical cutting instrument
DE102004030068B3 (en) * 2004-06-23 2005-06-23 Drägerwerk AG Respiration mask for continuous positive airway pressure respiration device with respiration gases supplied via bandage attaching mask to head of patient
US20060095031A1 (en) * 2004-09-22 2006-05-04 Arthrocare Corporation Selectively controlled active electrodes for electrosurgical probe
US20070049928A1 (en) * 2005-02-08 2007-03-01 Fleenor Richard P Nickel titanium alloy electrosurgery instrument
US20060235378A1 (en) * 2005-04-18 2006-10-19 Sherwood Services Ag Slider control for ablation handset
US7500974B2 (en) * 2005-06-28 2009-03-10 Covidien Ag Electrode with rotatably deployable sheath
SE529053C2 (en) 2005-07-08 2007-04-17 Plasma Surgical Invest Ltd Plasma generating device, plasma surgical device and use of a plasma surgical device
SE529058C2 (en) 2005-07-08 2007-04-17 Plasma Surgical Invest Ltd Plasma generating device, plasma surgical device, use of a plasma surgical device and method for forming a plasma
SE529056C2 (en) * 2005-07-08 2007-04-17 Plasma Surgical Invest Ltd Plasma generating device, plasma surgical device and use of a plasma surgical device
US7828794B2 (en) * 2005-08-25 2010-11-09 Covidien Ag Handheld electrosurgical apparatus for controlling operating room equipment
US20080033466A1 (en) * 2006-02-28 2008-02-07 Trans1 Inc. Surgical cutter with exchangeable cutter blades
US8313507B2 (en) * 2006-03-13 2012-11-20 Mini-Lap Technologies, Inc. Minimally invasive rake retractor and method for using same
US7766937B2 (en) 2006-03-13 2010-08-03 Mini-Lap Technologies, Inc. Minimally invasive surgical assembly and methods
US8133255B2 (en) * 2006-03-13 2012-03-13 Mini-Lap Technologies, Inc. Minimally invasive surgical assembly and methods
US20070260240A1 (en) * 2006-05-05 2007-11-08 Sherwood Services Ag Soft tissue RF transection and resection device
US7914528B2 (en) * 2006-12-29 2011-03-29 St. Jude Medical, Atrial Fibrillation Division, Inc. Ablation catheter tip for generating an angled flow
US7928338B2 (en) * 2007-02-02 2011-04-19 Plasma Surgical Investments Ltd. Plasma spraying device and method
US7589473B2 (en) * 2007-08-06 2009-09-15 Plasma Surgical Investments, Ltd. Pulsed plasma device and method for generating pulsed plasma
US8735766B2 (en) * 2007-08-06 2014-05-27 Plasma Surgical Investments Limited Cathode assembly and method for pulsed plasma generation
US8506565B2 (en) * 2007-08-23 2013-08-13 Covidien Lp Electrosurgical device with LED adapter
US8235987B2 (en) * 2007-12-05 2012-08-07 Tyco Healthcare Group Lp Thermal penetration and arc length controllable electrosurgical pencil
US8663218B2 (en) 2008-03-31 2014-03-04 Covidien Lp Electrosurgical pencil including improved controls
US8597292B2 (en) * 2008-03-31 2013-12-03 Covidien Lp Electrosurgical pencil including improved controls
US8636733B2 (en) * 2008-03-31 2014-01-28 Covidien Lp Electrosurgical pencil including improved controls
US8956351B2 (en) 2008-04-09 2015-02-17 Teleflex Medical Incorporated Minimally invasive surgical needle and cauterizing assembly and methods
US8162937B2 (en) * 2008-06-27 2012-04-24 Tyco Healthcare Group Lp High volume fluid seal for electrosurgical handpiece
US8231620B2 (en) * 2009-02-10 2012-07-31 Tyco Healthcare Group Lp Extension cutting blade
US8444642B2 (en) * 2009-04-03 2013-05-21 Device Evolutions, Llc Laparoscopic nephrectomy device
US9326757B2 (en) * 2009-12-31 2016-05-03 Teleflex Medical Incorporated Surgical instruments for laparoscopic aspiration and retraction
US8696672B2 (en) * 2010-01-22 2014-04-15 Baxano Surgical, Inc. Abrading tool for preparing intervertebral disc spaces
US8613742B2 (en) * 2010-01-29 2013-12-24 Plasma Surgical Investments Limited Methods of sealing vessels using plasma
US9089319B2 (en) 2010-07-22 2015-07-28 Plasma Surgical Investments Limited Volumetrically oscillating plasma flows
US9168092B2 (en) 2011-02-17 2015-10-27 Megadyne Medical Products, Inc. Surgical instrument with protective sheath
WO2013028381A1 (en) 2011-08-19 2013-02-28 Cook Medical Technologies Llc Cap for attachment to an endoscope
CA2845528C (en) 2011-08-19 2016-09-27 Cook Medical Technologies Llc Ablation cap
US11871901B2 (en) 2012-05-20 2024-01-16 Cilag Gmbh International Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
US9526570B2 (en) 2012-10-04 2016-12-27 Cook Medical Technologies Llc Tissue cutting cap
US11504192B2 (en) 2014-10-30 2022-11-22 Cilag Gmbh International Method of hub communication with surgical instrument systems
WO2016106878A1 (en) * 2014-12-29 2016-07-07 鑫海合星科技(大连)有限公司 Telescopic light source electric scalpel pen
US10433898B2 (en) 2015-01-13 2019-10-08 Megadyne Medical Products, Inc. Tapered precision blade electrosurgical instrument
US10433899B2 (en) 2015-01-13 2019-10-08 Megadyne Medical Products, Inc. Precision blade electrosurgical instrument
WO2017126050A1 (en) 2016-01-20 2017-07-27 オリンパス株式会社 Treatment tool
KR102133700B1 (en) * 2016-08-25 2020-07-14 메가다인 메디컬 프로덕츠 인코포레이티드 Precision blade electrosurgical instrument
CN113834869A (en) 2016-09-02 2021-12-24 得克萨斯大学体系董事会 Collection probes and methods of use thereof
US11801098B2 (en) 2017-10-30 2023-10-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11291510B2 (en) 2017-10-30 2022-04-05 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11311342B2 (en) 2017-10-30 2022-04-26 Cilag Gmbh International Method for communicating with surgical instrument systems
US11911045B2 (en) 2017-10-30 2024-02-27 Cllag GmbH International Method for operating a powered articulating multi-clip applier
US11129636B2 (en) 2017-10-30 2021-09-28 Cilag Gmbh International Surgical instruments comprising an articulation drive that provides for high articulation angles
US11510741B2 (en) 2017-10-30 2022-11-29 Cilag Gmbh International Method for producing a surgical instrument comprising a smart electrical system
US11564756B2 (en) 2017-10-30 2023-01-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11229436B2 (en) 2017-10-30 2022-01-25 Cilag Gmbh International Surgical system comprising a surgical tool and a surgical hub
US11317919B2 (en) 2017-10-30 2022-05-03 Cilag Gmbh International Clip applier comprising a clip crimping system
US11406390B2 (en) 2017-10-30 2022-08-09 Cilag Gmbh International Clip applier comprising interchangeable clip reloads
EP3717901A4 (en) 2017-11-27 2021-08-25 Board Of Regents, The University Of Texas System Minimally invasive collection probe and methods for the use thereof
US11324557B2 (en) 2017-12-28 2022-05-10 Cilag Gmbh International Surgical instrument with a sensing array
US11069012B2 (en) 2017-12-28 2021-07-20 Cilag Gmbh International Interactive surgical systems with condition handling of devices and data capabilities
US10695081B2 (en) 2017-12-28 2020-06-30 Ethicon Llc Controlling a surgical instrument according to sensed closure parameters
US10987178B2 (en) 2017-12-28 2021-04-27 Ethicon Llc Surgical hub control arrangements
US11056244B2 (en) 2017-12-28 2021-07-06 Cilag Gmbh International Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks
US11432885B2 (en) 2017-12-28 2022-09-06 Cilag Gmbh International Sensing arrangements for robot-assisted surgical platforms
US11464559B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Estimating state of ultrasonic end effector and control system therefor
US11419630B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Surgical system distributed processing
US11571234B2 (en) 2017-12-28 2023-02-07 Cilag Gmbh International Temperature control of ultrasonic end effector and control system therefor
US11540855B2 (en) 2017-12-28 2023-01-03 Cilag Gmbh International Controlling activation of an ultrasonic surgical instrument according to the presence of tissue
US11559307B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method of robotic hub communication, detection, and control
US11109866B2 (en) 2017-12-28 2021-09-07 Cilag Gmbh International Method for circular stapler control algorithm adjustment based on situational awareness
US11266468B2 (en) 2017-12-28 2022-03-08 Cilag Gmbh International Cooperative utilization of data derived from secondary sources by intelligent surgical hubs
US11304699B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11666331B2 (en) 2017-12-28 2023-06-06 Cilag Gmbh International Systems for detecting proximity of surgical end effector to cancerous tissue
US20190201042A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Determining the state of an ultrasonic electromechanical system according to frequency shift
US11160605B2 (en) 2017-12-28 2021-11-02 Cilag Gmbh International Surgical evacuation sensing and motor control
US11424027B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Method for operating surgical instrument systems
US11311306B2 (en) 2017-12-28 2022-04-26 Cilag Gmbh International Surgical systems for detecting end effector tissue distribution irregularities
US11864728B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Characterization of tissue irregularities through the use of mono-chromatic light refractivity
US11291495B2 (en) 2017-12-28 2022-04-05 Cilag Gmbh International Interruption of energy due to inadvertent capacitive coupling
US11278281B2 (en) 2017-12-28 2022-03-22 Cilag Gmbh International Interactive surgical system
US11832840B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical instrument having a flexible circuit
US11659023B2 (en) 2017-12-28 2023-05-23 Cilag Gmbh International Method of hub communication
US11234756B2 (en) 2017-12-28 2022-02-01 Cilag Gmbh International Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter
US10892995B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11179208B2 (en) 2017-12-28 2021-11-23 Cilag Gmbh International Cloud-based medical analytics for security and authentication trends and reactive measures
US11132462B2 (en) 2017-12-28 2021-09-28 Cilag Gmbh International Data stripping method to interrogate patient records and create anonymized record
US11589888B2 (en) 2017-12-28 2023-02-28 Cilag Gmbh International Method for controlling smart energy devices
US10892899B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Self describing data packets generated at an issuing instrument
US11389164B2 (en) 2017-12-28 2022-07-19 Cilag Gmbh International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US11857152B2 (en) 2017-12-28 2024-01-02 Cilag Gmbh International Surgical hub spatial awareness to determine devices in operating theater
US20190201146A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Safety systems for smart powered surgical stapling
US11257589B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes
US11253315B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Increasing radio frequency to create pad-less monopolar loop
US11284936B2 (en) 2017-12-28 2022-03-29 Cilag Gmbh International Surgical instrument having a flexible electrode
US11903601B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Surgical instrument comprising a plurality of drive systems
US11786251B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11446052B2 (en) 2017-12-28 2022-09-20 Cilag Gmbh International Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue
US11559308B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method for smart energy device infrastructure
US11419667B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location
US11410259B2 (en) 2017-12-28 2022-08-09 Cilag Gmbh International Adaptive control program updates for surgical devices
US20190200981A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
US11076921B2 (en) 2017-12-28 2021-08-03 Cilag Gmbh International Adaptive control program updates for surgical hubs
US20190201039A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Situational awareness of electrosurgical systems
US10966791B2 (en) 2017-12-28 2021-04-06 Ethicon Llc Cloud-based medical analytics for medical facility segmented individualization of instrument function
US10944728B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Interactive surgical systems with encrypted communication capabilities
US11744604B2 (en) 2017-12-28 2023-09-05 Cilag Gmbh International Surgical instrument with a hardware-only control circuit
US11364075B2 (en) 2017-12-28 2022-06-21 Cilag Gmbh International Radio frequency energy device for delivering combined electrical signals
US11304720B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Activation of energy devices
US11818052B2 (en) 2017-12-28 2023-11-14 Cilag Gmbh International Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US10943454B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Detection and escalation of security responses of surgical instruments to increasing severity threats
US11308075B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity
US11304745B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical evacuation sensing and display
US20190201113A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Controls for robot-assisted surgical platforms
US11317937B2 (en) 2018-03-08 2022-05-03 Cilag Gmbh International Determining the state of an ultrasonic end effector
US11423007B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Adjustment of device control programs based on stratified contextual data in addition to the data
US11844579B2 (en) 2017-12-28 2023-12-19 Cilag Gmbh International Adjustments based on airborne particle properties
US11051876B2 (en) 2017-12-28 2021-07-06 Cilag Gmbh International Surgical evacuation flow paths
US10849697B2 (en) 2017-12-28 2020-12-01 Ethicon Llc Cloud interface for coupled surgical devices
US11896322B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
US11529187B2 (en) 2017-12-28 2022-12-20 Cilag Gmbh International Surgical evacuation sensor arrangements
US11786245B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Surgical systems with prioritized data transmission capabilities
US11376002B2 (en) 2017-12-28 2022-07-05 Cilag Gmbh International Surgical instrument cartridge sensor assemblies
US11832899B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical systems with autonomously adjustable control programs
US11304763B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use
US11147607B2 (en) 2017-12-28 2021-10-19 Cilag Gmbh International Bipolar combination device that automatically adjusts pressure based on energy modality
US11100631B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Use of laser light and red-green-blue coloration to determine properties of back scattered light
US11576677B2 (en) 2017-12-28 2023-02-14 Cilag Gmbh International Method of hub communication, processing, display, and cloud analytics
US11166772B2 (en) 2017-12-28 2021-11-09 Cilag Gmbh International Surgical hub coordination of control and communication of operating room devices
US11678881B2 (en) 2017-12-28 2023-06-20 Cilag Gmbh International Spatial awareness of surgical hubs in operating rooms
US11096693B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing
US11896443B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Control of a surgical system through a surgical barrier
US11464535B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Detection of end effector emersion in liquid
US11633237B2 (en) 2017-12-28 2023-04-25 Cilag Gmbh International Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
US11202570B2 (en) 2017-12-28 2021-12-21 Cilag Gmbh International Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US10898622B2 (en) 2017-12-28 2021-01-26 Ethicon Llc Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device
US10758310B2 (en) 2017-12-28 2020-09-01 Ethicon Llc Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US11026751B2 (en) 2017-12-28 2021-06-08 Cilag Gmbh International Display of alignment of staple cartridge to prior linear staple line
US11602393B2 (en) 2017-12-28 2023-03-14 Cilag Gmbh International Surgical evacuation sensing and generator control
US11213359B2 (en) 2017-12-28 2022-01-04 Cilag Gmbh International Controllers for robot-assisted surgical platforms
US20190201087A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Smoke evacuation system including a segmented control circuit for interactive surgical platform
US11273001B2 (en) 2017-12-28 2022-03-15 Cilag Gmbh International Surgical hub and modular device response adjustment based on situational awareness
US10932872B2 (en) 2017-12-28 2021-03-02 Ethicon Llc Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set
US11937769B2 (en) 2017-12-28 2024-03-26 Cilag Gmbh International Method of hub communication, processing, storage and display
CN108175928B (en) * 2018-01-15 2020-12-01 苏州创力波科技有限公司 Medicine feeding nursing device for nose of otolaryngological patient
US11259830B2 (en) 2018-03-08 2022-03-01 Cilag Gmbh International Methods for controlling temperature in ultrasonic device
US11701162B2 (en) 2018-03-08 2023-07-18 Cilag Gmbh International Smart blade application for reusable and disposable devices
US11839396B2 (en) 2018-03-08 2023-12-12 Cilag Gmbh International Fine dissection mode for tissue classification
US11207067B2 (en) 2018-03-28 2021-12-28 Cilag Gmbh International Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing
US11219453B2 (en) 2018-03-28 2022-01-11 Cilag Gmbh International Surgical stapling devices with cartridge compatible closure and firing lockout arrangements
US11471156B2 (en) 2018-03-28 2022-10-18 Cilag Gmbh International Surgical stapling devices with improved rotary driven closure systems
US10973520B2 (en) 2018-03-28 2021-04-13 Ethicon Llc Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature
US11090047B2 (en) 2018-03-28 2021-08-17 Cilag Gmbh International Surgical instrument comprising an adaptive control system
US11278280B2 (en) 2018-03-28 2022-03-22 Cilag Gmbh International Surgical instrument comprising a jaw closure lockout
US11129611B2 (en) 2018-03-28 2021-09-28 Cilag Gmbh International Surgical staplers with arrangements for maintaining a firing member thereof in a locked configuration unless a compatible cartridge has been installed therein
US11589865B2 (en) 2018-03-28 2023-02-28 Cilag Gmbh International Methods for controlling a powered surgical stapler that has separate rotary closure and firing systems
US11096688B2 (en) 2018-03-28 2021-08-24 Cilag Gmbh International Rotary driven firing members with different anvil and channel engagement features
US11259807B2 (en) 2019-02-19 2022-03-01 Cilag Gmbh International Staple cartridges with cam surfaces configured to engage primary and secondary portions of a lockout of a surgical stapling device
US11369377B2 (en) 2019-02-19 2022-06-28 Cilag Gmbh International Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout
US11357503B2 (en) 2019-02-19 2022-06-14 Cilag Gmbh International Staple cartridge retainers with frangible retention features and methods of using same
US11751872B2 (en) 2019-02-19 2023-09-12 Cilag Gmbh International Insertable deactivator element for surgical stapler lockouts
US11317915B2 (en) 2019-02-19 2022-05-03 Cilag Gmbh International Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers
USD964564S1 (en) 2019-06-25 2022-09-20 Cilag Gmbh International Surgical staple cartridge retainer with a closure system authentication key
USD952144S1 (en) 2019-06-25 2022-05-17 Cilag Gmbh International Surgical staple cartridge retainer with firing system authentication key
USD950728S1 (en) 2019-06-25 2022-05-03 Cilag Gmbh International Surgical staple cartridge
US11564732B2 (en) 2019-12-05 2023-01-31 Covidien Lp Tensioning mechanism for bipolar pencil
DE102019220537A1 (en) * 2019-12-23 2021-06-24 Albert-Ludwigs-Universität Freiburg Devices for enucleation of intracorporeal tissue areas
EP4205515A2 (en) 2020-08-28 2023-07-05 Plasma Surgical Investments Limited Systems, methods, and devices for generating predominantly radially expanded plasma flow

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3799168A (en) * 1972-02-28 1974-03-26 R Peters Electro-surgical handle
US4545375A (en) * 1983-06-10 1985-10-08 Aspen Laboratories, Inc. Electrosurgical instrument

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4112950A (en) * 1976-10-22 1978-09-12 Aspen Laboratories Medical electronic apparatus and components
JPH0127770Y2 (en) * 1979-04-13 1989-08-23
US4411657A (en) * 1980-05-19 1983-10-25 Anibal Galindo Hypodermic needle
US4427006A (en) * 1982-01-18 1984-01-24 Medical Research Associates, Ltd. #1 Electrosurgical instruments
US4785807B1 (en) * 1987-02-24 1996-07-16 American Medical Products Inc Electrosurgical knife
US4919129A (en) * 1987-11-30 1990-04-24 Celebration Medical Products, Inc. Extendable electrocautery surgery apparatus and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3799168A (en) * 1972-02-28 1974-03-26 R Peters Electro-surgical handle
US4545375A (en) * 1983-06-10 1985-10-08 Aspen Laboratories, Inc. Electrosurgical instrument

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6482204B1 (en) 1994-05-06 2002-11-19 Oratec Interventions, Inc Method and apparatus for controlled contraction of soft tissue
US6461353B1 (en) 1995-02-17 2002-10-08 Oratec Interventions, Inc. Orthopedic apparatus for controlled contraction of collagen tissue
US8226697B2 (en) 1996-08-13 2012-07-24 Neurotherm, Inc. Method for treating intervertebral disc
US6517568B1 (en) 1996-08-13 2003-02-11 Oratec Interventions, Inc. Method and apparatus for treating intervertebral discs
US6547810B1 (en) 1996-08-13 2003-04-15 Oratec Interventions, Inc. Method for treating intervertebral discs
US7647123B2 (en) 1996-08-13 2010-01-12 Oratec Interventions, Inc. Method for treating intervertebral discs
US8187312B2 (en) 1996-08-13 2012-05-29 Neurotherm, Inc. Method for treating intervertebral disc
US8128619B2 (en) 1996-08-13 2012-03-06 Neurotherm, Inc. Method for treating intervertebral discs
US6749605B2 (en) 1996-10-23 2004-06-15 Oratec Interventions, Inc. Catheter for delivery of energy to a surgical site
US6767347B2 (en) 1996-10-23 2004-07-27 Oratec Interventions, Inc. Catheter for delivery of energy to a surgical site
US6391028B1 (en) 1997-02-12 2002-05-21 Oratec Interventions, Inc. Probe with distally orientated concave curve for arthroscopic surgery
US6645203B2 (en) 1997-02-12 2003-11-11 Oratec Interventions, Inc. Surgical instrument with off-axis electrode
US6350262B1 (en) 1997-10-22 2002-02-26 Oratec Interventions, Inc. Method and apparatus for applying thermal energy to tissue asymetrically
US6695839B2 (en) 2001-02-08 2004-02-24 Oratec Interventions, Inc. Method and apparatus for treatment of disrupted articular cartilage
US6733496B2 (en) 2001-06-06 2004-05-11 Oratec Interventions, Inc. Intervertebral disc device employing flexible probe
US6832997B2 (en) 2001-06-06 2004-12-21 Oratec Interventions, Inc. Electromagnetic energy delivery intervertebral disc treatment devices
US6726685B2 (en) 2001-06-06 2004-04-27 Oratec Interventions, Inc. Intervertebral disc device employing looped probe
US6638276B2 (en) 2001-06-06 2003-10-28 Oratec Interventions, Inc. Intervertebral disc device employing prebent sheath
US7718212B2 (en) 2002-12-12 2010-05-18 Innovatech, Llc Anti-microbial electrosurgical electrode and method of manufacturing same
US8814863B2 (en) 2005-05-12 2014-08-26 Innovatech, Llc Electrosurgical electrode and method of manufacturing same
US8814861B2 (en) 2005-05-12 2014-08-26 Innovatech, Llc Electrosurgical electrode and method of manufacturing same
US8814862B2 (en) 2005-05-12 2014-08-26 Innovatech, Llc Electrosurgical electrode and method of manufacturing same

Also Published As

Publication number Publication date
DE69119177T2 (en) 1996-12-19
CA2052657C (en) 1998-08-25
CA2052657A1 (en) 1992-04-06
AU8450891A (en) 1992-04-09
ATE137399T1 (en) 1996-05-15
DE69119177D1 (en) 1996-06-05
EP0479482A1 (en) 1992-04-08
AU637755B2 (en) 1993-06-03
US5100402A (en) 1992-03-31
JPH06339485A (en) 1994-12-13

Similar Documents

Publication Publication Date Title
EP0479482B1 (en) Electrosurgical laparoscopic cauterisation electrode
CA2535467C (en) Electrosurgical device
US5573535A (en) Bipolar surgical instrument for coagulation and cutting
US7223267B2 (en) Ultrasonic probe with detachable slidable cauterization forceps
US6371956B1 (en) Monopolar electrosurgical end effectors
EP0536998B1 (en) Monopolar electrosurgical device with irrigation and suction controls for endoscopic surgery
US5954720A (en) Bipolar electrosurgical end effectors
US6428539B1 (en) Apparatus and method for minimally invasive surgery using rotational cutting tool
US5904681A (en) Endoscopic surgical instrument with ability to selectively remove different tissue with mechanical and electrical energy
US5556397A (en) Coaxial electrosurgical instrument
EP0913126B1 (en) Combined bipolar scissor and grasper
US5423814A (en) Endoscopic bipolar coagulation device
US8409200B2 (en) Surgical grasping device
US20050171532A1 (en) Bipolar electrosurgical snare
WO2003096871A2 (en) Multipurpose fluid jet surgical device
GB2311468A (en) Electrosurgical interstitial resector
JPH09122138A (en) Apparatus for operation
JPS6459B2 (en)
WO2016029201A1 (en) Attachment for electrosurgical system
WO1998043548A1 (en) Hand-held forceps instrument
JP2936081B2 (en) Microwave surgical instrument
JP2507871Y2 (en) Electrosurgical device electrode
Farin High-frequency electrosurgery in minimal access procedures
US20230036033A1 (en) Bipolar energy-based surgical instruments
KR20120065863A (en) Laparoscope surgical instrument

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB LI SE

17P Request for examination filed

Effective date: 19920921

17Q First examination report despatched

Effective date: 19940706

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB LI SE

REF Corresponds to:

Ref document number: 137399

Country of ref document: AT

Date of ref document: 19960515

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & WANN PATENTANWALTSBUERO, INHABER KLAUS

REF Corresponds to:

Ref document number: 69119177

Country of ref document: DE

Date of ref document: 19960605

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010831

Year of fee payment: 11

Ref country code: DE

Payment date: 20010831

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010903

Year of fee payment: 11

Ref country code: CH

Payment date: 20010903

Year of fee payment: 11

Ref country code: AT

Payment date: 20010903

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010904

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020925

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030401

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020925

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030603

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST