EP0418343A1 - Verfahren zur herstellung von papier, pappe und karton in gegenwart von n-vinylformamid-einheiten enthaltenden copolymerisaten. - Google Patents

Verfahren zur herstellung von papier, pappe und karton in gegenwart von n-vinylformamid-einheiten enthaltenden copolymerisaten.

Info

Publication number
EP0418343A1
EP0418343A1 EP90904264A EP90904264A EP0418343A1 EP 0418343 A1 EP0418343 A1 EP 0418343A1 EP 90904264 A EP90904264 A EP 90904264A EP 90904264 A EP90904264 A EP 90904264A EP 0418343 A1 EP0418343 A1 EP 0418343A1
Authority
EP
European Patent Office
Prior art keywords
weight
copolymers
cardboard
paper
vinylformamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90904264A
Other languages
English (en)
French (fr)
Other versions
EP0418343B1 (de
Inventor
Dietmar Moench
Heinrich Hartmann
Enrique Freudenberg
Andreas Stange
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to AT90904264T priority Critical patent/ATE89879T1/de
Publication of EP0418343A1 publication Critical patent/EP0418343A1/de
Application granted granted Critical
Publication of EP0418343B1 publication Critical patent/EP0418343B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/06Paper forming aids
    • D21H21/10Retention agents or drainage improvers
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
    • D21H17/45Nitrogen-containing groups
    • D21H17/455Nitrogen-containing groups comprising tertiary amine or being at least partially quaternised

Definitions

  • the invention relates to a process for the production of paper, cardboard and cardboard by dewatering a paper stock in the presence of
  • JP-A-118 406/86 discloses water-soluble polyvinylamines which are obtained by polymerizing N-vinylformamide or mixtures of N-vinylformamide with other water-soluble monomers, such as acrylamide, N, N-dialkylacrylamides or diallyldialkylammonium salts and subsequent hydrolysis of the polymers with bases , e.g. Ethylamine, diethylamine, ethylenediamine or morpholine can be produced.
  • the polyvinylamines are used as dewatering and retention agents in papermaking and as flocculants for waste water.
  • Polymers are known from US Pat. No. 4,421,602, which are obtainable by partial hydrolysis of poly-N-vinylformamide with acids or bases. Due to the hydrolysis, these polymers contain vinylamine and N-vinylformamide units. They are used, for example, in the manufacture of paper as drainage aids, flocculants and retention aids.
  • EP-A-0 220 603 inter alia, known to subject N-vinylformamide together with basic acrylic esters such as dimethylaminoethyl acrylate or N-vinylimidazole in supercritical carbon dioxide to the copolymerization.
  • the resulting fine-particle copolymers are used in partially hydrolyzed form in which they contain vinylamine units, for example as retention aids and flocculants in the production of paper.
  • a dry strength agent is a mixture of cationic polymers which, as characteristic monomers, can also contain units of vinylamine copolymerized and natively Potato starch is used, the potato starch being converted into a water-soluble form by heating in an aqueous medium in the presence of the cationic polymer to temperatures above the gelatinization temperature of the native potato starch in the absence of oxidizing agents, polymerization initiators and alkali.
  • the object of the invention is to provide aids for paper production which are as effective as possible than those known hitherto and which are more technically accessible.
  • the object is achieved according to the invention with a process for the production of paper, cardboard and cardboard by dewatering a paper stock in the presence of polymers containing N-vinylformamide units, if the polymers containing N-vinylformamide units are non-hydrolyzed copolymers which
  • R 5 , R 6 C 1 to C 10 alkyl
  • N-vinylformamide can be considered as monomer (a) of the copolymers.
  • Suitable monomers of group (b) are the compounds of the formula I, of which the following compounds may be mentioned by way of example:
  • N-ethyldimethylammonium propylacrylamide ethosulfate N-ethyldimethylammonium propylacrylamide ethosulfate.
  • N-Trimethylammonium propyl methacrylamide chloride is preferred.
  • the compounds of formula II are also suitable as monomers of group (b).
  • Compounds of this type are, for example, diallyldimethylammonium chloride, diallyldimethylammonium bromide, diallyldiethylammonium chloride and diallyldiethylammonium bromide.
  • Diallyldimethylammonium chloride is preferably used.
  • the anion is an acid residue and is preferably chloride, bromide, iodide, sulfate, methosulfate and ethosulfate.
  • the compounds of the formula I or II can be involved in the synthesis of the copolymers either alone or as a mixture with one another. It is also possible to use several compounds of the formula I or II in the copolymerization with the monomer (a).
  • the monomers of group (b) make up 99 to 1, preferably 40 to 5 mol%, of the copolymers.
  • the monomers (a) and (b) are copolymerized in aqueous solution in the presence of polymerization initiators which decompose into free radicals under the polymerization conditions.
  • Suitable polymerization initiators are, for example, hydrogen peroxide, alkali and ammonium salts of peroxidic sulfuric acid, peroxides, hydroperoxides, redox catalysts and particularly non-oxidizing initiators, such as azo compounds which break down into free radicals.
  • azo compounds which break down into free radicals.
  • water-soluble azo compounds such as 2,2'-azo-bis (2-amidinopropane) dihydrochloride, 2,2'-azo-bis (N, N'-methylene-isobutyramidine) dihydrochloride or 2,2'-azo-bis [2-methyl-N- (2-hydroxyethyl) propionamide].
  • the polymerization initiators are used in customary amounts, for example in amounts of 0.01 to 5.0% by weight, based on the monomers to be polymerized.
  • the polymerization can be carried out in a wide temperature range, if appropriate under reduced or also under increased pressure in appropriately designed apparatus.
  • the polymerization is preferably carried out at normal pressure and temperatures up to 100 ° C., in particular in the range from 30 to 80 ° C.
  • the concentration of the monomers in the aqueous solution is preferably selected so that polymer solutions are obtained whose solids content is 10 to 90, preferably 20 to 70,% by weight.
  • the pH of the reaction mixture is adjusted in the range from 4 to 10, preferably 5 to 8.
  • copolymers of different molecular weights are obtained.
  • the K value according to H. Fikentscher is given instead of the molecular weight.
  • the K values (measured in 5% aqueous sodium chloride solution at 25 ° C. and a polymer concentration of 0.1% by weight) are 5 to 350.
  • Copolymers with low molecular weights and correspondingly low K values are obtained using the customary methods, ie Use of larger amounts of peroxide in the copolymerization or use of polymerization regulators or combinations of the two measures mentioned.
  • Polymers with a high K value and with high molecular weights are obtained, for example, by polymerizing the monomers in the form of the reverse suspension polymerization or by polymerizing the monomers (a) and (b) by the water-in-oil polymerization method.
  • saturated hydrocarbons for example hexane, heptane, cyclohexane, decalin or aromatic hydrocarbons such as benzene, toluene, xylene and cumene, are used as the oil phase.
  • the ratio of oil phase to aqueous phase in the reverse suspension polymerization is, for example, 10: 1 to 1:10, preferably 7: 1 to 1: 1.
  • a protective colloid In order to disperse the aqueous monomer solution in an inert hydrophobic liquid, a protective colloid is required, which has the task of Stabilize suspension of the aqueous monomer solution in the inert hydrophobic liquid.
  • the protective colloids also have an influence on the particle size of the polymer beads formed by polymerization.
  • Protective colloids which can be used are, for example, those substances which are described in US Pat. No. 2,982,749. Also suitable are the protective colloids known from DE-PS 2 634486, which are obtainable, for example, by reacting oils and / or resins, each of which has allyl-containing hydrogen atoms, with maleic anhydride.
  • 27 10 372 known which are obtainable by thermal or radical solution or bulk polymerization from 60 to 99.9% by weight of dicyclopentadiene, 0 to 30% by weight of styrene and 0.1 to 10% by weight of maleic anhydride.
  • graft polymers which can be obtained by grafting polymers (A) from a) 40 to 100% by weight of monovinylaromatic monomers, b) 0 to 60% by weight of monoethylenically unsaturated carboxylic acids with 3 to
  • the polymers A) have a molecular weight (Number average) from 500 to 20,000 and hydrogenation iodine numbers (according to DIN 53 241) from 1.3 to 51, with monomer mixtures
  • an aliphatic hydrocarbon is used as the inert hydrophobic liquid in the reverse suspension polymerization, a mixture of an inorganic suspending agent based on modified finely divided minerals and a nonionic surfactant has proven to be very advantageous as a protective colloid.
  • the inorganic suspending agents that have a low hydrophilic-lyophilic balance are the agents commonly used in reverse suspension polymerization processes.
  • the mineral component of these substances is formed, for example, by bentonite, montmorillonite or kaolin.
  • the finely divided minerals are treated to C 24 amines or quaternary ammonium salts for modifying with salts of long chain amines, for example C 8 _, wherein a storage of the amine salts or the quaternary ammonium salts between the individual layers of finely divided minerals.
  • the optionally quaternized ammonium salts used for the modification preferably contain 1 to 2 C 10 to C 22 alkyl radicals.
  • the other substituents of the ammonium salts are C 1 to C 4 alkyl or hydrogen.
  • the content of free ammonium salts of the amine-modified minerals is at most 2% by weight. Finely divided minerals modified with ammonium salts are commercially available.
  • the inorganic suspending agents for the reverse suspension polymerization also include silicon dioxide which has been reacted with organosilicon compounds.
  • a suitable organosilicon compound is, for example, trimethylsilyl chloride.
  • the aim of modifying the inorganic fine-particle minerals is to improve the wettability of the minerals with the aliphatic hydrocarbon used as the outer phase of the reverse suspension polymerization.
  • the modification with amines ensures that the modified minerals swell in the aliphatic hydrocarbon and thereby break down into very fine particles.
  • the Particle size is about 1 micron and is generally in the range of 0.5 to 5 microns.
  • the silicas reacted with organosilicon compounds have a particle size in the range from about 10 to 40 nm.
  • the modified, finely divided minerals are wetted both by the aqueous monomer solution and by the solvent and thereby accumulate in the phase interface between the aqueous and organic phases. They prevent coagulation when two aqueous monomer droplets collide in the suspension.
  • part of the water is distilled off azeotropically, so that copolymers having a solids content of 70 to 99, preferably 80 to 95,% by weight are obtained.
  • the copolymers are in the form of fine beads with a diameter of 0.05 to 1 mm.
  • the copolymers described above are used in the non-hydrolyzed form in the manufacture of paper, cardboard and cardboard as an additive to the paper stock.
  • copolymers contain no vinylamine units. They cause an increase in the dewatering speed of the paper stock, so that the production speed in paper production can be increased.
  • the copolymers act as retention agents for fibers and fillers and at the same time as flocculants.
  • the copolymers are added to the paper stock in amounts of from 0.01 to about 0.8% by weight, based on dry paper stock. Higher amounts of copolymers cause dry consolidation.
  • the polymers are used in amounts of approximately 0.5 to 3.5% by weight, based on dry paper stock. It is particularly preferred to use the copolymers mentioned together with native potato starch as a dry strength agent.
  • Mixtures have good retention compared to paper fibers in the paper stock.
  • the COD value in the white water is significantly reduced with these mixtures compared to native starch.
  • the interfering substances contained in the water circuits of paper machines affect the effectiveness of the mixtures of the copolymers to be used according to the invention and native starch only slightly.
  • the pH of the pulp suspension can be in the range from 4 to 9, preferably 6 to 8.5.
  • These mixtures of native starch and cationic polymer, which are added to the paper stock for dry strengthening are preferably prepared by mixing native potato starch in the presence of the non-hydrolyzed copolymers in aqueous solution to temperatures above the gelatinization temperature of the native potato starch in the absence of oxidizing agents, polymerization initiators and Alkali heated.
  • the native potato starch is modified in this way.
  • the gelatinization temperature of the starch is the temperature at which the birefringence of the starch grains is lost, cf. Ullmann's Encyclopedia of Technical Chemistry, Urban and Schwarzenberg, Kunststoff-Berlin, 1965, 16th volume, page 322.
  • the modification of the native potato starch can be done in different ways.
  • a previously excluded native potato starch which is in the form of an aqueous solution, can be reacted with the cationic polymers in question to temperatures in the range from 15 to 70 ° C. Longer contact times are required at even lower temperatures. If the reaction is carried out at even higher temperatures, e.g. up to 110 ° C, shorter contact times are required, e.g. 0.1 to 15 min.
  • the simplest way of modifying the native potato starch is to heat an aqueous slurry of the starch in the presence of the cationic copolymers in question to a temperature above the gelatinization temperature of the native potato starch.
  • the starch is modified to temperatures in the range of Heated from 70 to 110 ° C, the reaction being carried out in pressure-tight apparatus at temperatures above 110 ° C.
  • the starch is solubilized in the absence of oxidizing agents, initiators and alkali in about 3 minutes to 5 hours, preferably 5 to 30 minutes. Higher temperatures here require a shorter dwell time.
  • aqueous phase of the reaction mixture increases.
  • a 3.5% by weight aqueous solution of the dry strength agent has viscosities in the range from 50 to 10,000 mPas (measured according to Brookfield at 20 rpm and 20 ° C.).
  • the copolymers to be used according to the invention can be used in the production of all known paper, cardboard and cardboard qualities, for example for the production of writing, printing and packaging papers.
  • the papers can be made from a variety of different types of fiber materials, such as sulfite or Sulphate filler in bleached or unbleached condition. Wood pulp, waste paper, thermomechanical material (TMP) and chemothermomechanical material (CTMP).
  • TMP thermomechanical material
  • CTMP chemothermomechanical material
  • the basis weight of the papers can be between 30 and 200, preferably 35 and 150 g / m2, while for cardboard it can be up to 600 g / m 2 .
  • the papers which are produced using the copolymers to be used according to the invention in a mixture with native potato starch have a markedly improved strength compared to papers which are obtainable in the presence of the same amount of native potato starch.
  • the parts given in the examples are parts by weight, the percentages relate to the weight.
  • the viscosities were determined in aqueous solution at a solids concentration of 3.5% by weight and at a temperature of 20 ° C. in a Brookfield viscometer at 20 rpm.
  • the sheet formation was carried out in a Rapid Köthen laboratory sheet former.
  • the dry tear length was determined according to DIN 53 112, sheet 1, the dry burst pressure according to Müllen, DIN 53 141, the CMT value according to DIN 53 143 and tear propagation resistance according to Brecht-Inset according to DIN 53 115.
  • the leaves were tested after 24-hour air conditioning at a temperature of 23 ° C and a relative humidity of 50%.
  • copolymer 1 The following feedstocks were used: copolymer 1
  • Copolymer of 90 mol% N-vinylformamide (VFA) and 10 mol% 3-methacrylamidopropyltrimethylammonium chloride (MAPTAC) copolymer 1 was prepared by 800 g in a 2 1 flask equipped with a stirrer, thermometer, gas inlet tube and reflux condenser Cyclohexane and 3 g of the protective colloid, which is described in Example 1 of EP-A-0 290 753. The initial charge was heated to a temperature of 50 ° C. under a nitrogen atmosphere and with stirring at a speed of the stirrer of 300 revolutions per minute.
  • Copolymer 6 Homopolymer of N-vinylformamide with a
  • Copolymer 7 Partially hydrolyzed polymer 6, which by
  • a degree of hydrolysis of 90% means that 90% of the formamide groups originally present in the polymer have been converted into amino groups or the corresponding ammonium salt groups.
  • Examples A newsprint stock containing wood and kaolin was first produced with a consistency of 2 g / l and a pH of 6 with an alum content of 0.5% by weight. This paper stock was used as a model substance for all examples and comparative examples. First the Schopper-Riegler device was used to determine the degree of grinding (° SR), the drainage time (ie the time in which 600 ml of white water ran out of the device) and the degree of transmittance (optical transmission of the white water in%) for the above Paper stock model. Then 1 1 samples each of the paper stock described above were tested with the amounts of copolymers 1 to 8 given in Table 2. The measurement results obtained in this way are given in Table 2.
  • the strengthening agents 1 to 5 specified below were tested, which were each prepared by heating native potato starch with the copolymers given in Table 3.
  • the consolidators 1 to 5 described above were each tested on the paper stock specified above.
  • the amount added was 3.0% by weight, based on dry paper stock.
  • the test results are shown in Table 4.
  • Further strengthening agents were prepared by heating native potato starch in an aqueous slurry to a temperature of 90 to 110 ° C. for 15 minutes in the presence of the copolymers given in Table 5.

Description

Verfahren zur Herstellung von Papier, Pappe und Karton in Gegenwart von N-Vinylformamid-Einheiten enthaltenden Copolymerisaten
Beschreibung
Die Erfindung betri fft ein Verfahren zur Herstellung von Papier, Pappe und Karton durch Entwässern eines Papierstoffs in Gegenwart von
N-Vinylformamid-Einheiten enthaltenden Copolymerisaten. Aus der JP-A-118 406/86 sind wasserlösliche Polyvinylamine bekannt, die durch Polymerisieren von N-Vinylformamid oder Mischungen aus N-Vinylformamid mit anderen wasserlöslichen Monomeren, wie Acrylamid, N,N-Dialkylacrylamiden oder Diallyldialkylammoniumsalzen und anschließende Hydrolyse der Polymerisate mit Basen, z.B. Ethylamin, Diethylamin, Ethylendiamin oder Morpholin, hergestellt werden. Die Polyvinylamine werden als Entwässerungsmittel und Retentionsmittel bei der Papierherstellung und als Flockungsmittel für Abwässer verwendet.
Aus der US-PS 4421 602 sind Polymerisate bekannt, die durch partielle Hydrolyse von Poly-N-Vinylformamid mit Säuren oder Basen erhältlich sind. Diese Polymerisate enthalten aufgrund der Hydrolyse Vinylamin- und N- Vinylformamid-Einheiten. Sie werden beispielsweise bei der Herstellung von Papier als Entwässerungshilfsmittel, Flockungsmittel und Retentionsmittel verwendet.
Aus der EP-A-0 220 603 ist u.a. bekannt, N-Vinylformamid zusammen mit basischen Acrylsäureestern, wie Dimethylaminoethylacrylat oder N-Vinylimidazol inen, in überkritischem Kohlendioxid der Copolymerisation zu unterwerfen. Die dabei anfallenden feinteiligen Copolymerisate werden in partiell hydrolysierter Form, in der sie Vinylamin-Einheiten enthalten, beispielsweise als Retentionsmittel und Flockungsmittel bei der Herstellung von Papier verwendet.
Aus der EP-A-0 282 761 ist ein Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit bekannt, bei dem man als Trockenverfestigungsmittel eine Mischung aus kationischen Polymerisaten, die als charakteristische Monomere u.a. auch Einheiten von Vinylamin einpolymerisiert enthalten können und nativer Kartoffelstärke verwendet, wobei die Kartoffelstärke durch Erhitzen in wäßrigem Medium in Gegenwart des kationischen Polymerisats auf Temperaturen oberhalb der Verkleisterungstemperatur der nativen Kartoffel stärke in Abwesenheit von Oxidationsmitteln, Polymerisationsinitiatoren und Alkali in eine wasserlösliche Form überführt wird. Der Erfindung liegt die Aufgabe zugrunde, Hilfsmittel für die Papierherstellung zur Verfügung zu stellen, die möglichst wirksamer sind als die bisher bekannten und die technisch leichter zugänglich sind. Die Aufgabe wird erfindungsgemäß gelöst mit einem Verfahren zur Herstellung von Papier, Pappe und Karton durch Entwässern eines Papierstoffs in Gegenwart von N-Vinylformamid-Einheiten enthaltenden Polymerisaten, wenn man als N-Vinylformamid-Einheiten enthaltende Polymerisate nicht hydrolysierte Copolymerisate, die
(a) 99 bis 1 Mol% N-Vinylformamid und
(b) 1 bis 99 Mol% mindestens eines wasserlöslichen basischen
Monomers der Formeln (I) oder
CH2=CH- -CH=CH2 (II),
in denen
R1 = H, CH3, C2H5, R2, R3 und R4= H, CH3, C2H5, (-CH2-CH2-O-)nH,
R5, R6 = C1- bis C10-Alkyl
A = C1- bis C6-Alkylen n = 1 bis 6 und = ein Anion bedeuten, einpolymerisiert enthalten, in Mengen von 0,01 bis 3,5 Gew.%, bezogen auf trockenen Papierstoff, einsetzt. Der Vorteil der nicht hydrolysierten N-Vinylformamid-Einheiten enthaltenden Copolymerisate gegenüber den bisher verwendeten hydrolysierten Copoly merisate, die nach der Hydrolyse Vinylamin-Einheiten enthalten, ist darin zu sehen, daß die in vielen Fällen schwierig durchzuführende Hydrolyse fortfällt und durch direkte Copolymerisation wirksame Hilfsmittel für die Herstellung von Papier erhältlich sind.
Als Monomer (a) der Copolymerisate kommt N-Vinylformamid in Betracht.
Dieses Monomer ist zu 1 bis 99, vorzugsweise 60 bis 95 Mol%, am Aufbau der Copolymerisate beteiligt. Als Monomere der Gruppe (b) eignen sich die Verbindungen der Formel I, von denen folgende Verbindungen beispielhaft genannt seien:
N-Trimethylammoniumethylacrylamidchlorid,
N-Trimethylammoniumethylmethacrylamidchlorid,
N-Trimethylammoniumethylacrylamidmethosulfat,
N-Trimethylammoniumethylmethacrylamidmethosulfat,
N-Ethyldimethylammoniummethylmethacrylamidethosulfat,
N-Ethyldimethylammoniummethylacrylamidethosulfat,
N-Trimethylammoniumpropylacrylamidehlorid,
N-Trimethylammoniumpropylmethacrylamidchlorid,
N-Trimethylammoniumpropylacrylamidmethosulfat,
N-Trimethylammoniumpropylmethacrylamidmethosulfat,
N-Ethyldimethylammoniumpropylmethacrylamidethosulfat,
N-Ethyldimethylammoniumpropylacrylamidethosulfat.
Bevorzugt ist N-Trimethylammoniumpropylmethacrylamidchlorid.
Als Monomere der Gruppe (b) kommen außerdem die Verbindungen der Formel II in Betracht. Verbindungen dieser Art sind beispielsweise Diallyldimethylammoniumchlorid, Diallyldimethylammoniumbromid, Diallyldiethylammoniumchlorid und Diallyldiethylammoniumbromid. Vorzugsweise verwendet man Diallyldimethylammoniumchlorid. Das Anion ist ein Säurerest und steht vorzugsweise für Chlorid, Bromid, Jodid, Sulfat, Methosulfat und Ethosulfat.
Am Aufbau der Copolymerisate können von den Monomeren der Gruppe (b) die Verbindungen der Formel I oder II entweder allein oder in Mischung untereinander beteiligt sein. Ebenso ist es auch möglich, mehrere Verbindungen der Formel I oder II bei der Copolymerisation mit dem Monomer (a) einzusetzen. Die Monomeren der Gruppe (b) sind zu 99 bis 1, vorzugsweise 40 bis 5 Mol%, am Aufbau der Copolymerisate beteiligt. Die Copolymerisation der Monomeren (a) und (b) erfolgt in wäßriger Lösung in Gegenwart von Polymerisationsinitiatoren, die unter den Polymerisationsbedingungen in Radikale zerfallen. Geeignete Polymerisationsinitiatoren sind beispielsweise Wasserstoffperoxid, Alkali- und Ammoniumsalze der Peroxidischwefelsäure, Peroxide, Hydroperoxide, Redoxkatalysatoren und besonders nicht-oxidierende Initiatoren, wie in Radikale zerfallende Azoverbindungen. Vorzugsweise verwendet man wasserlösliche Azoverbindungen, wie 2,2'-Azo-bis(2-amidinopropan)dihydrochlorid, 2,2'-Azo-bis(N,N'-di- methylenisobutyramidin)dihydrochlorid oder 2,2'-Azo-bis[2-methyl-N-(2-hydroxyethyl)propionamid]. Die Polymerisationsinitiatoren werden in üblichen Mengen eingesetzt, z.B. in Mengen von 0,01 bis 5,0 Gew.%, bezogen auf die zu polymerisierenden Monomeren. Die Polymerisation kann in einem weiten Temperaturbereich, gegebenenfalls unter vermindertem oder auch unter erhöhtem Druck in entsprechend ausgelegten Apparaturen, vorgenommen werden. Vorzugsweise erfolgt die Polymerisation bei Normaldruck und Temperaturen bis zu 100°C, insbesondere in dem Bereich von 30 bis 80°C. Die Konzentration der Monomeren in der wäßrigen Lösung wird vorzugsweise so gewählt, daß Polymerisatlösungen anfallen, deren Feststoffgehalt 10 bis 90, vorzugsweise 20 bis 70 Gew.%, beträgt. Der pH-Wert des Reaktionsgemisches wird in dem Bereich von 4 bis 10, vorzugsweise 5 bis 8, eingestellt.
In Abhängigkeit von den Polymerisationsbedingungen erhält man Copolymerisate eines unterschiedlichen Molekulargewichts. Zur Charakterisierung der Copolymerisate wird anstelle des Molekulargewichts der K-Wert nach H. Fikentscher angegeben. Die K-Werte (gemessen in 5%iger wäßriger Kochsalzlösung bei 25°C und einer Polymerkonzentration von 0,1 Gew.%) betragen 5 bis 350. Copolymerisate mit niedrigen Molekulargewichten und entsprechend niedrigen K-Werten erhält man mit Hilfe der üblichen Methoden, d.h. Einsatz größerer Peroxidmengen bei der Copolymerisation oder Verwendung von Polymerisationsreglern oder Kombinationen der beiden genannten Maßnahmen. Polymerisate mit einem hohen K-Wert und mit hohen Molekulargewichten erhält man beispielsweise durch Polymerisieren der Monomeren in Form der umgekehrten Suspensionspolymerisation oder durch Polymerisieren der Monomeren (a) und (b) nach dem Verfahren der Wasser-in-öl-Polymerisation. Bei dem Verfahren der umgekehrten Suspensionspolymerisation sowie der Wasserin-öl-Polymerisation verwendet man als ölphase gesättigte Kohlenwasserstoffe, beispielsweise Hexan, Heptan, Cyclohexan, Dekalin oder aromatische Kohlenwasserstoffe, wie Benzol, Toluol, Xylol und Cumol. Das Verhältnis von ölphase zu wäßriger Phase beträgt bei der umgekehrten Suspensionspolymerisation beispielsweise 10 : 1 bis 1 : 10, vorzugsweise 7 : 1 bis 1 : 1.
Um die wäßrige Monomerlösung in einer inerten hydrophoben Flüssigkeit zu dispergieren, benötigt man ein Schutzkolloid, das die Aufgabe hat, die Suspension der wäßrigen Monomerlösung in der inerten hydrophoben Flüssigkeit zu stabilisieren. Die Schutzkolloide haben außerdem einen Einfluß auf die Teilchengröße der durch Polymerisation entstehenden Polymerperlen. Als Schutzkolloide können beispielsweise diejenigen Substanzen verwendet werden, die in der US-PS 2 982 749 beschrieben sind. Außerdem eignen sich die aus der DE-PS 2 634486 bekannten Schutzkolloide, die beispielsweise durch Umsetzung von ölen und/oder Harzen, die jeweils allylständige Wasserstoffatome aufweisen, mit Maleinsäureanhydrid erhältlich sind.
Weitere geeignete Schutzkolloide sind beispielsweise aus der DE-PS
27 10 372 bekannt, die erhältlich sind durch thermische oder radikalische Lösungs- oder Substanzpolymerisation aus 60 bis 99,9 Gew.% Dicyclopentadien, 0 bis 30 Gew.% Styrol und 0,1 bis 10 Gew.% Maleinsäureanhydrid. Außerdem eignen sich als Schutzkolloide Pfropfpolymerisate, die erhältlich sind durch Pfropfen von Polymeriaten (A) aus a) 40 bis 100 Gew.% monovinylaromatischen Monomeren, b) 0 bis 60 Gew.% monoethylenisch ungesättigten Carbonsäuren mit 3 bis
6 C-Atomen, Maleinsäureanhydrid und/oder Itaconsäureanhydrid und c) 0 bis 20 Gew.% anderen monoethylenisch ungesättigten Monomeren, mit der Maßgabe, daß die Summe der Gewichtsprozente (a) bis (c) immer 100 beträgt, die Polymerisate A) ein Molekulargewicht (Zahlenmittel) von 500 bis 20 000 und Hydrierjodzahlen (nach DIN 53 241) von 1,3 bis 51 aufweisen, mit Monomermischungen aus
1) 70 bis 100 Gew.% Acrylsäureester und/oder Methacrylsäureester von 1 bis 20 C-Atome enthaltenden einwertigen Alkoholen,
2) 0 bis 15 Gew.% monoethylenisch ungesättigten Carbonsäuren mit 3 bis 6 C-Atomen, Maleinsäureanhydrid und/oder
Itaconsäureanhydrid,
3) 0 bis 10 Gew.% Acrylsäuremonoester und/oder Methacrylsäuremonoester von mindestens zweiwertigen Alkohlen,
4) 0 bis 15 Gew.% monovinylaromatischen Monomeren und 5) 0 bis 7,5 Gew.% Acrylamid und/oder Methacrylamid, mit der Maßgabe, daß die Summe der Gewichtsprozente a) bis e) immer 100 beträgt, bei Temperaturen bis zu 150°C in einem inerten hydrophoben Verdünnungsmittel in Gegenwart von Polymerisationsinitiatoren, wobei die Monomeren in einer Menge von 97,5 bis 50 Gew.%, bezogen auf die Mischung aus Polymerisat (A) und Monomeren, eingesetzt werden. Schutzkolloide dieser Art werden in der EP-A-0 290 753 beschrieben.
Wenn bei der umgekehrten Suspensionspolymerisation ein aliphatischer Kohlenwasserstoff als inerte hydrophobe Flüssigkeit eingesetzt wird, hat sich als Schutzkolloid eine Mischung aus einem anorganischen Suspensionsmittel auf Basis modifizierter feinteiliger Mineralien und einem nichtionischen Tensid als sehr vorteilhaft erwiesen.
Die anorganischen Suspensionsmittel, die eine niedrige hydrophile-lyophile Balance haben, sind die bei den umgekehrten Suspensionspolymerisationsverfahren üblicherweise eingesetzten Mittel. Die mineralische Komponente dieser Stoffe wird beispielsweise von Bentonit, Montmorillonit oder Kaolin gebildet. Die feinteiligen Mineralien werden zur Modifizierung mit Salzen langkettiger Amine, z.B. C8 _ bis C24-Aminen oder quaternären Ammoniumsalzen behandelt, wobei eine Einlagerung der Aminsalze bzw. der quaternären Ammoniumsalze zwischen die einzelnen Schichten der feinteiligen Mineralien erfolgt. Die zur Modifizierung verwendeten gegebenenfalls quaternisierten Ammoniumsalze enthalten vorzugsweise 1 bis 2 C10- bis C22- Alkylreste. Die anderen Substituenten der Ammoniumsalze sind C1- bis C4- Alkyl oder Wasserstoff. Der Gehalt an freien Ammoniumsalzen der aminmodifizierten Mineralien beträgt höchstens 2 Gew.%. Mit Ammoniumsalzen modifizierte feinteilige Mineralien sind im Handel erhältlich.
Zu den anorganischen Suspensionsmitteln für die umgekehrte Suspensionspolymerisation gehört auch Siliciumdioxid, das mit siliciumorganischen Verbindungen umgesetzt worden ist. Eine geeignete siliciumororganische Verbindung ist beispielsweise Trimethylsilylchlorid.
Ziel der Modifizierung der anorganischen feinteiligen Mineralien ist es, die Benetzbarkeit der Mineralien mit dem als äußere Phase der umgekehrten Suspensionspolymerisation verwendeten aliphatischen Kohlenwasserstoff zu verbessern. Bei den schichtförmig aufgebauten natürlichen Mineralien, z.B. Bentonit und Montmorillonit, wird durch die Modifizierung mit Aminen erreicht, daß die modifizierten Mineralien in dem aliphatischen Kohlenwasserstoff quellen und dabei zu sehr feinen Teilchen zerfallen. Die Teilchengröße beträgt etwa 1 μm und liegt im allgemeinen in dem Bereich von 0,5 bis 5 μm. Die mit siliciumorganischen Verbindungen umgesetzten Siliciumdioxide haben eine Teilchengröße in dem Bereich von etwa 10 bis 40 nm. Die modifizierten feinteiligen Mineralien werden sowohl von der wäßrigen Monomerlösung als auch von dem Lösungsmittel benetzt und lagern sich dadurch in die Phasengrenzfläche zwischen wäßriger und organischer Phase an. Sie verhindern bei einer Kollision zweier wäßriger Monomertröpfchen in der Suspension eine Koagulation. Nach Beendigung der Copolymerisation wird ein Teil des Wassers azeotrop abdestilliert, so daß man Copolymerisate mit einem Feststoffgehalt von 70 bis 99, vorzugsweise 80 bis 95 Gew.%, erhält. Die Copolymerisate liegen in Form feiner Perlen eines Durchmessers von 0,05 bis 1 mm vor. Die oben beschriebenen Copolymerisate werden zum Unterschied gegenüber dem Stand der Technik in der nicht hydrolysierten Form bei der Herstellung von Papier, Pappe und Karton als Zusatz zum Papierstoff verwendet. Diese Copolymerisate enthalten keine Vinylamin-Einheiten. Sie bewirken dabei eine Erhöhung der Entwässerungsgeschwindigkeit des Papierstoffs, so daß die Produktionsgeschwindigkeit bei der Papierherstellung erhöht werden kann. Außerdem wirken die Copolymerisate als Retentionsmittel für Faser- und Füllstoffe und sich gleichzeitig Flockungsmittel. Um die genannten Effekte zu erzielen, setzt man dem Papierstoff die Copolymerisate in Mengen von 0,01 bis etwa 0,8 Gew.%, bezogen auf trockenen Papierstoff, zu. Höhere Einsatzmengen an Copolymerisaten bewirken eine Trockenverfestigung. Um Trockenverfestigungseffekte zu erzielen, verwendet man die Polymerisate in Mengen von etwa 0,5 bis 3,5 Gew.%, bezogen auf trockenen Papierstoff. Besonders bevorzugt ist der Einsatz der genannten Copolymerisate zusammen mit nativer Kartoffelstärke als Trockenverfestigungsmittel. Solche
Mischungen weisen eine gute Retention gegenüber Papierfasern im Papierstoff auf. Der CSB-Wert im Siebwasser wird mit diesen Mischungen im Vergleich zu nativer Stärke erheblich reduziert. Die in den Wasserkreisläufen von Papiermaschinen enthaltenen Störsubstanzen beeinträchtigen die Wirksamkeit der Mischungen aus den erfindungsgemäß einzusetzenden Copolymerisäten und nativer Stärke nur geringfügig. Der pH-Wert der Papierstoffsuspension kann in dem Bereich von 4 bis 9, vorzugsweise 6 bis 8,5, liegen. Diese Mischungen aus nativer Stärke und kationischem Polymerisat, die zur Trockenverfestigung dem Papierstoff zugesetzt werden, werden vorzugsweise dadurch hergestellt, daß man native Kartoffelstärke in Gegenwart der nicht hydrolysierten Copolymerisate in wäßriger Lösung auf Temperaturen oberhalb der Verkleisterungstemperatur der nativen Kartoffelstärke in Abwesenheit von Oxidationsmitteln, Polymerisationsinitiatoren und Alkali erhitzt. Die native Kartoffelstärke wird auf diese Weise modifiziert. Die Verkleisterungstemperatur der Stärke ist dabei diejenige Temperatur, bei der die Doppelbrechung der Stärkekörner verlorengeht, vgl. Ullmanns Enzyklopädie der technischen Chemie, Urban und Schwarzenberg, MünchenBerlin, 1965, 16. Band, Seite 322.
Die Modifizierung der nativen Kartoffelstärke kann in verschiedener Weise vorgenommen werden. Eine bereits ausgeschlossene native Kartoffelstärke, die als wäßrige Lösung vorliegt, kann mit den in Betracht kommenden kationischen Polymerisaten auf Temperaturen in dem Bereich von 15 bis 70°C zur Reaktion gebracht werden. Bei noch tieferen Temperaturen sind längere Kontaktzeiten erforderlich. Wird die Umsetzung bei noch höheren Temperaturen, z.B. bis zu 110°C vorgenommen, so benötigt man kürzere Kontaktzeiten, z.B. 0,1 bis 15 min. Die einfachste Art der Modifizierung der nativen Kartoffelstärke besteht darin, daß man eine wäßrige Aufschlämmung der Stärke in Gegenwart der in Betracht kommenden kationischen Copolymerisate auf eine Temperatur oberhalb der Verkleisterungstemperatur der nativen Kartoffelstärke erhitzt, im allgemeinen wird die Stärke zur Modifizierung auf Temperaturen in dem Bereich von 70 bis 110°C erwärmt, wobei man bei Temperaturen oberhalb von 110°C die Umsetzung in druckdichten Apparaturen ausführt. Man kann jedoch auch so vorgehen, daß man zunächst eine wäßrige Anschlämmung von nativer Kartoffelstärke auf eine Temperatur in dem Bereich von 70 bis 110°C erwärmt und die Stärke in Lösung bringt und danach das zur Modifizierung erforderliche kationische Copolymerisat zusetzt. Das Löslichmachen der Stärke geschieht dabei in Abwesenheit von Oxidationsmitteln, Initiatoren und Alkali in etwa 3 min bis 5 Std., vorzugsweise 5 bis 30 min. Höhere Temperaturen erfordern hier eine kürzere verweilzeit.
Auf 100 Gew. -Teile native Kartoffelstärke verwendet man 1 bis 20, vorzugsweise 8 bis 12 Gew.-Teile eines einzigen oder einer Mischung der in Betracht kommenden nicht hydrolysierten kationischen Copolymerisate. Durch die Umsetzung mit den kationischen Copolymerisaten wird die native Kartoffelstärke in eine in Wasser lösliche Form überführt. Die Viskosität der wäßrigen Phase des Reaktionsgemisches steigt dabei an. Eine 3,5 gew.%ige wäßrige Lösung des Trockenverfestigungsmittels hat dabei Viskositäten in dem Bereich von 50 bis 10.000 mPas (gemessen nach Brookfield bei 20 Upm und 20°C).
Die erfindungsgemäßen zu verwendenden Copolymerisate können bei der Herstellung von sämtlichen bekannten Papier-, Karton- und Pappenqualitäten verwendet werden, z.B. zur Herstellung von Schreib-, Druck- und Verpackungspapieren. Die Papiere können aus einer Vielzahl verschiedenartiger Fasermaterialien hergestellt werden, beispielsweise aus Sulfit- oder Sulfat-Füllstoff in gebleichtem oder ungebleichtem Zustand. Holzschliff, Altpapier, thermomechanischem Stoff (TMP) und chemothermomechanischem Stoff (CTMP). Das Flächengewicht der Papiere kann zwischen 30 und 200, vorzugsweise 35 und 150 g/m2 betragen, während es bei Karton bis zu 600 g/m2 betragen kann. Die Papiere, die unter Einsatz der erfindungsgemäß zu verwendenden Copolymerisate in Mischung mit nativer Kartoffelstärke hergestellt werden, haben gegenüber Papieren, die in Gegenwart der gleichen Menge an nativer Kartoffelstärke erhältlich sind, eine merklich verbesserte Festigkeit.
Die in den Beispielen angegebenen Teile sind Gewichtsteile, die Prozentangaben beziehen sich auf das Gewicht. Die Viskositäten wurden in wäßriger Lösung bei einer Feststoffkonzentration von 3,5 Gew.% und einer Temperatur von 20°C in einem Brookfield Viskosimeter bei 20 Upm bestimmt.
Die Blattbildung wurde in einem Rapid-Köthen-Laborblattbildner vorgenommen. Die Trockenreißlänge wurde nach DIN 53 112, Blatt 1, der Trockenberstdruck nach Müllen, DIN 53 141, der CMT-Wert nach DIN 53 143 und Weiterreißwiderstand nach Brecht-Inset gemäß DIN 53 115 bestimmt. Die Prüfung der Blätter erfolgte jeweils nach einer 24stündigen Klimatisierung bei einer Temperatur von 23°C und einer relativen Luftfeuchtigkeit von 50 %.
Der K-Wert der Copolymerisate wurde nach H. Fikentscher, Cellulosechemie Bd. 13, 58 - 64 und 71 - 74 (1932) bei einer Temperatur von 25°C in 5%iger wäßriger Kochsalzlösung und einer Polymerkonzentration von 0,1 Gew.% bestimmt; dabei bedeutet K = k · 103.
Folgende Einsatzstoffe wurde verwendet: Copolymerisat 1
Copolymerisat aus 90 Mol% N-Vinylformamid (VFA) und 10 Mol% 3-Methacrylamidopropyltrimethylammoniumchlorid (MAPTAC) Copolymerisat 1 wurde hergestellt, indem man in einem 2 1-Kolben, der mit einem Rührer, Thermometer, Gaseinleitungsrohr und Rückflußkühler versehen war, 800 g Cyclohexan und 3 g des Schutzkolloids vorlegte, das in Beispiel 1 der EP-A-0 290 753 beschrieben ist. Die Vorlage wurde unter einer Stickstoffatmosphäre und unter Rühren bei einer Drehzahl des Rührers von 300 Umdrehungen pro Minute auf eine Temperatur von 50°C erwärmt. Sobald diese Temperatur erreicht war, gab man innerhalb von 30 Minuten eine Lösung von 117 g N-Vinylformamid, 80 g einer 50gew.%igen wäßrigen Lösung von 3-Meth- acrylamidopropyltrimethylammoniumchlorid, 0,15 g Diethylentriaminpenta essigsäure-Natriumsalz, 0,65 g 2,2'-Azo-bis(2-amidinopropan)dihydrochlorid und 100 g Wasser hinzu. Der pH-Wert der wäßrigen Phase betrug 6,5. Anschließend wurde das Reaktionsgemisch 16 Stunden bei 50°C gerührt. Danach wurde die Temperatur auf 78°C erhöht und mit Hilfe eines Wasserabscheiders 134 g Wasser azeotrop abdestilliert. Der anfallende weiße perlförmige Feststoff wurde abfiltriert, mit 200 g Cyclohexan gewaschen und im Vakuum vom restlichen Lösemittel befreit. Man erhielt 163 g eines Copolymerisats mit einem Feststoffgehalt von 96,4 Gew.%. Der K-Wert betrug 180. Analog zu der oben angegebenen Herstellvorschrift wurden die Copolymerisate 2 bis 5 hergestellt, deren Zusammensetzung in Tabelle 1 angegeben ist.
Copolymerisat 6: Homopolymerisat des N-Vinylformamids mit einem
Feststoffgehalt von 96,6 % und einem K-Wert von 203 hergestellt analog der Vorschrift für Copolymerisat 1 durch Homopolymerisation von N-vinylformamid. Copolymeriat 7: Partiell hydrolysiertes Polymerisat 6, das durch
Homopolymerisation von N-Vinylformamid nach der für das Copolymerisat 1 angegebenen Herstellvorschrift erhalten wurde, wobei jedoch vor dem Entfernen des Wassers 105 g einer 38%igen Salzsäure zugegeben und die Mischung 3 Stunden bei 50°C gerührt wurde und erst danach das Wasser azeotrop abdestilliert wurde. Der Hydrolysegrad betrug 42 %, der K-Wert 185, der Feststoffgehalt 93,5 %. Copolymerisat 8: Ist ebenfalls ein hydrolysiertes Homopolymerisat des N-Vinylformamids, das analog Copolymerisat 7 hergestellt wurde, jedoch wurden bei der Hydrolyse 211 g 38%ige Salzsäure eingesetzt. Der Hydrolysegrad betrug ca. 90 %, der K-Wert 195 und der Feststoffgehalt 90,6 %.
Ein Hydrolysegrad von 90 % bedeutet, daß 90 % der ursprünglich im Polymerisat vorhandenen Formamidgruppen in Aminogruppen bzw. die entsprechenden Ammoniumsalzgruppen überführt worden sind.
Beispiele Man stellte zunächst einen holz- und kaolinhaltigen Zeitungspapierstoff mit einer Stoffdichte von 2 g/l und einem pH-Wert von 6 bei einem Alaungehalt von 0,5 Gew.% her. Dieser Papierstoff wurde für sämtliche Beispiele und Vergleichsbeispiele als Modellsubstanz verwendet. Man bestimmte zunächst mit Hilfe des Schopper-Riegler-Gerätes den Mahlgrad (°SR), die Entwässerungszeit (d.h. die Zeit, in der 600 ml Siebwasser aus dem Gerät liefen) sowie den Durchlaßgrad (optische Transmission des Siebwassers in %) für das oben beschriebene Papierstoffmodell. Dann prüfte man jeweils 1 1- Proben des oben beschriebenen Papierstoffs mit den in Tabelle 2 angegebenen Mengen an Copolymerisaten 1 bis 8. Die dabei erhaltenen Meßergebnisse sind in Tabelle 2 angegeben.
zur Prüfung der Papierverfestigung wurden die im folgenden angegebenen Verfestiger 1 bis 5 getestet, die durch Erhitzen von nativer Kartoffelstärke mit den in Tabelle 3 angegebenen Copolymerisaten jeweils hergestellt wurden.
Die oben beschriebenen Verfestiger 1 bis 5 wurden jeweils an dem oben angegebenen Papierstoff getestet. Die Zugabemenge betrug in allen Fällen 3,0 Gew.%, bezogen auf trockenen Papierstoff. Die Testergebnisse sind in Tabelle 4 angegeben.
5 - 126 136 2667 162
6 native Kartoffel
stärke 145 148 2836 276
7 4 148 149 2971 327
8 5 200 194 3349 146
Weitere Verfestiger wurde dadurch hergestellt, daß man native Kartoffelstärke in wäßriger Anschlämmung 15 Minuten auf eine Temperatur von 90 bis 110°C in Gegenwart der in Tabelle 5 angegebenen Copolymerisate erwärmte.
Um die Verfestiger 6 bis 8 bezüglich ihrer Wirksamkeit zu testen, wurden sie in einer Menge von 3,0 Gew.%, bezogen auf trockenen Papierstoff, zu dem in Beispiel 1 beschriebenen Papierstoff zugesetzt. Die dabei erhaltenen Ergebnisse sind in Tabelle 6 angegeben.
Um die Copolymerisate 1, 3 und 5 sowie Copolymerisat 6 (Vergleich) bezüglich ihrer Wirksamkeit als Trockenverfestiger auch ohne Stärkezusatz zu testen, wurden sie in einer Menge von 0,5 Gew.%, bezogen auf trockenen Papierstoff, zu dem in Beispiel 1 beschriebenen Papierstoff zugesetzt. Die dabei erhaltenen Ergebnisse sind in Tabelle 7 angegeben.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Papier, Pappe und Karton durch Entwässern eines Papierstoffs in Gegenwart von N-Vinylformamid-Einheiten enthaltenden Polymerisaten, dadurch gekennzeichnet, daß man als
N-Vinylformamid-Einheiten enthaltende Polymerisate nicht hydrolysierte Copolymerisate, die
(a) 99 bis 1 Mol% N-Vinylformamid und
(b) 1 bis 99 Mol% mindestens eines wasserlöslichen basischen
Monomers der Formeln
CH2=CH- -CH=CH2 (II),
in denen
R1 = H, CH3, C2H5,
R2, R3 und R4= H, CH3, C2H5, (-CH2-CH2-O-)nH,
R5, R6 = C1- bis C10-Alkyl
A = C1- bis C6-Alkylen n = 1 bis 6 und = ein Anion bedeuten, einpolymerisiert enthalten, in Mengen von 0,01 bis 3,5 Gew.%, bezogen auf trockenen Papierstoff, einsetzt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man zum Papierstoff eine wäßrige Lösung zusetzt, die durch Erhitzen von nativer Kartoffelstärke in Gegenwart der nicht hydrolysierten Copolymerisate in wäßriger Lösung auf Temperaturen oberhalb der Verkleisterungstemperatur der nativen Kartoffelstärke in Abwesenheit von Oxidations- mitteln, Polymerisationsinitiatoren und Alkali erhältlich ist.
EP90904264A 1989-03-18 1990-03-14 Verfahren zur herstellung von papier, pappe und karton in gegenwart von n-vinylformamid-einheiten enthaltenden copolymerisaten Expired - Lifetime EP0418343B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90904264T ATE89879T1 (de) 1989-03-18 1990-03-14 Verfahren zur herstellung von papier, pappe und karton in gegenwart von n-vinylformamid-einheiten enthaltenden copolymerisaten.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3909004A DE3909004A1 (de) 1989-03-18 1989-03-18 Verwendung von nicht hydrolysierten n-vinylformamid-einheiten enthaltenden copolymerisaten bei der papierherstellung
DE3909004 1989-03-18

Publications (2)

Publication Number Publication Date
EP0418343A1 true EP0418343A1 (de) 1991-03-27
EP0418343B1 EP0418343B1 (de) 1993-05-26

Family

ID=6376708

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90904264A Expired - Lifetime EP0418343B1 (de) 1989-03-18 1990-03-14 Verfahren zur herstellung von papier, pappe und karton in gegenwart von n-vinylformamid-einheiten enthaltenden copolymerisaten

Country Status (9)

Country Link
US (1) US5262008A (de)
EP (1) EP0418343B1 (de)
JP (1) JPH03505239A (de)
CA (1) CA2030540A1 (de)
DE (2) DE3909004A1 (de)
ES (1) ES2043361T3 (de)
FI (1) FI95943C (de)
PT (1) PT93472B (de)
WO (1) WO1990011404A1 (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5280077A (en) * 1992-07-14 1994-01-18 Air Products And Chemicals, Inc. Process for the synthesis of oligomeric vinylamines
US5720888A (en) * 1993-11-12 1998-02-24 Betzdearborn Inc. Water-soluble cationic copolymers and their use as flocculants
US5473033A (en) * 1993-11-12 1995-12-05 W. R. Grace & Co.-Conn. Water-soluble cationic copolymers and their use as drainage retention aids in papermaking processes
US5516852A (en) * 1993-11-12 1996-05-14 W. R. Grace & Co.-Conn. Method of producing water-soluble cationic copolymers
US5700893A (en) * 1993-11-12 1997-12-23 Betzdearborn Inc. Water-soluble cationic copolymers and their use as flocculants and drainage aids
AU672159B2 (en) * 1994-06-14 1996-09-19 National Starch And Chemical Investment Holding Corporation High performance PVOH stabilised EVA adhesives
US5609857A (en) * 1995-04-05 1997-03-11 National Starch And Chemical Investment Holding Corporation Methods of conditioning hair which utilize polymeric N-vinyl formamide
DE69524959T2 (de) * 1994-08-05 2002-08-29 Nat Starch Chem Invest Haarpflegezusammensetzungen, die n-vinylformamidepolymer enthalten, und verfahren zur behandlung des haares
DE4438708A1 (de) * 1994-10-29 1996-05-02 Basf Ag Verfahren zur kationischen Modifizierung von Stärke und Verwendung der kationisch modifizierten Stärke
US5853542A (en) * 1995-09-11 1998-12-29 Hercules Incorporated Method of sizing paper using a sizing agent and a polymeric enhancer and paper produced thereof
DE19701523A1 (de) * 1997-01-17 1998-07-23 Basf Ag Polymermodifizierte anionische Stärke, Verfahren zu ihrer Herstellung und ihre Verwendung
DE19701524A1 (de) * 1997-01-17 1998-07-23 Basf Ag Polymermodifizierte Stärke, Verfahren zu ihrer Herstellung und ihre Verwendung
US6599999B1 (en) 1997-02-04 2003-07-29 National Starch And Chemical Investment Holding Corporation Hair care compositions containing polymeric N-vinyl acetamide and methods of treating hair
DE19713755A1 (de) * 1997-04-04 1998-10-08 Basf Ag Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit
JP4666558B2 (ja) * 2001-05-31 2011-04-06 ハイモ株式会社 濾水性向上方法
US7873576B2 (en) * 2002-09-25 2011-01-18 Cummins-Allison Corp. Financial document processing system
AU2003268452A1 (en) * 2002-09-06 2004-03-29 University Of Pittsburgh N-vinylformamide derivatives, polymers formed therefrom and synthesis thereof
US7494566B2 (en) * 2002-09-13 2009-02-24 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Composition for increasing cellulosic product strength and method of increasing cellulosic product strength
US7090745B2 (en) * 2002-09-13 2006-08-15 University Of Pittsburgh Method for increasing the strength of a cellulosic product
WO2005085361A2 (en) * 2004-02-27 2005-09-15 University Of Pittsburgh Networked polymeric gels and use of such polymeric gels in hydrocarbon recovery
US7919639B2 (en) 2009-06-23 2011-04-05 Chevron Phillips Chemical Company Lp Nano-linked heteronuclear metallocene catalyst compositions and their polymer products

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1692854A1 (de) * 1967-11-29 1971-10-21 Hoechst Ag Verfahren zur Entwaesserung von Cellulosefaser-Suspensionen
DE3128478A1 (de) * 1981-07-18 1983-02-03 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von linearen, basischen polymerisaten
JPS61118406A (ja) * 1984-11-14 1986-06-05 Mitsubishi Chem Ind Ltd 水溶性ポリビニルアミンの製造方法
EP0220603B1 (de) * 1985-10-22 1989-09-13 BASF Aktiengesellschaft Verfahren zur Herstellung von pulverförmigen Polymerisaten
DE3620065A1 (de) * 1986-06-14 1987-12-17 Basf Ag Verfahren zur herstellung von papier, pappe und karton
DE3706525A1 (de) * 1987-02-28 1988-09-08 Basf Ag Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9011404A1 *

Also Published As

Publication number Publication date
PT93472B (pt) 1996-03-29
PT93472A (pt) 1990-11-07
EP0418343B1 (de) 1993-05-26
DE59001550D1 (de) 1993-07-01
FI95943B (fi) 1995-12-29
FI905661A0 (fi) 1990-11-15
ES2043361T3 (es) 1993-12-16
DE3909004A1 (de) 1990-09-27
FI95943C (fi) 1996-04-10
WO1990011404A1 (de) 1990-10-04
CA2030540A1 (en) 1990-09-19
US5262008A (en) 1993-11-16
JPH03505239A (ja) 1991-11-14

Similar Documents

Publication Publication Date Title
EP0418343B1 (de) Verfahren zur herstellung von papier, pappe und karton in gegenwart von n-vinylformamid-einheiten enthaltenden copolymerisaten
DE3721426C2 (de) N-Vinylformamidcopolymere und Verfahren zu ihrer Herstellung
DE3624813C2 (de)
EP0282761B1 (de) Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit
EP0416427B1 (de) Neutralleimungsmittel für Rohpapiermassen unter Verwendung von kationischen Kunststoffdispersionen
EP2443284B2 (de) Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton
EP0910701B1 (de) Verfahren zur herstellung von papier und karton
DE3720194C2 (de) Vinylamincopolymere, Verwendung als Ausflockungsmittel und Verfahren zu ihrer Herstellung
DE4323560C2 (de) Verwendung eines Polyvinylalkohols mit Aminfunktionalität und eines gegenüber Cellulose reaktiven Leims während des Papierherstellungsverfahrens zur Verbesserung der Naßfestigkeit von Cellulosepapier
EP0071050A1 (de) Lineare, basische Polymerisate, Verfahren zu deren Herstellung und deren Verwendung
EP0788516B2 (de) Verfahren zur kationischen modifizierung von stärke und verwendung der kationisch modifizierten stärke
DE102005043800A1 (de) Verfahren zur Herstellung von Papier, Pappe und Karton
EP0464043B1 (de) Verwendung von nicht hydrolysierten n-vinylformamid-einheiten enthaltenden copolymerisaten als flockungs- und entwässerungsmittel
DE1696326B1 (de) Verwendung von waessrigen kationaktiven Kunststoffdispersionen zur Oberflaechenbehandlung insbesondere zur Oberflaechenleimung von Papier und papieraehnlichen Faservliesen
WO2010145990A1 (de) Verfahren zur reduktion von ablagerungen in der trockenpartie bei der herstellung von papier, pappe und karton
EP0406461A1 (de) Neue kationische Dispergiermittel enthaltende Papierleimungsmittel
EP0573458B1 (de) Wässrige anschlämmungen von feinteiligen füllstoffen und ihre verwendung zur herstellung von füllstoffhaltigem papier
EP3332063B1 (de) Verfahren zur herstellung von papier
EP1673506A1 (de) Verfahren zur herstellung von papier, pappe und karton
EP2723943B1 (de) Verfahren zur herstellung von papier, pappe und karton
DE3529585A1 (de) Verfahren zur verbesserung der feinteil- und fuellstoffretention von papier waehrend dessen verarbeitung zu einem bogenmaterial aus zellstoffbrei und hierfuer geeignete retentionshilfsstoffe
WO2001036500A1 (de) Verfahren zur herstellung von wasserlöslichen polymeren mit oligoalkylenimin-seitenketten
EP0146000A1 (de) Verfahren zur Herstellung von Papier, Karton und Pappe mit hoher Trocken-, Nass- und Laugenfestigkeit
WO1991003597A1 (de) Verfahren zur flotation von füllstoffen aus altpapieren in gegenwart von polymeren und/oder copolymeren
DE1546245A1 (de) Zellulosefaserprodukt und Verfahren zu dessen Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901031

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19921106

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 89879

Country of ref document: AT

Date of ref document: 19930615

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 59001550

Country of ref document: DE

Date of ref document: 19930701

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930608

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2043361

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 90904264.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980226

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980227

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980303

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980310

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980311

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980312

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980313

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19980316

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980320

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990314

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990315

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19990316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

BERE Be: lapsed

Owner name: BASF A.G.

Effective date: 19990331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991001

EUG Se: european patent has lapsed

Ref document number: 90904264.0

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990314

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991130

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19991001

EUG Se: european patent has lapsed

Ref document number: 90904264.0

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050314