EP0461990A1 - Micropoint cathode electron source - Google Patents

Micropoint cathode electron source Download PDF

Info

Publication number
EP0461990A1
EP0461990A1 EP91401536A EP91401536A EP0461990A1 EP 0461990 A1 EP0461990 A1 EP 0461990A1 EP 91401536 A EP91401536 A EP 91401536A EP 91401536 A EP91401536 A EP 91401536A EP 0461990 A1 EP0461990 A1 EP 0461990A1
Authority
EP
European Patent Office
Prior art keywords
electron source
resistive layer
source according
microtips
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91401536A
Other languages
German (de)
French (fr)
Other versions
EP0461990B1 (en
Inventor
Robert Meyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0461990A1 publication Critical patent/EP0461990A1/en
Application granted granted Critical
Publication of EP0461990B1 publication Critical patent/EP0461990B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • H01J1/3042Field-emissive cathodes microengineered, e.g. Spindt-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/319Circuit elements associated with the emitters by direct integration

Definitions

  • the subject of the present invention is a source of electrons with microtip emissive cathodes and its manufacturing process. It applies in particular to the production of flat display screens.
  • French patents 2,593,953 and 2,623,013 disclose cathodoluminescence display devices excited by field emission, comprising an electron source with emissive cathodes with microtips.
  • FIG. 1 schematically represents a known source of electrons with microtip emissive cathodes described in detail in the aforementioned document No. 2,623,013.
  • This source has a matrix structure and optionally comprises on a substrate 2, for example made of glass, a thin layer of silica 4.
  • a substrate 2 for example made of glass
  • a thin layer of silica 4 On this layer of silica 4 are formed a plurality of electrodes 5 in the form of parallel conductive strips playing the role of cathodic conductors and constituting the columns of the matrix structure.
  • the cathode conductors are each covered by a resistive layer 7 which can be continuous (except on the ends to allow the connection of the cathode conductors with polarization means 20).
  • Electrodes 10 are formed above the insulating layer 8 in the form of parallel conductive strips. These electrodes 10 are perpendicular to the electrodes 5 and play the role of grids which constitute the lines of the matrix structure.
  • the known source also includes a plurality of elementary electron emitters (microtips), a copy of which is schematically represented in FIG. 2: in each of the crossing zones of the cathode conductors 5 and of the grids 10, the resistive layer 7 corresponding to this zone supports microtips 12, for example made of molybdenum, and the grid 10 corresponding to said zone has an opening 14 facing each of the microtips.
  • microtips elementary electron emitters
  • the resistive layer 7 corresponding to this zone supports microtips 12, for example made of molybdenum
  • the grid 10 corresponding to said zone has an opening 14 facing each of the microtips.
  • Each of the latter substantially matches the shape of a cone, the base of which rests on layer 7 and the top of which is located at the corresponding opening 14.
  • the insulating layer 8 is also provided with openings 15 allowing the passage of the microtips 12.
  • the main purpose of the resistive layer 7 is to limit the current in each emitter 12 and therefore, therefore, to homogenize the electronic emission. This allows, in an application to excite the bright spots (pixels) of a display screen, to eliminate too bright spots.
  • the resistive layer 7 also makes it possible to reduce the risks of breakdown at the level of the microtips 12 due to the current limitation and thus to avoid the appearance of short-circuits between lines and columns.
  • the resistive layer 7 is supposed to authorize the short-circuit of some transmitters 12 with a grid 10, the very limited leakage current (of the order of a few ⁇ A) in these short-circuits not having to disturb the functioning of the rest of the cathode conductor.
  • the problem posed by the appearance of short circuits between microtips and a grid is not satisfactorily resolved by a device of the type described in French patent No. 2,623,013.
  • FIG 3 there is shown schematically a microtip.
  • a metallic particle 16 causes a short-circuit of the microtip 12 with a grid 10; in this case, all the voltage applied between gate 10 and cathode conductor 5 (Vcg, of the order of 100 V) is transferred to the terminals of the resistive layer 7.
  • Vcg voltage applied between gate 10 and cathode conductor 5
  • the resistive layer 7 To be able to tolerate some short-circuits of this type, which are almost inevitable due to the very large number of microtips, the resistive layer 7 must be able to withstand a voltage of around 100 V, which requires that its thickness be greater than 2 ⁇ m. Otherwise, it slams by thermal effect and a short circuit can appear between the grid and the cathode conductor making the electron source unusable.
  • the present invention overcomes this drawback. Its aim is to improve the breakdown resistance of an electron source with microtip emissive cathodes, this improvement being obtained without increasing the thickness of the resistive source.
  • the invention recommends the use of electrodes (for example, the conductors cathodic) in a lattice shape so that these electrodes and the associated resistive layers are substantially in the same plane.
  • the breakdown resistance no longer depends (at first order) on the thickness of the resistive layer but on the distance between the cathode conductor and the microtip. It therefore suffices to maintain a sufficient distance between the cathode conductor and the microtip to avoid breakdown while retaining a homogenization effect for which the resistive layer is provided.
  • Each of the electrodes of at least one of the series has a lattice structure in contact with a resistive layer.
  • the electrodes having a lattice structure are metallic; they are for example in AI, Mo, Cr, Nb or other. It therefore has better conductivity.
  • the dimension of a mesh of the trellis is less than the dimension of a crossing zone.
  • a crossing zone covers several meshes of the trellis.
  • the mesh of the trellis can have any shape; they can for example be rectangular or square.
  • the meshes of the trellis are square.
  • the cathode conductors have a lattice structure.
  • the microtips occupy the central regions of the mesh of the lattice. This arrangement makes it possible to provide a sufficient distance between a cathode conductor and the microtips to avoid breakdown.
  • each cathode conductor is covered by a resistive layer.
  • a resistive layer is interposed between the insulating support and each cathode conductor.
  • the resistive layer can be made of a material such as indium oxide, tin oxide or iron oxide.
  • the resistive layer is made of doped silicon.
  • This resistivity is generally greater than 102 ⁇ cm while the resistivity of the cathode conductor is generally less than 10 ⁇ 3 ⁇ cm.
  • the grids have a lattice structure.
  • the cathode conductors may or may not have a lattice structure.
  • the resistive layer is no longer necessary, it can however be present to maintain a homogenization effect.
  • each grid is covered by a second resistive layer pierced with openings facing the microtips.
  • each grid rests on a second resistive layer pierced with openings facing the microtips.
  • the resistive layer can be made of a material such as indium oxide, tin oxide or iron oxide.
  • the resistive layer is made of doped silicon.
  • resistivity suited to the effects of homogenization and protection against short circuits. This resistivity is generally greater than 102 ⁇ cm while the resistivity of the cathode conductor is generally less than 10 ⁇ 3 ⁇ cm.
  • the meshes of the lattices are preferably of the same dimensions opposite.
  • the cathode conductors 5 have a lattice structure.
  • the meshes of the trellis can be of any geometry. In the embodiment shown, the meshes of the trellis are square.
  • the pitch of the mesh p is, for example, about 50 micrometers and the width d of the conductive tracks forming the lattice is for example about 5 micrometers.
  • These conductive tracks are preferably metallic, for example Al, Mo, Cr, Nb or other.
  • a cathode conductor 5 has a width of 400 micrometers, the cathode conductors being separated from each other by a distance equal to approximately 50 micrometers.
  • a crossover zone of a cathode conductor 5 with a grid 10 covers several meshes of the lattice. Under these conditions, each overlap area of a cathode conductor 5 with a grid 10 comprises 48 meshes. The non-operation of a mesh due to short circuits between the grid 10 and microtips only disturbs the assembly in the proportion of 1/48, which has no significant effect.
  • the microtips 12 are united in the central areas of the meshes and are connected to the cathode conductor 5 by a resistive layer 7 made of doped silicon for example.
  • the distance a separating each microtip 12 can be 5 micrometers for example; the distance r between the microtips 12 of the conductive tracks of the lattice forming a cathode conductor 5 must be sufficient for the voltage drop in the resistive layer 7, nominal, in operation to produce the aforementioned homogenization effect.
  • the resistive layer 7 of doped silicon being approximately 0.5 micrometer for example, this distance r is at least 5 micrometers for a voltage drop of between 5 and 10 V in nominal operation. For example, the distance r is chosen equal to 10 micrometers.
  • n 36.
  • the access resistance of the cathode conductor 5 to all of the microtips 12 is not very dependent on the size of the mesh and the number of microtips it contains. It essentially depends on the resistivity and the thickness of the resistive layer 7.
  • the resistivity p is of the order of 3 103 Ohmscm; its thickness e is for example equal to 0.5 micrometer.
  • the current of leakage in a mesh is substantially equal to 10 microamps, which is tolerable because it does not alter the functioning of the electron source.
  • the microtips are only produced inside the meshes. A positioning of the microtips relative to the mesh of the cathode conductors is therefore necessary with an accuracy of the order of ⁇ 5 micrometers.
  • the cathode conductors 5 having a lattice structure rest on a resistive layer 7.
  • a resistive layer 7 is therefore interposed between the insulating support (more particularly the layer 4) and each cathode conductor 5.
  • a second resistive layer 18 for example made of doped silicon with a resistivity of approximately 104 Ohmscm and a thickness equal to 0.4 micrometer, rests on the insulating layer 8. It is pierced with openings 20 to allow passage of the microtips 12.
  • the grids 10a in the form of a square mesh lattice rest on the second resistive layer 18.
  • the microtips 12 are placed inside the central area of the lattice meshes.
  • the second resistive layer 18 covers the grids 10b which rest on the insulating layer 8.
  • the grids can be made of Nb and have a thickness of 0.2 micrometer.
  • the width of each grid 10a or 10b can be 5 micrometers for a mesh pitch of 50 micrometers.
  • the second resistive layer 18 has a protective role against short circuits, the resistive layer 7 ensuring the function of homogenization of the electronic emission.
  • the resistive layers 7 can be doped silicon having for example a resistivity of 105 Ohmscm and a thickness of 0.1 micrometer.
  • the cathode conductors 5 can for example be made of ITO (indium oxide doped with tin).
  • the grids and the cathode conductors have a lattice structure with square meshes.
  • the meshes of the grids and the cathode conductors are then superimposed: the conductive tracks forming the meshes of the grids and the cathode conductors are opposite in the overlap zones.
  • a second resistive layer 18 covers each grid 10b or the grids 10a can also cover the second resistive layer 10a.
  • cathode conductors these can be covered by the insulating layer 7 (cathode conductor reference 5b) or else cover it (cathode conductor reference 5a).
  • an electron source having lattice-shaped electrodes makes it possible to reduce the risks of breakdown while ensuring good homogenization of the electronic emission.
  • the lattice structure makes it possible to increase the access resistance of the microtips to the cathode conductors without increasing the thickness of the resistive layer.

Abstract

Source d'électrons à cathodes (12) émissives à micropointes possédant des électrodes en forme de treillis ; ces électrodes peuvent être soit les conducteurs cathodiques (5), soit les grilles (10).Application à l'excitation d'écran de visualisation.A microtip emissive cathode electron source (12) having lattice-shaped electrodes; these electrodes can be either the cathode conductors (5) or the grids (10). Application to the display screen excitation.

Description

La présente invention a pour objet une source d'électrons à cathodes émissives à micropointes et son procédé de fabrication. Elle s'applique notamment à la réalisation d'écrans plats de visualisation.The subject of the present invention is a source of electrons with microtip emissive cathodes and its manufacturing process. It applies in particular to the production of flat display screens.

On connaît, par les brevets français n° 2 593 953 et 2 623 013, des dispositifs de visualisation par cathodoluminescence excitée par émission de champ, comprenant une source d'électrons à cathodes émissives à micropointes.French patents 2,593,953 and 2,623,013 disclose cathodoluminescence display devices excited by field emission, comprising an electron source with emissive cathodes with microtips.

La figure 1 représente schématiquement une source connue d'électrons à cathodes émissives à micropointes décrite en détails dans le document n° 2 623 013 précité. Cette source a une structure matricielle et comprend éventuellement sur un substrat 2, par exemple en verre, une mince couche de silice 4. Sur cette couche de silice 4 sont formées une pluralité d'électrodes 5 en forme de bandes conductrices parallèles jouant le rôle de conducteurs cathodiques et constituant les colonnes de la structure matricielle.FIG. 1 schematically represents a known source of electrons with microtip emissive cathodes described in detail in the aforementioned document No. 2,623,013. This source has a matrix structure and optionally comprises on a substrate 2, for example made of glass, a thin layer of silica 4. On this layer of silica 4 are formed a plurality of electrodes 5 in the form of parallel conductive strips playing the role of cathodic conductors and constituting the columns of the matrix structure.

Les conducteurs cathodiques sont recouverts chacun par une couche résistive 7 qui peut être continue (excepté sur les extrémités pour permettre la connexion des conducteurs cathodiques avec des moyens de polarisation 20).The cathode conductors are each covered by a resistive layer 7 which can be continuous (except on the ends to allow the connection of the cathode conductors with polarization means 20).

Une couche électriquement isolante 8, en silice, recouvre les couches résistives 7.An electrically insulating layer 8, made of silica, covers the resistive layers 7.

Au-dessus de la couche isolante 8 sont formées une pluralité d'électrodes 10 également en forme de bandes conductrices parallèles. Ces électrodes 10 sont perpendiculaires aux électrodes 5 et jouent le rôle de grilles qui constituent les lignes de la structure matricielle.Above the insulating layer 8 are formed a plurality of electrodes 10 also in the form of parallel conductive strips. These electrodes 10 are perpendicular to the electrodes 5 and play the role of grids which constitute the lines of the matrix structure.

La source connue comporte également une pluralité d'émetteurs élémentaires d'électrons (micropointes) dont un exemplaire est schématiquement représenté sur la figure 2 : dans chacune des zones de croisement des conducteurs cathodiques 5 et des grilles 10, la couche résistive 7 correspondant à cette zone supporte des micropointes 12 par exemple en molybdène et la grille 10 correspondant à ladite zone comporte une ouverture 14 en regard de chacune des micropointes 12. Chacune de ces dernières épouse sensiblement la forme d'un cône dont la base repose sur la couche 7 et dont le sommet est situé au niveau de l'ouverture 14 correspondante. Bien entendu, la couche isolante 8 est également pourvue d'ouvertures 15 permettant le passage des micropointes 12.The known source also includes a plurality of elementary electron emitters (microtips), a copy of which is schematically represented in FIG. 2: in each of the crossing zones of the cathode conductors 5 and of the grids 10, the resistive layer 7 corresponding to this zone supports microtips 12, for example made of molybdenum, and the grid 10 corresponding to said zone has an opening 14 facing each of the microtips. Each of the latter substantially matches the shape of a cone, the base of which rests on layer 7 and the top of which is located at the corresponding opening 14. Of course, the insulating layer 8 is also provided with openings 15 allowing the passage of the microtips 12.

A titre indicatif, on peut citer les ordres de grandeurs suivants :

  • épaisseur de la couche isolante 8 : 1 micromètre,
  • épaisseur d'une grille 10 : 0,4 micromètre,
  • diamètre d'une ouverture 14 : 1,4 micromètre,
  • diamètre d'une basse d'une micropointe 12 : 1,1 micromètre,
  • épaisseur d'un conducteur cathodique 5 : 0,2 micromètre,
  • épaisseur d'une couche résistive : 0,5 micromètre.
As an indication, the following orders of magnitude can be cited:
  • thickness of the insulating layer 8: 1 micrometer,
  • thickness of a grid 10: 0.4 micrometer,
  • diameter of an opening 14: 1.4 micrometer,
  • diameter of a bass of a microtip 12: 1.1 micrometer,
  • thickness of a cathode conductor 5: 0.2 micrometer,
  • thickness of a resistive layer: 0.5 micrometer.

La couche résistive 7 a pour but essentiel de limiter le courant dans chaque émetteur 12 et donc, par conséquent, d'homogénéiser l'émission électronique. Cela permet, dans une application à l'excitation des points lumineux (pixels) d'un écran d'affichage, d'éliminer les points trop brillants.The main purpose of the resistive layer 7 is to limit the current in each emitter 12 and therefore, therefore, to homogenize the electronic emission. This allows, in an application to excite the bright spots (pixels) of a display screen, to eliminate too bright spots.

La couche résistive 7 permet aussi de réduire les risques de claquage au niveau des micropointes 12 du fait de la limitation en courant et ainsi d'éviter l'apparition de courts-circuits entre lignes et colonnes.The resistive layer 7 also makes it possible to reduce the risks of breakdown at the level of the microtips 12 due to the current limitation and thus to avoid the appearance of short-circuits between lines and columns.

Enfin, la couche résistive 7 est sensée autoriser le court-circuit de quelques émetteurs 12 avec une grille 10, le courant de fuite très limité (de l'ordre de quelques µA) dans ces courts-circuits ne devant pas perturber le fonctionnement du reste du conducteur cathodique. Malheureusement, le problème pose par l'apparition de courts-circuits entre des micropointes et une grille n'est pas résolu de façon satisfaisante par un dispositif du type de celui décrit dans le brevet français n° 2 623 013.Finally, the resistive layer 7 is supposed to authorize the short-circuit of some transmitters 12 with a grid 10, the very limited leakage current (of the order of a few μA) in these short-circuits not having to disturb the functioning of the rest of the cathode conductor. Unfortunately, the problem posed by the appearance of short circuits between microtips and a grid is not satisfactorily resolved by a device of the type described in French patent No. 2,623,013.

Sur la figure 3, on a représenté schématiquement une micropointe. Une particule métallique 16 provoque un court-circuit de la micropointe 12 avec une grille 10 ; dans ce cas, toute la tension appliquée entre grille 10 et conducteur cathodique 5 (Vcg, de l'ordre de 100 V) est reportée aux bornes de la couche résistive 7.In Figure 3, there is shown schematically a microtip. A metallic particle 16 causes a short-circuit of the microtip 12 with a grid 10; in this case, all the voltage applied between gate 10 and cathode conductor 5 (Vcg, of the order of 100 V) is transferred to the terminals of the resistive layer 7.

Pour pouvoir tolérer quelques courts-circuits de ce type, quasiment inévitables du fait du très grand nombre de micropointes, la couche résistive 7 doit pouvoir supporter une tension avoisinant 100 V, ce qui nécessite que son épaisseur soit supérieure à 2 µm. Dans le cas contraire, elle claque par effet thermique et un court-circuit franc peut apparaître entre la grille et le conducteur cathodique rendant la source d'électrons inutilisable.To be able to tolerate some short-circuits of this type, which are almost inevitable due to the very large number of microtips, the resistive layer 7 must be able to withstand a voltage of around 100 V, which requires that its thickness be greater than 2 μm. Otherwise, it slams by thermal effect and a short circuit can appear between the grid and the cathode conductor making the electron source unusable.

La présente invention pallie cet inconvénient. Elle a pour but l'amélioration de la résistance au claquage d'une source d'électrons à cathodes émissives à micropointes, cette amélioration étant obtenue sans pour autant augmenter l'épaisseur de la source résistive.The present invention overcomes this drawback. Its aim is to improve the breakdown resistance of an electron source with microtip emissive cathodes, this improvement being obtained without increasing the thickness of the resistive source.

Pour atteindre ce but, l'invention préconise d'utiliser des électrodes (par exemple, les conducteurs cathodiques) en forme de treillis de manière à ce que ces electrodes et les couches résistives associées soient sensiblement dans le même plan. Dans cette configuration, la résistance au claquage ne dépend plus (au premier ordre) de l'épaisseur de la couche résistive mais de la distance entre le conducteur cathodique et la micropointe. Il suffit donc de maintenir un éloignement suffisant entre le conducteur cathodique et la micropointe pour éviter le claquage tout en conservant un effet d'homogénéïsation pour lequel la couche résistive est prévue.To achieve this goal, the invention recommends the use of electrodes (for example, the conductors cathodic) in a lattice shape so that these electrodes and the associated resistive layers are substantially in the same plane. In this configuration, the breakdown resistance no longer depends (at first order) on the thickness of the resistive layer but on the distance between the cathode conductor and the microtip. It therefore suffices to maintain a sufficient distance between the cathode conductor and the microtip to avoid breakdown while retaining a homogenization effect for which the resistive layer is provided.

De façon plus précise, la présente invention concerne une source d'électrons comprenant :

  • sur un support isolant,une première série d'électrodes parallèles jouant le rôle de conducteurs cathodiques et portant une pluralité de micropointes en matériau émetteur d'électrons,
  • une seconde série d'électrodes parallèles, jouant le rôle de grilles, électriquement isolées des conducteurs cathodiques et faisant un angle avec ceux-ci, ce qui définit des zones de croisement des conducteurs cathodiques et des grilles, les grilles étant percées d'ouvertures respectivement en regard des micropointes.
More specifically, the present invention relates to an electron source comprising:
  • on an insulating support, a first series of parallel electrodes acting as cathode conductors and carrying a plurality of microtips made of electron emitting material,
  • a second series of parallel electrodes, playing the role of grids, electrically isolated from the cathode conductors and making an angle with them, which defines zones of intersection of the cathode conductors and the grids, the grids being pierced with openings respectively next to the microtips.

Chacune des électrodes d'au moins une des séries possède une structure en treillis en contact avec une couche résistive.Each of the electrodes of at least one of the series has a lattice structure in contact with a resistive layer.

De manière préférée, les électrodes possédant une structure en treillis sont métalliques ; elles sont par exemple en AI, Mo, Cr, Nb ou autre. Elle présente ainsi une meilleure conductivité.Preferably, the electrodes having a lattice structure are metallic; they are for example in AI, Mo, Cr, Nb or other. It therefore has better conductivity.

De manière préférée, la dimension d'une maille du treillis est inférieure à la dimension d'une zone de croisement.Preferably, the dimension of a mesh of the trellis is less than the dimension of a crossing zone.

Avantageusement, une zone de croisement recouvre plusieurs mailles du treillis.Advantageously, a crossing zone covers several meshes of the trellis.

Cela favorise le fonctionnement de la source d'électrons pour deux raisons :

  • a) le courant nominal par maille est d'autant plus faible que le nombre de mailles est important. Lorsque les conducteurs cathodiques présentent une structure en treillis, la résistance d'accès d'un conducteur cathodique à l'ensemble des micropointes d'une maille peut être tolérée d'autant plus grande que le nombre de mailles est important, ce qui permet de réduire le courant de fuite en cas de court-circuit. En effet, la résistance d'accès est peu dépendante de la dimension de la maille et du nombre de micropointes par maille. Elle dépend principalement de la résistivité et de l'épaisseur de la couche résistive.
  • b) Plus le nombre de mailles est grand à l'intérieur d'une zone de recouvrement, moins le non-fonctionnement (court-circuit) d'une maille perturbe le fonctionnement de la source d'électrons. (Dans le cas d'une application à l'excitation d'un écran, seule une fraction d'un pixel est éteint pour une maille défaillante, ce qui n'est pas visible sur l'écran).
This promotes the functioning of the electron source for two reasons:
  • a) the nominal current per mesh is lower the greater the number of meshes. When the cathode conductors have a lattice structure, the access resistance of a cathode conductor to all of the microtips of a mesh can be tolerated the greater the greater the number of meshes, which makes it possible to reduce the leakage current in the event of a short circuit. Indeed, the access resistance is not very dependent on the dimension of the mesh and the number of microtips per mesh. It mainly depends on the resistivity and the thickness of the resistive layer.
  • b) The greater the number of cells inside an overlap zone, the less the non-functioning (short circuit) of a cell disturbs the operation of the electron source. (In the case of an application to the excitation of a screen, only a fraction of a pixel is extinguished for a faulty mesh, which is not visible on the screen).

Les mailles du treillis peuvent avoir une forme quelconque ; elles peuvent être par exemple rectangulaires ou carrées.The mesh of the trellis can have any shape; they can for example be rectangular or square.

Selon un mode de réalisation préféré, les mailles du treillis sont carrées.According to a preferred embodiment, the meshes of the trellis are square.

Selon une variante de réalisation, les conducteurs cathodiques présentent une structure en treillis.According to an alternative embodiment, the cathode conductors have a lattice structure.

Dans ce cas, avantageusement, les micropointes occupent les régions centrales des mailles du treillis. Cette disposition permet de ménager une distance suffisante entre un conducteur cathodique et les micropointes pour éviter le claquage.In this case, advantageously, the microtips occupy the central regions of the mesh of the lattice. This arrangement makes it possible to provide a sufficient distance between a cathode conductor and the microtips to avoid breakdown.

Selon un mode de réalisation particulier de cette variante, chaque conducteur cathodique est recouvert par une couche résistive.According to a particular embodiment of this variant, each cathode conductor is covered by a resistive layer.

Selon un autre mode de réalisation particulier de cette variante, une couche résistive est intercalée entre le support isolant et chaque conducteur cathodique.According to another particular embodiment of this variant, a resistive layer is interposed between the insulating support and each cathode conductor.

La couche résistive peut être constituée en matériau tels que l'oxyde d'indium, l'oxyde d'étain ou l'oxyde de fer. De manière préférée, la couche résistive est en silicium dopé.The resistive layer can be made of a material such as indium oxide, tin oxide or iron oxide. Preferably, the resistive layer is made of doped silicon.

Quel que soit le matériau choisi, il faut s'assurer que celui-ci présente bien une résistivite adaptée aux effets d'homogénéïsation et de protection contre les courts-circuits. Cette résistivite est généralement supérieure à 10² Ωcm alors que la résistivite du conducteur cathodique est généralement inférieure à 10⁻³ Ωcm.Whatever the material chosen, you must ensure that it has a resistivity adapted to the effects of homogenization and protection against short-circuits. This resistivity is generally greater than 10² Ωcm while the resistivity of the cathode conductor is generally less than 10⁻³ Ωcm.

Dans une autre variante de réalisation, les grilles possèdent une structure en treillis. Dans ce cas, les conducteurs cathodiques peuvent avoir ou non une structure en treillis. La couche résistive n'est plus nécéssaire, elle peut cependant être présente pour conserver un effet d'homogénéïsation.In another alternative embodiment, the grids have a lattice structure. In this case, the cathode conductors may or may not have a lattice structure. The resistive layer is no longer necessary, it can however be present to maintain a homogenization effect.

Dans un mode de réalisation de cette variante, chaque grille est recouverte par une seconde couche résistive percée d'ouvertures en regard des micropointes.In one embodiment of this variant, each grid is covered by a second resistive layer pierced with openings facing the microtips.

Dans un autre mode de réalisation de cette variante, chaque grille repose sur une seconde couche résistive percée d'ouvertures en regard des micropointes.In another embodiment of this variant, each grid rests on a second resistive layer pierced with openings facing the microtips.

La couche résistive peut être constituée en matériau tels que l'oxyde d'indium, l'oxyde d'étain ou l'oxyde de fer. De manière préférée, la couche résistive est en silicium dopé.The resistive layer can be made of a material such as indium oxide, tin oxide or iron oxide. Preferably, the resistive layer is made of doped silicon.

Quel que soit le matériau choisi, il faut s'assurer que celui-ci présente bien une résistivité adaptée aux effets d'homogénéïsation et de protection contre les courts-circuits. Cette résistivité est généralement supérieure à 10² Ωcm alors que la résistivité du conducteur cathodique est généralement inférieure à 10⁻³ Ω cm.Whatever the material chosen, it must be ensured that it has a resistivity suited to the effects of homogenization and protection against short circuits. This resistivity is generally greater than 10² Ωcm while the resistivity of the cathode conductor is generally less than 10⁻³ Ω cm.

Si les grilles et les conducteurs cathodiques possèdent tous une structure en treillis, les mailles des treillis sont préférentiellement de mêmes dimensions en vis-à-vis.If the grids and the cathode conductors all have a lattice structure, the meshes of the lattices are preferably of the same dimensions opposite.

Les caractéristiques et avantages de l'invention apparaîtront mieux après la description qui suit donnée à titre explicatif et nullement limitatif. Cette description se réfère à des dessins annexes sur lesquels :

  • la figure 1, déjà décrite et relative à l'art antérieur, représente schématiquement une source d'électrons à cathodes émissives à micropointes ;
  • la figure 2, déjà décrite et relative à l'art antérieur, représente schématiquement une vue en coupe et partielle d'une source d'électrons à cathodes émissives à micropointes ;
  • la figure 3, déjà décrite et relative à l'art antérieur, représente schématiquement un émetteur d'électrons en court-circuit avec une grille ;
  • la figure 4 est une vue schématique en coupe et partielle d'un premier mode de réalisation d'une source d'électrons conforme à l'invention ;
  • la figure 5 est une vue schématique de dessus et partielle de la réalisation de la figure 4 ;
  • la figure 6 est une vue schématique d'un autre mode de réalisation de l'invention ;
  • la figure 7 est une vue schématique d'un autre mode de réalisation de l'invention ;
  • la figure 8 est une vue schématique d'un autre mode de réalisation de l'invention.
The characteristics and advantages of the invention will appear better after the description which follows, given by way of explanation and in no way limiting. This description refers to annexed drawings in which:
  • FIG. 1, already described and relating to the prior art, schematically represents a source of electrons with emissive cathodes with microtips;
  • FIG. 2, already described and relating to the prior art, schematically represents a sectional and partial view of a source of electrons with emissive cathodes with microtips;
  • FIG. 3, already described and relating to the prior art, schematically represents an electron emitter in short circuit with a grid;
  • Figure 4 is a schematic sectional and partial view of a first embodiment of an electron source according to the invention;
  • Figure 5 is a schematic top view and partial of the embodiment of Figure 4;
  • Figure 6 is a schematic view of another embodiment of the invention;
  • Figure 7 is a schematic view of another embodiment of the invention;
  • Figure 8 is a schematic view of another embodiment of the invention.

En référence aux figures 4 et 5, on décrit maintenant une source d'électrons conforme à l'invention. Dans cette réalisation, les conducteurs cathodiques 5 présentent une structure en treillis. Les mailles du treillis peuvent être de géométrie quelconque. Dans la réalisation représentée, les mailles du treillis sont carrées. Le pas de la maille p est, par exemple, d'environ 50 micromètres et la largeur d des pistes conductrices formant le treillis est par exemple d'environ 5 micromètres. Ces pistes conductrices sont de préférence métalliques, par exemple en Al, Mo, Cr, Nb ou autre. Un conducteur cathodique 5 présente une largeur de 400 micromètres, les conducteurs cathodiques étant séparés les uns des autres d'une distance égale à 50 micromètres environ. On comprend donc qu'une zone de croisement d'un conducteur cathodique 5 avec une grille 10 (de largeur égale à 300 micromètres) recouvre plusieurs mailles du treillis. Dans ces conditions, chaque zone de recouvrement d'un conducteur cathodique 5 avec une grille 10 comprend 48 mailles. Le non fonctionnement d'une maille dû à des courts-circuits entre la grille 10 et des micropointes ne perturbe l'ensemble que dans la proportion de 1/48, ce qui n'a pas d'effet notable.Referring to Figures 4 and 5, we now describe an electron source according to the invention. In this embodiment, the cathode conductors 5 have a lattice structure. The meshes of the trellis can be of any geometry. In the embodiment shown, the meshes of the trellis are square. The pitch of the mesh p is, for example, about 50 micrometers and the width d of the conductive tracks forming the lattice is for example about 5 micrometers. These conductive tracks are preferably metallic, for example Al, Mo, Cr, Nb or other. A cathode conductor 5 has a width of 400 micrometers, the cathode conductors being separated from each other by a distance equal to approximately 50 micrometers. It is therefore understood that a crossover zone of a cathode conductor 5 with a grid 10 (of width equal to 300 micrometers) covers several meshes of the lattice. Under these conditions, each overlap area of a cathode conductor 5 with a grid 10 comprises 48 meshes. The non-operation of a mesh due to short circuits between the grid 10 and microtips only disturbs the assembly in the proportion of 1/48, which has no significant effect.

Les micropointes 12 sont réunies dans les zones centrales des mailles et sont reliées au conducteur cathodique 5 par une couche résistive 7 en silicium dope par exemple. La distance a séparant chaque micropointe 12 peut être de 5 micromètres par exemple ; la distance r séparant les micropointes 12 des pistes conductrices du treillis formant un conducteur cathodique 5 doit être suffisante pour que la chute de tension dans la couche résistive 7, nominal, en fonctionnement produise l'effet d'homogénéisation précité. La couche résistive 7 en silicium dope étant d'environ 0,5 micromètre par exemple, cette distance r est au minimum de 5 micromètres pour une chute de tension comprise entre 5 et 10 V en fonctionnement nominal. Par exemple, la distance r est choisie égale à 10 micromètres.The microtips 12 are united in the central areas of the meshes and are connected to the cathode conductor 5 by a resistive layer 7 made of doped silicon for example. The distance a separating each microtip 12 can be 5 micrometers for example; the distance r between the microtips 12 of the conductive tracks of the lattice forming a cathode conductor 5 must be sufficient for the voltage drop in the resistive layer 7, nominal, in operation to produce the aforementioned homogenization effect. The resistive layer 7 of doped silicon being approximately 0.5 micrometer for example, this distance r is at least 5 micrometers for a voltage drop of between 5 and 10 V in nominal operation. For example, the distance r is chosen equal to 10 micrometers.

Chaque maille contient un nombre n de micropointes 12 avec n = ((p - d - 2r)/a + 1)².

Figure imgb0001
Each mesh contains a number n of microtips 12 with n = ((p - d - 2r) / a + 1) ².
Figure imgb0001

Dans l'exemple represente, n égale 36.In the example shown, n equals 36.

Dans cette réalisation, la résistance d'accés du conducteur cathodique 5 à l'ensemble des micropointes 12 est peu dépendante de la dimension de la maille et du nombre de micropointes qu'elle contient. Elle dépend essentiellement de la résistivite et de l'épaisseur de la couche résistive 7. Pour une couche résistive en silicium, la résistivité p est de l'ordre de 3 10³ Ohmscm ; son épaisseur e est par exemple égale à 0,5 micromètre.In this embodiment, the access resistance of the cathode conductor 5 to all of the microtips 12 is not very dependent on the size of the mesh and the number of microtips it contains. It essentially depends on the resistivity and the thickness of the resistive layer 7. For a resistive silicon layer, the resistivity p is of the order of 3 10³ Ohmscm; its thickness e is for example equal to 0.5 micrometer.

La résistance d'accès R peut être approximativement calculée à l'aide de la formule : R = P 2 π e ;

Figure imgb0002
on trouve que R égale approximativement 10⁷ Ohms, ce qui est suffisant pour obtenir une chute de tension d'environ 10 V dans la couche résistive 7.The access resistance R can be roughly calculated using the formula: R = P 2 π e ;
Figure imgb0002
we find that R equals approximately 10⁷ Ohms, which is sufficient to obtain a voltage drop of approximately 10 V in the resistive layer 7.

Dans ces conditions, en cas de court-circuit entre un émetteur 12 et la grille 10, le courant de fuite dans une maille est sensiblement égal à 10 microampères, ce qui est tolérable car il n'altère pas le fonctionnement de la source d'électrons.Under these conditions, in the event of a short circuit between a transmitter 12 and the grid 10, the current of leakage in a mesh is substantially equal to 10 microamps, which is tolerable because it does not alter the functioning of the electron source.

Un procédé de réalisation d'un tel dispositif peut par exemple comporter les étapes suivantes :

  • a) sur un substrat isolant 2, par exemple en verre, recouvert une fine couche 4 (d'épaisseur 1000 Å) de SiO₂, on dépose, par exemple par pulvérisation cathodique une couche métallique (d'épaisseur 2000 Å) par exemple en Nb ;
  • b) on réalise, par exemple par photolithographie et gravure ionique réactive, une structure en treillis dans la couche métallique. Cette structure est donc réalisée sur toute la surface active la source d'électrons ;
  • c) on dépose, par exemple par pulvérisation cathodique, une couche résistive de silicium dope (d'épaisseur 5000 Å) ;
  • d) on grave, par exemple par photogravure et gravure ionique réactive, la couche résistive et la couche métallique de manière à former des colonnes conductrices (par exemple, de largeur égale à 400 micromètres et espacées de 50 micromètres entre-elles) ;
  • e) on termine ensuite la source d'électrons par la réalisation d'une couche isolante, de la grille et des micropointes selon des étapes décrites par exemple dans le brevet français n° 2 593 953 déposé au nom du demandeur.
A method of producing such a device can for example include the following steps:
  • a) on an insulating substrate 2, for example made of glass, covered with a thin layer 4 (of thickness 1000 Å) of SiO₂, a metallic layer (of thickness 2000 Å), for example made of Nb, is deposited, for example by sputtering ;
  • b) a lattice structure in the metal layer is produced, for example by photolithography and reactive ion etching. This structure is therefore produced over the entire active surface of the electron source;
  • c) a resistive layer of doped silicon (of thickness 5000 Å) is deposited, for example by cathode sputtering;
  • d) the resistive layer and the metal layer are etched, for example by photogravure and reactive ion etching, so as to form conductive columns (for example, of width equal to 400 micrometers and spaced 50 micrometers apart);
  • e) the electron source is then terminated by producing an insulating layer, the grid and the microtips according to steps described for example in French patent No. 2,593,953 filed in the name of the applicant.

Conformément à l'invention, les micropointes ne sont réalisées qu'à l'intérieur des mailles. Un positionnement des micropointes par rapport aux mailles des conducteurs cathodiques est donc nécessaire avec une précision de l'ordre de ± 5 micromètres.According to the invention, the microtips are only produced inside the meshes. A positioning of the microtips relative to the mesh of the cathode conductors is therefore necessary with an accuracy of the order of ± 5 micrometers.

Selon un autre mode de réalisation représenté schématiquement sur la figure 6, les conducteurs cathodiques 5 possédant une structure en treillis reposent sur une couche résistive 7. Dans cette configuration, une couche résistive 7 est donc intercalée entre le support isolant (plus particulièrement la couche 4) et chaque conducteur cathodique 5.According to another embodiment shown schematically in FIG. 6, the cathode conductors 5 having a lattice structure rest on a resistive layer 7. In this configuration, a resistive layer 7 is therefore interposed between the insulating support (more particularly the layer 4) and each cathode conductor 5.

Selon une variante de réalisation représentée en coupe sur la figure 7, ce ne sont plus les conducteurs cathodiques 5 qui possèdent une structure en treillis mais les grilles.According to an alternative embodiment shown in section in FIG. 7, it is no longer the cathode conductors 5 which have a lattice structure but the grids.

Selon un premier mode de réalisation, une seconde couche résistive 18, par exemple en silicium dopé d'une résistivité d'environ 10⁴ Ohmscm et d'épaisseur égale à 0,4 micromètre, repose sur la couche isolante 8. Elle est percée d'ouvertures 20 pour permettre le passage des micropointes 12.According to a first embodiment, a second resistive layer 18, for example made of doped silicon with a resistivity of approximately 10⁴ Ohmscm and a thickness equal to 0.4 micrometer, rests on the insulating layer 8. It is pierced with openings 20 to allow passage of the microtips 12.

Les grilles 10a en forme de treillis à mailles carrées reposent sur la seconde couche résistive 18. Les micropointes 12 sont placées à l'intérieur de la zone centrale des mailles du treillis.The grids 10a in the form of a square mesh lattice rest on the second resistive layer 18. The microtips 12 are placed inside the central area of the lattice meshes.

Selon un second mode de réalisation, la seconde couche résistive 18 recouvre les grilles 10b qui reposent sur la couche isolante 8.According to a second embodiment, the second resistive layer 18 covers the grids 10b which rest on the insulating layer 8.

Dans cette variante de réalisation, les grilles peuvent être en Nb et présentent une épaissseur de 0,2 micromètre. La largeur de chaque grille 10a ou 10b peut être de 5 micromètres pour un pas de maille de 50 micromètres.In this alternative embodiment, the grids can be made of Nb and have a thickness of 0.2 micrometer. The width of each grid 10a or 10b can be 5 micrometers for a mesh pitch of 50 micrometers.

Que ce soit dans le premier ou le second mode de réalisation, la seconde couche résistive 18 a un rôle de protection contre les courts-circuits, la couche résistive 7 assurant la fonction d'homogénéïsation de l'émission électronique.Whether in the first or second embodiment, the second resistive layer 18 has a protective role against short circuits, the resistive layer 7 ensuring the function of homogenization of the electronic emission.

Dans cette variante de réalisation, les couches résistives 7 peuvent être en silicium dopé ayant par exemple une résistivité de 10⁵ Ohmscm et une épaisseur de 0,1 micromètre. Les conducteurs cathodiques 5 peuvent être par exemple en I T O (oxyde d'indium dopé à l'étain).In this variant embodiment, the resistive layers 7 can be doped silicon having for example a resistivity of 10⁵ Ohmscm and a thickness of 0.1 micrometer. The cathode conductors 5 can for example be made of ITO (indium oxide doped with tin).

Selon une autre variante de réalisation, représentée schématiquement en coupe sur la figure 8, les grilles et les conducteurs cathodiques possèdent une structure en treillis à mailles carrées. Les mailles des grilles et des conducteurs cathodiques sont alors superposées : les pistes conductrices formant les mailles des grilles et des conducteurs cathodiques sont en regard dans les zones de recouvrement.According to another alternative embodiment, shown diagrammatically in section in FIG. 8, the grids and the cathode conductors have a lattice structure with square meshes. The meshes of the grids and the cathode conductors are then superimposed: the conductive tracks forming the meshes of the grids and the cathode conductors are opposite in the overlap zones.

De même que précédemment, une seconde couche résistive 18 recouvre chaque grille 10b ou bien les grilles 10a peuvent aussi recouvrir la seconde couche résistive 10a.As before, a second resistive layer 18 covers each grid 10b or the grids 10a can also cover the second resistive layer 10a.

En ce qui concerne les conducteurs cathodiques, ceux-ci peuvent être recouverts par la couche isolante 7 (conducteur cathodique référence 5b) ou bien la recouvrir (conducteur cathodique référence 5a).As regards the cathode conductors, these can be covered by the insulating layer 7 (cathode conductor reference 5b) or else cover it (cathode conductor reference 5a).

Quelle que soit la variante de réalisation retenue, une source d'électrons possédant des électrodes en forme de treillis permet de diminuer les risques de claquage tout en assurant une bonne homogénéïsation de l'émission électronique. La structure en treillis permet d'augmenter la résistance d'accès des micropointes aux conducteurs cathodiques sans pour autant augmenter l'épaisseur de la couche résistive.Whatever the alternative embodiment chosen, an electron source having lattice-shaped electrodes makes it possible to reduce the risks of breakdown while ensuring good homogenization of the electronic emission. The lattice structure makes it possible to increase the access resistance of the microtips to the cathode conductors without increasing the thickness of the resistive layer.

Claims (13)

Source d'électrons comprenant : - sur un support isolant (2, 4) une première série d'électrodes parallèles jouant le rôle de conducteurs cathodiques et portant une pluralité de micropointes (12) en matériau émetteur d'électrons, - une seconde série d'électrodes parallèles (10), jouant le rôle de grilles, électriquement isolées des conducteurs cathodiques (5) et faisant un angle avec ceux-ci, ce qui définit des zones de croisement des conducteurs cathodiques (5) et des grilles (10), les grilles (10) étant percées d'ouvertures (14) respectivement en regard des micropointes (12) ; caractérisée en ce que chacune des électrodes (5, 10) d'au moins une des séries possède une structure en treillis en contact avec une couche résistive (7, 18).Electron source including: - on an insulating support (2, 4) a first series of parallel electrodes acting as cathode conductors and carrying a plurality of microtips (12) made of electron emitting material, - a second series of parallel electrodes (10), playing the role of grids, electrically isolated from the cathode conductors (5) and making an angle with them, which defines crossing zones of the cathode conductors (5) and grids (10), the grids (10) being pierced with openings (14) respectively opposite the microtips (12); characterized in that each of the electrodes (5, 10) of at least one of the series has a lattice structure in contact with a resistive layer (7, 18). Source d'électrons selon la revendication 1, caractérisée en ce que la dimension d'une maille du treillis est inférieure à la dimension d'une zone de croisement.Electron source according to claim 1, characterized in that the dimension of a mesh of the trellis is less than the dimension of a crossing zone. Source d'électrons selon la revendication 2, caractérisée en ce qu'une zone de croisement recouvre plusieurs mailles du treilis.Electron source according to claim 2, characterized in that a crossing zone covers several meshes of the treilis. Source d'électrons selon la revendication 1, caractérisée en ce que les mailles du treillis sont carrées.Electron source according to claim 1, characterized in that the meshes of the lattice are square. Source d'électrons selon la revendication 1, caractérisée par le fait que les conducteurs cathodiques (5) possèdent une structure en treillis.Electron source according to claim 1, characterized in that the cathode conductors (5) have a lattice structure. Source d'électrons selon la revendication 5, caractérisée en ce que les micropointes (12) occupent les régions centrales des mailles du treillis.Electron source according to claim 5, characterized in that the microtips (12) occupy the central regions of the mesh of the lattice. Source d'électrons selon la revendication 5, caractérisée en ce que chaque conducteur cathodique (5) est recouvert par une couche résistive (7).Electron source according to claim 5, characterized in that each cathode conductor (5) is covered by a resistive layer (7). Source d'électrons selon la revendication 5, caractérisée en ce qu'une couche résistive (7) est intercalée entre le support isolant (2, 4)et chaque conducteur cathodique (5).Electron source according to claim 5, characterized in that a resistive layer (7) is interposed between the insulating support (2, 4) and each cathode conductor (5). Source d'électrons selon l'une quelconque des revendications 7 ou 8, caractérisée en ce que la couche résistive (7) est en silicium dopé.Electron source according to either of Claims 7 and 8, characterized in that the resistive layer (7) is made of doped silicon. Source d'électrons selon la revendication 1, caractérisée par le fait que les grilles (10) possèdent une structure en treillis.Electron source according to claim 1, characterized in that the grids (10) have a lattice structure. Source d'électrons selon la revendication 10, caractérisée par le fait que chaque grille (10) est recouverte par une seconde couche résistive (18) percée d'ouvertures (20) en regard des micropointes (12).Electron source according to claim 10, characterized in that each grid (10) is covered by a second resistive layer (18) pierced with openings (20) facing the microtips (12). Source d'électrons selon la revendication 10, caractérisée par le fait que chaque grille (10) repose sur une seconde couche résistive (18) percée d'ouvertures (20) en regard des micropointes (12).Electron source according to claim 10, characterized in that each grid (10) rests on a second resistive layer (18) pierced with openings (20) opposite the microtips (12). Source d'électrons selon l'une quelconque des revendications 11 ou 12, caractérisée en ce que la seconde couche résistive (18) est en silicium dopé.Electron source according to any one of claims 11 or 12, characterized in that the second resistive layer (18) is made of doped silicon.
EP91401536A 1990-06-13 1991-06-11 Micropoint cathode electron source Expired - Lifetime EP0461990B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9007347 1990-06-13
FR9007347A FR2663462B1 (en) 1990-06-13 1990-06-13 SOURCE OF ELECTRON WITH EMISSIVE MICROPOINT CATHODES.

Publications (2)

Publication Number Publication Date
EP0461990A1 true EP0461990A1 (en) 1991-12-18
EP0461990B1 EP0461990B1 (en) 1994-10-19

Family

ID=9397551

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91401536A Expired - Lifetime EP0461990B1 (en) 1990-06-13 1991-06-11 Micropoint cathode electron source

Country Status (7)

Country Link
US (1) US5194780A (en)
EP (1) EP0461990B1 (en)
JP (1) JP2657984B2 (en)
KR (1) KR100204327B1 (en)
DE (1) DE69104653T2 (en)
FI (1) FI912802A (en)
FR (1) FR2663462B1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2687839A1 (en) * 1992-02-26 1993-08-27 Commissariat Energie Atomique ELECTRON SOURCE WITH MICROPOINT EMISSIVE CATHODES AND CATHODOLUMINESCENCE VISUALIZATION DEVICE EXCITED BY FIELD EMISSION USING THE SOURCE.
EP0616356A1 (en) * 1993-03-17 1994-09-21 Commissariat A L'energie Atomique Micropoint display device and method of fabrication
EP0634769A1 (en) * 1993-07-12 1995-01-18 Commissariat A L'energie Atomique Manufacturing method for micropoint electron sources
FR2713394A1 (en) * 1993-11-29 1995-06-09 Futaba Denshi Kogyo Kk Field emission electron source for fluorescent display
EP0668603A1 (en) * 1994-02-22 1995-08-23 Motorola, Inc. Microelectronic field emission device with breakdown inhibiting insulated gate electrode and method for realization
EP0671755A1 (en) * 1994-03-09 1995-09-13 Commissariat A L'energie Atomique Electron source comprising emissive cathodes with microtips
FR2722913A1 (en) * 1994-07-21 1996-01-26 Pixel Int Sa Micro-tip cathode for flat screen
EP0696042A1 (en) * 1994-08-01 1996-02-07 Motorola, Inc. Field emission device arc-suppressor
EP0697710A1 (en) * 1994-08-16 1996-02-21 Commissariat A L'energie Atomique Manufacturing method for a micropoint-electron source
WO1996013848A1 (en) * 1994-10-31 1996-05-09 Honeywell Inc. Field emitter display
EP0712147A1 (en) 1994-11-08 1996-05-15 Commissariat A L'energie Atomique Field-effect electron source and manufacturing method; application in display devices with cathodoluminescence
EP0713236A1 (en) * 1994-11-18 1996-05-22 Texas Instruments Incorporated Electron emission apparatus
FR2731108A1 (en) * 1995-02-10 1996-08-30 Futaba Denshi Kogyo Kk Semiconductor electron emission structure for cathode ray tubes
EP0757341A1 (en) * 1995-08-01 1997-02-05 STMicroelectronics S.r.l. Limiting and selfuniforming cathode currents through the microtips of a field emission flat pannel display
EP0758485A1 (en) * 1994-03-24 1997-02-19 Fed Corporation Selectively shaped field emission electron beam source, and phosphor array for use therewith
FR2750533A1 (en) * 1996-06-27 1998-01-02 Nec Corp Cold cathode field emission cathode for CRT monitor
US5717285A (en) * 1993-03-17 1998-02-10 Commissariat A L 'energie Atomique Microtip display device having a current limiting layer and a charge avoiding layer
EP0836214A2 (en) * 1996-10-08 1998-04-15 Motorola, Inc. Field emission device having a charge bleed-off barrier

Families Citing this family (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2669124B1 (en) * 1990-11-08 1993-01-22 Commissariat Energie Atomique BISTABLE ELECTROOPTIC DEVICE, SCREEN COMPRISING SUCH A DEVICE AND METHOD FOR IMPLEMENTING THE SCREEN.
JP3054205B2 (en) * 1991-02-20 2000-06-19 株式会社リコー Electron-emitting device integrated substrate
US5536193A (en) 1991-11-07 1996-07-16 Microelectronics And Computer Technology Corporation Method of making wide band gap field emitter
US5543684A (en) 1992-03-16 1996-08-06 Microelectronics And Computer Technology Corporation Flat panel display based on diamond thin films
US5686791A (en) 1992-03-16 1997-11-11 Microelectronics And Computer Technology Corp. Amorphic diamond film flat field emission cathode
US5763997A (en) 1992-03-16 1998-06-09 Si Diamond Technology, Inc. Field emission display device
US5449970A (en) * 1992-03-16 1995-09-12 Microelectronics And Computer Technology Corporation Diode structure flat panel display
US6127773A (en) 1992-03-16 2000-10-03 Si Diamond Technology, Inc. Amorphic diamond film flat field emission cathode
US5679043A (en) 1992-03-16 1997-10-21 Microelectronics And Computer Technology Corporation Method of making a field emitter
US5548185A (en) * 1992-03-16 1996-08-20 Microelectronics And Computer Technology Corporation Triode structure flat panel display employing flat field emission cathode
US5675216A (en) 1992-03-16 1997-10-07 Microelectronics And Computer Technololgy Corp. Amorphic diamond film flat field emission cathode
US5459480A (en) * 1992-04-07 1995-10-17 Micron Display Technology, Inc. Architecture for isolating display grid sections in a field emission display
US5721472A (en) * 1992-04-07 1998-02-24 Micron Display Technology, Inc. Identifying and disabling shorted electrodes in field emission display
US5424605A (en) * 1992-04-10 1995-06-13 Silicon Video Corporation Self supporting flat video display
US5374868A (en) * 1992-09-11 1994-12-20 Micron Display Technology, Inc. Method for formation of a trench accessible cold-cathode field emission device
US5909203A (en) * 1993-07-08 1999-06-01 Micron Technology, Inc. Architecture for isolating display grids in a field emission display
US6034480A (en) * 1993-07-08 2000-03-07 Micron Technology, Inc. Identifying and disabling shorted electrodes in field emission display
US5559389A (en) * 1993-09-08 1996-09-24 Silicon Video Corporation Electron-emitting devices having variously constituted electron-emissive elements, including cones or pedestals
US5564959A (en) * 1993-09-08 1996-10-15 Silicon Video Corporation Use of charged-particle tracks in fabricating gated electron-emitting devices
US7025892B1 (en) 1993-09-08 2006-04-11 Candescent Technologies Corporation Method for creating gated filament structures for field emission displays
US5462467A (en) * 1993-09-08 1995-10-31 Silicon Video Corporation Fabrication of filamentary field-emission device, including self-aligned gate
JP2699827B2 (en) * 1993-09-27 1998-01-19 双葉電子工業株式会社 Field emission cathode device
JP2743794B2 (en) * 1993-10-25 1998-04-22 双葉電子工業株式会社 Field emission cathode and method of manufacturing field emission cathode
WO1995012835A1 (en) 1993-11-04 1995-05-11 Microelectronics And Computer Technology Corporation Methods for fabricating flat panel display systems and components
TW253971B (en) * 1994-02-21 1995-08-11 Futaba Denshi Kogyo Kk Method for driving electron gun and cathode ray tube
JP2856672B2 (en) * 1994-02-28 1999-02-10 三星電管株式會社 Field electron emission device and method of manufacturing the same
US5448131A (en) * 1994-04-13 1995-09-05 Texas Instruments Incorporated Spacer for flat panel display
FR2719156B1 (en) * 1994-04-25 1996-05-24 Commissariat Energie Atomique Source of microtip electrons, microtips having two parts.
JPH0845445A (en) * 1994-04-29 1996-02-16 Texas Instr Inc <Ti> Flat panel,display unit and its manufacture
US5538450A (en) * 1994-04-29 1996-07-23 Texas Instruments Incorporated Method of forming a size-arrayed emitter matrix for use in a flat panel display
KR950034365A (en) * 1994-05-24 1995-12-28 윌리엄 이. 힐러 Anode Plate of Flat Panel Display and Manufacturing Method Thereof
US5491376A (en) * 1994-06-03 1996-02-13 Texas Instruments Incorporated Flat panel display anode plate having isolation grooves
US5453659A (en) * 1994-06-10 1995-09-26 Texas Instruments Incorporated Anode plate for flat panel display having integrated getter
US5607335A (en) * 1994-06-29 1997-03-04 Silicon Video Corporation Fabrication of electron-emitting structures using charged-particle tracks and removal of emitter material
US5525857A (en) * 1994-08-19 1996-06-11 Texas Instruments Inc. Low density, high porosity material as gate dielectric for field emission device
EP0707301A1 (en) 1994-09-14 1996-04-17 Texas Instruments Incorporated Power management for a display device
JP2907024B2 (en) * 1994-09-26 1999-06-21 関西日本電気株式会社 Electron-emitting device
US6252569B1 (en) * 1994-09-28 2001-06-26 Texas Instruments Incorporated Large field emission display (FED) made up of independently operated display sections integrated behind one common continuous large anode which displays one large image or multiple independent images
US5521660A (en) * 1994-09-29 1996-05-28 Texas Instruments Inc. Multimedia field emission device portable projector
EP0706164A1 (en) 1994-10-03 1996-04-10 Texas Instruments Incorporated Power management for display devices
US5502347A (en) 1994-10-06 1996-03-26 Motorola, Inc. Electron source
US5528098A (en) * 1994-10-06 1996-06-18 Motorola Redundant conductor electron source
US5669690A (en) 1994-10-18 1997-09-23 Texas Instruments Incorporated Multimedia field emission device projection system
FR2726122B1 (en) 1994-10-19 1996-11-22 Commissariat Energie Atomique METHOD FOR MANUFACTURING A MICROPOINT ELECTRON SOURCE
US5527651A (en) * 1994-11-02 1996-06-18 Texas Instruments Inc. Field emission device light source for xerographic printing process
KR100287271B1 (en) 1994-11-04 2001-04-16 마이크론 테크놀로지 인코포레이티드 How to sharpen emitter sites using low temperature oxidation process
FR2726688B1 (en) 1994-11-08 1996-12-06 Commissariat Energie Atomique FIELD-EFFECT ELECTRON SOURCE AND MANUFACTURING METHOD THEREOF, APPLICATION TO CATHODOLUMINESCENCE VISUALIZATION DEVICES
US5536993A (en) * 1994-11-18 1996-07-16 Texas Instruments Incorporated Clustered field emission microtips adjacent stripe conductors
US5541466A (en) * 1994-11-18 1996-07-30 Texas Instruments Incorporated Cluster arrangement of field emission microtips on ballast layer
US5557159A (en) * 1994-11-18 1996-09-17 Texas Instruments Incorporated Field emission microtip clusters adjacent stripe conductors
US5569975A (en) * 1994-11-18 1996-10-29 Texas Instruments Incorporated Cluster arrangement of field emission microtips
US5477284A (en) 1994-12-15 1995-12-19 Texas Instruments Incorporated Dual mode overhead projection system using field emission device
US5542866A (en) * 1994-12-27 1996-08-06 Industrial Technology Research Institute Field emission display provided with repair capability of defects
US5554828A (en) * 1995-01-03 1996-09-10 Texas Instruments Inc. Integration of pen-based capability into a field emission device system
US6559818B1 (en) 1995-01-24 2003-05-06 Micron Technology, Inc. Method of testing addressable emissive cathodes
US5751262A (en) * 1995-01-24 1998-05-12 Micron Display Technology, Inc. Method and apparatus for testing emissive cathodes
JP2897671B2 (en) * 1995-01-25 1999-05-31 日本電気株式会社 Field emission cold cathode
US5598057A (en) 1995-03-13 1997-01-28 Texas Instruments Incorporated Reduction of the probability of interlevel oxide failures by minimization of lead overlap area through bus width reduction
US5578902A (en) * 1995-03-13 1996-11-26 Texas Instruments Inc. Field emission display having modified anode stripe geometry
US5578896A (en) * 1995-04-10 1996-11-26 Industrial Technology Research Institute Cold cathode field emission display and method for forming it
US5601466A (en) * 1995-04-19 1997-02-11 Texas Instruments Incorporated Method for fabricating field emission device metallization
US5594297A (en) * 1995-04-19 1997-01-14 Texas Instruments Incorporated Field emission device metallization including titanium tungsten and aluminum
US5760858A (en) * 1995-04-21 1998-06-02 Texas Instruments Incorporated Field emission device panel backlight for liquid crystal displays
US6296740B1 (en) 1995-04-24 2001-10-02 Si Diamond Technology, Inc. Pretreatment process for a surface texturing process
FR2733253B1 (en) 1995-04-24 1997-06-13 Commissariat Energie Atomique DEVICE FOR DEPOSITING MATERIAL BY EVAPORATION ON LARGE SURFACE SUBSTRATES
US5628659A (en) * 1995-04-24 1997-05-13 Microelectronics And Computer Corporation Method of making a field emission electron source with random micro-tip structures
US5657054A (en) * 1995-04-26 1997-08-12 Texas Instruments Incorporated Determination of pen location on display apparatus using piezoelectric point elements
US5657053A (en) * 1995-04-26 1997-08-12 Texas Instruments Incorporated Method for determining pen location on display apparatus using piezoelectric point elements
US5591352A (en) * 1995-04-27 1997-01-07 Industrial Technology Research Institute High resolution cold cathode field emission display method
US5631518A (en) * 1995-05-02 1997-05-20 Motorola Electron source having short-avoiding extraction electrode and method of making same
US5543691A (en) * 1995-05-11 1996-08-06 Raytheon Company Field emission display with focus grid and method of operating same
US5633120A (en) * 1995-05-22 1997-05-27 Texas Instruments Inc. Method for achieving anode stripe delineation from an interlevel dielectric etch in a field emission device
US5577943A (en) * 1995-05-25 1996-11-26 Texas Instruments Inc. Method for fabricating a field emission device having black matrix SOG as an interlevel dielectric
US5608285A (en) * 1995-05-25 1997-03-04 Texas Instruments Incorporated Black matrix sog as an interlevel dielectric in a field emission device
US5686782A (en) * 1995-05-30 1997-11-11 Texas Instruments Incorporated Field emission device with suspended gate
US5589728A (en) * 1995-05-30 1996-12-31 Texas Instruments Incorporated Field emission device with lattice vacancy post-supported gate
US5759078A (en) * 1995-05-30 1998-06-02 Texas Instruments Incorporated Field emission device with close-packed microtip array
US5621272A (en) * 1995-05-30 1997-04-15 Texas Instruments Incorporated Field emission device with over-etched gate dielectric
US5558554A (en) * 1995-05-31 1996-09-24 Texas Instruments Inc. Method for fabricating a field emission device anode plate having multiple grooves between anode conductors
US5594305A (en) * 1995-06-07 1997-01-14 Texas Instruments Incorporated Power supply for use with switched anode field emission display including energy recovery apparatus
US5666024A (en) * 1995-06-23 1997-09-09 Texas Instruments Incorporated Low capacitance field emission device with circular microtip array
US5674407A (en) * 1995-07-03 1997-10-07 Texas Instruments Incorporated Method for selective etching of flat panel display anode plate conductors
US5611719A (en) * 1995-07-06 1997-03-18 Texas Instruments Incorporated Method for improving flat panel display anode plate phosphor efficiency
FR2736753B1 (en) * 1995-07-10 1997-08-22 Commissariat Energie Atomique METHOD FOR DETERMINING THE OPTIMAL GEOMETRIC CHARACTERISTICS OF THE MESHES OF A MICROPOINT TRANSMISSION SOURCE AND MICROPOINT SOURCE STRUCTURES OBTAINED BY THIS PROCESS
FR2737927B1 (en) * 1995-08-17 1997-09-12 Commissariat Energie Atomique METHOD AND DEVICE FOR FORMING HOLES IN A LAYER OF PHOTOSENSITIVE MATERIAL, PARTICULARLY FOR THE MANUFACTURE OF ELECTRON SOURCES
FR2737928B1 (en) * 1995-08-17 1997-09-12 Commissariat Energie Atomique DEVICE FOR INSOLATING MICROMETRIC AND / OR SUBMICROMETRIC ZONES IN A PHOTOSENSITIVE LAYER AND METHOD FOR PRODUCING PATTERNS IN SUCH A LAYER
US5635791A (en) * 1995-08-24 1997-06-03 Texas Instruments Incorporated Field emission device with circular microtip array
US5628662A (en) * 1995-08-30 1997-05-13 Texas Instruments Incorporated Method of fabricating a color field emission flat panel display tetrode
US5606225A (en) * 1995-08-30 1997-02-25 Texas Instruments Incorporated Tetrode arrangement for color field emission flat panel display with barrier electrodes on the anode plate
US5763998A (en) * 1995-09-14 1998-06-09 Chorus Corporation Field emission display arrangement with improved vacuum control
EP0858648A4 (en) 1995-10-26 1999-05-06 Pixtech Inc Cold cathode field emitter flat screen display
US5818165A (en) * 1995-10-27 1998-10-06 Texas Instruments Incorporated Flexible fed display
US5672933A (en) * 1995-10-30 1997-09-30 Texas Instruments Incorporated Column-to-column isolation in fed display
US5767619A (en) * 1995-12-15 1998-06-16 Industrial Technology Research Institute Cold cathode field emission display and method for forming it
US6031250A (en) * 1995-12-20 2000-02-29 Advanced Technology Materials, Inc. Integrated circuit devices and methods employing amorphous silicon carbide resistor materials
US6252347B1 (en) 1996-01-16 2001-06-26 Raytheon Company Field emission display with suspended focusing conductive sheet
US5952987A (en) * 1996-01-18 1999-09-14 Micron Technology, Inc. Method and apparatus for improved gray scale control in field emission displays
JPH09219144A (en) * 1996-02-08 1997-08-19 Futaba Corp Electric field emitting cathode and its manufacture
US5593562A (en) * 1996-02-20 1997-01-14 Texas Instruments Incorporated Method for improving flat panel display anode plate phosphor efficiency
US5733160A (en) * 1996-03-01 1998-03-31 Texas Instruments Incorporated Method of forming spacers for a flat display apparatus
US5944975A (en) * 1996-03-26 1999-08-31 Texas Instruments Incorporated Method of forming a lift-off layer having controlled adhesion strength
US5684356A (en) * 1996-03-29 1997-11-04 Texas Instruments Incorporated Hydrogen-rich, low dielectric constant gate insulator for field emission device
US5830527A (en) * 1996-05-29 1998-11-03 Texas Instruments Incorporated Flat panel display anode structure and method of making
US5865659A (en) * 1996-06-07 1999-02-02 Candescent Technologies Corporation Fabrication of gated electron-emitting device utilizing distributed particles to define gate openings and utilizing spacer material to control spacing between gate layer and electron-emissive elements
US6187603B1 (en) 1996-06-07 2001-02-13 Candescent Technologies Corporation Fabrication of gated electron-emitting devices utilizing distributed particles to define gate openings, typically in combination with lift-off of excess emitter material
US5865657A (en) * 1996-06-07 1999-02-02 Candescent Technologies Corporation Fabrication of gated electron-emitting device utilizing distributed particles to form gate openings typically beveled and/or combined with lift-off or electrochemical removal of excess emitter material
US5755944A (en) * 1996-06-07 1998-05-26 Candescent Technologies Corporation Formation of layer having openings produced by utilizing particles deposited under influence of electric field
US5811926A (en) * 1996-06-18 1998-09-22 Ppg Industries, Inc. Spacer units, image display panels and methods for making and using the same
US5834891A (en) * 1996-06-18 1998-11-10 Ppg Industries, Inc. Spacers, spacer units, image display panels and methods for making and using the same
US5791961A (en) * 1996-06-21 1998-08-11 Industrial Technology Research Institute Uniform field emission device
FR2751785A1 (en) * 1996-07-29 1998-01-30 Commissariat Energie Atomique METHOD AND DEVICE FOR FORMING PATTERNS IN A PHOTOSENSITIVE RESIN LAYER BY CONTINUOUS LASER INSOLATION, APPLICATION TO THE MANUFACTURE OF EMISSIVE MICROPOINT CATHODE ELECTRON SOURCES AND FLAT SCREENS
DE69621017T2 (en) 1996-10-04 2002-10-31 St Microelectronics Srl Manufacturing method of a flat field emission display and display manufactured by this method
US5821680A (en) * 1996-10-17 1998-10-13 Sandia Corporation Multi-layer carbon-based coatings for field emission
US5760535A (en) * 1996-10-31 1998-06-02 Motorola, Inc. Field emission device
US6081246A (en) 1996-11-12 2000-06-27 Micron Technology, Inc. Method and apparatus for adjustment of FED image
US5836799A (en) * 1996-12-06 1998-11-17 Texas Instruments Incorporated Self-aligned method of micro-machining field emission display microtips
JP3156755B2 (en) * 1996-12-16 2001-04-16 日本電気株式会社 Field emission cold cathode device
US5938493A (en) * 1996-12-18 1999-08-17 Texas Instruments Incorporated Method for increasing field emission tip efficiency through micro-milling techniques
US5780960A (en) * 1996-12-18 1998-07-14 Texas Instruments Incorporated Micro-machined field emission microtips
US5828163A (en) * 1997-01-13 1998-10-27 Fed Corporation Field emitter device with a current limiter structure
JP3764906B2 (en) * 1997-03-11 2006-04-12 独立行政法人産業技術総合研究所 Field emission cathode
JPH10340666A (en) * 1997-06-09 1998-12-22 Futaba Corp Field electron emission element
US6013986A (en) * 1997-06-30 2000-01-11 Candescent Technologies Corporation Electron-emitting device having multi-layer resistor
US6147664A (en) * 1997-08-29 2000-11-14 Candescent Technologies Corporation Controlling the brightness of an FED device using PWM on the row side and AM on the column side
FR2769114B1 (en) * 1997-09-30 1999-12-17 Pixtech Sa SIMPLIFICATION OF THE ADDRESSING OF A MICROPOINT SCREEN
US6144144A (en) * 1997-10-31 2000-11-07 Candescent Technologies Corporation Patterned resistor suitable for electron-emitting device
US5910792A (en) * 1997-11-12 1999-06-08 Candescent Technologies, Corp. Method and apparatus for brightness control in a field emission display
JP3353818B2 (en) * 1998-03-26 2002-12-03 日本電気株式会社 Field emission cold cathode device
US6710538B1 (en) 1998-08-26 2004-03-23 Micron Technology, Inc. Field emission display having reduced power requirements and method
US6417627B1 (en) * 1999-02-03 2002-07-09 Micron Technology, Inc. Matrix-addressable display with minimum column-row overlap and maximum metal line-width
KR100385322B1 (en) * 1999-11-27 2003-05-23 새천년 태양 주식회사 A method for preparing healthy alcohol using medicinal herbs
KR20020008727A (en) * 2000-07-25 2002-01-31 유종근 Health Drink of Hobakdaebocha Using the Pumpkin and Medicinal Herbs and Manufacturing Method Thereof
KR20020008729A (en) * 2000-07-25 2002-01-31 유종근 Health Drink of Hobakpalbocha Using the Pumpkin and Medicinal Herbs and Manufacturing Method Thereof
JP2002334670A (en) * 2001-05-09 2002-11-22 Hitachi Ltd Display device
JP2003249182A (en) * 2002-02-22 2003-09-05 Hitachi Ltd Display device
KR100852690B1 (en) * 2002-04-22 2008-08-19 삼성에스디아이 주식회사 Carbon nanotube emitter paste composition for field emission device and method of preparing carbon nanotube emitter using same
US20040245224A1 (en) * 2003-05-09 2004-12-09 Nano-Proprietary, Inc. Nanospot welder and method
KR20050087376A (en) * 2004-02-26 2005-08-31 삼성에스디아이 주식회사 Emitter composition of flat panel display and carbon emitter using the same
JP2005340133A (en) * 2004-05-31 2005-12-08 Sony Corp Cathode panel treating method, as well as cold-cathode field electron emission display device, and its manufacturing method
US20080020499A1 (en) * 2004-09-10 2008-01-24 Dong-Wook Kim Nanotube assembly including protective layer and method for making the same
US7868850B2 (en) * 2004-10-06 2011-01-11 Samsung Electronics Co., Ltd. Field emitter array with split gates and method for operating the same
TWI272870B (en) * 2005-11-18 2007-02-01 Tatung Co Field emission display device
KR20080075360A (en) * 2007-02-12 2008-08-18 삼성에스디아이 주식회사 Light emission device and display using the same
US8260174B2 (en) 2008-06-30 2012-09-04 Xerox Corporation Micro-tip array as a charging device including a system of interconnected air flow channels
US9053890B2 (en) 2013-08-02 2015-06-09 University Health Network Nanostructure field emission cathode structure and method for making

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857161A (en) * 1986-01-24 1989-08-15 Commissariat A L'energie Atomique Process for the production of a display means by cathodoluminescence excited by field emission

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3735183A (en) * 1971-05-19 1973-05-22 Ferranti Ltd Gaseous discharge display device with a layer of electrically resistive material
JPS5325632B2 (en) * 1973-03-22 1978-07-27
US4020381A (en) * 1974-12-09 1977-04-26 Texas Instruments Incorporated Cathode structure for a multibeam cathode ray tube
US4098536A (en) * 1976-11-24 1978-07-04 Mills Marion T Weathershield for golf carts
DE3243596C2 (en) * 1982-11-25 1985-09-26 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Method and device for transferring images to a screen
US4721885A (en) * 1987-02-11 1988-01-26 Sri International Very high speed integrated microelectronic tubes
FR2617534A1 (en) * 1987-06-30 1989-01-06 Inst Francais Du Petrole DEVICE FOR PUMPING A FLUID INTO THE BOTTOM OF A WELL
JP2607251B2 (en) * 1987-08-26 1997-05-07 松下電工株式会社 Field emission cathode
FR2623013A1 (en) * 1987-11-06 1989-05-12 Commissariat Energie Atomique ELECTRO SOURCE WITH EMISSIVE MICROPOINT CATHODES AND FIELD EMISSION-INDUCED CATHODOLUMINESCENCE VISUALIZATION DEVICE USING THE SOURCE
US5075591A (en) * 1990-07-13 1991-12-24 Coloray Display Corporation Matrix addressing arrangement for a flat panel display with field emission cathodes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857161A (en) * 1986-01-24 1989-08-15 Commissariat A L'energie Atomique Process for the production of a display means by cathodoluminescence excited by field emission

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 13, no. 259 (E-773)(3607) 15 Juin 1989 & JP-A-01 54 637 (MATSUSHITA ) 2 Mars 1989 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0558393A1 (en) * 1992-02-26 1993-09-01 Commissariat A L'energie Atomique Micropoint cathode electron source and display device with cathodo-luminescence excited by field emission using same source
US5534744A (en) * 1992-02-26 1996-07-09 Commissariat A L'energie Atomique Micropoint emissive cathode electron source and field emission-excited cathodoluminescence display means using said source
FR2687839A1 (en) * 1992-02-26 1993-08-27 Commissariat Energie Atomique ELECTRON SOURCE WITH MICROPOINT EMISSIVE CATHODES AND CATHODOLUMINESCENCE VISUALIZATION DEVICE EXCITED BY FIELD EMISSION USING THE SOURCE.
EP0616356A1 (en) * 1993-03-17 1994-09-21 Commissariat A L'energie Atomique Micropoint display device and method of fabrication
FR2702869A1 (en) * 1993-03-17 1994-09-23 Commissariat Energie Atomique Microtip display device and method of manufacturing the device
US5717285A (en) * 1993-03-17 1998-02-10 Commissariat A L 'energie Atomique Microtip display device having a current limiting layer and a charge avoiding layer
US5482486A (en) * 1993-07-12 1996-01-09 Commissariat A L'energie Atomique Process for the production of a microtip electron source
EP0634769A1 (en) * 1993-07-12 1995-01-18 Commissariat A L'energie Atomique Manufacturing method for micropoint electron sources
FR2707795A1 (en) * 1993-07-12 1995-01-20 Commissariat Energie Atomique Improvement to a method of manufacturing a microtip electron source.
FR2713394A1 (en) * 1993-11-29 1995-06-09 Futaba Denshi Kogyo Kk Field emission electron source for fluorescent display
EP0668603A1 (en) * 1994-02-22 1995-08-23 Motorola, Inc. Microelectronic field emission device with breakdown inhibiting insulated gate electrode and method for realization
FR2717304A1 (en) * 1994-03-09 1995-09-15 Commissariat Energie Atomique Electron source with emitting cathodes with microtips.
US6043592A (en) * 1994-03-09 2000-03-28 Commissariat A L'energie Atomique Microtip emissive cathode electron source having conductive elements for improving the uniformity of electron emission
EP0671755A1 (en) * 1994-03-09 1995-09-13 Commissariat A L'energie Atomique Electron source comprising emissive cathodes with microtips
EP0758485A1 (en) * 1994-03-24 1997-02-19 Fed Corporation Selectively shaped field emission electron beam source, and phosphor array for use therewith
EP0758485A4 (en) * 1994-03-24 1997-11-26 Fed Corp Selectively shaped field emission electron beam source, and phosphor array for use therewith
FR2722913A1 (en) * 1994-07-21 1996-01-26 Pixel Int Sa Micro-tip cathode for flat screen
EP0696042A1 (en) * 1994-08-01 1996-02-07 Motorola, Inc. Field emission device arc-suppressor
FR2723799A1 (en) * 1994-08-16 1996-02-23 Commissariat Energie Atomique METHOD FOR MANUFACTURING A MICROPOINT ELECTRON SOURCE
EP0697710A1 (en) * 1994-08-16 1996-02-21 Commissariat A L'energie Atomique Manufacturing method for a micropoint-electron source
US5676818A (en) * 1994-08-16 1997-10-14 Commissariat A L'energie Atomique Process for the production of a microtip electron source
WO1996013848A1 (en) * 1994-10-31 1996-05-09 Honeywell Inc. Field emitter display
EP0712147A1 (en) 1994-11-08 1996-05-15 Commissariat A L'energie Atomique Field-effect electron source and manufacturing method; application in display devices with cathodoluminescence
EP0713236A1 (en) * 1994-11-18 1996-05-22 Texas Instruments Incorporated Electron emission apparatus
FR2731108A1 (en) * 1995-02-10 1996-08-30 Futaba Denshi Kogyo Kk Semiconductor electron emission structure for cathode ray tubes
US5847504A (en) * 1995-08-01 1998-12-08 Sgs-Thomson Microelectronics, S.R.L. Field emission display with diode-limited cathode current
EP0757341A1 (en) * 1995-08-01 1997-02-05 STMicroelectronics S.r.l. Limiting and selfuniforming cathode currents through the microtips of a field emission flat pannel display
FR2750533A1 (en) * 1996-06-27 1998-01-02 Nec Corp Cold cathode field emission cathode for CRT monitor
US5894187A (en) * 1996-06-27 1999-04-13 Nec Corporation Field emission cold cathode having concentric cathode areas and feeder areas, and cathode ray tube having such a field emission cold cathode
EP0836214A2 (en) * 1996-10-08 1998-04-15 Motorola, Inc. Field emission device having a charge bleed-off barrier
EP0836214A3 (en) * 1996-10-08 1998-12-16 Motorola, Inc. Field emission device having a charge bleed-off barrier

Also Published As

Publication number Publication date
JPH04229922A (en) 1992-08-19
US5194780A (en) 1993-03-16
FR2663462A1 (en) 1991-12-20
DE69104653T2 (en) 1995-05-04
FI912802A (en) 1991-12-14
EP0461990B1 (en) 1994-10-19
FI912802A0 (en) 1991-06-11
KR920001744A (en) 1992-01-30
JP2657984B2 (en) 1997-09-30
FR2663462B1 (en) 1992-09-11
KR100204327B1 (en) 1999-07-01
DE69104653D1 (en) 1994-11-24

Similar Documents

Publication Publication Date Title
EP0461990B1 (en) Micropoint cathode electron source
EP0316214B1 (en) Electron source comprising emissive cathodes with microtips, and display device working by cathodoluminescence excited by field emission using this source
EP0558393B1 (en) Micropoint cathode electron source and display device with cathodo-luminescence excited by field emission using same source
EP0234989B1 (en) Method of manufacturing an imaging device using field emission cathodoluminescence
EP0267824B1 (en) Transistor-driven electro-optical visualization screen, and method of manufacturing it
EP1885649A2 (en) Method for making an emissive cathode
FR2725072A1 (en) ELECTRICAL PROTECTION OF A FLAT DISPLAY ANODE
FR2710781A1 (en) Device forming a field-emission cathode
EP1826797B1 (en) Nanotube cathode structure for emissive screen
FR2707795A1 (en) Improvement to a method of manufacturing a microtip electron source.
EP0671755B1 (en) Electron source comprising emissive cathodes with microtips
EP0734042B1 (en) Anode of a flat viewing screen with resistive strips
FR2742578A1 (en) Manufacturing field emission cathode
EP0616356B1 (en) Micropoint display device and method of fabrication
EP0708473B1 (en) Manufacturing method for micropoint electron source
US5717285A (en) Microtip display device having a current limiting layer and a charge avoiding layer
EP0806788A1 (en) Anode of a flat display screen with protection ring
EP0625277B1 (en) Flat screen having individually dipole-protected microdots
EP1210721B1 (en) Field emission flat screen with modulating electrode
EP0884753A1 (en) Method for making spacers for a flat panel display
EP0877407A1 (en) Anode of a flat display screen
FR2790329A1 (en) RESISTIVE FLAT SCREEN ANODE
US5903100A (en) Reduction of smearing in cold cathode displays
EP0867908A1 (en) Uniforming the potential electron emission 0f a cathode of a flat screen with microtips
WO2000021112A1 (en) Electron source comprising at least a protective electrode against spurious emissions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB IT LI NL SE

17P Request for examination filed

Effective date: 19920516

17Q First examination report despatched

Effective date: 19931221

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI NL SE

REF Corresponds to:

Ref document number: 69104653

Country of ref document: DE

Date of ref document: 19941124

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

EAL Se: european patent in force in sweden

Ref document number: 91401536.7

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950111

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960529

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970610

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970612

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970626

Year of fee payment: 7

EUG Se: european patent has lapsed

Ref document number: 91401536.7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19990101

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100625

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100618

Year of fee payment: 20

Ref country code: DE

Payment date: 20100625

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69104653

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69104653

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20110610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110612