EP0332916A1 - Ultrasonic sensor - Google Patents

Ultrasonic sensor Download PDF

Info

Publication number
EP0332916A1
EP0332916A1 EP89103419A EP89103419A EP0332916A1 EP 0332916 A1 EP0332916 A1 EP 0332916A1 EP 89103419 A EP89103419 A EP 89103419A EP 89103419 A EP89103419 A EP 89103419A EP 0332916 A1 EP0332916 A1 EP 0332916A1
Authority
EP
European Patent Office
Prior art keywords
hollow cylinder
ultrasonic sensor
polymer film
electrodes
sensor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89103419A
Other languages
German (de)
French (fr)
Inventor
Fritz Dipl.-Ing. Breimesseer
Bernd Dr. Granz
Bertram Sachs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0332916A1 publication Critical patent/EP0332916A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0688Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction with foil-type piezoelectric elements, e.g. PVDF
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S310/00Electrical generator or motor structure
    • Y10S310/80Piezoelectric polymers, e.g. PVDF

Definitions

  • the invention relates to an ultrasonic sensor according to the preamble of the main claim.
  • So-called membrane or miniature hydrophones are used to determine the properties of an ultrasound field prevailing in a sound-carrying medium, for example water.
  • the three-dimensional distribution of the sound pressure amplitude of the ultrasound field is determined by measuring the sound pressure prevailing at different locations in a measuring trough with such a hydrophone.
  • EP-A2-O 227 985 discloses an ultrasound sensor in which a polymer film attached to a support body in its edge region is piezoelectrically activated in a partial region and electrically coupled to electrodes which are to be arranged spatially separate from the piezoelectrically active region.
  • the surface charge vibrations caused by an ultrasonic wave in the piezoelectrically active area of the polymer film are electrically coupled via the sound-carrying medium surrounding the polymer film to the electrodes arranged outside the surface area of the polymer film assigned to the piezoelectrically active area of the polymer film.
  • the piezoelectrically active central region of the polymer film can thus be arranged in the focus region of a focused ultrasonic shock wave, since there is no mechanically unstable electrically conductive layer in the central region of the polymer film.
  • the electrodes can accordingly be spatially separated from the piezoelectrically active region of the polymer film be arranged separately both on the film itself and outside the film, for example on the support body of the film.
  • the piezoelectric polymer film is clamped tightly between two ring-shaped support bodies, so that their flat sides are oriented perpendicular to the central axis of the support bodies.
  • the direction of incidence of the ultrasound to be measured is therefore essentially parallel to this central axis.
  • the diameter of the polymer film must be very large. In the known ultrasonic sensor, miniaturization is therefore always associated with a deterioration in the reception properties.
  • the invention is therefore based on the object of specifying an ultrasonic sensor, the reception properties of which, even in a miniaturized embodiment, are practically not influenced by diffraction effects, and which is both mechanically stable and easy to handle.
  • the above object is achieved with the characterize the features of the main claim. Since the flat sides of the polymer film are arranged parallel to the central axis of the hollow cylinder and are therefore intended for measuring ultrasound waves that propagate perpendicular to this central axis, the length of the hollow cylinder has no significant influence on the ultrasound field at the location of the polymer film. In this way, even with a small diameter of the hollow cylinder, an appropriately long construction allows improved handling and mechanical stability of the ultrasonic sensor.
  • a piezoelectric polymer film 2 is arranged in a hollow cylinder 12, which serves as a holding device with its flat sides parallel to the central axis 11 of the hollow cylinder 12.
  • the piezoelectric polymer film 2 consists of polyvinylidene fluoride PVDF and is piezoelectrically activated only in a small central area 21.
  • This piezoelectrically activated region 21 forms, for example, a circular disk which is polarized in the thickness direction and has a diameter d which is less than 2 mm, in particular less than 1 mm.
  • the thickness of the piezoelectrically activated region 21 corresponds to the thickness of the film 2 and is between 10 ⁇ m and 100 ⁇ m.
  • the outer diameter of the hollow cylinder 12 is, for example, between 10 mm and 20 mm with a wall thickness of approximately 0.5 mm. In a preferred embodiment, the length of the hollow cylinder is approximately 100 mm.
  • the flat sides of the piezoelectrically active region 21 are each provided with a flat electrode 6 arranges that runs parallel to these flat sides.
  • These electrodes 6 are each fastened in the wall of the hollow cylinder 12 by means of a holder 62 and are each provided with a connecting conductor 65.
  • a shock wave pulse arrives at the active area 21, alternating charges are generated on the surface of this area 21.
  • This alternating charge signal is capacitively coupled to the two electrodes 6 by the sound-carrying medium, for example water or oil, located between the electrodes 6 and the partial region 21.
  • the signal-receiving part of these electrodes 6 can, for example, according to FIG. 3, consist of a flat metal foil 61 which is fastened on a holder 62.
  • the metal foil 61 is made of stainless steel and has a thickness of approximately 20 ⁇ m.
  • a fine metal grid can also be provided.
  • the holders 62 of the electrodes 6 may advantageously be arranged offset from one another by 180 °.
  • electrodes 64 can also be provided, which, with their opposite side edges running parallel to the central axis 11, are glued into corresponding recesses in the hollow cylinder 12.
  • the electrodes 6 can also have the shape of part of a cylinder jacket and can be arranged, for example, on the inner surface of the hollow cylinder 12 as a metallic layer 63.
  • the hollow cylinder 12 is sealed with cover plates 14, which are each arranged on its end faces.
  • the interior of the hollow cylinder is filled with a sound-carrying liquid 13, for example high-purity water with a conductivity less than 10 ⁇ S / cm, or silicone oil.
  • a sound-carrying liquid 13 for example high-purity water with a conductivity less than 10 ⁇ S / cm, or silicone oil.
  • the hollow cylinder consists of polymethylpentene PMP. Since the acoustic impedance of polymethylpentene PMP is largely matched to the acoustic impedance of water, the jumps in impedance occurring at the hollow cylinder 12 play practically no role and only lead to a negligible falsification of the ultrasound field prevailing at the measuring location.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

The invention relates to an ultrasonic sensor which is particularly suitable for measuring the sound pressure amplitude in the focal area of focused ultrasonic shock waves and contains a polymer film (2), which is piezoelectrically activated in one region (21) and is coupled to electrodes (6) arranged spatially separated from this region (21). <??>According to the invention, the polymer film (2) is arranged in a hollow cylinder (12) made from plastic, with its flat sides parallel to the central axis (11) of this hollow cylinder (12). This measure reduces interfering diffraction effects and permits miniaturisation of the ultrasonic sensor. <??>Focal checking in lithotriptors. <IMAGE>

Description

Die Erfindung bezieht sich auf einen Ultraschall-Sensor gemäß dem Oberbegriff des Hauptanspruches.The invention relates to an ultrasonic sensor according to the preamble of the main claim.

Bei der Bestimmung der Eigenschaften eines in einem schall­tragenden Medium, beispielsweise Wasser, herrschenden Ultra­schallfeldes werden sogenannte Membran- oder Miniatur-Hydro­phone verwendet. Die dreidimensionale Verteilung der Schall­druckamplitude des Ultraschallfeldes wird dadurch ermittelt, daß an jeweils verschiedenen Orten in einer Meßwanne herrschen­de Schalldruck mit einem derartigen Hydrophon gemessen wird.So-called membrane or miniature hydrophones are used to determine the properties of an ultrasound field prevailing in a sound-carrying medium, for example water. The three-dimensional distribution of the sound pressure amplitude of the ultrasound field is determined by measuring the sound pressure prevailing at different locations in a measuring trough with such a hydrophone.

In "Ultrasonics, Mai 1980, Seiten 123 bis 126" ist beispiels­weise ein Membran-Hydrophon offenbart, bei dem eine Folie aus Polyvinylidenfluorid PVDF mit einer Dicke von 25 µm zwischen zwei als Stützkörper dienende Metallringe aufgespannt ist. Da­durch wird eine Membran mit einem Innendurchmesser von etwa 100 mm gebildet. Die Oberflächen der Membran sind in einem kleinen zentralen Bereich mit einander gegenüberliegenden kreisscheibenförmigen Elektroden versehen, deren Durchmesser beispielswise 4 mm beträgt. Zwischen diesen Elektroden befindet sich der polarisierte, piezoelektrisch aktive Bereich der Membran. Von den kreisscheibenförmigen Elektroden führen als Metallfilme auf die Oberflächen der Membran aufgebrachte An­schlußleiter zum Rand der Membran und werden dort mit Hilfe eines Leitklebers mit einem Koaxialkabel kontaktiert."Ultrasonics, May 1980, pages 123 to 126", for example, discloses a membrane hydrophone in which a film made of polyvinylidene fluoride PVDF with a thickness of 25 μm is stretched between two metal rings serving as support bodies. This forms a membrane with an inner diameter of approximately 100 mm. The surfaces of the membrane are provided in a small central area with opposing circular disk-shaped electrodes, the diameter of which is, for example, 4 mm. The polarized, piezoelectrically active region of the membrane is located between these electrodes. From the circular disk-shaped electrodes, connecting leads applied as metal films to the surfaces of the membrane lead to the edge of the membrane and are contacted there with the aid of a conductive adhesive with a coaxial cable.

Mit diesem bekannten Hydrophon lassen sich jedoch keine Ultra­schall-Stoßwellen, deren Druckamplituden im Bereich von 10⁸ Pa liegen, messen. Derartige Stoßwellen mit sehr steilen Puls­ flanken, deren Anstiegszeiten 1 µsec unterschreiten, führen zu einer durch Kavitationseffekte verursachten mechanischen Zerstörung der auf die PVDF-Schicht aufgebrachten metallischen Elektroden. Solche Stoßwellen treten beispielsweise im Fokus­bereich von Lithotriptern auf, bei denen eine fokussierte Ultraschall-Stoßwelle zur Zerstörung von Konkrementen, bei­spielsweise Nierensteine in der Niere eines Patienten, ver­wendet wird. Sowohl bei der Entwicklung als auch bei der routinemäßigen Überwachung derartiger Geräte ist es erforder­lich, die Eigenschaften der Stoßwelle im Fokusbereich zu be­stimmen.With this known hydrophone, however, no ultrasonic shock waves whose pressure amplitudes are in the range of 10⁸ Pa can be measured. Such shock waves with a very steep pulse flanks whose rise times are less than 1 µsec lead to mechanical destruction of the metallic electrodes applied to the PVDF layer caused by cavitation effects. Such shock waves occur, for example, in the focus area of lithotripters, in which a focused ultrasonic shock wave is used to destroy concrements, for example kidney stones in a patient's kidney. Both in the development and in the routine monitoring of such devices, it is necessary to determine the properties of the shock wave in the focus area.

Aus der EP-A2-O 227 985 ist ein Ultraschall-Sensor bekannt, bei dem eine in ihrem Randbereich an einem Stützkörper befestigte Polymerfolie in einem Teilbereich piezoelektrisch aktiviert und mit Elektroden elektrisch gekoppelt ist, die räumlich getrennt vom piezoelektrisch aktiven Bereich anzuordnen sind. Die im piezoelektrisch aktiven Bereich der Polymerfolie durch eine Ultraschallwelle verursachten Oberflächenladungsschwingungen werden über das die Polymerfolie umgebende schalltragende Medium zu den außerhalb des dem piezoelektrisch aktiven Bereich der Polymerfolie zugeordneten Oberflächenbereiches der Poly­merfolie angeordneten Elektroden elektrisch gekoppelt. Der piezoelektrisch aktive zentrale Bereich der Polymerfolie kann somit im Fokusbereich einer fokussierten Ultraschall-Stoßwelle angeordnet sein, da im zentralen Bereich der Polymerfolie keine mechanisch instabile elektrisch leitfähige Schicht vorhanden ist.EP-A2-O 227 985 discloses an ultrasound sensor in which a polymer film attached to a support body in its edge region is piezoelectrically activated in a partial region and electrically coupled to electrodes which are to be arranged spatially separate from the piezoelectrically active region. The surface charge vibrations caused by an ultrasonic wave in the piezoelectrically active area of the polymer film are electrically coupled via the sound-carrying medium surrounding the polymer film to the electrodes arranged outside the surface area of the polymer film assigned to the piezoelectrically active area of the polymer film. The piezoelectrically active central region of the polymer film can thus be arranged in the focus region of a focused ultrasonic shock wave, since there is no mechanically unstable electrically conductive layer in the central region of the polymer film.

Durch die Verwendung eines piezoelektrischen Polymers mit einer gegenüber piezokeramischen Werkstoffen relativ geringen Dielek­trizitätskonstante ist eine rein kapazitive Kopplung ohne hohe Signalverluste möglich. Die Elektroden können dementsprechend vom piezoelektrisch aktiven Bereich der Polymerfolie räumlich getrennt sowohl auf der Folie selbst als auch außerhalb der Folie, beispielsweise am Stützkörper der Folie angeordnet sein.By using a piezoelectric polymer with a dielectric constant that is relatively low compared to piezoceramic materials, a purely capacitive coupling is possible without high signal losses. The electrodes can accordingly be spatially separated from the piezoelectrically active region of the polymer film be arranged separately both on the film itself and outside the film, for example on the support body of the film.

Bei dieser bekannten Vorrichtung ist die piezoelektrische Poly­merfolie zwischen zwei ringförmige Stützkörper straff einge­spannt, so daß ihre Flachseiten senkrecht zur Mittelachse der Stützkörper orientiert sind. Die Einfallsrichtung des zu messenden Ultraschalls ist also im wesentlichen parallel zu dieser Mittelachse. Um störende Beugungseffekte an der von der Polymerfolie abgewandten Innenkante des dem Ultraschall-Sensor zugeordneten Stützkörpers zu vermeiden, muß der Durchmesser der Polymerfolie sehr groß sein. Bei dem bekannten Ultraschall-­Sensor ist somit eine Miniaturisierung stets mit einer Ver­schlechterung der Empfangseigenschaften verbunden.In this known device, the piezoelectric polymer film is clamped tightly between two ring-shaped support bodies, so that their flat sides are oriented perpendicular to the central axis of the support bodies. The direction of incidence of the ultrasound to be measured is therefore essentially parallel to this central axis. In order to avoid disruptive diffraction effects on the inner edge of the support body assigned to the ultrasonic sensor facing away from the polymer film, the diameter of the polymer film must be very large. In the known ultrasonic sensor, miniaturization is therefore always associated with a deterioration in the reception properties.

Der Erfindung liegt somit die Aufgabe zugrunde, einen Ultra­schall-Sensor anzugeben, dessen Empfangseigenschaften auch in einer miniaturisierten Ausführungsform durch Beugungseffekte praktisch nicht beeinflußt werden, und der sowohl mechanisch stabil als auch einfach zu handhaben ist.The invention is therefore based on the object of specifying an ultrasonic sensor, the reception properties of which, even in a miniaturized embodiment, are practically not influenced by diffraction effects, and which is both mechanically stable and easy to handle.

Die genannte Aufgabe wird erfindungsgemäß gelöst mit den kenn­zeichnen den Merkmalen des Hauptanspruches. Da die Polymerfolie mit ihren Flachseiten parallel zur Mittelachse des Hohlzylin­ders angeordnet und somit zur Messung von Ultraschallwellen vorgesehen ist, die sich senkrecht zu dieser Mittelachse aus­breiten, hat die Länge des Hohlzylinders keinen wesentlichen Einfluß auf das am Ort der Polymerfolie herrschende Ultra­schallfeld. Somit kann auch bei geringem Durchmesser des Hohl­zylinders durch eine entsprechend lange Bauweise eine ver­besserte Handhabbarkeit und mechanische Stabilität des Ultra­schall-Sensors erreicht werden.The above object is achieved with the characterize the features of the main claim. Since the flat sides of the polymer film are arranged parallel to the central axis of the hollow cylinder and are therefore intended for measuring ultrasound waves that propagate perpendicular to this central axis, the length of the hollow cylinder has no significant influence on the ultrasound field at the location of the polymer film. In this way, even with a small diameter of the hollow cylinder, an appropriately long construction allows improved handling and mechanical stability of the ultrasonic sensor.

Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich gemäß der Unteransprüche 2 bis 6.Further advantageous embodiments of the invention result from subclaims 2 to 6.

Zur weiteren Erläuterung der Erfindung wird auf die Zeichnung verwiesen, in deren

  • Figur 1 ein erfindungsgemäßer Ultraschall-Sensor in einem Längsschnitt veranschaulicht ist.
  • Figur 2 zeigt den Ultraschall-Sensor in einem Querschnitt und in
  • Figur 3 ist eine Elektrode zum kapazitiven Aufnehmen des Meß­signals veranschaulicht.
  • Figuren 4 und 5 zeigen eine besonders vorteilhafte Anordnung der Elektroden in einem erfindungsgemäßen Ultra­schall-Sensor jeweils in einem Querschnitt und in
  • Figur 6 ist eine besonders vorteilhafte Ausführungsform des Ultraschall-Sensors in einem Längsschnitt veranschau­licht.
To further explain the invention reference is made to the drawing, in which
  • 1 shows an ultrasonic sensor according to the invention is illustrated in a longitudinal section.
  • Figure 2 shows the ultrasonic sensor in a cross section and in
  • FIG. 3 illustrates an electrode for capacitively picking up the measurement signal.
  • Figures 4 and 5 show a particularly advantageous arrangement of the electrodes in an ultrasonic sensor according to the invention in each case in a cross section and in
  • FIG. 6 illustrates a particularly advantageous embodiment of the ultrasonic sensor in a longitudinal section.

Entsprechend Figur 1 ist eine piezoelektrische Polymerfolie 2 in einem Hohlzylinder 12, der als Haltevorrichtung dient mit ihren Flachseiten parallel zur Mittelachse 11 des Hohlzylinders 12 angeordnet. Die piezoelektrische Polymerfolie 2 besteht in einer bevorzugten Ausführungsform aus Polyvinylidenfluorid PVDF und ist nur in einem kleinen zentralen Bereich 21 piezoelek­trisch aktiviert. Dieser piezoelektrisch aktivierte Bereich 21 bildet beispielsweise eine in Dickenrichtung polarisierte Kreisscheibe mit einem Durchmesser d der kleiner als 2 mm, insbesondere kleiner als 1 mm ist. Die Dicke des piezoelek­trisch aktivierten Bereiches 21 entspricht der Dicke der Folie 2 und beträgt zwischen 10 µm und 100 µm. Der Außendurchmesser des Hohlzylinders 12 beträgt beispielsweise bei einer Wand­stärke von etwa 0,5 mm zwischen 10 mm und 20 mm. Die Länge des Hohlzylinders beträgt in einer bevorzugten Ausführungsform etwa 100 mm.According to FIG. 1, a piezoelectric polymer film 2 is arranged in a hollow cylinder 12, which serves as a holding device with its flat sides parallel to the central axis 11 of the hollow cylinder 12. In a preferred embodiment, the piezoelectric polymer film 2 consists of polyvinylidene fluoride PVDF and is piezoelectrically activated only in a small central area 21. This piezoelectrically activated region 21 forms, for example, a circular disk which is polarized in the thickness direction and has a diameter d which is less than 2 mm, in particular less than 1 mm. The thickness of the piezoelectrically activated region 21 corresponds to the thickness of the film 2 and is between 10 μm and 100 μm. The outer diameter of the hollow cylinder 12 is, for example, between 10 mm and 20 mm with a wall thickness of approximately 0.5 mm. In a preferred embodiment, the length of the hollow cylinder is approximately 100 mm.

Entsprechend Figur 2 ist den Flachseiten des piezoelektrisch aktiven Bereiches 21 jeweils eine ebene Elektrode 6 zuge­ ordnet, die parallel zu diesen Flachseiten verläuft. Diese Elektroden 6 sind jeweils mittels einer Halterung 62 in der Wandung des Hohlzylinders 12 befestigt und jeweils mit einem Anschlußleiter 65 versehen. Beim Eintreffen eines Stoßwellen­impulses auf den aktiven Bereich 21 werden an der Ober­fläche dieses Bereiches 21 Wechselladungen erzeugt. Dieses Wechselladungssignal wird kapazitiv durch das zwischen den Elektroden 6 und dem Teilbereich 21 befindliche schalltragen­de Medium, beispielsweise Wasser oder Öl zu den beiden Elek­troden 6 gekoppelt.According to FIG. 2, the flat sides of the piezoelectrically active region 21 are each provided with a flat electrode 6 arranges that runs parallel to these flat sides. These electrodes 6 are each fastened in the wall of the hollow cylinder 12 by means of a holder 62 and are each provided with a connecting conductor 65. When a shock wave pulse arrives at the active area 21, alternating charges are generated on the surface of this area 21. This alternating charge signal is capacitively coupled to the two electrodes 6 by the sound-carrying medium, for example water or oil, located between the electrodes 6 and the partial region 21.

Der signalaufnehmende Teil dieser Elektroden 6 kann beispiels­weise gemäß Figur 3 aus einer flachen Metallfolie 61 bestehen, die auf einer Halterung 62 befestigt ist. Die Metallfolie 61 besteht in einer bevorzugten Ausführungsform aus Edelstahl und hat eine Dicke von annähernd 20 µm. Anstelle einer Metallfolie 61 kann auch ein feines Metallgitter vorgesehen sein. Zur Ver­ringerung von parasitären Kapazitäten ist unter Umständen vor­teilhaft die Halterungen 62 der Elektroden 6 zueinander um 180° versetzt anzuordnen.The signal-receiving part of these electrodes 6 can, for example, according to FIG. 3, consist of a flat metal foil 61 which is fastened on a holder 62. In a preferred embodiment, the metal foil 61 is made of stainless steel and has a thickness of approximately 20 μm. Instead of a metal foil 61, a fine metal grid can also be provided. To reduce parasitic capacitances, the holders 62 of the electrodes 6 may advantageously be arranged offset from one another by 180 °.

Entsprechend Figur 4 können auch Elektroden 64 vorgesehen sein, die mit ihren parallel zur Mittelachse 11 verlaufenden gegen­überliegenden Seitenkanten in entsprechenden Aussparungen des Hohlzylinders 12 eingeklebt sind.According to FIG. 4, electrodes 64 can also be provided, which, with their opposite side edges running parallel to the central axis 11, are glued into corresponding recesses in the hollow cylinder 12.

Gemäß Figur 5 können die Elektroden 6 auch die Gestalt eines Teils eines Zylindermantels haben und beispielsweise auf der Innenfläche des Hohlzylinders 12 als metallische Schicht 63 angeordnet sein.According to FIG. 5, the electrodes 6 can also have the shape of part of a cylinder jacket and can be arranged, for example, on the inner surface of the hollow cylinder 12 as a metallic layer 63.

In der besonders vorteilhaften Ausführungsform gemäß Figur 6 ist der Hohlzylinder 12 mit Deckplatten 14, die jeweils an seinen Stirnflächen angeordnet sind, dicht verschlossen.In the particularly advantageous embodiment according to FIG. 6, the hollow cylinder 12 is sealed with cover plates 14, which are each arranged on its end faces.

Das Innere des Hohlzylinders ist mit einer schalltragenden Flüssigkeit 13, beispielsweise hochreines Wasser mit einer Leitfähigkeit kleiner als 10 µS/cm, oder Silikonöl gefüllt. In einer besonders bevorzugten Ausführungsform besteht der Hohlzylinder aus Polymethylpenten PMP. Da die akustische Impedanz von Polymethylpenten PMP der akustischen Impedanz von Wasser weitgehend angepaßt ist, spielen die am Hohlzylinder 12 auftretenden Impedanzsprünge praktisch keine Rolle und führen nur zu einer vernachlässigbaren Verfälschung des am Meßort herrschenden Ultraschallfeldes. Da sich im Innern des Hohl­zylinders 12 stets die gleiche schalltragende Flüssigkeit 13 befindet, ist eine reproduzierbare kapazitive Kopplung zwischen dem piezoelektrisch aktiven Teilbereich 21 und den Elektroden 6 gewährleistet. Ein Ultraschall-Sensor mit diesen Merkmalen ist deshalb insbesondere zur Absolutmessung von Ultraschallfeldern mit hoher Druckamplitude geeignet.The interior of the hollow cylinder is filled with a sound-carrying liquid 13, for example high-purity water with a conductivity less than 10 μS / cm, or silicone oil. In a particularly preferred embodiment, the hollow cylinder consists of polymethylpentene PMP. Since the acoustic impedance of polymethylpentene PMP is largely matched to the acoustic impedance of water, the jumps in impedance occurring at the hollow cylinder 12 play practically no role and only lead to a negligible falsification of the ultrasound field prevailing at the measuring location. Since there is always the same sound-carrying liquid 13 in the interior of the hollow cylinder 12, a reproducible capacitive coupling between the piezoelectrically active partial area 21 and the electrodes 6 is ensured. An ultrasound sensor with these features is therefore particularly suitable for the absolute measurement of ultrasound fields with a high pressure amplitude.

Claims (6)

1. Ultraschall-Sensor mit folgenden Merkmalen
a) einer freitragend in einer Haltevorrichtung befestigten Polymerfolie (2), die
b) wenigstens in einem Bereich (21) piezoelektrisch aktiviert und mit Elektroden (6) gekoppelt ist, die
c) räumlich getrennt vom piezoelektrisch aktivierten Bereich (21) angeordnet sind,
gekennzeichnet durch folgendes Merkmal:
d) die Polymerfolie (2) ist in einem Hohlzylinder (12) aus Kunststoff mit ihren Flachseiten parallel zur Mittelachse (11) dieses Hohlzylinders (12) angeordnet.
1. Ultrasonic sensor with the following features
a) a self-supporting in a holding device attached polymer film (2)
b) at least in one area (21) is piezoelectrically activated and coupled to electrodes (6) which
c) are arranged spatially separated from the piezoelectrically activated region (21),
characterized by the following feature:
d) the polymer film (2) is arranged in a hollow cylinder (12) made of plastic with its flat sides parallel to the central axis (11) of this hollow cylinder (12).
2. Ultraschall-Sensor nach Anspruch 1, dadurch ge­kennzeichnet, daß eine Polymerfolie (2) aus Poly­vinylidenfluorid PVDF vorgesehen ist.2. Ultrasonic sensor according to claim 1, characterized in that a polymer film (2) made of polyvinylidene fluoride PVDF is provided. 3. Ultraschall-Sensor nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß jeweils einer Flachseite der Polymerfolie (2) als Elektrode (6) eine ebene, im Inneren des Hohlzylinders (12) angeordnete metalli­sche Folie (61) zugeordnet ist.3. Ultrasonic sensor according to one of claims 1 or 2, characterized in that a flat side of the polymer film (2) as the electrode (6) is assigned a flat, in the interior of the hollow cylinder (12) arranged metallic film (61). 4. Ultraschall-Sensor nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß als Elektroden (6) metallische Schichten (63) auf der Innenwand des Hohlzylinders (l2) vorgesehen sind.4. Ultrasonic sensor according to one of claims 1 or 2, characterized in that metallic layers (63) are provided as electrodes (6) on the inner wall of the hollow cylinder (l2). 5. Ultraschall-Sensor nach einem der Ansprüche 1 bis 4, da­durch gekennzeichnet, daß der Hohlzylin­der (12) aus Polymethylpenten PMP besteht.5. Ultrasonic sensor according to one of claims 1 to 4, characterized in that the hollow cylinder (12) consists of polymethylpentene PMP. 6. Ultraschall-Sensor nach Anspruch 1, dadurch ge­ kennzeichnet, daß der Hohlzylinder (12) an seinen Stirnflächen verschlossen und mit einer schalltragenden Flüssigkeit (13) gefüllt ist.6. Ultrasonic sensor according to claim 1, characterized ge indicates that the hollow cylinder (12) is closed on its end faces and filled with a sound-carrying liquid (13).
EP89103419A 1988-03-10 1989-02-27 Ultrasonic sensor Withdrawn EP0332916A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3808019A DE3808019A1 (en) 1988-03-10 1988-03-10 ULTRASONIC SENSOR
DE3808019 1988-03-10

Publications (1)

Publication Number Publication Date
EP0332916A1 true EP0332916A1 (en) 1989-09-20

Family

ID=6349404

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89103419A Withdrawn EP0332916A1 (en) 1988-03-10 1989-02-27 Ultrasonic sensor

Country Status (3)

Country Link
US (1) US4906886A (en)
EP (1) EP0332916A1 (en)
DE (1) DE3808019A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ243294A (en) * 1991-06-25 1995-04-27 Commw Scient Ind Res Org Time of flight of acoustic wave packets through fluid: reduction of higher order acoustic mode effects
DE4132342A1 (en) * 1991-09-27 1992-03-19 Siemens Ag Ultrasonic sensor with grid electrode - is esp. for pressure measurement using sound shock waves and has electrodes before and after polymer foil in sound propagation direction
US5381386A (en) * 1993-05-19 1995-01-10 Hewlett-Packard Company Membrane hydrophone
DE19541197A1 (en) * 1995-11-04 1997-05-07 Nokia Deutschland Gmbh Arrangement for the emission of sound waves
DE19937479A1 (en) * 1999-08-07 2001-03-15 Bosch Gmbh Robert Ultrasonic sensor arrangement
US6318497B1 (en) * 2000-02-29 2001-11-20 Benthos, Inc. Pressure-sensitive switch, its method of calibration and use in a hydrophone array
US6392330B1 (en) 2000-06-05 2002-05-21 Pegasus Technologies Ltd. Cylindrical ultrasound receivers and transceivers formed from piezoelectric film
US6707236B2 (en) * 2002-01-29 2004-03-16 Sri International Non-contact electroactive polymer electrodes
US7878916B2 (en) * 2003-09-23 2011-02-01 Acushnet Company Golf club and ball performance monitor having an ultrasonic trigger
US20070070815A1 (en) * 2005-08-23 2007-03-29 Hulsman William H Circuit adapted for pressure-sensitive switch and its use in a hydrophone array
US7570543B2 (en) * 2005-09-09 2009-08-04 Teledyne Benthos, Inc. Normally closed pressure-sensitive hydrophone switch
EP2174360A4 (en) 2007-06-29 2013-12-11 Artificial Muscle Inc Electroactive polymer transducers for sensory feedback applications
EP2239793A1 (en) 2009-04-11 2010-10-13 Bayer MaterialScience AG Electrically switchable polymer film structure and use thereof
SG193003A1 (en) 2011-03-01 2013-10-30 Bayer Ip Gmbh Automated manufacturing processes for producing deformable polymer devices and films
WO2012129357A2 (en) 2011-03-22 2012-09-27 Bayer Materialscience Ag Electroactive polymer actuator lenticular system
EP2828901B1 (en) 2012-03-21 2017-01-04 Parker Hannifin Corporation Roll-to-roll manufacturing processes for producing self-healing electroactive polymer devices
KR20150031285A (en) 2012-06-18 2015-03-23 바이엘 인텔렉쳐 프로퍼티 게엠베하 Stretch frame for stretching process
US9590193B2 (en) 2012-10-24 2017-03-07 Parker-Hannifin Corporation Polymer diode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2558563A (en) * 1948-10-29 1951-06-26 Gen Electric Piezoelectric strain gauge
DE894774C (en) * 1951-07-06 1953-10-29 Rohde & Schwarz Capacitive body-borne sound receiver
US4236235A (en) * 1978-08-24 1980-11-25 The Boeing Company Integrating hydrophone sensing elements
US4433400A (en) * 1980-11-24 1984-02-21 The United States Of America As Represented By The Department Of Health And Human Services Acoustically transparent hydrophone probe
EP0227985A2 (en) * 1985-12-20 1987-07-08 Siemens Aktiengesellschaft Ultrasonic sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3762459D1 (en) * 1986-07-30 1990-05-31 Siemens Ag SENSOR FOR ACOUSTIC SHOCK SHAFT IMPULSES.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2558563A (en) * 1948-10-29 1951-06-26 Gen Electric Piezoelectric strain gauge
DE894774C (en) * 1951-07-06 1953-10-29 Rohde & Schwarz Capacitive body-borne sound receiver
US4236235A (en) * 1978-08-24 1980-11-25 The Boeing Company Integrating hydrophone sensing elements
US4433400A (en) * 1980-11-24 1984-02-21 The United States Of America As Represented By The Department Of Health And Human Services Acoustically transparent hydrophone probe
EP0227985A2 (en) * 1985-12-20 1987-07-08 Siemens Aktiengesellschaft Ultrasonic sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SENSORS AND ACTUATORS, Band 12, Nr. 3, Oktober 1987, Seiten 225-233, Elsevier Sequoia, Lauisanne, CH; P. LEAVER et al.: "Piezoelectric polymer pressure sensors" *

Also Published As

Publication number Publication date
DE3808019A1 (en) 1989-09-21
US4906886A (en) 1990-03-06

Similar Documents

Publication Publication Date Title
EP0332916A1 (en) Ultrasonic sensor
EP0227985B1 (en) Ultrasonic sensor
DE3731196C2 (en)
DE2160176C3 (en) Electroacoustic converter
DE69721728T2 (en) Ultrasonic transmitting / receiving device
DE2832762C2 (en) Vibration and acceleration sensors
DE3815359A1 (en) TRANSMITTER / RECEIVER OF A ULTRASONIC DISTANCE MEASURING DEVICE
DE4006718A1 (en) PIEZOELECTRIC CONVERTER
DE4008768A1 (en) PIEZOELECTRIC CONVERTER
DE2831938A1 (en) MEASURING VALUE TRANSDUCER WITH A FLEXIBLE MEASURING ELEMENT FOR MEASURING MECHANICAL SIZES
EP0166976B1 (en) Ultrasonic transducer system
DE3320935A1 (en) ULTRASONIC SENSOR
DE3142308A1 (en) &#34;PRESSURE TRANSFORMER WITH A VIBRABLE ELEMENT&#34;
EP0179983B1 (en) Shock wave sensor
EP0267475B1 (en) Ultrasonic sensor
EP0166180B1 (en) Hydrophone
EP0381796A1 (en) Ultrasonic sensor
EP0436809A2 (en) Ultrasonic transducer using piezoelectric elements
EP0472085B1 (en) Ultrasound transducer
EP0086531B1 (en) Apparatus for ultrasonic investigation
DE102018005540A1 (en) 1D ultrasonic transducer unit
WO2020035336A1 (en) Measuring device for determining a fluid variable
EP0418663A1 (en) Piezoelectric membrane hydrophone
DE3920885A1 (en) Ultrasonic shock wave sensor - with non-piezoelectric polymeric dielectric, for lithotriptor
DE3808017A1 (en) Piezoceramic ultrasonic transducer and method for manufacturing it

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19891026

17Q First examination report despatched

Effective date: 19901119

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19910604