EP0310689A1 - Process for the preparation of 1,4-diazabicyclo(2,2,2)-octanes - Google Patents

Process for the preparation of 1,4-diazabicyclo(2,2,2)-octanes Download PDF

Info

Publication number
EP0310689A1
EP0310689A1 EP87114496A EP87114496A EP0310689A1 EP 0310689 A1 EP0310689 A1 EP 0310689A1 EP 87114496 A EP87114496 A EP 87114496A EP 87114496 A EP87114496 A EP 87114496A EP 0310689 A1 EP0310689 A1 EP 0310689A1
Authority
EP
European Patent Office
Prior art keywords
zeolites
catalysts
borosilicate
diazabicyclo
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP87114496A
Other languages
German (de)
French (fr)
Inventor
Wolfgang Dr. Hoelderich
Kurt Dr. Schneider
Walter Dr. Best
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE19863634257 priority Critical patent/DE3634257A1/en
Application filed by BASF SE filed Critical BASF SE
Priority to EP87114496A priority patent/EP0310689A1/en
Publication of EP0310689A1 publication Critical patent/EP0310689A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/08Bridged systems

Definitions

  • the present invention relates to a process for the preparation of 1,4-diazabicyclo (2,2,2) octane (DABCO) and its C-substituted derivatives by reacting heterocyclic amines in the presence of borosilicate and / or iron silicate zeolites as catalysts.
  • DABCO 1,4-diazabicyclo (2,2,2) octane
  • DABCO and its derivatives can be prepared heterogeneously catalyzed from heterocyclic amines. So far, the phosphates of Ca, Sr, Ba, Zn, La, Al, Co, Ni, Ce have been used as catalysts, but unsatisfactory yields have been achieved.
  • compounds such as e.g. Monohydroxyethylpiperazin, Dihydroxyethylpiperazin, Monoaminoethylpiperazin, Aminoethylhydroxyethylpiperazin be implemented.
  • the zeolites are advantageously used in the acidic form as catalysts for the process according to the invention.
  • Zeolites are crystalline aluminum silicates that have a highly ordered structure with a rigid three-dimensional network of SiO4 and AlO4 tetrahedra, which are connected by common oxygen atoms. The ratio of the Si and Al atoms to oxygen is 1: 2.
  • the electrovalence of the tetrahedra containing aluminum can be determined by including cations in the crystal, e.g. of an alkali or hydrogen ion balanced. A cation exchange is possible. The spaces between the tetrahedra are occupied by drying or calcining water molecules before dehydration.
  • zeolite In the zeolite, other elements such as B, Ga, Fe, Cr, V, As, Sb, Bi or Be or mixtures thereof can be built into the lattice instead of aluminum, or the silicon can be replaced by a tetravalent element such as Ge, Ti, Zr, Hf to be replaced.
  • elements such as B, Ga, Fe, Cr, V, As, Sb, Bi or Be or mixtures thereof can be built into the lattice instead of aluminum, or the silicon can be replaced by a tetravalent element such as Ge, Ti, Zr, Hf to be replaced.
  • zeolites can have different chemical compositions. These are alumino, boro, iron, beryllium, gallium, chromium, arsenic, antimony and bismuth silicate zeolite or their mixtures as well as alumino, boro, gallium and iron germanate zeolites or their mixtures.
  • the borosilicate and iron silicate zeolites of the pentasil type are particularly suitable for the process according to the invention.
  • Borosilicate zeolites can be synthesized, for example, at 90 to 200 ° C under autogenous pressure by a boron compound, for example H3BO3, with a silicon compound, preferably highly disperse silicon dioxide in aqueous Amine solution, in particular in 1,6-hexanediamine or 1,3-propanediamine or triethylenetetramine solution with and in particular without addition of alkali or alkaline earth metal to the reaction.
  • a boron compound for example H3BO3
  • silicon compound preferably highly disperse silicon dioxide in aqueous Amine solution, in particular in 1,6-hexanediamine or 1,3-propanediamine or triethylenetetramine solution with and in particular without addition of alkali or alkaline earth metal to the reaction.
  • a silicon compound preferably highly disperse silicon dioxide in aqueous Amine solution, in particular in 1,6-hexanediamine or 1,3-propanediamine or triethylenetetramine solution with and in particular without addition of alkal
  • Such borosilicate zeolites can also be prepared if the reaction is carried out in ethereal solution, for example diethylene glycol dimethyl ether or in alcoholic solution, for example 1,6-hexanediol, instead of in aqueous amine solution.
  • the iron silicate zeolite is obtained e.g. from an iron compound, preferably Fe2 (SO4) 3 and a silicon compound, preferably highly disperse silicon dioxide in aqueous amine solution, in particular 1,6-hexanediamine, with or without addition of alkali metal or alkaline earth metal at 100 to 200 ° C. under autogenous pressure.
  • an iron compound preferably Fe2 (SO4) 3
  • a silicon compound preferably highly disperse silicon dioxide in aqueous amine solution, in particular 1,6-hexanediamine, with or without addition of alkali metal or alkaline earth metal at 100 to 200 ° C. under autogenous pressure.
  • the borosilicate and iron silicate zeolites thus produced can, after their isolation, drying at 100 to 160 ° C, preferably 110 ° C and calcination at 450 to 550 ° C, preferably 500 ° C, with a binder in a ratio of 90: 10 to 40: 60 % By weight to be shaped into strands or tablets.
  • Various aluminum oxides, preferably boehmite, amorphous aluminosilicates with an SiO2 / Al2O3 ratio of 25:75 to 90: 5, preferably 75:25, silicon dioxide, preferably highly disperse SiO2, mixtures of highly disperse SiO2 and highly disperse Al2O3, TiO2, ZrO2 are suitable as binders as well as sound.
  • the extrudates or compacts are dried at 110 ° C / 16 h and calcined at 500 ° C / 16 h.
  • Advantageous catalysts are also obtained if the isolated iron or borosilicate zeolite is deformed directly after drying and is only subjected to calcination after the deformation.
  • the iron and borosilicate zeolites produced can be used in pure form, without binders, as strands or tablets, with extrusion or peptizing aids, e.g. Ethyl cellulose, stearic acid, potato starch, formic acid, oxalic acid, acetic acid, nitric acid, ammonia, amines, silicon esters and graphite or mixtures thereof can be used.
  • the zeolite is not in the catalytically active, acidic H form, but is e.g. in the Na form, then this can be achieved by ion exchange, e.g. with ammonium ions and subsequent calcination or by treatment with acids completely or partially converted into the desired H form.
  • zeolites by burning off the coke deposit Air or with an air / N2 mixture at 400 to 550 ° C, preferably 500 ° C to regenerate. This gives the zeolites their initial activity.
  • pre-coke By partial coking (pre-coke) it is possible to adjust the activity of the catalyst for an optimal selectivity of the desired reaction product.
  • a suitable modification of the catalysts is e.g. in that the undeformed or deformed zeolite is doped with metal salts by ion exchange or by impregnation.
  • alkali metals such as Li, Cs, K, alkaline earth metals such as Mg, Ca, Sr, metals of the 3rd, 4th and 5th main groups such as Al, Ga, Ge, Sn, Pb, Bi, transition metals of the 4th - 8th Subgroup such as Ti, Zr, V, Nb, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Sr, Ni, Pd, Pt, transition metals of the 1st and 2nd subgroup such as Cu, Ag , Zn, rare earth metals such as La, Ce, Pr, Nd, Er, Yb and U are used.
  • the doping is expediently carried out by placing the deformed zeolite in a riser tube and passing an aqueous or ammonial solution of a halide or a nitrate of the above-described metals at 20 to 100 ° C.
  • an ion exchange can be carried out on the hydrogen, ammonium and alkali form of the zeolite.
  • Another possibility of applying metal to the zeolite is by using the zeolitic material, e.g. impregnated with a halide, a nitrate or an oxide of the metals described above in aqueous, alcoholic or ammoniacal solution. Both an ion exchange and an impregnation are followed by at least one drying step, optionally a further calcination.
  • One possible embodiment is e.g. in that Cu (NO3) 2 x H2O or Ni (NO3) 2 x 6 H2O or Ce (NO3) 3 x 6 H2O or La (NO3) 2 x 6 H2O or Cs2CO3 is dissolved in water and the deformed or undeformed zeolite for a certain time, e.g. 30 minutes, soak. Any excess solution is freed of water in a rotary evaporator. The impregnated zeolite is then dried at approximately 150 ° C. and calcined at approximately 550 ° C. This impregnation process can be carried out several times in succession in order to set the desired metal content.
  • zeolitic material with or without binders can be processed into strands, pellets or eddy material.
  • Ion exchange of the zeolite present in the H form can be carried out by placing the zeolite in strands or pellets in a column and, for example, conducts an aqueous Ni (NO3) 2 solution or ammoniacal Pd (NO3) 2 solution at a slightly elevated temperature between 30 and 80 ° C in the circuit for 15 to 20 h. It is then washed out with water, dried at approximately 150 ° C. and calcined at approximately 550 ° C.
  • Another possibility of modification consists in subjecting the zeolitic material - deformed or undeformed - to treatment with acids such as hydrochloric acid, hydrofluoric acid and phosphoric acid and / or water vapor. This is advantageous, e.g. so that zeolites in powder form are treated with 1N phosphoric acid at 80 ° C. for 1 hour. After the treatment, it is washed with water, dried at 110 ° C./16 hours and calcined at 500 ° C./20 hours.
  • Another way of working is to treat zeolites with binders, e.g.
  • a particular embodiment for the acid treatment consists in treating the zeolitic material with hydrofluoric acid, which is generally used as 0.001 n to 2 n, preferably 0.05 n to 0.5 n, of hydrofluoric acid, for example before it is preformed by heating under reflux for a period of generally 0.5 to 5, preferably 1 to 3 hours.
  • hydrofluoric acid which is generally used as 0.001 n to 2 n, preferably 0.05 n to 0.5 n, of hydrofluoric acid, for example before it is preformed by heating under reflux for a period of generally 0.5 to 5, preferably 1 to 3 hours.
  • After isolation, for example by filtering off and washing out the zeolitic material it is expediently dried, for example at temperatures from 100 to 160 ° C., and calcined at temperatures of generally 450 ° C. to 600 ° C.
  • the zeolitic material is, after being deformed with a binder, at an elevated temperature, advantageously at from 50 to 90 ° C., preferably from 60 to 80 ° C., for a period of from 0.5 to 5, preferably treated with 12 to 20 wt .-% hydrochloric acid.
  • the zeolitic material is then expediently washed out, dried at temperatures from 100 to 160 ° C. and calcined at temperatures from 450 to 600 ° C.
  • HF treatment can also be followed by HCl treatment.
  • zeolites can be modified by applying phosphorus compounds, such as trimethoxy phosphate, trimethoxy phosphine, primary, secondary or tertiary sodium phosphate. Treatment with primary sodium phosphate has proven to be particularly advantageous.
  • the zeolites are soaked in strand, tablet or fluidized form with aqueous NaH2PO4 solution, dried at 110 ° C and calcined at 500 ° C.
  • the catalysts can be used either as 2 to 4 mm strands or as tablets with 3 to 5 mm in diameter or as powders with particle sizes of 0.1 to 0.5 mm or as vortex contacts.
  • the reaction is carried out in a fixed bed or fluidized bed. In general, the conversion increases sharply with increasing temperature, while the selectivity decreases only slightly in a certain temperature range.
  • the reaction can also be carried out in the liquid phase (suspension, trickle or bottoms procedure).
  • the processes are generally carried out at normal pressure or elevated pressure and preferably continuously, but also batchwise.
  • Non-volatile or solid starting materials are in dissolved form, e.g. used in water, THF, toluene or petroleum ether solution. In general, dilution with solvents or inert gases such as N2, Ar is also possible.
  • the resulting 1,4-diazabicyclo (2,2,2) octanes are processed by conventional methods, e.g. isolated from the reaction mixture by distillation; unreacted starting materials are optionally returned to the reaction.
  • reaction is carried out under isothermal conditions in a tubular reactor (spiral 0.6 cm, 90 cm long) in the gas phase for at least 6 hours.
  • the reaction products are separated and characterized by customary methods.
  • the quantitative determination of the reaction products and the starting materials is carried out by gas chromatography.
  • the catalysts used in the examples are:
  • a borosilicate zeolite of the pentasil type is in a hydrothermal synthesis from 640 g of highly disperse SiO2, 122 g of H3BO3, 8 kg of an aqueous 1,6-hexanediamine solution (mixture 50: 50 wt.%) At 170 ° C under autogenous pressure in one Stirred autoclaves manufactured. After filtering off and washing out, the crystalline reaction product is dried at 100 ° C./24 h and calcined at 500 ° C./24 h.
  • This borosilicate zeolite is composed of 94.2 wt.% SiO2 and 2.3 wt.% B2O3.
  • This material is used to produce 2 mm strands by shaping with shaping aids, which are dried at 110 ° C./16 h and calcined at 500 ° C./24 h.
  • An iron silicate zeolite of the pentasil type is dissolved under hydrothermal conditions at autogenous pressure and 165 ° C. from 273 g water glass, dissolved in 253 g of an aqueous 1,6-hexanediamine solution (mixture 50: 50% by weight) and 31 g iron sulfate, dissolved in 21 g of 96% sulfuric acid and 425 g of water were synthesized in a stirred autoclave for 4 days.
  • the zeolite is filtered off, washed out, dried at 110 ° C./24 h and calcined at 500 ° C./24 h.
  • An iron silicate zeolite with an SiO2 / Fe2O3 ratio of 17.7 and an Na2O content of 1.2% by weight is obtained.
  • the catalyst is extruded with highly disperse SiO2 in a weight ratio of 80:20 to 2.5 mm strands, dried at 110 ° C./16 h and calcined at 500 ° C./24 h.
  • Catalyst C is obtained by impregnating catalyst A with a Pd (NO3) 2- / Ce (NO3) 3 solution. After drying at 130 ° C / 2 h and calcination at 540 ° C / 2 h, the Pd content is 1.3% by weight and the Ce content is 3.6% by weight.
  • Catalyst D is obtained by deforming the borosilicate zeolite from catalyst A with highly disperse SiO2 in a weight ratio of 70:30 to 2 mm strands, drying at 110 ° C./16 h and calcining at 500 ° C./16 h. These strands are impregnated with an aqueous NaH2PO4 solution, dried at 110 ° C and calcined at 500 ° C / 14 h. The Na content is 5% by weight and the P content is 7.5% by weight.
  • An aluminosilicate zeolite ZSM 5 is synthesized according to US Pat. No. 3,702,886, Example 1. This ZSM 5 zeolite is shaped with boehmite in a weight ratio of 60:40, dried at 110 ° C. and calcined at 500 ° C. for 16 hours. The strands are ion-exchanged with 20% NH4Cl solution at 80 ° C / 2 h using the usual method until the Na content is 0.02% by weight (after drying at 110 ° C and calcination at 500 ° C / 5 h) .
  • Working solution II mixture of mono- and dihydroxyethylpiperazine (weight ratio 20:80) dissolved in water 25 g: 75 g.

Abstract

1,4-Diazabicyclo[2.2.2]octane and C-substituted 1,4- diazabicyclo[2.2.2]octanes of the formula (I) <IMAGE> in which R<1> and R<2> can denote hydrogen, alkyl having 1 to 4 carbon atoms or alkenyl radicals having 1 to 4 carbon atoms, are prepared from heterocyclic amines of the formula (II) <IMAGE> in which R<1> and R<2> have the above meaning and R<3> denotes hydrogen or hydroxyethyl or aminoethyl and X denotes hydroxyl, amino, hydroxyethyl or aminoethyl radicals, in the presence of borosilicate and/or iron silicate zeolites as catalysts. Particularly suitable catalysts are the borosilicate and iron silicate zeolites of the pentasil type.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von 1,4-Diazabicyclo(2,2,2)-octan (DABCO) und dessen C-substituierte Derivate durch Umsetzung heterocyclischer Amine in Gegenwart von Boro- und/oder Eisensilikatzeolithen als Katalysatoren.The present invention relates to a process for the preparation of 1,4-diazabicyclo (2,2,2) octane (DABCO) and its C-substituted derivatives by reacting heterocyclic amines in the presence of borosilicate and / or iron silicate zeolites as catalysts.

Es ist bekannt, daß man DABCO und seine Derivate aus heterocyclischen Aminen heterogenkatalysiert herstellen kann. Als Katalysatoren hat man bisher die Phosphate des Ca, Sr, Ba, Zn, La, Al, Co, Ni, Ce verwendet, jedoch unbefriedigende Ausbeuten erzielt.It is known that DABCO and its derivatives can be prepared heterogeneously catalyzed from heterocyclic amines. So far, the phosphates of Ca, Sr, Ba, Zn, La, Al, Co, Ni, Ce have been used as catalysts, but unsatisfactory yields have been achieved.

Es ist ferner bekannt, Aluminiosilikatzeolithe vom ZSM-Typ als Heterogenkatalysatoren für diese Reaktion einzusetzen (EP 158 319). Die Ausbeuten sind klein; bei niedrigem Umsatz werden zwar hohe Selektivitäten, bei hohem Umsatz jedoch niedrige Selektivitäten gefunden. Weiterhin weist das Reaktionsprodukt eine Reihe unerwünschter Nebenprodukte wie N-Alkylpiperazine und Pyrazin-Derivate auf. Die Nebenprodukte haben physikalische und chemische Eigenschaften ähnlich dem DABCO und lassen sich daher mit konventionellen physikalischen Methoden wie Destillation und Kristallisation nur schwer abtrennen. Für die Weiterverarbeitung werden an die Reinheit des DABCO hohe Anforderungen gestellt und erfordern daher eine aufwendige Reinigung.It is also known to use aluminosilicate zeolites of the ZSM type as heterogeneous catalysts for this reaction (EP 158 319). The yields are small; with low sales, high selectivities are found, but with high sales, low selectivities are found. The reaction product also has a number of undesirable by-products such as N-alkylpiperazines and pyrazine derivatives. The by-products have physical and chemical properties similar to DABCO and are therefore difficult to separate using conventional physical methods such as distillation and crystallization. The purity of the DABCO is subject to high requirements for further processing and therefore requires extensive cleaning.

Es war daher die Aufgabe gestellt, Katalysatoren zu finden, die hohe Ausbeuten (Umsatz x Selektivität) an den gewünschten 1,4-Diazabicyclo(2,2,2)-octanen liefern und die oben genannten Nachteile vermeiden.The task was therefore to find catalysts which give high yields (conversion x selectivity) of the desired 1,4-diazabicyclo (2,2,2) octanes and avoid the disadvantages mentioned above.

Es wurde gefunden, daß man 1,4-Diazabicyclo(2,2,2)-octan und C-substituierte 1,4-Diazabicyclo(2,2,2)-octane der Formel (I)

Figure imgb0001
in der R¹ und R² Wasserstoff-, Alkyl- mit 1 bis 4 C-Atomen oder Alkenylreste mit 1 bis 4 C-Atomen bedeuten, in gewünschter Weise erhält, wenn man heterocyclische Amine der Formel (II)
Figure imgb0002
in der R¹ und R² obige Bedeutung haben und R³ Wasserstoff- oder Hydroxyethyl- oder Aminoethyl- und X Hydroxyl-, Amino-, Hydroxyethyl- oder Aminoethylreste bedeuten, in Gegenwart von Boro- und/oder Eisensilikatzeolithen als Katalysatoren umsetzt.It was found that 1,4-diazabicyclo (2,2,2) octane and C-substituted 1,4-diazabicyclo (2,2,2) octanes of the formula (I)
Figure imgb0001
in which R¹ and R² are hydrogen, alkyl having 1 to 4 carbon atoms or alkenyl radicals having 1 to 4 carbon atoms, are obtained in a desired manner if heterocyclic amines of the formula (II)
Figure imgb0002
in which R¹ and R² have the above meaning and R³ are hydrogen or hydroxyethyl or aminoethyl and X are hydroxyl, amino, hydroxyethyl or aminoethyl radicals, in the presence of borosilicate and / or iron silicate zeolites as catalysts.

Vorzugsweise können erfindungsgemäß Verbindungen wie z.B. Monohydroxyethylpiperazin, Dihydroxyethylpiperazin, Monoaminoethylpiperazin, Aminoethylhydroxyethylpiperazin umgesetzt werden.According to the invention, compounds such as e.g. Monohydroxyethylpiperazin, Dihydroxyethylpiperazin, Monoaminoethylpiperazin, Aminoethylhydroxyethylpiperazin be implemented.

Als Katalysatoren für das erfindungsgemäße Verfahren verwendet man die Zeolithe zweckmäßig in der aciden Form. Zeolithe sind kristalline Aluminiumsilikate, die eine hochgeordnete Struktur mit einem starren dreidimensionalen Netzwerk von SiO₄- und AlO₄-Tetraedern besitzen, die durch gemeinsame Sauerstoffatome verbunden sind. Das Verhältnis der Si-und Al-Atome zu Sauerstoff beträgt 1 : 2. Die Elektrovalenz der Aluminium enthaltenden Tetraeder ist durch Einschluß von Kationen in den Kristall, z.B. eines Alkali- oder Wasserstoffions ausgeglichen. Ein Kationen­austausch ist möglich. Die Räume zwischen den Tetraedern sind vor der Dehydration durch Trocknen bzw. Calcinieren von Wassermolekülen besetzt.The zeolites are advantageously used in the acidic form as catalysts for the process according to the invention. Zeolites are crystalline aluminum silicates that have a highly ordered structure with a rigid three-dimensional network of SiO₄ and AlO₄ tetrahedra, which are connected by common oxygen atoms. The ratio of the Si and Al atoms to oxygen is 1: 2. The electrovalence of the tetrahedra containing aluminum can be determined by including cations in the crystal, e.g. of an alkali or hydrogen ion balanced. A cation exchange is possible. The spaces between the tetrahedra are occupied by drying or calcining water molecules before dehydration.

In den Zeolithen können anstelle von Aluminium auch andere Elemente wie B, Ga, Fe, Cr, V, As, Sb, Bi oder Be oder deren Gemische in das Gitter eingebaut werden, oder das Silicium kann durch ein vierwertiges Element wie Ge, Ti, Zr, Hf ersetzt werden.In the zeolite, other elements such as B, Ga, Fe, Cr, V, As, Sb, Bi or Be or mixtures thereof can be built into the lattice instead of aluminum, or the silicon can be replaced by a tetravalent element such as Ge, Ti, Zr, Hf to be replaced.

Diese Zeolithe können unterschiedliche chemische Zusammensetzung aufweisen. Es handelt sich hierbei um Alumino-, Boro-, Eisen-, Beryllium-, Gallium-, Chrom-, Arsen-, Antimon- und Wismutsilikatzeolithode oder deren Gemische sowie Alumino-, Boro, Gallium- und Eisengermanatzeolithe oder deren Gemische.These zeolites can have different chemical compositions. These are alumino, boro, iron, beryllium, gallium, chromium, arsenic, antimony and bismuth silicate zeolite or their mixtures as well as alumino, boro, gallium and iron germanate zeolites or their mixtures.

Insbesondere eignen sich die Boro- und Eisensilikatzeolithe des Pentasiltyps für das erfindungsgemäße Verfahren.The borosilicate and iron silicate zeolites of the pentasil type are particularly suitable for the process according to the invention.

Borosilikatzeolithe kann man z.B. bei 90 bis 200°C unter autogenem Druck synthetisieren, indem man eine Borverbindung, z.B. H₃BO₃, mit einer Siliciumverbindung, vorzugsweise hochdispersem Siliciumdioxid in wäßriger Aminlösung, insbesondere in 1,6-Hexandiamin- oder 1,3-Propandiamin- oder Triethylentetramin-Lösung mit und insbesondere ohne Alkali- oder Erdalkalizusatz zur Reaktion bringt. Hierzu gehören auch die isotaktischen Zeolithe nach EP 34 727 und EP 46 504. Solche Borosilikatzeolithe können ebenfalls hergestellt werden, wenn man die Reaktion statt in wäßriger Aminlösung in etherischer Lösung, z.B. Diethylenglykoldimethylether oder in alkoholischer Lösung, z.B. 1,6-Hexandiol durchführt.Borosilicate zeolites can be synthesized, for example, at 90 to 200 ° C under autogenous pressure by a boron compound, for example H₃BO₃, with a silicon compound, preferably highly disperse silicon dioxide in aqueous Amine solution, in particular in 1,6-hexanediamine or 1,3-propanediamine or triethylenetetramine solution with and in particular without addition of alkali or alkaline earth metal to the reaction. These also include the isotactic zeolites according to EP 34 727 and EP 46 504. Such borosilicate zeolites can also be prepared if the reaction is carried out in ethereal solution, for example diethylene glycol dimethyl ether or in alcoholic solution, for example 1,6-hexanediol, instead of in aqueous amine solution.

Den Eisensilikatzeolith erhält man z.B. aus einer Eisenverbindung, vorzugsweise Fe₂(SO₄)₃ und einer Siliciumverbindung, vorzugsweise hochdispersem Siliciumdioxid in wäßriger Aminlösung, insbesondere 1,6-Hexandiamin, mit oder ohne Alkali- oder Erdalkalizusatz bei 100 bis 200°C unter autogenem Druck.The iron silicate zeolite is obtained e.g. from an iron compound, preferably Fe₂ (SO₄) ₃ and a silicon compound, preferably highly disperse silicon dioxide in aqueous amine solution, in particular 1,6-hexanediamine, with or without addition of alkali metal or alkaline earth metal at 100 to 200 ° C. under autogenous pressure.

Die so hergestellten Boro- und Eisensilikatzeolithe können nach ihrer Isolierung, Trocknung bei 100 bis 160°C, vorzugsweise 110°C und Calcinierung bei 450 bis 550°C, vorzugsweise 500°C, mit einem Bindemittel im Verhältnis 90 : 10 bis 40 : 60 Gew.-% zu Strängen oder Tabletten verformt werden. Als Bindemittel eignen sich diverse Aluminiumoxide, bevorzugt Boehmit, amorphe Aluminosilikate mit einem SiO₂/Al₂O₃-Verhältnis von 25 : 75 bis 90 : 5, bevorzugt 75 : 25, Siliciumdioxid, bevorzugt hochdisperses SiO₂, Gemische aus hochdispersem SiO₂ und hochdispersem Al₂O₃, TiO₂, ZrO₂ sowie Ton. Nach der Verformung werden die Extrudate oder Preßlinge bei 110°C/16 h getrocknet und bei 500°C/16 h calciniert.The borosilicate and iron silicate zeolites thus produced can, after their isolation, drying at 100 to 160 ° C, preferably 110 ° C and calcination at 450 to 550 ° C, preferably 500 ° C, with a binder in a ratio of 90: 10 to 40: 60 % By weight to be shaped into strands or tablets. Various aluminum oxides, preferably boehmite, amorphous aluminosilicates with an SiO₂ / Al₂O₃ ratio of 25:75 to 90: 5, preferably 75:25, silicon dioxide, preferably highly disperse SiO₂, mixtures of highly disperse SiO₂ and highly disperse Al₂O₃, TiO₂, ZrO₂ are suitable as binders as well as sound. After shaping, the extrudates or compacts are dried at 110 ° C / 16 h and calcined at 500 ° C / 16 h.

Man erhält auch vorteilhafte Katalysatoren, wenn der isolierte Eisen- bzw., Borosilikatzeolith direkt nach der Trocknung verformt wird und erst nach der Verformung einer Calcinierung unterworfen wird. Die hergestellten Eisen- und Borosilikatzeolithe können in reiner Form, ohne Binder, als Stränge oder Tabletten eingesetzt werden, wobei als Verstrangungs- oder Peptisierungshilfsmittel, z.B. Ethylcellulose, Stearinsäure, Kartoffelstärke, Ameisensäure, Oxalsäure, Essigsäure, Salpetersäure, Ammoniak, Amine, Silikoester und Graphit oder deren Gemische verwendet werden.Advantageous catalysts are also obtained if the isolated iron or borosilicate zeolite is deformed directly after drying and is only subjected to calcination after the deformation. The iron and borosilicate zeolites produced can be used in pure form, without binders, as strands or tablets, with extrusion or peptizing aids, e.g. Ethyl cellulose, stearic acid, potato starch, formic acid, oxalic acid, acetic acid, nitric acid, ammonia, amines, silicon esters and graphite or mixtures thereof can be used.

Liegt der Zeolith aufgrund der Art seiner Herstellung nicht in der katalytisch aktiven, aciden H-Form vor, sondern z.B. in der Na-Form, dann kann diese durch Ionenaustausch, z.B. mit Ammoniumionen und anschließende Calcinierung oder durch Behandlung mit Säuren vollkommen oder partiell in die gewünschte H-Form überführt werden.Because of the way it is produced, the zeolite is not in the catalytically active, acidic H form, but is e.g. in the Na form, then this can be achieved by ion exchange, e.g. with ammonium ions and subsequent calcination or by treatment with acids completely or partially converted into the desired H form.

Wenn bei der erfindungsgemäßen Verwendung der zeolithischen Katalysatoren eventuell eine durch Koksabscheidung bedingte Desaktivierung eintritt, empfiehlt es sich, die Zeolithe durch Abbrennen der Koksablagerung mit Luft oder mit einem Luft/N₂-Gemisch bei 400 bis 550°C, bevorzugt 500°C, zu regenerieren. Die Zeolithe erhalten dadurch ihre Anfangsaktivität zurück.If a deactivation due to coke separation possibly occurs when using the zeolitic catalysts according to the invention, it is advisable to include the zeolites by burning off the coke deposit Air or with an air / N₂ mixture at 400 to 550 ° C, preferably 500 ° C to regenerate. This gives the zeolites their initial activity.

Durch partielle Verkokung (pre-coke) ist es möglich, die Aktivität des Katalysators für ein Selektivitätsoptimum des gewünschten Reaktionsproduktes einzustellen.By partial coking (pre-coke) it is possible to adjust the activity of the catalyst for an optimal selectivity of the desired reaction product.

Um eine möglichst hohe Selektivität, hohe Umsätze sowie lange Standzeiten zu erreichen, ist es vorteilhaft, die Zeolithe zu modifizieren. Eine geeignete Modifizierung der Katalysatoren besteht z.B. darin, daß man den unverformten oder verformten Zeolithen mit Metallsalzen durch einen Ionenaustausch oder durch Imprägnierung dotiert. Als Metalle werden Alkalimetalle wie Li, Cs, K, Erdalkalimetall wie Mg, Ca, Sr, Metalle der 3., 4. und 5. Hauptgruppe wie Al, Ga, Ge, Sn, Pb, Bi, Übergangsmetalle der 4. - 8. Nebengruppe wie Ti, Zr, V, Nb, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Sr, Ni, Pd, Pt, Übergangsmetalle der 1. und 2. Nebengruppe wie Cu, Ag, Zn, Seltene Erdmetalle wie La, Ce, Pr, Nd, Er, Yb und U eingesetzt.In order to achieve the highest possible selectivity, high sales and long service lives, it is advantageous to modify the zeolites. A suitable modification of the catalysts is e.g. in that the undeformed or deformed zeolite is doped with metal salts by ion exchange or by impregnation. As metals, alkali metals such as Li, Cs, K, alkaline earth metals such as Mg, Ca, Sr, metals of the 3rd, 4th and 5th main groups such as Al, Ga, Ge, Sn, Pb, Bi, transition metals of the 4th - 8th Subgroup such as Ti, Zr, V, Nb, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Sr, Ni, Pd, Pt, transition metals of the 1st and 2nd subgroup such as Cu, Ag , Zn, rare earth metals such as La, Ce, Pr, Nd, Er, Yb and U are used.

Zweckmäßigerweise führt man die Dotierung so durch, daß man den verformten Zeolithen in einem Steigrohr vorlegt und bei 20 bis 100°C eine wäßrige oder ammonialkalische Lösung eines Halogenids oder eines Nitrats der voranbeschriebenen Metalle überleitet. Ein derartiger Ionenaustausch kann an der Wasserstoff-, Ammonium- und Alkaliform des Zeolithen vorgenommen werden. Eine weitere Möglichkeit der Metallaufbringung auf den Zeolithen ist gegeben, indem man das zeolithische Material, z.B. mit einem Halogenid, einem Nitrat oder einem Oxid der voranbeschriebenen Metalle in wäßriger, alkoholischer oder ammoniakalischer Lösung imprägniert. Sowohl an einen Ionenaustausch als auch an eine Imprägnierung schließt sich zumindest eine Trocknung, wahlweise eine abermalige Calcinierung an.The doping is expediently carried out by placing the deformed zeolite in a riser tube and passing an aqueous or ammonial solution of a halide or a nitrate of the above-described metals at 20 to 100 ° C. Such an ion exchange can be carried out on the hydrogen, ammonium and alkali form of the zeolite. Another possibility of applying metal to the zeolite is by using the zeolitic material, e.g. impregnated with a halide, a nitrate or an oxide of the metals described above in aqueous, alcoholic or ammoniacal solution. Both an ion exchange and an impregnation are followed by at least one drying step, optionally a further calcination.

Eine mögliche Ausführungsform besteht z.B. darin, daß man Cu(NO₃)₂ x H₂O oder Ni(NO₃)₂ x 6 H₂O oder Ce(NO₃)₃ x 6 H₂O oder La(NO₃)₂ x 6 H₂O oder Cs₂CO₃ in Wasser löst und mit dieser Lösung den verformten oder unverformten Zeolith eine gewisse Zeit, z.B. 30 Minuten, tränkt. Die eventuell überstehende Lösung wird im Rotationsverdampfer von Wasser befreit. Danach wird der getränkte Zeolith bei etwa 150°C getrocknet und bei etwa 550°C calciniert. Dieser Tränkvorgang kann mehrmals hintereinander vorgenommen werden, um den gewünschten Metallgehalt einzustellen.One possible embodiment is e.g. in that Cu (NO₃) ₂ x H₂O or Ni (NO₃) ₂ x 6 H₂O or Ce (NO₃) ₃ x 6 H₂O or La (NO₃) ₂ x 6 H₂O or Cs₂CO₃ is dissolved in water and the deformed or undeformed zeolite for a certain time, e.g. 30 minutes, soak. Any excess solution is freed of water in a rotary evaporator. The impregnated zeolite is then dried at approximately 150 ° C. and calcined at approximately 550 ° C. This impregnation process can be carried out several times in succession in order to set the desired metal content.

Es ist auch möglich, ein wäßrige Ni(NO₃)₂-Lösung oder ammoniakalische Pd(NO₃)₂-Lösung herzustellen und darin den reinen pulverförmigen Zeolithen bei 40 bis 100°C unter Rühren etwa 24 h aufzuschlämmen. Nach Abfiltrieren, Trocknen bei etwa 150°C und Calcinierung bei etwa 500°C kann das so gewonnene zeolithische Material mit oder ohne Bindemittel zu Strängen, Pellets oder Wirbelgut weiterverarbeitet werden.It is also possible to prepare an aqueous Ni (NO₃) ₂ solution or ammoniacal Pd (NO₃) ₂ solution and to slurry the pure powdered zeolite at 40 to 100 ° C. with stirring for about 24 hours. After filtering, drying at about 150 ° C and calcination at about 500 ° C it can obtained zeolitic material with or without binders can be processed into strands, pellets or eddy material.

Ein Ionenaustausch des in der H-Form vorliegenden Zeolithen kann so vorgenommen werden, daß man den Zeolithen in Strängen oder Pellets in einer Kolonne vorlegt und darüber z.B. eine wäßrige Ni(NO₃)₂-Lösung oder ammoniakalische Pd(NO₃)₂-Lösung bei leicht erhöhter Temperatur zwischen 30 und 80°C im Kreislauf 15 bis 20 h leitet. Danach wird mit Wasser ausgewaschen, bei etwa 150°C getrocknet und bei etwa 550°C calciniert. Bei manchen metalldotierten Zeolithen, z.B. Pd-, Cu-, Ni-dotierten Zeolithen ist eine Nachbehandlung mit Wasserstoff vorteilhaft.Ion exchange of the zeolite present in the H form can be carried out by placing the zeolite in strands or pellets in a column and, for example, conducts an aqueous Ni (NO₃) ₂ solution or ammoniacal Pd (NO₃) ₂ solution at a slightly elevated temperature between 30 and 80 ° C in the circuit for 15 to 20 h. It is then washed out with water, dried at approximately 150 ° C. and calcined at approximately 550 ° C. Some metal doped zeolites, e.g. Pd-, Cu-, Ni-doped zeolites, an aftertreatment with hydrogen is advantageous.

Eine weitere Möglichkeit der Modifizierung besteht darin, daß man das zeolithische Material - verformt oder unverformt - einer Behandlung mit Säuren wie Salzsäure, Flußsäure und Phosphorsäure und/oder Wasserdampf unterwirft. Dabei geht man vorteilhaft, z.B. so vor, daß man Zeolithe in Pulverform mit 1 n Phosphorsäure 1 Stunde bei 80°C behandelt. Nach der Behandlung wird mit Wasser gewaschen, bei 110°C/16 Stunden getrocknet und bei 500°C/20 Stunden calciniert. Nach einer anderen Arbeitsweise behandelt man Zeolithe vor oder nach ihrer Verformung mit Bindemittel, z.B. 1 bis 3 Stunden bei Temperaturen von 60 bis 80°C mit einer 3 bis 25 Gew.-%igen, insbesondere 12 bis 20 Gew.-%igen wäßrigen Salzsäure. Anschließend wird der so behandelte Zeolith mit Wasser gewaschen, getrocknet und bei 400°C bis 500°C calciniert.Another possibility of modification consists in subjecting the zeolitic material - deformed or undeformed - to treatment with acids such as hydrochloric acid, hydrofluoric acid and phosphoric acid and / or water vapor. This is advantageous, e.g. so that zeolites in powder form are treated with 1N phosphoric acid at 80 ° C. for 1 hour. After the treatment, it is washed with water, dried at 110 ° C./16 hours and calcined at 500 ° C./20 hours. Another way of working is to treat zeolites with binders, e.g. 1 to 3 hours at temperatures of 60 to 80 ° C with a 3 to 25 wt .-%, in particular 12 to 20 wt .-% aqueous hydrochloric acid. The zeolite treated in this way is then washed with water, dried and calcined at 400 ° C. to 500 ° C.

Eine besondere Ausführungsform für die Säurebehandlung besteht darin, daß man das zeolithische Material vor seiner Vorformung bei erhöhter Temperatur mit Flußsäure, die im allgemeinen als 0,001 n bis 2 n, vorzugsweise 0,05 n bis 0,5 n Flußsäure eingesetzt wird, behandelt, beispielsweise durch Erhitzen unter Rückfluß über einen Zeitraum von im allgemeinen 0,5 bis 5, vorzugsweise 1 bis 3 Stunden. Nach Isolierung, z.B. durch Abfiltrieren und Auswaschen des zeolithischen Materials, wird dieses zweckmäßig, z.B. bei Temperaturen von 100 bis 160°C, getrocknet und bei Temperaturen von im allgemeinen 450°C bis 600°C calciniert. Gemäß einer weiteren bevorzugten Ausführungsform für die Säurebehandlung, wird das zeolithische Material nach einer Verformung mit Bindemittel bei erhöhter Temperatur, zweckmäßig bei Temperaturen von 50 bis 90°C, vorzugsweise 60 bis 80°C, über einen zeitraum von 0,5 bis 5, vorzugsweise mit 12 bis 20 Gew.-%iger Salzsäure, behandelt. Zweckmäßig wird das zeolithische Material anschließend ausgewaschen, bei Temperaturen von 100 bis 160°C getrocknet und bei Temperaturen von 450 bis 600°C calciniert. Einer HF-Behandlung kann sich auch eine HCl-Behandlung anschließen.A particular embodiment for the acid treatment consists in treating the zeolitic material with hydrofluoric acid, which is generally used as 0.001 n to 2 n, preferably 0.05 n to 0.5 n, of hydrofluoric acid, for example before it is preformed by heating under reflux for a period of generally 0.5 to 5, preferably 1 to 3 hours. After isolation, for example by filtering off and washing out the zeolitic material, it is expediently dried, for example at temperatures from 100 to 160 ° C., and calcined at temperatures of generally 450 ° C. to 600 ° C. According to a further preferred embodiment for the acid treatment, the zeolitic material is, after being deformed with a binder, at an elevated temperature, advantageously at from 50 to 90 ° C., preferably from 60 to 80 ° C., for a period of from 0.5 to 5, preferably treated with 12 to 20 wt .-% hydrochloric acid. The zeolitic material is then expediently washed out, dried at temperatures from 100 to 160 ° C. and calcined at temperatures from 450 to 600 ° C. HF treatment can also be followed by HCl treatment.

Nach einer anderen Arbeitsweise kann man Zeolithe durch Aufbringen von Phosphorverbindungen, wie Trimethoxiphosphat, Trimethoxiphosphin, primärem, sekundärem oder tertiärem Natriumphosphat modifizieren. Besonders vorteilhaft hat sich die Behandlung mit primärem Natriumphosphat erwiesen. Hierbei werden die Zeolithe in Strang-, Tabletten- oder Wirbelgut-Form mit wäßriger NaH₂PO₄-Lösung getränkt, bei 110°C getrocknet und bei 500°C calciniert.According to a different procedure, zeolites can be modified by applying phosphorus compounds, such as trimethoxy phosphate, trimethoxy phosphine, primary, secondary or tertiary sodium phosphate. Treatment with primary sodium phosphate has proven to be particularly advantageous. The zeolites are soaked in strand, tablet or fluidized form with aqueous NaH₂PO₄ solution, dried at 110 ° C and calcined at 500 ° C.

Die Katalysatoren können wahlweise als 2 bis 4 mm Stränge oder als Tabletten mit 3 bis 5 mm Durchmesser oder als Pulver mit Teilchengrößen von 0,1 bis 0,5 mm oder als Wirbelkontakt eingesetzt werden.The catalysts can be used either as 2 to 4 mm strands or as tablets with 3 to 5 mm in diameter or as powders with particle sizes of 0.1 to 0.5 mm or as vortex contacts.

Die Umwandlung wird bevorzugt in der Gasphase bei 200 bis 550°C, insbesondere 300 bis 450°C, und einer Belastung WHSV = 0,1 bis 20 h⁻¹, insbesondere 0,5 bis 5 h⁻¹ (g Ausgangsstoff/g Katalysator und Stunde). Die Reaktion wird im Festbett oder Wirbelbett durchgeführt. Im allgemeinen steigt der Umsatz mit steigender Temperatur stark an, während die Selektivität in einem bestimmten Temperaturbereich nur wenig zurückgeht. Die Reaktion kann auch in der Flüssigphase (Suspension-, Riesel- oder Sumpffahrweise) durchgeführt werden. Das Verfahren sind in der Regel bei Normaldruck oder erhöhtem Druck und vorzugsweise kontinuierlich, aber auch diskontinuierlich durchgeführt.The conversion is preferred in the gas phase at 200 to 550 ° C, in particular 300 to 450 ° C, and a load WHSV = 0.1 to 20 h⁻¹, in particular 0.5 to 5 h⁻¹ (g starting material / g catalyst and hour). The reaction is carried out in a fixed bed or fluidized bed. In general, the conversion increases sharply with increasing temperature, while the selectivity decreases only slightly in a certain temperature range. The reaction can also be carried out in the liquid phase (suspension, trickle or bottoms procedure). The processes are generally carried out at normal pressure or elevated pressure and preferably continuously, but also batchwise.

Schwerflüchtige oder feste Ausgangsstoffe werden in gelöster Form, z.B. in Wasser-, THF-, Toluol- oder Petrolether-Lösung eingesetzt. Allgemein ist auch eine Verdünnung mit Lösungsmitteln oder Inertgasen wie N₂, Ar, möglich.Non-volatile or solid starting materials are in dissolved form, e.g. used in water, THF, toluene or petroleum ether solution. In general, dilution with solvents or inert gases such as N₂, Ar is also possible.

Nach der Umsetzung werden die entstandenen 1,4-Diazabicyclo(2,2,2)-octane nach üblichen Verfahren, z.B. durch Destillation aus dem Reaktionsgemisch isoliert; nichtumgesetzte Ausgangsstoffe werden gegebenenfalls in die Umsetzung zurückgeführt.After the reaction, the resulting 1,4-diazabicyclo (2,2,2) octanes are processed by conventional methods, e.g. isolated from the reaction mixture by distillation; unreacted starting materials are optionally returned to the reaction.

Beispiele 1 bis 8Examples 1 to 8

Die Reaktion wird unter isothermen Bedingungen in einem Rohrreaktor (Wendel 0,6 cm, 90 cm Länge) in der Gasphase mindestens 6 Stunden lang durchgeführt. Die Trennung und Charakterisierung der Reaktionsprodukte erfolgt nach üblichen Methoden. Die quantitative Bestimmung der Reaktionsprodukte und der Ausgangsstoffe erfolgt gaschromatographisch.The reaction is carried out under isothermal conditions in a tubular reactor (spiral 0.6 cm, 90 cm long) in the gas phase for at least 6 hours. The reaction products are separated and characterized by customary methods. The quantitative determination of the reaction products and the starting materials is carried out by gas chromatography.

Die in den Beispielen verwendeten Katalysatoren sind:The catalysts used in the examples are:

Katalysator ACatalyst A

Ein Borosilikatzeolith des Pentasil-Typs wird in einer hydrothermalen Synthese aus 640 g hochdispersem SiO₂, 122 g H₃BO₃, 8 kg einer wäßrigen 1,6-Hexandiamin-Lösung (Mischung 50 : 50 Gew.%) bei 170°C unter autogenem Druck in einem Rührautoklaven hergestellt. Nach Abfiltrieren und Auswaschen wird das kristalline Reaktionsprodukt bei 100°C/24 h getrocknet und bei 500°C/24 h calciniert. Dieser Borosilikatzeolith setzt sich zusammen aus 94,2 Gew.% SiO₂ und 2,3 Gew.% B₂O₃.A borosilicate zeolite of the pentasil type is in a hydrothermal synthesis from 640 g of highly disperse SiO₂, 122 g of H₃BO₃, 8 kg of an aqueous 1,6-hexanediamine solution (mixture 50: 50 wt.%) At 170 ° C under autogenous pressure in one Stirred autoclaves manufactured. After filtering off and washing out, the crystalline reaction product is dried at 100 ° C./24 h and calcined at 500 ° C./24 h. This borosilicate zeolite is composed of 94.2 wt.% SiO₂ and 2.3 wt.% B₂O₃.

Mit diesem Material werden durch Verformen mit Verformungshilfsmitteln 2 mm-Stränge hergestellt, die bei 110°C/16 h getrocknet und bei 500°C/24 h calciniert werden.This material is used to produce 2 mm strands by shaping with shaping aids, which are dried at 110 ° C./16 h and calcined at 500 ° C./24 h.

Katalysator BCatalyst B

Ein Eisensilikatzeolith des Pentasiltyps wird unter hydrothermalen Bedingungen bei autogenem Druck und 165°C aus 273 g Wasserglas, gelöst in 253 g einer wäßrigen 1,6-Hexandiamin-Lösung (Mischung 50 : 50 Gew.%) und 31 g Eisensulfat, gelöst in 21 g 96 %iger Schwefelsäure und 425 g Wasser in einem Rührautoklaven während 4 Tagen synthetisiert. Der Zeolith wird abfiltriert, ausgewaschen, bei 110°C/24 h getrocknet und bei 500°C/24 h calciniert. Man erhält einen Eisensilikatzeolith mit einem SiO₂/Fe₂O₃-­Verhältnis von 17,7 und einem Na₂O-Gehalt von 1,2 Gew.%. Der Katalysator wird mit hochdispersem SiO₂ im Gewichtsverhältnis 80 : 20 zu 2,5 mm-Strängen verstrangt, bei 110°C/16 h getrocknet und bei 500°C/24 h calciniert.An iron silicate zeolite of the pentasil type is dissolved under hydrothermal conditions at autogenous pressure and 165 ° C. from 273 g water glass, dissolved in 253 g of an aqueous 1,6-hexanediamine solution (mixture 50: 50% by weight) and 31 g iron sulfate, dissolved in 21 g of 96% sulfuric acid and 425 g of water were synthesized in a stirred autoclave for 4 days. The zeolite is filtered off, washed out, dried at 110 ° C./24 h and calcined at 500 ° C./24 h. An iron silicate zeolite with an SiO₂ / Fe₂O₃ ratio of 17.7 and an Na₂O content of 1.2% by weight is obtained. The catalyst is extruded with highly disperse SiO₂ in a weight ratio of 80:20 to 2.5 mm strands, dried at 110 ° C./16 h and calcined at 500 ° C./24 h.

Katalysator CCatalyst C

Katalysator C wird durch Imprägnieren von Katalysator A mit einer Pd(NO₃)₂-/Ce(NO₃)₃-Lösung erhalten. Nach Trocknung bei 130°C/2 h und Calcination bei 540°C/2 h beträgt der Pd-Gehalt 1,3 Gew.% und der Ce-Gehalt 3,6 Gew.%.Catalyst C is obtained by impregnating catalyst A with a Pd (NO₃) ₂- / Ce (NO₃) ₃ solution. After drying at 130 ° C / 2 h and calcination at 540 ° C / 2 h, the Pd content is 1.3% by weight and the Ce content is 3.6% by weight.

Katalysator DCatalyst D

Katalysator D erhält man, indem man den Borosilikatzeolithen aus Katalysator A mit hochdispersem SiO₂ im Gewichtsverhältnis 70 : 30 zu 2 mm-Strängen verformt, bei 110°C/16 h trocknet und bei 500°C/16 h calciniert. Diese Stränge werden mit einer wäßrigen NaH₂PO₄-Lösung imprägniert, bei 110°C getrocknet und bei 500°C/14 h calciniert. Der Na-Gehalt beträgt 5 Gew.% und der P-Gehalt 7,5 Gew.%.Catalyst D is obtained by deforming the borosilicate zeolite from catalyst A with highly disperse SiO₂ in a weight ratio of 70:30 to 2 mm strands, drying at 110 ° C./16 h and calcining at 500 ° C./16 h. These strands are impregnated with an aqueous NaH₂PO₄ solution, dried at 110 ° C and calcined at 500 ° C / 14 h. The Na content is 5% by weight and the P content is 7.5% by weight.

Katalysator E (Vergleichskatalysator)Catalyst E (comparative catalyst)

Ein Aluminosilikathzeolith ZSM 5 wird nach US-PS 3 702 886, Beispiel 1, synthetisiert. Dieser ZSM 5-Zeolith wird mit Boehmit im Gewichtsverhältnis 60 : 40 verformt, bei 110°C getrocknet und bei 500°C/16 h calciniert. Die Stränge werden mit 20 %iger NH₄Cl-Lösung bei 80°C/2 h nach üblicher Methode ionenausgetauscht bis der Na-Gehalt 0,02 Gew.% (nach Trocknung bei 110°C und Calcination bei 500°C/5 h) beträgt.An aluminosilicate zeolite ZSM 5 is synthesized according to US Pat. No. 3,702,886, Example 1. This ZSM 5 zeolite is shaped with boehmite in a weight ratio of 60:40, dried at 110 ° C. and calcined at 500 ° C. for 16 hours. The strands are ion-exchanged with 20% NH₄Cl solution at 80 ° C / 2 h using the usual method until the Na content is 0.02% by weight (after drying at 110 ° C and calcination at 500 ° C / 5 h) .

In der nachfolgenden Tabelle 1 sind die mit den oben beschriebenen Katalysatoren erzielten Versuchsergebnisse aufgeführt.The test results achieved with the catalysts described above are listed in Table 1 below.

Einsatzlösung I: Monohydroxyethylpiperazin in Wasser gelöst 25 g : 75 g.Working solution I: monohydroxyethylpiperazine dissolved in water 25 g: 75 g. Einsatzlösung II: Gemisch aus Mono- und Dihydroxyethylpiperazin (Gewichtsverhältnis 20 : 80) in Wasser gelöst 25 g : 75 g.Working solution II: mixture of mono- and dihydroxyethylpiperazine (weight ratio 20:80) dissolved in water 25 g: 75 g.

Tabelle 1Table 1 Beispielexample 11 22nd 33rd 44th 5*5 * 66 EinsatzlösungOperational solution II. II. II. II. II. IIII Katalysatorcatalyst AA BB CC. DD EE AA Temperaturtemperature 400°C400 ° C 400°C400 ° C 400°C400 ° C 400°C400 ° C 400°C400 ° C 400°C400 ° C WHSVWHSV 1,5 h⁻¹1.5 h⁻¹ 1,5 h⁻¹1.5 h⁻¹ 1,5 h⁻¹1.5 h⁻¹ 3 h⁻¹3 h⁻¹ 2 h⁻¹2 h⁻¹ 1,5 h⁻¹1.5 h⁻¹ Umsatz %Sales % 98,998.9 99,799.7 99,799.7 99,999.9 99,699.6 99,899.8 Selektivität %Selectivity% DABCODABCO 65,665.6 73,573.5 76,876.8 83,283.2 68,568.5 68,368.3 PiperazinPiperazine 7,37.3 10,310.3 5,95.9 9,99.9 12,412.4 9,49.4 * Vergleichsbeispiel* Comparative example Tabelle 1 - Forts.Table 1 - Continued Beispielexample 77 88th EinsatzlösungOperational solution IIII IIII Katalysatorcatalyst CC. DD Temperaturtemperature 400°C400 ° C 400°C400 ° C WHSVWHSV 2 h⁻¹2 h⁻¹ 2 h⁻¹2 h⁻¹ Umsatz %Sales % 99,699.6 99,899.8 Selektivität %Selectivity% DABCODABCO 67,867.8 84,984.9 PiperazinPiperazine 6,56.5 3,93.9 * Vergleichsbeispiel* Comparative example

Claims (5)

1. Verfahren zur Herstellung von 1,4-Diazabicyclo(2,2,2)-octan und C-substituierten 1,4-Diazabicyclo(2,2,2)-octanen der Formel (I)
Figure imgb0003
in der R¹ und R² Wasserstoff-, Alkyl- mit 1 bis 4 C-Atomen oder Alkenylreste mit 1 bis 4 C-Atomen bedeuten können, dadurch gekennzeichnet, daß man man heterocyclische Amine der Formel (II)
Figure imgb0004
in der R¹ und R² obige Bedeutung haben und R³ Wasserstoff- oder Hydroxyethyl- oder Aminoethyl- und X Hydroxyl-, Amino-, Hydroxyethyl- oder Aminoethylreste bedeuten, in Gegenwart von Boro- und/oder Eisensilikatzeolithen als Katalysatoren umsetzt.
1. Process for the preparation of 1,4-diazabicyclo (2,2,2) octane and C-substituted 1,4-diazabicyclo (2,2,2) octanes of the formula (I)
Figure imgb0003
in which R¹ and R² can be hydrogen, alkyl having 1 to 4 carbon atoms or alkenyl radicals having 1 to 4 carbon atoms, characterized in that heterocyclic amines of the formula (II)
Figure imgb0004
in which R¹ and R² have the above meaning and R³ are hydrogen or hydroxyethyl or aminoethyl and X are hydroxyl, amino, hydroxyethyl or aminoethyl radicals, in the presence of borosilicate and / or iron silicate zeolites as catalysts.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man Monohydroxyethylpiperazin oder Dihydroxyethylpiperazin oder deren Gemische als Ausgangsstoffe umsetzt.2. The method according to claim 1, characterized in that reacting monohydroxyethylpiperazine or dihydroxyethylpiperazine or mixtures thereof as starting materials. 3. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß man als Katalysatoren Zeolithe des Pentasiltyps verwendet.3. Process according to claims 1 and 2, characterized in that zeolites of the pentasil type are used as catalysts. 4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß man als Katalysatoren Borosilikatzeolithe des Pentasiltyps verwendet.4. Process according to claims 1 to 3, characterized in that borosilicate zeolites of the pentasil type are used as catalysts. 5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß man mit Seltenen Erden und/oder Übergangsmetallen und/oder Alkali- und/oder Erdalkalimetallen und/oder Phosphorverbindungen modifizierte Boro- und/oder Eisensilikatzeolithe als Katalysatoren verwendet.5. Process according to claims 1 to 4, characterized in that modified borosilicate and / or iron silicate zeolites are used as catalysts with rare earths and / or transition metals and / or alkali and / or alkaline earth metals and / or phosphorus compounds.
EP87114496A 1986-10-08 1987-10-05 Process for the preparation of 1,4-diazabicyclo(2,2,2)-octanes Withdrawn EP0310689A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE19863634257 DE3634257A1 (en) 1986-10-08 1986-10-08 Process for the preparation of 1,4-diazabicyclo[2.2.2]octanes
EP87114496A EP0310689A1 (en) 1986-10-08 1987-10-05 Process for the preparation of 1,4-diazabicyclo(2,2,2)-octanes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863634257 DE3634257A1 (en) 1986-10-08 1986-10-08 Process for the preparation of 1,4-diazabicyclo[2.2.2]octanes
EP87114496A EP0310689A1 (en) 1986-10-08 1987-10-05 Process for the preparation of 1,4-diazabicyclo(2,2,2)-octanes

Publications (1)

Publication Number Publication Date
EP0310689A1 true EP0310689A1 (en) 1989-04-12

Family

ID=39672891

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87114496A Withdrawn EP0310689A1 (en) 1986-10-08 1987-10-05 Process for the preparation of 1,4-diazabicyclo(2,2,2)-octanes

Country Status (2)

Country Link
EP (1) EP0310689A1 (en)
DE (1) DE3634257A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0476780A2 (en) * 1990-09-20 1992-03-25 Union Carbide Chemicals And Plastics Company, Inc. Catalytic processes for the preparation of bridged nitrogen-containing compounds
US5367073A (en) * 1992-03-06 1994-11-22 The Regents Of The University Of California Asymmetric synthesis of β-amino alcohols from chiral or achiral enamines
CN108906116A (en) * 2018-07-18 2018-11-30 西安近代化学研究所 It is a kind of for synthesizing the catalyst and preparation method and application of 2- methyl triethylene diamine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2434913A1 (en) * 1973-07-19 1975-02-06 Shunan Petrochemical Co Ltd PROCESS FOR PRODUCING NITROGENIC HETEROCYCLIC COMPOUNDS
EP0034727A2 (en) * 1980-02-21 1981-09-02 BASF Aktiengesellschaft Crystalline isotactic zeolites, process for their preparation and their use as catalysts
EP0046504A1 (en) * 1980-08-21 1982-03-03 BASF Aktiengesellschaft Crystalline metal-silicate zeolite ZBM-30 and method of preparing it
DD206896A3 (en) * 1982-04-26 1984-02-08 Leuna Werke Veb PROCESS FOR PREPARING 1,4-DIAZA BICYCLO (2,2,2) OCTANE
EP0158319A2 (en) * 1984-04-10 1985-10-16 Union Carbide Corporation Synthesis of 1-Azabicyclo(2.2.2) octanes or 1,4-Diazabicyclo(2-2.2)octanes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2434913A1 (en) * 1973-07-19 1975-02-06 Shunan Petrochemical Co Ltd PROCESS FOR PRODUCING NITROGENIC HETEROCYCLIC COMPOUNDS
EP0034727A2 (en) * 1980-02-21 1981-09-02 BASF Aktiengesellschaft Crystalline isotactic zeolites, process for their preparation and their use as catalysts
EP0046504A1 (en) * 1980-08-21 1982-03-03 BASF Aktiengesellschaft Crystalline metal-silicate zeolite ZBM-30 and method of preparing it
DD206896A3 (en) * 1982-04-26 1984-02-08 Leuna Werke Veb PROCESS FOR PREPARING 1,4-DIAZA BICYCLO (2,2,2) OCTANE
EP0158319A2 (en) * 1984-04-10 1985-10-16 Union Carbide Corporation Synthesis of 1-Azabicyclo(2.2.2) octanes or 1,4-Diazabicyclo(2-2.2)octanes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, Band 83, Nr. 21, 24. November 1975, Seite 585, Zusammenfassungsnr. 179111a, Columbus, Ohio, US; & JP - A - 75 58096 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0476780A2 (en) * 1990-09-20 1992-03-25 Union Carbide Chemicals And Plastics Company, Inc. Catalytic processes for the preparation of bridged nitrogen-containing compounds
EP0476780A3 (en) * 1990-09-20 1992-09-02 Union Carbide Chemicals And Plastics Company, Inc. Catalytic processes for the preparation of bridged nitrogen-containing compounds
US5194613A (en) * 1990-09-20 1993-03-16 Union Carbide Chemicals & Plastics Technology Corporation Catalytic processes for the preparation of bridged nitrogen-containing compounds
US5367073A (en) * 1992-03-06 1994-11-22 The Regents Of The University Of California Asymmetric synthesis of β-amino alcohols from chiral or achiral enamines
CN108906116A (en) * 2018-07-18 2018-11-30 西安近代化学研究所 It is a kind of for synthesizing the catalyst and preparation method and application of 2- methyl triethylene diamine
CN108906116B (en) * 2018-07-18 2021-01-29 西安近代化学研究所 Catalyst for synthesizing 2-methyl triethylene diamine and preparation method and application thereof

Also Published As

Publication number Publication date
DE3634257A1 (en) 1988-04-21

Similar Documents

Publication Publication Date Title
EP0262533B1 (en) Method for the production of alpha,beta-unsaturated ketones
EP0263464B1 (en) Process for the preparation of substituted pyridines
EP0382055A1 (en) Process for the preparation of 1,4-diazabicyclo-2,2,2-octane
EP0266687B1 (en) Process for the manufacture of cyclopentanone
EP0266691B1 (en) Method for the production of alkene carboxylic acid esters
EP0263463B1 (en) Process for the preparation of 1,4-diazabicyclo[2,2,2] octanes
EP0267438B1 (en) Process for the preparation of unsaturated nitriles
EP0325141B1 (en) Process for the preparation of phenyl ethanols
EP0318845B1 (en) Method for the preparation of substituted pyridines
EP0257557B1 (en) Process for the preparation of bifunctional compounds
EP0276767B1 (en) Process for the preparation of ketones
EP0249976A1 (en) Process for the production of carboxylic acids
EP0290862B1 (en) Process for the preparation of 1,4-diazabicyclo[2.2.2] octanes
EP0349859A2 (en) Process for the preparation of 1,4-diazabicyclo [2,2,2]octanes
EP0289924B1 (en) Process for the preparation of pyridines
EP0309911A1 (en) Process for the preparation of tetrahydrofurans from 1,4-butane diols
EP0310689A1 (en) Process for the preparation of 1,4-diazabicyclo(2,2,2)-octanes
EP0300324B1 (en) Process for the production of acylated imidazoles and pyrazoles
EP0332981B1 (en) Process for the preparation of esters of alpha-keto-carboxylic acids
EP0297446B1 (en) Process for the preparation of n-heterocycles
EP0309906A1 (en) Method for the preparation of dihydrofuranes and alpha-beta-unsaturated aldehydes/ketones
EP0318847B1 (en) Process for the preparation of cyano-pyridines
EP0305913A1 (en) Process for the production of dien-1-ols, 9-hydroxydodec-10-enyl-1-tert.butyl ether, and its use as an intermediate in the synthesis of 8,10-dodecane dienol
EP0302486A1 (en) Process for the production of 1,2-dialkoxyethenes
DE3816576A1 (en) METHOD FOR PRODUCING MULTIPLE UNSATURATED HYDROCARBONS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880716

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB LI NL

17Q First examination report despatched

Effective date: 19910213

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19931014

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BEST, WALTER, DR.

Inventor name: HOELDERICH, WOLFGANG, DR.

Inventor name: SCHNEIDER, KURT, DR.