EP0310365A1 - Engine seal compatible dispersant for lubricating oils - Google Patents

Engine seal compatible dispersant for lubricating oils Download PDF

Info

Publication number
EP0310365A1
EP0310365A1 EP88309007A EP88309007A EP0310365A1 EP 0310365 A1 EP0310365 A1 EP 0310365A1 EP 88309007 A EP88309007 A EP 88309007A EP 88309007 A EP88309007 A EP 88309007A EP 0310365 A1 EP0310365 A1 EP 0310365A1
Authority
EP
European Patent Office
Prior art keywords
dispersant
composition
succinic anhydride
polybutenyl
lubricating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88309007A
Other languages
German (de)
French (fr)
Other versions
EP0310365B1 (en
Inventor
David John Fenoglio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ethyl Corp
Original Assignee
BP Corp North America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BP Corp North America Inc filed Critical BP Corp North America Inc
Publication of EP0310365A1 publication Critical patent/EP0310365A1/en
Application granted granted Critical
Publication of EP0310365B1 publication Critical patent/EP0310365B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M163/00Lubricating compositions characterised by the additive being a mixture of a compound of unknown or incompletely defined constitution and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • C07D249/101,2,4-Triazoles; Hydrogenated 1,2,4-triazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D249/14Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/86Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of 30 or more atoms
    • C10M129/95Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/52Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/52Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
    • C10M133/58Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M149/00Lubricating compositions characterised by the additive being a macromolecular compound containing nitrogen
    • C10M149/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/16Reaction products obtained by Mannich reactions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/20Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
    • C10M159/22Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products containing phenol radicals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M167/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound, a non-macromolecular compound and a compound of unknown or incompletely defined constitution, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/027Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/028Overbased salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/144Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/146Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings having carboxyl groups bound to carbon atoms of six-membeered aromatic rings having a hydrocarbon substituent of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • C10M2215/082Amides containing hydroxyl groups; Alkoxylated derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/086Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/10Amides of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/226Morpholines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/24Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions having hydrocarbon substituents containing thirty or more carbon atoms, e.g. nitrogen derivatives of substituted succinic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/022Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group
    • C10M2217/023Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group the amino group containing an ester bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/024Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amido or imido group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/028Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a nitrogen-containing hetero ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/042Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds between the nitrogen-containing monomer and an aldehyde or ketone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/043Mannich bases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/06Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/088Neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/089Overbased salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/06Organic compounds derived from inorganic acids or metal salts
    • C10M2227/061Esters derived from boron
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/042Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for automatic transmissions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/044Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for manual transmissions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/046Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/251Alcohol fueled engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • C10N2040/253Small diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • C10N2040/28Rotary engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions
    • C10N2070/02Concentrating of additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S516/00Colloid systems and wetting agents; subcombinations thereof; processes of
    • Y10S516/01Wetting, emulsifying, dispersing, or stabilizing agents
    • Y10S516/06Protein or carboxylic compound containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S516/00Colloid systems and wetting agents; subcombinations thereof; processes of
    • Y10S516/01Wetting, emulsifying, dispersing, or stabilizing agents
    • Y10S516/07Organic amine, amide, or n-base containing

Definitions

  • the present invention relates generally to nitrogen-­containing dispersants for lubricating oils obtained by reacting a long chain hydrocarbyl-substituted succinic acid or anhydride with an amine, and lubricating oils incorporating such dispersants. More particularly, the invention is directed to a lubricating oil dispersant having markedly improved compatibility toward fluorohydro­carbon elastomer engine seals, a method for making the dispersant, and lubricating compositions (including addi­tive concentrates) incorporating the dispersant.
  • the dis­persant composition of the present invention comprises the reaction product obtained by reacting a long chain hydro­carbyl-substituted succinic acid or anhydride with amino­guanidine or basic salt thereof in a ratio of about 1.6 to about 2.2 moles of aminoguanidine, or basic salt thereof, per equivalent of hydrocarbyl succinic acid or anhydride, at a temperature of from about 155°C to about 200°C.
  • the present invention is further directed to a combination of the above dispersant and a polymeric dispersant-VI improver and/or an alkaline earth phenate detergent.
  • Flexible engine seals are used in assembling internal combustion engines to prevent leakage of lubricants at those points where moving parts, such as crankshafts, leave the engine. Because leakage of the lubricant from the internal combustion crankcase is very undesirable, an important consideration when selecting a dispersant for use in the lubricating oil composition is its compatibil­ity with fluorohydrocarbon crankshaft seals and clutch plate liners in transmissions. These seals most commonly comprise fluorohydrocarbon elastomers which are often attacked by the dispersant.
  • Le Suer, et al. disclose lubricating oil compositions containing acylated nitrogen compounds prepared, for example, by reacting a substituted succinic acid or derivative thereof with a nitrogen-containing compound, such as ammonia, aliphatic amines, aromatic amines, heterocyclic amines, or carboxylic amines.
  • a nitrogen-containing compound such as ammonia, aliphatic amines, aromatic amines, heterocyclic amines, or carboxylic amines.
  • the resulting detergent composition comprises an oil-soluble, acylated nitrogen composition characterized by the presence within its structure of (A) a substantially hydrocarbon-substituted polar group selected from the class consisting of acyl, acylimidoyl, and acyloxy radicals wherein the substantially hydrocarbon substituent contains at least about 50 aliphatic carbon atoms and (B) a nitrogen-containing group characterized by a nitrogen atom attached directly to said relatively polar group.
  • A a substantially hydrocarbon-substituted polar group selected from the class consisting of acyl, acylimidoyl, and acyloxy radicals wherein the substantially hydrocarbon substituent contains at least about 50 aliphatic carbon atoms and (B) a nitrogen-containing group characterized by a nitrogen atom attached directly to said relatively polar group.
  • B a nitrogen-containing group characterized by a nitrogen atom attached directly to said relatively polar group.
  • the residue was mixed with mineral oil and heated to 150°C (302°F) and filtered.
  • the resulting product was used as a lubricating oil additive and found to be an effective dispersant.
  • These patents teach that the mixture of acid-producing compound and the nitrogen-containing reactant is usually heated at a temperature above 80°C (176°F), preferably within the range of about 100°C (212°F) to about 250°C (482°F).
  • the patents disclosed guanidines among a host of possible sources of nitrogen-containing compounds. For example, guanidine, 1,3-diphenylguanidine, and 1,2,3-tributylguanidine are disclosed.
  • compositions useful as "lead paint” inhibitors and lubricants e.g., compositions comprising a major proportion of a pentaerythritol ester of an alkenyl succinic acid in which the alkenyl group contains at least about 30 carbon atoms and a minor proportion of a hetero­cyclic condensation product of said alkenyl succinic acid derived from a 5-membered ring heterocycle containing at least 2 ring hetero atoms separated by a single carbon atom, at least one of said hetero atoms being nitrogen.
  • the heterocyclic condensation product is characterized by the presence of at lease one heterocyclic moiety including a 5- or 6-membered ring which contains at least 2 ring hetero atoms, separated by a single carbon atom.
  • Such ring hetero atoms may be oxygen, sulfur, and nitrogen, with at least one thereof being nitrogen.
  • the heterocyclic moiety contains a maximum of three hetero atoms and a 5-membered ring, preferably, a triazole or thiadiazole ring, and, most desirably, a 1,2,4,-triazole ring.
  • An object of the present invention is to provide a lubricating oil dispersant composition, as well as an additive concentrate or lubricant composition incorporat­ing such dispersant, in which the nitrogen-containing moieties of the dispersant compound are compatible with fluorohydrocarbon-containing elastomeric engine seals.
  • the present invention is directed to a dispersant composition having improved compatibility toward fluorohy­drocarbon-containing elastomeric engine seals, said dis­persant composition comprising the reaction product obtained by reacting a C40-C250 hydrocarbyl-substituted succinic acid or anhydride with aminoguanidine, or a basic salt thereof, at a reaction temperature of about 155°C to about 200°C and in a ratio of about 1.6 to 2.2 moles of aminoguanidine, or basic salt thereof, per equivalent of hydrocarbyl-substituted succinic anhydride.
  • the invention is further directed to a composition suitable as a dispersing agent for lubricating oils, wherein the composition comprises a mixture of dispersant compounds having nitrogen-containing groups, said mixture comprising (a) at least one dispersant compound which is incompatible with fluorohydrocarbon-containing engine seals or which elicits poor or marginal compatibility with such seals; and (b) a dispersant compound obtained by reacting a C40-C250 hydrocarbyl-substituted succinic acid or anhydride with aminoguanidine, or basic salt thereof, at a reaction temperature of from about 155°C to about 200°C and at a ratio of about 1.6 to about 2.2 moles of aminoguanidine, or basic salt thereof, per equivalent of hydrocarbyl-substituted succinic anhydride, wherein the relative amounts of (a) and (b) in the mixture are such that the composition is compatible with fluorohydrocarbon elastomer engine seals.
  • the composition comprises a mixture of dispersant compounds
  • the present invention is directed to lubricating compositions containing a major amount of oil of lubricating viscosity and a minor effec­tive dispersant amount of the dispersant compositions sum­marized above.
  • the present invention is further directed to concen­trates for formulating lubricating compositions comprising from about 20 to about 90% by weight of a normally liquid, substantially inert organic solvent/diluent and from about 10% to about 80% of the dispersant composition(s) summa rized above.
  • the present invention is also directed to lubricating compositions which combine the dispersant summarized above with a neutral or overbased phenate detergent, and/or with a dispersant-VI improver.
  • a principal advantage in the present invention is the compatibility of the described dispersant toward fluorohy­drocarbon-containing elastomeric engine seals.
  • Such lubricants must contain higher levels of dispersant and detergent.
  • the most effective dis­persants are the nitrogen-containing compounds.
  • Preferred detergents are the phenates.
  • the present invention permits the use of higher amounts of the dispersant and detergent additive to meet recent requirements without the associ­ated problem of engine seal degradation. Even the most severe elastomer tests such as the Hyundaiwagon Viton® test can be passed using an "SG" formulation prepared with a dispersant of the present invention.
  • the improved seal compatibility of the dispersant facilitates the use of increased levels of dispersant/VI improvers which having nitrogen groups that are harmful toward engine seals.
  • the present invention is based on the dis­covery of a new nitrogen-containing dispersant that offers excellent dispersancy plus compatibility with fluorohydro­carbon elastomeric engine seals.
  • the dispersant is the reaction product of a long chain hydrocarbyl-substituted succinic anhydride, preferably a polyalkenyl succinic anhydride such as polybutenyl succinic anhydride, and ami­noguanidine bicarbonate, where the reaction is conducted at from about 155°C to about 200°C and preferably about 170°C to 190°C, and at a ratio of aminoguanidine to suc­cinic anhydride compound of from about 1.6 to about 2.2 moles aminoguanidine bicarbonate per equivalent of anhy­dride, and preferably about 1.7 to 2.0 moles of aminoguan­idine bicarbonate per equivalent of succinic anhydride.
  • Present analysis indicates that the product comprises at least about 50 wt.% of the hydrocarbyl
  • the phenate detergents contemplated for use in the present invention include any of the well-known neutral or overbased sulfurized phenates prepared by reacting an alkyl-substituted phenol, a sulfurizing agent, and a cal­cium or magnesium compound.
  • the phenate can be carbonate overbased to contain an excess amount of metal in the form of carbonates or hydroxides, relative to the amount of neutral phenate.
  • the preparation and use of such phenates are well known to those skilled in the art.
  • the dispersant-VI improvers contemplated for use in combination with the triazole dispersant of the present invention can comprise any of the well-known fuctionalized polymers that impart dispersancy to and improve the vis­cosity characteristics of a lubricating oil.
  • the polymeric backbone of the dispersant-VI improver can be prepared by polymer­izing monomers such as ethylene, propylene, isobutylene, styrene, butadiene, alkyl acrylates and methacrylates, norbutadiene, isoprene, maleates, maleic anhydride, maleimides, carbon monoxide, vinyl-substituted amines and alcohols, etc.
  • the molecular weight of the products is at least 5000, and is preferably at least 10,000.
  • the polym­ers may contain oxygen functionality from shearing in air or oxygen or reaction with oxidizing agents.
  • the polymers contain amine or alcohol groups in the monomers, or may be reacted with amines or alco­hols.
  • a lubricating oil composition in accordance with the present invention comprises a major amount of oil of lubricating viscosity and a minor effective dispersant amount of the seal compatible dispersant of the invention.
  • a minor effective dispersant amount is from about 0.01 to about 10 and preferably from about 2 to about 8 wt.% of the finished oil. It should be pointed out that these dispersant amounts assume the dispersant composition will be about 35 to about 60% "active" meaning that the disper­sant composition consists of about 35 to about 60 wt.% of the actual dispersant compound, the remainder being sub­stantially inert organic diluent carrier fluid, such as neutral process oil, in which the dispersant is dissolved.
  • unreacted polybutene present in polybutenyl succinic anhydride is also intended to be encompassed by the term "substantially inert diluent.”
  • the inert diluent can be present during the preparation of the dispersant but can also be added to the dispersant, following preparation, to achieve a desired activity.
  • Another lubricating composition of the present invention comprises the seal-compatible dispersant described herein combined with an alkaline earth metal phenate detergent.
  • the phenate detergent can be present in an amount of from about 0.2 to 27% by weight of the composition.
  • Still another lubricating composition of the present invention comprises the seal-compatible dispersant described herein combined with a dispersant-VI improver.
  • the amount of the dispersant-VI improver can be from about 0.01 to about 15%, and preferably from about 0.5 to about 12.5% by weight of the composition.
  • the lubricating compositions of the present invention in addition to the seal-compatible dispersant, the phenate detergent and the dispersant-VI improver, can also contain from about 50 to 1000, and preferably about 80 to about 400 ppm boron.
  • the boron can be incorporated in the lubricating composition by post-treating the seal-­compatible dispersant, or any dispersant used in combina­tion therewith, with a boron-containing compound such as boric acid, such that the dispersant (including diluent) contains about .01 to about 5 wt.% boron and preferably about 0.1 to about 1.0 wt.% boron, and most preferably about 0.2 to about 0.7 wt.% boron.
  • the dispersant of the present invention can be in the form of a concentrate comprising about 20 to 90 wt.% inert organic diluent and about 10 to 80 wt.% of the dispersant of the present invention.
  • a concentrate comprising about 20 to 90 wt.% inert organic diluent and about 10 to 80 wt.% of the dispersant of the present invention.
  • one or more other additives intended for the final lubri­cant can be included in the concentrate.
  • the long chain hydrocarbyl-substituted succinic anhydride can be prepared by the alkylation of maleic acid or anhydride with the homopolymers and interpolymers of polymerizable olefin monomers containing up to about 10 carbon atoms, for example ethylene, propylene, 1-butene, 2-butene, isobutene, 1-hexene, or 1-octene such polymers having at least about 40 and preferably at least about 50 carbon atoms in a chain in order to provide oil solubility to the dispersant of the invention.
  • the chain of carbons in the hydrocarbyl substituent ranges from about 40 to about 250, and preferably about 60-160.
  • the polymeric hydrocarbyl substituent should con­tain at least about 80 percent and preferably about 95%, on a weight basis of units derived from aliphatic mono­ olefins to preserve oil solubility.
  • Especially suitable mono-olefins are isobutene and propene.
  • the preferred hydrocarbyl substituent is polybutene or polypropene having number average molecular weight of from about 250 to about 10,000.
  • polybutene having a number average molecular weight (M n ) of about 750 to about 2500, and having ratio of weight average molecu­lar weight (M w ) to number average molecular weight (M n ) of between 1.2 and 4.0.
  • reaction of the olefin polymer with maleic anhy­dride can be carried out in a conventional manner well known in the art using thermal or chlorination conditions. See e.g., U.S. Patent Nos. 3,215,707; 3,231,587 4,234,435, and European Patent Nos. 264,247 and 308,560 (chlorina­tional and Cengel U.S. Patent Nos. 3,927,041; 3,935,249; 3,953,475; 3,954,812; 3,960,900; 3,985,672; 4,008,168; and 4,086,251 (thermal). All of these patents are hereby incorporated by reference.
  • SA:PIB ratio The ratio of anhydride groups to polybutene groups (SA:PIB ratio) in the polybutenyl succinic anhydride can be adjusted in the manner described in the '435, '247 and '560 patents, cited above to obtain SA:PIB ratios between about 0.5 and 4.0.
  • the hydro­carbyl-substituted succinic anhydride described above preferably polybutenyl succinic anhydride ("PSA")
  • PSA polybutenyl succinic anhydride
  • aminoguanide is reacted with aminoguanide at a temperature of from about 155°C to about 200°C and preferably from about 170° to about 190°C for a period of about 1 to about 5 hours, the ratio of reactants being about 1.6 to about 2.2 moles of aminoguanidine per equivalent of PSA.
  • a basic salt of aminoguanidine such as aminoguanidine bicarbonate.
  • the preferred reaction conditions are a tem­perature of about 170° to 190°C a ratio of 1.7 to 2.0 moles of aminoguanidine bicarbonate per equivalent of PSA, and a reaction time of about 2-4 hours.
  • reaction temperatures at or below about 155°C result in a product which, although effective as a dispersant, elicits poor and generally unacceptable compatibility with fluorohydro­carbon-containing engine seals. Moreover, as the reaction temperature is reduced from about 155°C, seal compatibil­ity worsens until a minimum in such performance is reached at a reaction temperature of about 130-140°C. However, the trend observed when reaction temperatures above 155° are used is just the opposite. At about 155-160°C, seal compatibility is borderline pass/fail. At reaction tem­peratures between 165 and 190 passing engine seal compat­ibility is obtained with a gradual improvement until a maximum in compatibility is achieved at about 185-190°C.
  • Infrared analysis of PSA/aminoguanidine reaction pro­duct samples prepared at 130°, 145°, 150°, 155°, 160°, 170° and 185°C discloses that greater than about 50% of the products obtained between 130 and 145°C is a bis-amide having the following structure:
  • the bis amide has a characteristic 1R absorbance at 1680 cm ⁇ 1However between 145 and 185°C the product is at least about 50% bis-3-amino-1,2,4-triazole having the structure:
  • Infrared analysis further discloses that above reaction temperatures of about 160°C the PSA/aminoguanidine reaction product is greater than about 90 wt.% triazole with very little if any detectable bis­amide, while at temperatures above about 165°C the reaction product is essentially completely triazole.
  • Another important feature of the present invention is the ratio of amonoguanidine to PSA used in the preparation of the seal-compatible dispersant.
  • the ratio is about 1.6 to 2.2 and preferably about 1.7 to 2.0 moles of aminoguan­idine per equivalent of PSA.
  • At ratios less than about 1.6 the reaction product shows increasingly poor disper­sancy when compared with an equal amount of a conventional dispersant such as the Mannich product obtained by react­ing polybutylphenol, formaldehyde, and a polyalkylene pol­yamine.
  • the weight of one equivalent of PSA is to be calculated on the basis that the equivalent weight of the PSA is based on the number of anhydride groups. This is to be distinguished from the convention used, for example, in U.S. 4,234,435 (column 28, lines 10 to 34) in which the number of equiv­ alents of PSA depends on the number of carboxylic func­tions in the PSA. Therefore, because there are two carboxylic functions for each anhydride group of the PSA, the weight of one equivalent of PSA using the convention adopted in the present invention would be twice that obtained using the approach of the '435 patent. Conven­tional titration methods are readily available for deter­mining the equivalent weight of a given sample of PSA. Generally speaking, preferred titration techniques are those which have reliable, easily ascertained titration end points and which detect the greatest amount of saponi­fiable anhydride in the PSA intermediate.
  • the aminoguanidine compound used to prepare the dis­persant of the present invention is preferably a basic salt of aminoguanidine.
  • the most preferred salt is amino­guanidine bicarbonate which can be obtained from commer­cial suppliers such as Nippon Carbide Industries, Inc.
  • the dispersant composition in practice, is a solution of the neat dispersant compound in a substantially inert carrier diluent consisting mainly of neutral base oil and unreacted polybutene.
  • the wt.% of actual dispersant in this compound i.e., the "activity" is preferably between about 35% and 60% and depends both on the PSA activity and the amount of neutral diluent oil used in the preparation of (or added to) the dispersant.
  • the PSA/aminoguanidine reaction product of the present invention is an excellent dispersant that is very compatible with fluorohydrocarbon-containing engine seals, it can be used as the sole dispersant in a lubri­cant formulation. However, it may also be used in combi­nation with other well-known dispersants to obtain a dispersant combination that is compatible with engine seals. For example, if a formula containing a required level of a nitrogen-containing dispersant fails tests for engine seal compatibility, or elicits poor or marginal compatibility, it may be desirable to replace only so much of the conventional dispersant with the dispersant of the present invention as is necessary to render the formu­lation compatible with engine seals.
  • one embodiment of the present invention is a composition suitivelyable as a dispersing agent for lubricating oils, wherein the composition comprises a mixture of dispersant com­pounds having nitrogen-containing groups, said mixture comprising (a) at least one dispersant compound which is incompatible with fluorohydrocarbon-containing engine seals or which elicits poor or marginal compatibility with such seals; and (b) a dispersant compound obtained by reacting a C40-C250 hydrocarbyl-substituted succinic acid or anhydride with aminoguanidine, or basic salt thereof, at a reaction temperature of from about 155°C to about 200°C and at a ratio of about 1.6 to about 2.2 moles of aminoguanidine, or basic salt thereof, per equivalent of polyalkenyl succinic anhydride, wherein the relative amounts of (a) and (b) in the mixture are such that the composition is compatible with fluorohydrocarbon elastomer engine seals.
  • any nitrogen-containing dispersant can be used in combination with the triazole dispersant of the present invention.
  • examples are the succini­mide dispersants (see e.g., U.S. 4,234,435), the Mannich base dispersants (see U.S. Patent 3,704,308) and the suc­cinate ester-amide dispersants (see e.g., U.S. 4,426,305).
  • the patents cited are incorporated by reference.
  • the additional dispersant can be borated or non-borated.
  • the present invention is also directed to lubricating compositions in which are combined the seal-compatible triazole dispersant disclosed herein and an alkaline earth metal phenate detergent.
  • the neutral or overbased phenate detergents intended for use herein are exceedingly well known in the art. See e.g., U.S. Patent Nos. 3,493,516; 3,336,224; 4,412,927; 4,293,431; 4,464,289; 4,514,313; 3,718,589; 3,755,170; 4,302,342; 4,196,089, 4,293,431, etc., which are incorporated by reference.
  • the phenates for use in this invention are the alkaline earth metal, preferably magnesium or calcium, salts of alkylated phenols.
  • the alkyl substituent(s) of the phenol can contain from 3 to 200 carbons and preferably about 4 to 30 carbons.
  • One of the func­tions of the phenates is to act as a detergent/dispersant. Among other things it prevents the deposit of contaminants formed during high temperature operation of the engine.
  • the phenols can be mono- or polyalkylated.
  • the alkyl portion of the alkyl phenates lends oil sol­ubility to the phenate, and can be obtained from naturally occurring or synthetic sources.
  • Naturally occurring sources include petroleum hydrocarbons such as white oil and wax. If derived from petroleum, the hydrocarbon sub­ stituent is a mixture of different hydrocarbyl groups, the specific composition of which depends upon the particular oil stock which was used as a starting material.
  • Suitable synthetic sources include various commercially available alkanes and alkane derivatives which, when reacted with the phenol, yield an alkylphenol.
  • Suitable radicals obtained include butyl, hexyl, actyl, decyl, dodecyl, hex­adecyl, and the like.
  • Other suitable synthetic sources of the alkyl radical include olefin polymers such as polypro­pylene, polybutylene, polyisobutylene and the like.
  • the alkyl group can be straight-chained or branch-­chained, saturated or unsaturated (if unsaturated, preferivelyably containing not more than 2 and generally not more than 1 size of olefinic unsaturation). Generally when the phenol is monoalkyl-substituted, the alkyl radical should contain at least 8 carbon atoms.
  • the phenate may be sul­furized if desired. It can be either neutral or overbased and, if overbased, will have a base number of from about 150 up to 300 or more. Mixtures of neutral and overbased phenates may be used.
  • the phenates are ordinarily present in the oil to provide from about 0.2% to about 27% by weight of the total composition.
  • the neutral phenates are present from about 0.2% to about 9% by weight of the total composition, while the overbased phenates can be present from about 0.2% to 13% by weight of the total composition.
  • the overbased phenates are present from 0.2% to 8% by weight of the total composition.
  • the sulfurized alkaline earth metal alkyl phenates are preferred, and can be obtained by a variety of pro­cesses such as treating the neutralization product of an alkaline earth metal base and an alkylphenol with sulfur.
  • the sulfur in elemental form, is added to the neutralization product and reacted at elevated temper­atures to produce the sulfurized alkaline earth metal alkylphenate.
  • the sulfurization is carried out using ethylene glycol as a promoter.
  • the preferred overbased phenates for use in the present invention are calcium sulfurized phenates having a total base number ("TBN") of about 150-400.
  • a basic or "overbased" sulfurized alkaline earth metal alkyl phenate is obtained. Additional basi­city can be obtained by adding carbon dioxide to the basic sulfurized alkaline earth metal alkyl phenate.
  • the excess alkaline earth metal base can be added subsequent to the sulfurization step but is conveniently added at the same time as the alkaline earth metal base is added to neutral­ize the phenol. Carbon dioxide is the most commonly used material to produce the overbased phenates.
  • the present invention is also directed to lubricating compositions in which the seal-compatible dispersant described herein is combined with a dispersant-VI improver. Any dispersant-VI improver can be used. Exam­ples are:
  • the viscosity index improver dispersant have a number average molecular weight range of 1,000 to 2,000,000, preferably 5,000 to 250,000, and most preferably 10,000 to 200,000.
  • Typical polymeric viscosity index improver disper­sants include copolymers of alkyl methacrylates with N-vi­nyl pyrrolidone or dimethylaminoalkyl methacrylate, alkyl fumarate-vinyl acetate, N-vinyl pyrrolidone copolymers, post-grafted interpolymers of ethylene-propylene with an active monomer such as maleic anhydride which may be fur­ther reacted with an alcohol or an alkylene polyamine, e.g., see U.S. Patent Nos.
  • a preferred polymeric dispersant-VI improver suitable for use in the present invention is that of category (d) above, i.e., the Mannich reaction product of an oxidized ethylene-propylene copolymer, an amine, and a formaldehyde yielding reagent.
  • category (d) i.e., the Mannich reaction product of an oxidized ethylene-propylene copolymer, an amine, and a formaldehyde yielding reagent.
  • lubricating compositions comprising a major amount of an oil of lubricating viscos­ity and a minor effective dispersant amount of the tria­zole dispersant described above, as well as lubricating compositions in which the triazole dispersant is used in combination with the above-mentioned phenate detergents and/or the above-described dispersant-VI improvers.
  • the oil of lubricating viscosity for use in the lubricating compositions of the present invention can be natural or synthetic in origin or mixtures thereof.
  • the lubricating compositions of the invention can be used in crankcase lubricating oils for spark-ignited and compres­sion-ignited internal combustion engines, such as automo­bile and truck engines, marine and railroad diesel engines, and the like.
  • Automatic transmission fluids, transaxle lubricants, gear lubricants, metal-working lubricants, hydraulic fluids and other lubricating oil and grease compositions can also benefit from the incorpora­tion therein of the lubricating compositions of the pres­ent invention.
  • suitable natural oils include animal oils and vegetable oils (e.g., castor oil, lard oil) as well as mineral lubricating oils such as liquid petroleum oils and solvent-treated or acid-treated mineral lubricating oils of the paraffinic, naphthenic or mixed paraffinic-na­phthenic types. Oils of lubricating viscosity derived from coal or shale are also useful base oils.
  • Synthetic lubricating oils include hydrocarbon oils and halosubsti­tuted hydrocarbon oils such as polymerized and interpoly­merized olefins (e.g., polybutylenes, polypropylenes, polylene-isobutylene copolymers, chlorinated polybutyl­enes, etc.); poly(1-hexenes), poly(1-octenes), poly(1-decenes), etc., and mixtures thereof); alkylben­zenes (e.g., dodecylbenzenes, tetradecylbenzenes, dinonyl­benzenes, di(2-ethlyhexyl)benzenes, etc.); polyphenyls (e.g., biphenyls, terphenyls, alkylated polyphenyls, etc.), alkylated diphenyl ethers and alkylated diphenyl sulfides and the derivatives
  • these are exemplified by the oils prepared through poly­merization of ethylene oxide or propylene oxide, the alkyl and aryl ethers of these polyoxyalkylene polymers (e.g., methylpolyisopropylene glycol ether having an average molecular weight of 1000, diphenyl ether of polyethylene glycol having a molecular weight of 500 to 1000, diethyl ether of polypropylene glycol having a molecular weight of 1000 to 1500, etc.) or mono- and polycarboxylic esters thereof, for example, the acetic acid esters, mixed C3-C8 fatty acid esters, or the C13 Oxo acid diester of tetra­ethylene glycol.
  • Another suitable class of synthetic lubricating oils comprises the esters of dicarboxylic acids (e.g., phthalic acid, succinic acid, alkyl succinic acid, and alkenyl suc­cinic acids, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkyl malonic acids, alkenyl malenic acids, etc.) with a variety of alcohols (e.g., butyl alco­hol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol, etc.).
  • dicarboxylic acids e.g., phthalic acid, succinic acid, alkyl succinic acid, and alkenyl suc­cinic acids, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric
  • esters include dibutyl adipate, di(2-ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, disodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, the complex ester formed by reacting one mole of sebacic acid with two moles of tetraethylene glycol and two moles of 2-ethylhexanoic acid, and the like.
  • Esters useful as synthetic oils also include those made from C5 to C12 monocarboxylic acids and polyols and polyol ethers such as neopentyl glycol, trimethylolpro­panc, pentaerythritol, dipentaerythritol, tripentaeryth­ritol, etc.
  • Silicon-based oils such as the polyalkyl-, polyaryl-, polyalkoxy-, or polyaryloxy-siloxane oils and silicate oils comprise another useful class of synthetic lubricants (e.g., tetraethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl) silicate, tetra-(4-methyl-2-­ethylhexyl) silicate, tetra-(p-tert-butylpheny) silicate, hexa-(4-methyl-2-pentoxy)-disiloxane, poly(methyl)­siloxanes, poly(methylpheny)siloxanes, etc.).
  • synthetic lubricants e.g., tetraethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl) silicate, tetra-(4-
  • syn­thetic lubricating oils include liquid esters of phosphorus-containing acids (e.g., tricresyl phosphate, trioctyl phosphate, diethyl ester of decylphosphonic acid, etc.) polymeric tetrahydrofurans and the like.
  • phosphorus-containing acids e.g., tricresyl phosphate, trioctyl phosphate, diethyl ester of decylphosphonic acid, etc.
  • Unrefined, refined and rerefined oils either natural or synthetic (as well as mixtures of two or more of any of these of the type disclosed hereinabove can be used in the lubricant compositions of the present invention.
  • Unrefined oils are those obtained directly from a natural or synthetic source without further purification treat­ment. For example, a shale oil obtained directly from retorting operations, a petroleum oil obtained directly from distillation or ester oil obtained directly from an esterification process and used without further treatment would be an unrefined oil.
  • Refined oils are similar to the unrefined oils except they have been further treated in one or more purification steps to improve one or more properties.
  • Rerefined oils are obtained by processes similar to those used to obtain refined oils applied to refined oils which have been already used in service. Such rerefined oils are also known as reclaimed or reprocessed oils and often are additionally processed by techniques directed to removal of spent additives and oil breakdown products.
  • the present invention is further directed to so­called "additive packages” or additive concentrates incor­porating the triazole dispersant of the present invention, preferably in combination with a phenate detergent.
  • additive packages or additive concentrates incor­porating the triazole dispersant of the present invention, preferably in combination with a phenate detergent.
  • hydrocarbon solvent for example mineral lubricating oil, or other suitable substantially inert organic solvent/diluent.
  • the concentrates normally contain about 20 to 80 wt.% active additive ingredients.
  • the additive concentrate is then blended with about 3 to 40 parts by weight lubricating oil per part by weight of the additive concentrate to obtain the finished lubricating oil.
  • the use of concentrates facilitates shipping and final blending of the lubricant additives.
  • the seal-compatible dispersant composition of the present invention can be post-treated in a well-known manner with a boron-containing compound in order to intro­duce from about .01 to about 5 wt.% boron into the disper­sant.
  • a preferred amount of boron is about 0.1 to about 1.0 wt.%. Particularly preferred is about 0.2 to about 0.8 wt.% boron.
  • the boron acts as a corrosion inhibitor and can improve even further the compatibility of the dis­persant toward fluorohydrocarbon engine seals.
  • Suitable boron-containing compounds for post-treatment of the dis­persant of the present invention include, without limita­tion, polyborate esters, boron acids, boron oxides, boron halides, esters of boron acids, and salts of boron acids.
  • polyborate esters include, without limita­tion, polyborate esters, boron acids, boron oxides, boron halides, esters of boron acids, and salts of boron acids.
  • the resulting level of boron present in the composition can be anywhere from about 50 to about 1000 ppm and is preferably from about 80 to about 400 ppm.
  • a boron-containing reagent useful in borat­ing the seal-compatible dispersant of the present invention can be prepared as follows: Charge 309 grams boric acid, 185 grams toluene, and 370 grams isobutyl alcohol to a reaction vessel. Blanket with nitrogen and heat to 200-230°F. Collect the water produced in the reaction and reflux the toluene and alcohol back to the reaction. Increase the temperatures to 260-280°F and strip with nitrogen until all the toluene is removed. Cool to 240°F and filter. The boron content of the resulting product is 8.4%.
  • Amylpolyborate can be prepared as follows: Charge 309 grams of boric acid, 185 grams toluene and 440 grams amyl alcohol.
  • the resulting borate ester material has a boron content of about 8.5 to 8.9%.
  • dispersant of the present invention can be used in lubricant compositions containing other conventional addi­tives.
  • a brief survey of conventional additives for lubricating compositions is contained in the publications, LUBRICANT ADDITIVES, by C. V. Smalheer and R. Kennedy Smith, published by Lezuis-Hiles Co., Cleveland, Ohio (1967) and LUBRICANT ADDITIVES, by M. W. Ranney, published by Noyes Data Corp., Park Ridge, New Jersey (1973). These publications are incorporated herein by reference.
  • oxidation inhibitors such as zinc dithiophosphates, hindered phenols, aromatic amines, sulfurized phenols, oil-soluble copper salts (e.g., copper carboxylate); dispersants, such as high molecular weight alkyl succinimides, alkylthiophosphonates and the like, and Mannich base dispersants; metal deacti­vators such as zinc dithiophosphates, organic sulfides, certain organic nitrogen compounds; anti-wear agents such as zinc dithiophosphates, organic phosphates and acid phosphates, organic sulfur compounds, sulfurized fats and amines; rust inhibitors, such as metal sulfonates, fatty acids and amines; corrosion inhibitors such as zinc dithiophosphates, and basic metal sulfonates; foam inhibi­tors such as silicone polymers and friction modifiers such as fatty acids and amides, glycerol monooleate, pentaer­ythritol mono
  • a polybutenyl-bis-3-amino-1,2,4-triazole dispersant in accordance with the present invention was prepared as follows. Into a three-liter, three-necked, round-bottom flask, 1000 gm of 57.5% active polybutenyl succinic anhy­dride having an equivalent weight of 1950 (0.29 equiv­alents), 69.9 gm of 98.5% aminoguanidine bicarbonate (0.50 mole), and 494 gm of a 100 neutral base oil were placed under nitrogen.
  • the polybutenyl succinic anhydride had been prepared by reacting maleic anhydride with polybutene having a number average molecular weight (M n ) of about 1850 to about 2500. The mixture under constant stirring was heated for three hours at a temperature of 188°C (370°F) to form the polybutenyl bis-3-amino-1,2,4-­triazole. The product was filtered to provide a 40% active polybutenyl bis-3-amino-1,2,4-triazole dispersant, identified hereinafter as Dispersant No. 1.
  • dispersant No. 2 a second embodiment of the dis­persant of the present invention was prepared.
  • the polybutenyl succinic anhydride was pre­pared by reacting maleic anhydride with polybutene having M n of about 1000 to 1400.
  • This polybutenyl bis-3-amino-­1,2,4-triazole dispersant is identified hereinafter as Dispersant No. 2.
  • Dispersant Performance Dispersant SDT OTT (SDT) % Time, hr 0 2 4 6 24 48 56 72 1 37 46 85 84 100 93 90 42 2 37 58 85 86 100 90 75 34 3 37 60 84 88 100 88 69 28
  • a polybutenyl bis-3-amino-1,2,4-triazole dispersant was prepared using the preparation of Example 1, and a polybutenyl succinic anhydride (PSA) in which the ratio of succinic groups to polybutene groups (SA:PIB ratio) in the active portion of the PSA was between 2.5 and 3.5 using the following formula to calculate such ratio: in which PIB(M n ) is the number average molecular weight of the starting polybutene used to prepare the PSA and "Eq. wt.” is the equivalent weight of the PSA.
  • PSA polybutenyl succinic anhydride
  • Example 2 was repeated using PSA having an SA:PIB ratio of 2.0 to 2.5.
  • Example 2 was repeated using PSA having an SA:PIB ratio of 1.5 to 2.0.
  • Example 2 was repeated using PSA having an SA:PIB ratio of 1.0 to 1.5.
  • Viton® fluorohydrocarbon elastomers are used as crankshaft seals in engines and clutch plate liners in transmissions.
  • Caterpillar Tractor Company of Peoria, Illinois, U.S.A. has developed an experimental test for evaluating the compatibility of such elastomers and an oil containing a dispersant. According to this test, three elastomer specimens are submersed in a candidate oil for ten days at a temperature of 149°C (300°F). The average percent elon­gation measurement represents a loss of flexibility of the Viton material. A lower value indicates a more flexible material which has resisted attack by the oil. The higher the value, the less flexible the sample. Caterpillar has established a passing oil and a failing oil to be used as references or standards for discriminating between and evaluating the candidate oils.
  • a conventional SF/CD heavy duty oil identified here­inafter as Oil No. 1, was used in these tests.
  • the dis­persants were tested at a 5.5 wt.% level.
  • This oil contained Paratone 715, a non-dispersant VI improver, obtained from Paramins, a division of Exxon Corporation, in an amount of 6.9 wt.%.
  • the heavy duty oil, Oil No. 1 was tested without dispersants to demonstrate its contri­bution to incompatibility.
  • two oil samples contained a third embod­iment of the dispersant of the present invention, Disper­sant No. 4, which third embodiment was prepared in accordance with Example 1 from PSA made from polybutene having a M n of about 1000 to 1400 and two oil samples con­tained a fourth embodiment of the dispersant of the pres­ent invention, Dispersant No. 5, which fourth embodiment was prepared according to Example 1 from PSA made from polybutene having M n of about 1850 to 2500. Two of these latter four samples also contained boron in the form of 0.45 wt.% amylpolyborate. Each of the samples involving Oil No. 1 contained 6.9 wt.% VI improver Paratone 715, obtained from Paramins, a division of Exxon Corporation.
  • Dispersant No. 4 and Dispersant No. 5 provided % elongations that were quite similar to that furnished by the Caterpillar passing oil reference, Oil No. 2.
  • the addition of boron resulted in an improvement in the % elongation, i.e., a reduction in the % elongation. Consequently, either Dispersant No. 4 or Dispersant No. 5 shows good compatibility with Viton seals in the Caterpillar test, with or without boron.
  • samples of dispersants were prepared by reacting polybutenyl succinic anhydride with either aminoguanidine bicarbonate (AGB), obtained from Aldrich Chemical Co., or aminoguanidine nitrate (AGN), obtained from Aldrich Chemical Co. or aminoguanidine hemisulfate (AGH), obtained from Eastman Kodak Co.
  • AGB aminoguanidine bicarbonate
  • AGN aminoguanidine nitrate
  • AGH aminoguanidine hemisulfate
  • Dispersant products were obtained by reacting one mole of PSA-1 with one mole of AGB (Dispersant No. 6), one mole of PSA-1 with two moles of AGN (Dispersant No. 7), one mole of PSA-1 with PSA-1 with two moles of AGH (Dispersant No. 8), one mole of PSA-1 with two moles of AGM (Dispersant No. 9), one mole of PSA-2 with one mole of AGB (Dispersant No. 10), and one mole of PSA-2 with two moles of AGB (Dispersant No. 11).
  • a typical Mannich base dispersant (Dispersant No. 12) was used as a reference.
  • the spot dispersancy test measures the movement of insoluble particles chromatographically along blotter paper in used motor oil.
  • SDT spot dispersancy test
  • OTT oil thickening test
  • the spot dispersancy test measures the movement of insoluble particles chromatographically along blotter paper in used motor oil.
  • the inner ring constitutes the sludge being transported by the dispersant; the outer ring comprises the base oil.
  • the effectiveness of the dispersant is defined by the ratio of the inner ring to the outer ring. The higher the value of this ratio for a particular candi­date, the better the performance of that candidate as a dispersant.
  • the oil thickening test is an analogous test in which the dispersant is tested in an oil that is being oxidized and the spot dispersancy test indicates the effect of this oxidation with time.
  • PSA-1 Type AG Salt (1) Time, hr Moles Type 24 48 56 72 80 6 PSA-1 1 AGB 100 85 73 71 --- 9 PSA-1 2 AGB 100 90 75 34 --- 10 PSA-2 1 AGB 100 89 87 47 41 11 PSA-2 2 AGB 100 93 90 42 --- 12 --- --- 100 89 69 28 30 (1)
  • AG Salt aminoguanidine salt.
  • samples of products were prepared from aminoguanidine bicarbonate obtained from two sources. Some were prepared from aminoguanidine bicarbonate obtained from Aldrich Chemical Company. This material was 98.5% pure. Other samples were prepared from aminoguani­dine bicarbonate obtained from Nippon Carbide Industries Co., Inc. This material was either 99.7% or 92.9% pure amine. Reactions were conducted with each of the three specimens of aminoguanidine bicarbonate at AGB:PSA ratios of 1.9:1 or 1:1 for both PSA-1 and PSA-2. The 92.9% ami­noguanidine bicarbonate, which contained approximately 7% water caused a great deal more foaming during the reaction than the others. Nitrogen content (Dumas) and viscosity were determined for each product. Spot dispersancy tests were conducted for each dispersant product. The Mannich dispersant was used again as a reference. The results of these tests are presented hereinafter in Table V.
  • Dispersant No. 13 the friction modification properties of an embodiment of the dispersant of the present invention were evaluated.
  • the embodiment was prepared by reacting PSA-1 with AGB as described hereinabove. This embodiment is identified hereinafter as Dispersant No. 13. It was compared with a typical Mannich base dispersant, Dispersant No. 14.
  • Oils containing the dispersants were prepared to the same viscosities. Each oil sample was made up of a sol­vent-extracted, 20 weight, Gulf Canada base stock, Oil No. 4, 4.0 wt.% dispersant, 1.0 wt.% zinc dialkyldithio­phosphate inhibitor, 1.2 wt.% high-base magnesium sulfo­nate rust inhibitor, and 0.08 wt.% copper carboxylate. These were SAE 20 straight grade oils, since viscosity effects that are present in multigrade oils would mask friction effects in the boundary area.
  • This example is a comparison of the present invention and Example 38 of U.S. Patent 3,272,746, for the purpose of demonstrating the criticality of the reaction temper­atures required herein for preparation of the polybutyl­bis-3-amino-1,2,4-triazole dispersant of the present invention.
  • This criticality relates to the compatibility of the dispersant with fluorohydrocarbon elastomer engine seals.
  • Example 38 of the ′746 patent calls for reaction of 1000 grams of polybutenyl succinic anhydride ("PSA") with 254 grams of aminoguanidine bicarbonate.
  • PSA polybutenyl succinic anhydride
  • the ratio of aminoguanidine bicarbonate to PSA in Example 38 of the '746 patent is about 1.9:1.
  • a specific reaction temperature was not disclosed, only a range of 130°C-165°C.
  • the reaction time was 5 hours and the resulting dispersant was diluted to 50% activity with min­eral oil.
  • reaction temperatures 130°C-165°C
  • the example was duplicated using seven different reaction temper­atures, five of which being in the 130-165°C range pre­scribed by the prior are example.
  • the seven reaction temperatures were: 130°, 145°, 150°, 155°, 160°, 170° and 185°C.
  • Infrared analysis was carried out on the seven samples. The analysis disclosed the presence of two spe­cies in varying relative amounts depending upon the reaction temperature used.
  • the 1R spectral analysis shows the trend of bis-amide to bis-triazole as the reaction temperature is increased from 130°C to 160°C.
  • the candidate dispersant is mixed with used drain oil from a Sequence VE engine, and heated at 150°C for 18 hours. Ten drops of the heated mixture is applied to chromatography paper and allowed to spread for 24 hours. With no dispersant, the coagulated sludge remains at the center of the spot and the oil forms a large ring. With a good dispersant, the complexed sludge is carried out into the ring along with the oil. In this test with our current sludge, all of the samples show good disper­sancy, similar to a commercial dispersant used as a stand­ard.
  • the VW Viton® test is used to determine the compat­ibility of an oil-containing dispersant with fluorohydro­carbon elastomer seals. Rubber specimens are immersed in a beaker of the test oil held at 150°C for four days. The rubber then is rated for cracking, and change in tensile strength and elongation. In this test the two products which contain significant amounts of amide (130°C and 145°C) failed badly by all three criteria. The material prepared at 160°C gave a borderline fail on change in elongation, while the materials prepared at the higher temperatures (170° and 185°C) passed all three ratings. Based on these results, a clear advantage can be seen for the products containing at least a majority of triazole at temperatures above about 155°C and preferably products containing essentially all triazole at temperatures above about 170°C.
  • the triazole dispersant of the present invention was tested in a fully formulated lubricating composition con­taining the dispersant at a treat amount sufficient to satisfy the stringent "SG" specifications.
  • the formu­lation in the table below is a lubricating composition according to the present convention comprising 7.7 wt.% polybutenyl-bis-3-amino-1,2,4-triazole dispersant prepared from PSA of equivalent weight about 1950 in which the polybutene has M n of about 2100.
  • the lubricating composi­tion includes an overbased calcium sulfurized phenate.
  • the lubricating composition of the present invention comprising the triazole dispersant in combination with overbased calcium sulfurized phenate provided excellent sludge and varnish cleanliness.
  • a lubricating composition according to the present invention was formulated to meet "CD" diesel engine spec­ifications.
  • the formulation and its performance in the Caterpillar 1-G2 engine test are shown below in Table D.
  • Table D CAT 1-G2 Testing of Lube Oil Containing Triazole Dispersant Component Wt.% Base Stocks 80.81 VI Improver 7.4 Polybutenyl (M n 2100) bis -3-amino-1,2,4 Triazole Dispersant 5.0 Zinc Dialkyldithiophosphate Oxidation Inhibitor Overbased Calcium Sulfurized Phenate 1.5 Low Base Calcium Sulfonate High Base Magnesium Sulfonate High Base Calcium Sulfonate Polyborate 0.19 Cat.
  • Non-triazole dispersant (“A") was a succinimide dispersant post treated with boron and (“B”) was a borated succinate ester-amide.
  • the triazole dispersant of the present invention is "C.”
  • the formulation in which the comparison was done was an SG/CD formulation containing overbased calcium sulfurized phenate.
  • Table E sets forth the results of testing various concentrations of dispersants A, B, C in the above formu­lation in the VW Viton® test.
  • samples of the Viton® fluorohydrocarbon rubber are immersed in the test oil and held at 150°C for four days in an oven. The rubber specimens are removed from the oven and rated for cracking and changes in modulus, elongation and tensil strength.

Abstract

A dispersant composition having improved compatibility with fluorohydrocarbon-containing elastom­eric engine seals, said dispersant composition comprising the reaction product obtained by reacting a C₄₀-C₂₅₀ hydrocarbyl-substituted succinic anhydride with aminoguan­idine, or a basic salt thereof, at a reaction temperature of from about 155°C to about 200°C.

Description

    Background of the Invention Field of the Invention
  • The present invention relates generally to nitrogen-­containing dispersants for lubricating oils obtained by reacting a long chain hydrocarbyl-substituted succinic acid or anhydride with an amine, and lubricating oils incorporating such dispersants. More particularly, the invention is directed to a lubricating oil dispersant having markedly improved compatibility toward fluorohydro­carbon elastomer engine seals, a method for making the dispersant, and lubricating compositions (including addi­tive concentrates) incorporating the dispersant. The dis­persant composition of the present invention comprises the reaction product obtained by reacting a long chain hydro­carbyl-substituted succinic acid or anhydride with amino­guanidine or basic salt thereof in a ratio of about 1.6 to about 2.2 moles of aminoguanidine, or basic salt thereof, per equivalent of hydrocarbyl succinic acid or anhydride, at a temperature of from about 155°C to about 200°C. In its several related embodiments the present invention is further directed to a combination of the above dispersant and a polymeric dispersant-VI improver and/or an alkaline earth phenate detergent.
  • Description of the Prior Art
  • The presence of water and precursors of sludge in lubricating oils constitutes a very serious problem that is associated with crankcase lubricating oils. There occurs in the lubricating oil various foreign particles, such as dirt, soot, and products of decomposition that result from the breakdown of the lubricating oil. The combination of water and such foreign particles results in the deposition of sludge which has a deleterious effect upon the efficient operation of the engine containing the lubricating oil. In order to prevent the deposition of the sludge, various detergents and dispersants are added to the lubricating oil composition.
  • While the nitrogen dispersants have been used to pre­vent sludge, varnish and lacquer deposits in lube oils intended for passenger car engines, it is well known that the alkaline earth metal phenate detergents perform a sim­ilar function in diesel engines. High levels of nitrogen dispersant and phenate detergent are now required if a lubricant formulation is to pass the latest passenger car test specifications (SG) as well as the latest diesel engine test specifications (CD or CE). Unfortunately, it is frequently necessary for such furmulations to also pass engine tests measuring the compatibility of the lubricant with elastomeric engine seals.
  • Flexible engine seals are used in assembling internal combustion engines to prevent leakage of lubricants at those points where moving parts, such as crankshafts, leave the engine. Because leakage of the lubricant from the internal combustion crankcase is very undesirable, an important consideration when selecting a dispersant for use in the lubricating oil composition is its compatibil­ity with fluorohydrocarbon crankshaft seals and clutch plate liners in transmissions. These seals most commonly comprise fluorohydrocarbon elastomers which are often attacked by the dispersant.
  • When conventional nitrogen dispersants are present in a lubricating composition at passing SG levels, many will fail the elastomer seal tests. When phenates, especially calcium phenates, are added to the oil along with the con­ventional nitrogen dispersants, elastomer compatibility is worse. The problem of seal compatibility is also worsened if, in addition to the nitrogen dispersant, a nitrogen-­containing polymeric dispersant-VI improver is present in the lubricant composition. The nitrogen in dispersant-VI improvers, while particularly effective at controlling engine deposits, is generally quite harmful to elastomer engine seals.
  • Given the problems outlined above, there is needed a nitrogen-containing dispersant which is sufficiently pas­sive toward fluorohydrocarbon seals that lubricant formu­lations containing high levels of the dispersant, to meet SG specifications, can also pass seal compatibility tests, especially when the lubricant formulations must also com­prise high levels of phenate detergent necessary to meet CD or CE diesel engine specifications, or when the formu­lations include a nitrogen-containing dispersant-VI improver.
  • In U.S. Patent No. 4,379,064, Cengel, et al. dis­closed the passivating of basically reacting polyamine dispersants to fluorohydrocarbon compositions that are employed in internal combustion engines by the mild oxida­tion of such polyamine dispersants.
  • In U.S. Patent Nos. 3,272,746 and 3,341,542, Le Suer, et al. disclose lubricating oil compositions containing acylated nitrogen compounds prepared, for example, by reacting a substituted succinic acid or derivative thereof with a nitrogen-containing compound, such as ammonia, aliphatic amines, aromatic amines, heterocyclic amines, or carboxylic amines. The resulting detergent composition comprises an oil-soluble, acylated nitrogen composition characterized by the presence within its structure of (A) a substantially hydrocarbon-substituted polar group selected from the class consisting of acyl, acylimidoyl, and acyloxy radicals wherein the substantially hydrocarbon substituent contains at least about 50 aliphatic carbon atoms and (B) a nitrogen-containing group characterized by a nitrogen atom attached directly to said relatively polar group. In Example 38 of these patents, polyisobutene-sub­stituted succinic anhydride, aminoguanidine bicarbonate, and mineral oil were mixed and heated at a temperature of 130°C (266°F) to 165°C (329°F) for 5 hours. The residue was mixed with mineral oil and heated to 150°C (302°F) and filtered. The resulting product was used as a lubricating oil additive and found to be an effective dispersant. These patents teach that the mixture of acid-producing compound and the nitrogen-containing reactant is usually heated at a temperature above 80°C (176°F), preferably within the range of about 100°C (212°F) to about 250°C (482°F). The patents disclosed guanidines among a host of possible sources of nitrogen-containing compounds. For example, guanidine, 1,3-diphenylguanidine, and 1,2,3-tributylguanidine are disclosed. These patents do not teach or suggest that the resulting dispersants can comprise triazoles, much less specific temperatures one must employ to obtain a dispersant which is predominantly triazole. There is also no teaching or suggestion in these patents as to the relative compatibility toward engine seals of the many different reaction products dis­closed. Thus, apart from the fact that the teachings of the '746 and '542 patents are too broad to anticipate or render obvious the present invention, the patents are not even directed to the problem addressed by the present invention, namely how to formulate a nitrogen-containing dispersant that provides excellent dispersancy but is also mild toward engine seals of the fluorohydrocarbon type.
  • In U.S. Patent No. 4,491,527, Lange, et al. disclosed ester-heterocycle compositions useful as "lead paint" inhibitors and lubricants, e.g., compositions comprising a major proportion of a pentaerythritol ester of an alkenyl succinic acid in which the alkenyl group contains at least about 30 carbon atoms and a minor proportion of a hetero­cyclic condensation product of said alkenyl succinic acid derived from a 5-membered ring heterocycle containing at least 2 ring hetero atoms separated by a single carbon atom, at least one of said hetero atoms being nitrogen. The heterocyclic condensation product is characterized by the presence of at lease one heterocyclic moiety including a 5- or 6-membered ring which contains at least 2 ring hetero atoms, separated by a single carbon atom. Such ring hetero atoms may be oxygen, sulfur, and nitrogen, with at least one thereof being nitrogen. Most often, the heterocyclic moiety contains a maximum of three hetero atoms and a 5-membered ring, preferably, a triazole or thiadiazole ring, and, most desirably, a 1,2,4,-triazole ring. This patent teaches that aminoguanidine and salts of aminoguanidine, such as aminoguanidine bicarbonate, are examples of acyclic heterocycle precursors which may be reacted with the proper acid or acid derivative group. Like the patents discussed above, Lange '527 is not at all concerned with the problem of seal degradation caused by nitrogen-containing dispersants. Lange '527 does not dis­close or suggest the invention presently described.
  • An object of the present invention is to provide a lubricating oil dispersant composition, as well as an additive concentrate or lubricant composition incorporat­ing such dispersant, in which the nitrogen-containing moieties of the dispersant compound are compatible with fluorohydrocarbon-containing elastomeric engine seals. Other objects will be apparent to those skilled in the art.
  • Summary of the Invention
  • The present invention is directed to a dispersant composition having improved compatibility toward fluorohy­drocarbon-containing elastomeric engine seals, said dis­persant composition comprising the reaction product obtained by reacting a C₄₀-C₂₅₀ hydrocarbyl-substituted succinic acid or anhydride with aminoguanidine, or a basic salt thereof, at a reaction temperature of about 155°C to about 200°C and in a ratio of about 1.6 to 2.2 moles of aminoguanidine, or basic salt thereof, per equivalent of hydrocarbyl-substituted succinic anhydride.
  • The invention is further directed to a composition suitable as a dispersing agent for lubricating oils, wherein the composition comprises a mixture of dispersant compounds having nitrogen-containing groups, said mixture comprising (a) at least one dispersant compound which is incompatible with fluorohydrocarbon-containing engine seals or which elicits poor or marginal compatibility with such seals; and (b) a dispersant compound obtained by reacting a C₄₀-C₂₅₀ hydrocarbyl-substituted succinic acid or anhydride with aminoguanidine, or basic salt thereof, at a reaction temperature of from about 155°C to about 200°C and at a ratio of about 1.6 to about 2.2 moles of aminoguanidine, or basic salt thereof, per equivalent of hydrocarbyl-substituted succinic anhydride, wherein the relative amounts of (a) and (b) in the mixture are such that the composition is compatible with fluorohydrocarbon elastomer engine seals.
  • In a related aspect, the present invention is directed to lubricating compositions containing a major amount of oil of lubricating viscosity and a minor effec­tive dispersant amount of the dispersant compositions sum­marized above.
  • The present invention is further directed to concen­trates for formulating lubricating compositions comprising from about 20 to about 90% by weight of a normally liquid, substantially inert organic solvent/diluent and from about 10% to about 80% of the dispersant composition(s) summa rized above.
  • The present invention is also directed to lubricating compositions which combine the dispersant summarized above with a neutral or overbased phenate detergent, and/or with a dispersant-VI improver.
  • A principal advantage in the present invention is the compatibility of the described dispersant toward fluorohy­drocarbon-containing elastomeric engine seals. Recently, the need for seal compatible dispersants has become great in formulating lubricants required to pass the latest engine test specifications, i.e. the SG/CD and SG/CE spec­ifications. Such lubricants must contain higher levels of dispersant and detergent. Among the most effective dis­persants are the nitrogen-containing compounds. Preferred detergents are the phenates. However, as pointed out above these compounds are very aggressive toward fluorohy­drocarbon engine seals. The present invention permits the use of higher amounts of the dispersant and detergent additive to meet recent requirements without the associ­ated problem of engine seal degradation. Even the most severe elastomer tests such as the Volkswagon Viton® test can be passed using an "SG" formulation prepared with a dispersant of the present invention.
  • The improved seal compatibility of the dispersant facilitates the use of increased levels of dispersant/VI improvers which having nitrogen groups that are harmful toward engine seals.
  • Detailed Description
  • Briefly, the present invention is based on the dis­covery of a new nitrogen-containing dispersant that offers excellent dispersancy plus compatibility with fluorohydro­carbon elastomeric engine seals. The dispersant is the reaction product of a long chain hydrocarbyl-substituted succinic anhydride, preferably a polyalkenyl succinic anhydride such as polybutenyl succinic anhydride, and ami­noguanidine bicarbonate, where the reaction is conducted at from about 155°C to about 200°C and preferably about 170°C to 190°C, and at a ratio of aminoguanidine to suc­cinic anhydride compound of from about 1.6 to about 2.2 moles aminoguanidine bicarbonate per equivalent of anhy­dride, and preferably about 1.7 to 2.0 moles of aminoguan­idine bicarbonate per equivalent of succinic anhydride. Present analysis indicates that the product comprises at least about 50 wt.% of the hydrocarbyl-substituted bis-3-­amino-1,2,4-triazole having the structure below:
    Figure imgb0001
  • The phenate detergents contemplated for use in the present invention include any of the well-known neutral or overbased sulfurized phenates prepared by reacting an alkyl-substituted phenol, a sulfurizing agent, and a cal­cium or magnesium compound. The phenate can be carbonate overbased to contain an excess amount of metal in the form of carbonates or hydroxides, relative to the amount of neutral phenate. The preparation and use of such phenates are well known to those skilled in the art.
  • The dispersant-VI improvers contemplated for use in combination with the triazole dispersant of the present invention can comprise any of the well-known fuctionalized polymers that impart dispersancy to and improve the vis­cosity characteristics of a lubricating oil. As is well known to those skilled in the art, the polymeric backbone of the dispersant-VI improver can be prepared by polymer­izing monomers such as ethylene, propylene, isobutylene, styrene, butadiene, alkyl acrylates and methacrylates, norbutadiene, isoprene, maleates, maleic anhydride, maleimides, carbon monoxide, vinyl-substituted amines and alcohols, etc. The molecular weight of the products is at least 5000, and is preferably at least 10,000. The polym­ers may contain oxygen functionality from shearing in air or oxygen or reaction with oxidizing agents. To provide dispersancy, the polymers contain amine or alcohol groups in the monomers, or may be reacted with amines or alco­hols.
  • A lubricating oil composition in accordance with the present invention comprises a major amount of oil of lubricating viscosity and a minor effective dispersant amount of the seal compatible dispersant of the invention. A minor effective dispersant amount is from about 0.01 to about 10 and preferably from about 2 to about 8 wt.% of the finished oil. It should be pointed out that these dispersant amounts assume the dispersant composition will be about 35 to about 60% "active" meaning that the disper­sant composition consists of about 35 to about 60 wt.% of the actual dispersant compound, the remainder being sub­stantially inert organic diluent carrier fluid, such as neutral process oil, in which the dispersant is dissolved. In addition to neutral process oil, unreacted polybutene present in polybutenyl succinic anhydride is also intended to be encompassed by the term "substantially inert diluent." The inert diluent can be present during the preparation of the dispersant but can also be added to the dispersant, following preparation, to achieve a desired activity.
  • Another lubricating composition of the present invention comprises the seal-compatible dispersant described herein combined with an alkaline earth metal phenate detergent. The phenate detergent can be present in an amount of from about 0.2 to 27% by weight of the composition.
  • Still another lubricating composition of the present invention comprises the seal-compatible dispersant described herein combined with a dispersant-VI improver. The amount of the dispersant-VI improver can be from about 0.01 to about 15%, and preferably from about 0.5 to about 12.5% by weight of the composition.
  • The lubricating compositions of the present invention, in addition to the seal-compatible dispersant, the phenate detergent and the dispersant-VI improver, can also contain from about 50 to 1000, and preferably about 80 to about 400 ppm boron. The boron can be incorporated in the lubricating composition by post-treating the seal-­compatible dispersant, or any dispersant used in combina­tion therewith, with a boron-containing compound such as boric acid, such that the dispersant (including diluent) contains about .01 to about 5 wt.% boron and preferably about 0.1 to about 1.0 wt.% boron, and most preferably about 0.2 to about 0.7 wt.% boron.
  • When used in a concentrated form suitable for blend­ing with lubricating oil to obtain a finished lube oil, the dispersant of the present invention can be in the form of a concentrate comprising about 20 to 90 wt.% inert organic diluent and about 10 to 80 wt.% of the dispersant of the present invention. As is conventional in the art, one or more other additives intended for the final lubri­cant can be included in the concentrate.
  • In somewhat greater detail, with respect to prepara­tion of the seal-compatible dispersant of the present invention, the long chain hydrocarbyl-substituted succinic anhydride can be prepared by the alkylation of maleic acid or anhydride with the homopolymers and interpolymers of polymerizable olefin monomers containing up to about 10 carbon atoms, for example ethylene, propylene, 1-butene, 2-butene, isobutene, 1-hexene, or 1-octene such polymers having at least about 40 and preferably at least about 50 carbon atoms in a chain in order to provide oil solubility to the dispersant of the invention. Typically the chain of carbons in the hydrocarbyl substituent ranges from about 40 to about 250, and preferably about 60-160. In general, the polymeric hydrocarbyl substituent should con­tain at least about 80 percent and preferably about 95%, on a weight basis of units derived from aliphatic mono­ olefins to preserve oil solubility. Especially suitable mono-olefins are isobutene and propene. The preferred hydrocarbyl substituent is polybutene or polypropene having number average molecular weight of from about 250 to about 10,000. Particularly preferred is polybutene having a number average molecular weight (Mn) of about 750 to about 2500, and having ratio of weight average molecu­lar weight (Mw) to number average molecular weight (Mn) of between 1.2 and 4.0.
  • Although it is preferred to react the above-described olefin polymer with maleic acid or anhydride, other unsat­urated acids (or anhydrides) are contemplated, for exam­ple, acrylic acid, methacrylic acid, maleic anhydride, fumaric acid itaconic acid, itaconic anhydride, citraconic acid, citraconic anhydride, mesaconic acid, glutaconic acid, chloromaleic acid, aconitic acid, crotonic acid, methylcrotonic acid, sorbic acid, 3-hexenoic acid, 10-de­cenoic acid, 2-pentene-1,3,5-tricarboxylic acid, and the like, including halogen-substituted carboxylic acid or derivatives thereof.
  • The reaction of the olefin polymer with maleic anhy­dride can be carried out in a conventional manner well known in the art using thermal or chlorination conditions. See e.g., U.S. Patent Nos. 3,215,707; 3,231,587 4,234,435, and European Patent Nos. 264,247 and 308,560 (chlorina­tional and Cengel U.S. Patent Nos. 3,927,041; 3,935,249; 3,953,475; 3,954,812; 3,960,900; 3,985,672; 4,008,168; and 4,086,251 (thermal). All of these patents are hereby incorporated by reference. The ratio of anhydride groups to polybutene groups (SA:PIB ratio) in the polybutenyl succinic anhydride can be adjusted in the manner described in the '435, '247 and '560 patents, cited above to obtain SA:PIB ratios between about 0.5 and 4.0.
  • In accordance with the present invention, the hydro­carbyl-substituted succinic anhydride described above, preferably polybutenyl succinic anhydride ("PSA"), is reacted with aminoguanide at a temperature of from about 155°C to about 200°C and preferably from about 170° to about 190°C for a period of about 1 to about 5 hours, the ratio of reactants being about 1.6 to about 2.2 moles of aminoguanidine per equivalent of PSA. It is preferred to use a basic salt of aminoguanidine such as aminoguanidine bicarbonate. The preferred reaction conditions are a tem­perature of about 170° to 190°C a ratio of 1.7 to 2.0 moles of aminoguanidine bicarbonate per equivalent of PSA, and a reaction time of about 2-4 hours.
  • The reaction temperatures prescribed above constitute a critical feature of the present invention. Reaction temperatures at or below about 155°C result in a product which, although effective as a dispersant, elicits poor and generally unacceptable compatibility with fluorohydro­carbon-containing engine seals. Moreover, as the reaction temperature is reduced from about 155°C, seal compatibil­ity worsens until a minimum in such performance is reached at a reaction temperature of about 130-140°C. However, the trend observed when reaction temperatures above 155° are used is just the opposite. At about 155-160°C, seal compatibility is borderline pass/fail. At reaction tem­peratures between 165 and 190 passing engine seal compat­ibility is obtained with a gradual improvement until a maximum in compatibility is achieved at about 185-190°C.
  • Infrared analysis of PSA/aminoguanidine reaction pro­duct samples prepared at 130°, 145°, 150°, 155°, 160°, 170° and 185°C discloses that greater than about 50% of the products obtained between 130 and 145°C is a bis-amide having the following structure:
    Figure imgb0002
    The bis amide has a characteristic 1R absorbance at 1680 cm⁻¹However between 145 and 185°C the product is at least about 50% bis-3-amino-1,2,4-triazole having the structure:
    Figure imgb0003
  • Infrared analysis further discloses that above reaction temperatures of about 160°C the PSA/aminoguanidine reaction product is greater than about 90 wt.% triazole with very little if any detectable bis­amide, while at temperatures above about 165°C the reaction product is essentially completely triazole.
  • Another important feature of the present invention is the ratio of amonoguanidine to PSA used in the preparation of the seal-compatible dispersant. The ratio is about 1.6 to 2.2 and preferably about 1.7 to 2.0 moles of aminoguan­idine per equivalent of PSA. At ratios less than about 1.6 the reaction product shows increasingly poor disper­sancy when compared with an equal amount of a conventional dispersant such as the Mannich product obtained by react­ing polybutylphenol, formaldehyde, and a polyalkylene pol­yamine.
  • For purposes of the present invention, the weight of one equivalent of PSA is to be calculated on the basis that the equivalent weight of the PSA is based on the number of anhydride groups. This is to be distinguished from the convention used, for example, in U.S. 4,234,435 (column 28, lines 10 to 34) in which the number of equiv­ alents of PSA depends on the number of carboxylic func­tions in the PSA. Therefore, because there are two carboxylic functions for each anhydride group of the PSA, the weight of one equivalent of PSA using the convention adopted in the present invention would be twice that obtained using the approach of the '435 patent. Conven­tional titration methods are readily available for deter­mining the equivalent weight of a given sample of PSA. Generally speaking, preferred titration techniques are those which have reliable, easily ascertained titration end points and which detect the greatest amount of saponi­fiable anhydride in the PSA intermediate.
  • The aminoguanidine compound used to prepare the dis­persant of the present invention is preferably a basic salt of aminoguanidine. The most preferred salt is amino­guanidine bicarbonate which can be obtained from commer­cial suppliers such as Nippon Carbide Industries, Inc.
  • Preparation of the dispersant of the present invention can be carried out in 100 neutral base oil using PSA that is generally about 45 to 85% "active" meaning that about 45 to 85% of the PSA composition is actual PSA, the remainder being principally unreacted polybutene and free maleic anhydride. Thus the dispersant composition, in practice, is a solution of the neat dispersant compound in a substantially inert carrier diluent consisting mainly of neutral base oil and unreacted polybutene. The wt.% of actual dispersant in this compound (i.e., the "activity") is preferably between about 35% and 60% and depends both on the PSA activity and the amount of neutral diluent oil used in the preparation of (or added to) the dispersant.
  • Because the PSA/aminoguanidine reaction product of the present invention is an excellent dispersant that is very compatible with fluorohydrocarbon-containing engine seals, it can be used as the sole dispersant in a lubri­cant formulation. However, it may also be used in combi­nation with other well-known dispersants to obtain a dispersant combination that is compatible with engine seals. For example, if a formula containing a required level of a nitrogen-containing dispersant fails tests for engine seal compatibility, or elicits poor or marginal compatibility, it may be desirable to replace only so much of the conventional dispersant with the dispersant of the present invention as is necessary to render the formu­lation compatible with engine seals. Accordingly, one embodiment of the present invention is a composition suit­able as a dispersing agent for lubricating oils, wherein the composition comprises a mixture of dispersant com­pounds having nitrogen-containing groups, said mixture comprising (a) at least one dispersant compound which is incompatible with fluorohydrocarbon-containing engine seals or which elicits poor or marginal compatibility with such seals; and (b) a dispersant compound obtained by reacting a C₄₀-C₂₅₀ hydrocarbyl-substituted succinic acid or anhydride with aminoguanidine, or basic salt thereof, at a reaction temperature of from about 155°C to about 200°C and at a ratio of about 1.6 to about 2.2 moles of aminoguanidine, or basic salt thereof, per equivalent of polyalkenyl succinic anhydride, wherein the relative amounts of (a) and (b) in the mixture are such that the composition is compatible with fluorohydrocarbon elastomer engine seals.
  • Any nitrogen-containing dispersant can be used in combination with the triazole dispersant of the present invention. Examples (without limitation) are the succini­mide dispersants (see e.g., U.S. 4,234,435), the Mannich base dispersants (see U.S. Patent 3,704,308) and the suc­cinate ester-amide dispersants (see e.g., U.S. 4,426,305). The patents cited are incorporated by reference. The additional dispersant can be borated or non-borated.
  • There are a number of different industry accepted tests for measuring the engine seal compatibility of lubricant formulations. Typically these tests involve immersion of the seal in a lubricant formulation at an elevated temperature for a specified period of time, after which the seal material is examined for cracks, loss of elasticity, and loss of tensile strength. Because the tests vary in severity, the term "incompatible" or "incom­patibility" as used in the present invention to character­ize a dispersant should be understood to mean that the dispersant, when present in a fully formulated oil at the minimum concentration of dispersant necessary to pass dis­persancy specifications as established by the customer to whom the formulation is intended to be sold, is unable to pass the engine seal compatibility test specified by that customer.
  • The present invention is also directed to lubricating compositions in which are combined the seal-compatible triazole dispersant disclosed herein and an alkaline earth metal phenate detergent. The neutral or overbased phenate detergents intended for use herein are exceedingly well known in the art. See e.g., U.S. Patent Nos. 3,493,516; 3,336,224; 4,412,927; 4,293,431; 4,464,289; 4,514,313; 3,718,589; 3,755,170; 4,302,342; 4,196,089, 4,293,431, etc., which are incorporated by reference. Briefly, the phenates for use in this invention are the alkaline earth metal, preferably magnesium or calcium, salts of alkylated phenols. The alkyl substituent(s) of the phenol (prefera­bly para substituents) can contain from 3 to 200 carbons and preferably about 4 to 30 carbons. One of the func­tions of the phenates is to act as a detergent/dispersant. Among other things it prevents the deposit of contaminants formed during high temperature operation of the engine. The phenols can be mono- or polyalkylated.
  • The alkyl portion of the alkyl phenates lends oil sol­ubility to the phenate, and can be obtained from naturally occurring or synthetic sources. Naturally occurring sources include petroleum hydrocarbons such as white oil and wax. If derived from petroleum, the hydrocarbon sub­ stituent is a mixture of different hydrocarbyl groups, the specific composition of which depends upon the particular oil stock which was used as a starting material. Suitable synthetic sources include various commercially available alkanes and alkane derivatives which, when reacted with the phenol, yield an alkylphenol. Suitable radicals obtained include butyl, hexyl, actyl, decyl, dodecyl, hex­adecyl, and the like. Other suitable synthetic sources of the alkyl radical include olefin polymers such as polypro­pylene, polybutylene, polyisobutylene and the like.
  • The alkyl group can be straight-chained or branch-­chained, saturated or unsaturated (if unsaturated, prefer­ably containing not more than 2 and generally not more than 1 size of olefinic unsaturation). Generally when the phenol is monoalkyl-substituted, the alkyl radical should contain at least 8 carbon atoms. The phenate may be sul­furized if desired. It can be either neutral or overbased and, if overbased, will have a base number of from about 150 up to 300 or more. Mixtures of neutral and overbased phenates may be used.
  • The phenates are ordinarily present in the oil to provide from about 0.2% to about 27% by weight of the total composition. Preferably, the neutral phenates are present from about 0.2% to about 9% by weight of the total composition, while the overbased phenates can be present from about 0.2% to 13% by weight of the total composition. Most preferably, the overbased phenates are present from 0.2% to 8% by weight of the total composition.
  • The sulfurized alkaline earth metal alkyl phenates are preferred, and can be obtained by a variety of pro­cesses such as treating the neutralization product of an alkaline earth metal base and an alkylphenol with sulfur. Conveniently the sulfur, in elemental form, is added to the neutralization product and reacted at elevated temper­atures to produce the sulfurized alkaline earth metal alkylphenate. Preferably, the sulfurization is carried out using ethylene glycol as a promoter. The preferred overbased phenates for use in the present invention are calcium sulfurized phenates having a total base number ("TBN") of about 150-400.
  • If more alkaline earth metal base is added during the neutralization reaction than is necessary to neutralize the phenol, a basic or "overbased" sulfurized alkaline earth metal alkyl phenate is obtained. Additional basi­city can be obtained by adding carbon dioxide to the basic sulfurized alkaline earth metal alkyl phenate. The excess alkaline earth metal base can be added subsequent to the sulfurization step but is conveniently added at the same time as the alkaline earth metal base is added to neutral­ize the phenol. Carbon dioxide is the most commonly used material to produce the overbased phenates.
  • The present invention is also directed to lubricating compositions in which the seal-compatible dispersant described herein is combined with a dispersant-VI improver. Any dispersant-VI improver can be used. Exam­ples are:
    • (a) polymers comprised of C₄ to C₂₄ unsaturated esters of vinyl alcohol or C₃ to C₁₀ unsaturated mono- or di-carboxylic acid with unsaturated nitrogen-containing monomers having 4 to 20 carbons;
    • (b) polymers of C₂ to C₂₀ olefin with unsaturated C₃ to C₁₀ mono- or di-carboxylic acid neutralized with amine, hydroxy amine, or alcohols;
    • (c) polymers of ethylene with a C₃ to C₂₀ olefin further reacted either by grafting C₄ to C₂₀ unsaturated nitrogen-containing monomers thereon or by grafting an unsaturated acid onto the polymer backbone and then react­ing said carboxylic acid groups with amine, hydroxy amine, or alcohol; and
    • (d) polymers of ethylene and a C₃ to C₂₀ olefin fur­ther reacted first with oxygen and subsequently with for­maldehyde and an amine.
  • It is preferred that the viscosity index improver dispersant have a number average molecular weight range of 1,000 to 2,000,000, preferably 5,000 to 250,000, and most preferably 10,000 to 200,000.
  • Typical polymeric viscosity index improver disper­sants include copolymers of alkyl methacrylates with N-vi­nyl pyrrolidone or dimethylaminoalkyl methacrylate, alkyl fumarate-vinyl acetate, N-vinyl pyrrolidone copolymers, post-grafted interpolymers of ethylene-propylene with an active monomer such as maleic anhydride which may be fur­ther reacted with an alcohol or an alkylene polyamine, e.g., see U.S. Patent Nos. 4,059,794, 4,160,739, and 4,137,185; or copolymers of ethylene and propylene reacted or grafted with nitrogen compounds such as shown in U.S. Patent Nos. 4,068,045, 4,063,058, 4,146,439, and 4,149,984; and styrene/maleic anhydride polymers post reacted with alcohols and amines, ethoxylated derivatives of acrylate polymers, for example, see U.S. Patent No. 3,702,300.
  • A preferred polymeric dispersant-VI improver suitable for use in the present invention is that of category (d) above, i.e., the Mannich reaction product of an oxidized ethylene-propylene copolymer, an amine, and a formaldehyde yielding reagent. Commonly assigned U.S. Patent Nos. 3,864,268; 3,872,019, 4,011,380; 4,131,553; 4,170,562; and 4,444,956 (all of which are incorporated by reference herein) disclose the preparation of such Mannich disper­sant-VI improvers.
  • Among the several embodiments of the present invention are fully formulated lubricating compositions comprising a major amount of an oil of lubricating viscos­ity and a minor effective dispersant amount of the tria­zole dispersant described above, as well as lubricating compositions in which the triazole dispersant is used in combination with the above-mentioned phenate detergents and/or the above-described dispersant-VI improvers.
  • The oil of lubricating viscosity for use in the lubricating compositions of the present invention can be natural or synthetic in origin or mixtures thereof. The lubricating compositions of the invention can be used in crankcase lubricating oils for spark-ignited and compres­sion-ignited internal combustion engines, such as automo­bile and truck engines, marine and railroad diesel engines, and the like. Automatic transmission fluids, transaxle lubricants, gear lubricants, metal-working lubricants, hydraulic fluids and other lubricating oil and grease compositions can also benefit from the incorpora­tion therein of the lubricating compositions of the pres­ent invention.
  • With respect to the oil constituting the major por­tion of the lubricating compositions of the present invention, suitable natural oils include animal oils and vegetable oils (e.g., castor oil, lard oil) as well as mineral lubricating oils such as liquid petroleum oils and solvent-treated or acid-treated mineral lubricating oils of the paraffinic, naphthenic or mixed paraffinic-na­phthenic types. Oils of lubricating viscosity derived from coal or shale are also useful base oils. Synthetic lubricating oils include hydrocarbon oils and halosubsti­tuted hydrocarbon oils such as polymerized and interpoly­merized olefins (e.g., polybutylenes, polypropylenes, polylene-isobutylene copolymers, chlorinated polybutyl­enes, etc.); poly(1-hexenes), poly(1-octenes), poly(1-decenes), etc., and mixtures thereof); alkylben­zenes (e.g., dodecylbenzenes, tetradecylbenzenes, dinonyl­benzenes, di(2-ethlyhexyl)benzenes, etc.); polyphenyls (e.g., biphenyls, terphenyls, alkylated polyphenyls, etc.), alkylated diphenyl ethers and alkylated diphenyl sulfides and the derivatives, analogs and homologs thereof and the like.
  • Alkylene oxide polymers and interpolymers and deriva­tives thereof where the terminal hydroxyl groups have been modified by esterification, etherification, etc., consti­tute another class of known synthetic lubricating oils. These are exemplified by the oils prepared through poly­merization of ethylene oxide or propylene oxide, the alkyl and aryl ethers of these polyoxyalkylene polymers (e.g., methylpolyisopropylene glycol ether having an average molecular weight of 1000, diphenyl ether of polyethylene glycol having a molecular weight of 500 to 1000, diethyl ether of polypropylene glycol having a molecular weight of 1000 to 1500, etc.) or mono- and polycarboxylic esters thereof, for example, the acetic acid esters, mixed C₃-C₈ fatty acid esters, or the C₁₃ Oxo acid diester of tetra­ethylene glycol.
  • Another suitable class of synthetic lubricating oils comprises the esters of dicarboxylic acids (e.g., phthalic acid, succinic acid, alkyl succinic acid, and alkenyl suc­cinic acids, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkyl malonic acids, alkenyl malenic acids, etc.) with a variety of alcohols (e.g., butyl alco­hol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol, etc.). Specific examples of these esters include dibutyl adipate, di(2-ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, disodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, the complex ester formed by reacting one mole of sebacic acid with two moles of tetraethylene glycol and two moles of 2-ethylhexanoic acid, and the like.
  • Esters useful as synthetic oils also include those made from C₅ to C₁₂ monocarboxylic acids and polyols and polyol ethers such as neopentyl glycol, trimethylolpro­panc, pentaerythritol, dipentaerythritol, tripentaeryth­ritol, etc.
  • Silicon-based oils such as the polyalkyl-, polyaryl-, polyalkoxy-, or polyaryloxy-siloxane oils and silicate oils comprise another useful class of synthetic lubricants (e.g., tetraethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl) silicate, tetra-(4-methyl-2-­ethylhexyl) silicate, tetra-(p-tert-butylpheny) silicate, hexa-(4-methyl-2-pentoxy)-disiloxane, poly(methyl)­siloxanes, poly(methylpheny)siloxanes, etc.). Other syn­thetic lubricating oils include liquid esters of phosphorus-containing acids (e.g., tricresyl phosphate, trioctyl phosphate, diethyl ester of decylphosphonic acid, etc.) polymeric tetrahydrofurans and the like.
  • Unrefined, refined and rerefined oils, either natural or synthetic (as well as mixtures of two or more of any of these of the type disclosed hereinabove can be used in the lubricant compositions of the present invention. Unrefined oils are those obtained directly from a natural or synthetic source without further purification treat­ment. For example, a shale oil obtained directly from retorting operations, a petroleum oil obtained directly from distillation or ester oil obtained directly from an esterification process and used without further treatment would be an unrefined oil. Refined oils are similar to the unrefined oils except they have been further treated in one or more purification steps to improve one or more properties. Many such purification techniques are known to those of skill in the art such as solvent extraction, secondary distillation, acid or base extraction, filtra­tion, percolation, etc. Rerefined oils are obtained by processes similar to those used to obtain refined oils applied to refined oils which have been already used in service. Such rerefined oils are also known as reclaimed or reprocessed oils and often are additionally processed by techniques directed to removal of spent additives and oil breakdown products.
  • The present invention is further directed to so­called "additive packages" or additive concentrates incor­porating the triazole dispersant of the present invention, preferably in combination with a phenate detergent. In the manufacture of fully formulated lubricants containing numerous specialized additives, it is common to introduce the additives in the form of concentrates in hydrocarbon solvent, for example mineral lubricating oil, or other suitable substantially inert organic solvent/diluent. The concentrates normally contain about 20 to 80 wt.% active additive ingredients. The additive concentrate is then blended with about 3 to 40 parts by weight lubricating oil per part by weight of the additive concentrate to obtain the finished lubricating oil. The use of concentrates facilitates shipping and final blending of the lubricant additives.
  • The seal-compatible dispersant composition of the present invention can be post-treated in a well-known manner with a boron-containing compound in order to intro­duce from about .01 to about 5 wt.% boron into the disper­sant. A preferred amount of boron is about 0.1 to about 1.0 wt.%. Particularly preferred is about 0.2 to about 0.8 wt.% boron. The boron acts as a corrosion inhibitor and can improve even further the compatibility of the dis­persant toward fluorohydrocarbon engine seals. Suitable boron-containing compounds for post-treatment of the dis­persant of the present invention include, without limita­tion, polyborate esters, boron acids, boron oxides, boron halides, esters of boron acids, and salts of boron acids. The use of boron-containing compounds in modifying disper­sants is described in more detail in the following patents which are hereby incorporated by reference: U.S. Patent Nos. 3,344,069; 4,080,303; 3,087,936; 3,254,025; 3,322,670; 4,426,305; European Patent Application No. 83301723.9 (Publication No. 0,090,629) and No. 84304928.9 (Publication No. 0,132,383).
  • In those instances in which the dispersant of the present invention has been post-treated with boron, and incorporated into a finished lubricating composition, the resulting level of boron present in the composition can be anywhere from about 50 to about 1000 ppm and is preferably from about 80 to about 400 ppm.
  • Briefly, a boron-containing reagent useful in borat­ing the seal-compatible dispersant of the present invention can be prepared as follows: Charge 309 grams boric acid, 185 grams toluene, and 370 grams isobutyl alcohol to a reaction vessel. Blanket with nitrogen and heat to 200-230°F. Collect the water produced in the reaction and reflux the toluene and alcohol back to the reaction. Increase the temperatures to 260-280°F and strip with nitrogen until all the toluene is removed. Cool to 240°F and filter. The boron content of the resulting product is 8.4%. Amylpolyborate can be prepared as follows: Charge 309 grams of boric acid, 185 grams toluene and 440 grams amyl alcohol. Blanket with nitrogen and heat to 200-230°F. Collect the water and reflux the toluene and alcohol back to the reactor. Increase the temperature to 260° to 280°F and strip with nitrogen until all the toluene is removed. The resulting borate ester material has a boron content of about 8.5 to 8.9%.
  • Finally, it is contemplated that the dispersant of the present invention, as well as the combination thereof with phenates and dispersant-VI improvers, can be used in lubricant compositions containing other conventional addi­tives. A brief survey of conventional additives for lubricating compositions is contained in the publications, LUBRICANT ADDITIVES, by C. V. Smalheer and R. Kennedy Smith, published by Lezuis-Hiles Co., Cleveland, Ohio (1967) and LUBRICANT ADDITIVES, by M. W. Ranney, published by Noyes Data Corp., Park Ridge, New Jersey (1973). These publications are incorporated herein by reference.
  • Conventional additives include: oxidation inhibitors such as zinc dithiophosphates, hindered phenols, aromatic amines, sulfurized phenols, oil-soluble copper salts (e.g., copper carboxylate); dispersants, such as high molecular weight alkyl succinimides, alkylthiophosphonates and the like, and Mannich base dispersants; metal deacti­vators such as zinc dithiophosphates, organic sulfides, certain organic nitrogen compounds; anti-wear agents such as zinc dithiophosphates, organic phosphates and acid phosphates, organic sulfur compounds, sulfurized fats and amines; rust inhibitors, such as metal sulfonates, fatty acids and amines; corrosion inhibitors such as zinc dithiophosphates, and basic metal sulfonates; foam inhibi­tors such as silicone polymers and friction modifiers such as fatty acids and amides, glycerol monooleate, pentaer­ythritol monooleate, sorbitan monooleate (including borated or sulfurized products of these partial esters), lard oil, sperm oil, high molecular weight organic phos­phorus acids and esters.
  • The following examples are for the purpose of illus­tration only and are not intended to limit the scope of the present invention.
  • Example 1
  • A polybutenyl-bis-3-amino-1,2,4-triazole dispersant in accordance with the present invention was prepared as follows. Into a three-liter, three-necked, round-bottom flask, 1000 gm of 57.5% active polybutenyl succinic anhy­dride having an equivalent weight of 1950 (0.29 equiv­alents), 69.9 gm of 98.5% aminoguanidine bicarbonate (0.50 mole), and 494 gm of a 100 neutral base oil were placed under nitrogen. The polybutenyl succinic anhydride had been prepared by reacting maleic anhydride with polybutene having a number average molecular weight (Mn) of about 1850 to about 2500. The mixture under constant stirring was heated for three hours at a temperature of 188°C (370°F) to form the polybutenyl bis-3-amino-1,2,4-­triazole. The product was filtered to provide a 40% active polybutenyl bis-3-amino-1,2,4-triazole dispersant, identified hereinafter as Dispersant No. 1.
  • In a similar manner, a second embodiment of the dis­persant of the present invention was prepared. In this preparation, the polybutenyl succinic anhydride was pre­pared by reacting maleic anhydride with polybutene having Mn of about 1000 to 1400. This polybutenyl bis-3-amino-­1,2,4-triazole dispersant is identified hereinafter as Dispersant No. 2.
  • Each of these two dispersants was tested in both the spot dispersancy test (SDT) and the oil thickening spot dispersancy test [OTT(SDT)]. Each of these tests measures the ability of a dispersant to suspend and move sludge chromatographically along blotted paper. For comparison, a typical commercial Mannich base dispersant, identified hereinafter as Dispersant No. 3, was also subjected to these tests. The results of these tests are presented hereinbelow in Table I. Table I
    Dispersant Performance
    Dispersant SDT OTT (SDT)
    % Time, hr
    0 2 4 6 24 48 56 72
    1 37 46 85 84 100 93 90 42
    2 37 58 85 86 100 90 75 34
    3 37 60 84 88 100 88 69 28
  • These results indicate that the two embodiments of the dispersant of the present invention perform in the SDT and OTT in a manner similar to that of the reference Man­nich dispersant.
  • Example 2
  • A polybutenyl bis-3-amino-1,2,4-triazole dispersant was prepared using the preparation of Example 1, and a polybutenyl succinic anhydride (PSA) in which the ratio of succinic groups to polybutene groups (SA:PIB ratio) in the active portion of the PSA was between 2.5 and 3.5 using the following formula to calculate such ratio:
    Figure imgb0004
    in which PIB(Mn) is the number average molecular weight of the starting polybutene used to prepare the PSA and "Eq. wt." is the equivalent weight of the PSA.
  • Example 3
  • Example 2 was repeated using PSA having an SA:PIB ratio of 2.0 to 2.5.
  • Example 4
  • Example 2 was repeated using PSA having an SA:PIB ratio of 1.5 to 2.0.
  • Example 5
  • Example 2 was repeated using PSA having an SA:PIB ratio of 1.0 to 1.5.
  • Example 6
  • In this example, two embodiments of the dispersant of the present invention were tested for their compatibility with Viton® fluorohydrocarbon elastomers. Viton® fluoroh­ydrocarbon elastomers are used as crankshaft seals in engines and clutch plate liners in transmissions.
  • Caterpillar Tractor Company of Peoria, Illinois, U.S.A., has developed an experimental test for evaluating the compatibility of such elastomers and an oil containing a dispersant. According to this test, three elastomer specimens are submersed in a candidate oil for ten days at a temperature of 149°C (300°F). The average percent elon­gation measurement represents a loss of flexibility of the Viton material. A lower value indicates a more flexible material which has resisted attack by the oil. The higher the value, the less flexible the sample. Caterpillar has established a passing oil and a failing oil to be used as references or standards for discriminating between and evaluating the candidate oils.
  • A conventional SF/CD heavy duty oil, identified here­inafter as Oil No. 1, was used in these tests. The dis­persants were tested at a 5.5 wt.% level. This oil contained Paratone 715, a non-dispersant VI improver, obtained from Paramins, a division of Exxon Corporation, in an amount of 6.9 wt.%. The heavy duty oil, Oil No. 1, was tested without dispersants to demonstrate its contri­bution to incompatibility.
  • Both the Caterpillar passing oil, identified herein­after as Oil No. 2, and the Caterpillar failing oil, iden­tified hereinafter as Oil No. 3, were tested for their compatibility with the Viton elastomers.
  • In addition, two oil samples contained a third embod­iment of the dispersant of the present invention, Disper­sant No. 4, which third embodiment was prepared in accordance with Example 1 from PSA made from polybutene having a Mn of about 1000 to 1400 and two oil samples con­tained a fourth embodiment of the dispersant of the pres­ent invention, Dispersant No. 5, which fourth embodiment was prepared according to Example 1 from PSA made from polybutene having Mn of about 1850 to 2500. Two of these latter four samples also contained boron in the form of 0.45 wt.% amylpolyborate. Each of the samples involving Oil No. 1 contained 6.9 wt.% VI improver Paratone 715, obtained from Paramins, a division of Exxon Corporation.
  • The results of these tests are presented in Table II hereinbelow. Table II
    Caterpillar Viton Compatability Tests
    Oil No. Dispersant, 5.5 wt.% Amylpolyborate, wt.% % Elongation
    1 ----- ----- 12
    1 ----- ----- 12
    2 ----- ----- 25
    3 ----- ----- 46
    1 4 ----- 26
    1 4 0.45 20
    1 5 ----- 22
    1 5 0.45 16
  • These data demonstrate that both Dispersant No. 4 and Dispersant No. 5 provided % elongations that were quite similar to that furnished by the Caterpillar passing oil reference, Oil No. 2. The addition of boron resulted in an improvement in the % elongation, i.e., a reduction in the % elongation. Consequently, either Dispersant No. 4 or Dispersant No. 5 shows good compatibility with Viton seals in the Caterpillar test, with or without boron.
  • Example 7
  • In this example samples of dispersants were prepared by reacting polybutenyl succinic anhydride with either aminoguanidine bicarbonate (AGB), obtained from Aldrich Chemical Co., or aminoguanidine nitrate (AGN), obtained from Aldrich Chemical Co. or aminoguanidine hemisulfate (AGH), obtained from Eastman Kodak Co. The preparations of the polybutenyl succinic anhydrides and the resulting dispersant products were conducted as described hereina­bove. The polybutenyl succinic anhydrides were either PSA-1, which were prepared from polybutene having Mn of about 1290, or PSA-2, which were prepared from polybutene having Mn of about 2060. Dispersant products were obtained by reacting one mole of PSA-1 with one mole of AGB (Dispersant No. 6), one mole of PSA-1 with two moles of AGN (Dispersant No. 7), one mole of PSA-1 with PSA-1 with two moles of AGH (Dispersant No. 8), one mole of PSA-1 with two moles of AGM (Dispersant No. 9), one mole of PSA-2 with one mole of AGB (Dispersant No. 10), and one mole of PSA-2 with two moles of AGB (Dispersant No. 11). A typical Mannich base dispersant (Dispersant No. 12) was used as a reference.
  • Each of the resulting dispersant products was sub­jected to the spot dispersancy test (SDT) and to the oil thickening test (OTT). The spot dispersancy test measures the movement of insoluble particles chromatographically along blotter paper in used motor oil. When a dispersant candidate is used oil, movement along the paper results in two rings. The inner ring constitutes the sludge being transported by the dispersant; the outer ring comprises the base oil. The effectiveness of the dispersant is defined by the ratio of the inner ring to the outer ring. The higher the value of this ratio for a particular candi­date, the better the performance of that candidate as a dispersant. The oil thickening test is an analogous test in which the dispersant is tested in an oil that is being oxidized and the spot dispersancy test indicates the effect of this oxidation with time.
  • The results of the spot dispersancy tests are pre­sented hereinbelow in Table III. The results of the oil thickening tests are presented hereinbelow in Table IV. Table III
    Spot Dispersancy Test Results
    Dispersant Product No. PSA-1 Type AG Salt (1) Wt.% Dispersant
    Moles Type 0 2 4 6
    6 PSA-1 1 AGB 35 43 58 71
    7 PSA-1 2 AGN 35 39 43 63
    8 PSA-1 2 AGH 35 39 41 55
    9 PSA-1 2 AGB 35 49 84 92
    10 PSA-2 1 AGB 35 42 46 66
    11 PSA-2 2 AGB 35 56 82 87
    12 --- --- --- 35 54 76 88
    (1) AG Salt = aminoguanidine salt.
    Table IV
    Oil Thickening Test Results
    Dispersant Product No. PSA-1 Type AG Salt (1) Time, hr
    Moles Type 24 48 56 72 80
    6 PSA-1 1 AGB 100 85 73 71 ---
    9 PSA-1 2 AGB 100 90 75 34 ---
    10 PSA-2 1 AGB 100 89 87 47 41
    11 PSA-2 2 AGB 100 93 90 42 ---
    12 --- --- --- 100 89 69 28 30
    (1) AG Salt = aminoguanidine salt.
  • The results presented in Table III show that a prod­uct prepared with one mole of aminoguanidine bicarbonate per mole of PSA, or a product prepared with two moles of aminoguanidine nitrate per mole of PSA, or a product pre­pared with two moles of aminoguanidine hemisulfate per mole of PSA does not provide a response equivalent to that of Dispersant No. 12, the typical Mannich base dispersant. The use of two moles of aminoguanidine bicarbonate per mole of PSA when using either type of PSA did give a response that is equivalent to the response provided by the reference Mannich base dispersant. In addition, there was no great distinction between responses provided by the bistriazole products prepared from either PSA at equal weight.
  • The results presented in Table IV demonstrate that the products prepared from either one mole or two moles of aminoguanidine bicarbonate per mole of PSA furnished OTT responses that were not appreciably different from the response provided by the reference Mannich base disper­sant. Hence the oxidation of these products is similar to that of the reference Mannich base dispersant.
  • Example 8
  • In this example, samples of products were prepared from aminoguanidine bicarbonate obtained from two sources. Some were prepared from aminoguanidine bicarbonate obtained from Aldrich Chemical Company. This material was 98.5% pure. Other samples were prepared from aminoguani­dine bicarbonate obtained from Nippon Carbide Industries Co., Inc. This material was either 99.7% or 92.9% pure amine. Reactions were conducted with each of the three specimens of aminoguanidine bicarbonate at AGB:PSA ratios of 1.9:1 or 1:1 for both PSA-1 and PSA-2. The 92.9% ami­noguanidine bicarbonate, which contained approximately 7% water caused a great deal more foaming during the reaction than the others. Nitrogen content (Dumas) and viscosity were determined for each product. Spot dispersancy tests were conducted for each dispersant product. The Mannich dispersant was used again as a reference. The results of these tests are presented hereinafter in Table V.
    Figure imgb0005
  • The data in this table suggest that the nitrogen con­tent is consistent within each type of product. For exam­ple, the bis-triazole dispersants made with PSA-1 and at an AGB:PSA ratio of 1.9:1 have a nitrogen content of approximately 3% regardless of the source of aminoguani­dine bicarbonate. The viscosities of the products are similar, varying with the molecular weight of PSA employed. For a particular molecular weight of PSA, the viscosities are slightly higher when a larger ratio of AGB to PSA is used. The spot dispersancy tests discriminated between the type of product prepared (AGB:PSA molar ratio); however, they did not show any appreciable differ­ences in the products obtained from AGB's having different sources. In addition, infrared spectra obtained on the dispersants prepared from PSA-1 showed very little differ­ ences, suggesting that the same product was being prepared regardless of the source of AGB.
  • Example 9
  • In this example, the friction modification properties of an embodiment of the dispersant of the present invention were evaluated. The embodiment was prepared by reacting PSA-1 with AGB as described hereinabove. This embodiment is identified hereinafter as Dispersant No. 13. It was compared with a typical Mannich base dispersant, Dispersant No. 14.
  • Oils containing the dispersants were prepared to the same viscosities. Each oil sample was made up of a sol­vent-extracted, 20 weight, Gulf Canada base stock, Oil No. 4, 4.0 wt.% dispersant, 1.0 wt.% zinc dialkyldithio­phosphate inhibitor, 1.2 wt.% high-base magnesium sulfo­nate rust inhibitor, and 0.08 wt.% copper carboxylate. These were SAE 20 straight grade oils, since viscosity effects that are present in multigrade oils would mask friction effects in the boundary area.
  • The friction modification properties of each oil were evaluated in a motored engine test. The base line oil used in these tests was a 10W40 multigrade oil, "LDO," obtained from Amoco Oil Company. This base line oil was assigned arbitrarily a percent improvement of zero in the boundary friction area. The experimental oils were then measured as positive or negative in relation to "LDO" in the boundary friction area. The results of these motored engine tests are presented hereinbelow in Table VI. Table VI
    Motored Engine Tests
    Oil Dispersant Grade Boundary Friction Area % Improvement
    LDO --- 10W40 0
    4 13 20 -20 to -40
    4 14 20 :9
  • These results demonstrate that the oil containing the embodiment of the dispersant of the present invention pro­vided a marked improvement in the boundary friction area of the motored engine over the oil containing the typical Mannich dispersant. Directionally, the embodiment of the dispersant of the present invention appears to contribute to friction modification in a motor oil. It appears to be even better than the 10W40 oil, "LDO," which has the added benefit of viscosity properties for friction modification.
  • Example 10
  • This example is a comparison of the present invention and Example 38 of U.S. Patent 3,272,746, for the purpose of demonstrating the criticality of the reaction temper­atures required herein for preparation of the polybutyl­bis-3-amino-1,2,4-triazole dispersant of the present invention. This criticality relates to the compatibility of the dispersant with fluorohydrocarbon elastomer engine seals.
  • Example 38 of the ′746 patent (read in conjunction with Example 1 of that patent) calls for reaction of 1000 grams of polybutenyl succinic anhydride ("PSA") with 254 grams of aminoguanidine bicarbonate. Using the equivalent weight convention of the present invention wherein the equivalent of the PSA is based on the number of anhydride groups, the ratio of aminoguanidine bicarbonate to PSA in Example 38 of the '746 patent is about 1.9:1. A specific reaction temperature was not disclosed, only a range of 130°C-165°C. The reaction time was 5 hours and the resulting dispersant was diluted to 50% activity with min­eral oil.
  • Insofar as the prior art example disclosed only a range of reaction temperatures (130°C-165°C), the example was duplicated using seven different reaction temper­atures, five of which being in the 130-165°C range pre­scribed by the prior are example. The seven reaction temperatures were: 130°, 145°, 150°, 155°, 160°, 170° and 185°C. Infrared analysis was carried out on the seven samples. The analysis disclosed the presence of two spe­cies in varying relative amounts depending upon the reaction temperature used. The two species were the bis­amide having a characteristic absorbance at 1680 cm⁻¹ and the bis 1,2,4 triazole having a characteristic absorbance at 1640 cm⁻¹ Quantitative 1R analysis was carried out to determine the relative amount of triazole versus bis amide for the seven reaction temperatures. Table A summarizes these analyses. Table A
    Reaction Temperature % Triazole (wt.)
    130°C 30-40%
    145°C 50-60%
    150°C 65-70%
    155°C 85-90%
    160°C 95-100%
    170°C ∿ 100%
    185°C ∿ 100%
  • The 1R spectral analysis shows the trend of bis-amide to bis-triazole as the reaction temperature is increased from 130°C to 160°C.
  • To assess the performance of the products, five of the above samples were examined (130°, 145°, 160°, 170° and 185°) in the spot dispersancy and VW Viton® tests. In the spot test, the candidate dispersant is mixed with used drain oil from a Sequence VE engine, and heated at 150°C for 18 hours. Ten drops of the heated mixture is applied to chromatography paper and allowed to spread for 24 hours. With no dispersant, the coagulated sludge remains at the center of the spot and the oil forms a large ring. With a good dispersant, the complexed sludge is carried out into the ring along with the oil. In this test with our current sludge, all of the samples show good disper­sancy, similar to a commercial dispersant used as a stand­ard.
  • The VW Viton® test is used to determine the compat­ibility of an oil-containing dispersant with fluorohydro­carbon elastomer seals. Rubber specimens are immersed in a beaker of the test oil held at 150°C for four days. The rubber then is rated for cracking, and change in tensile strength and elongation. In this test the two products which contain significant amounts of amide (130°C and 145°C) failed badly by all three criteria. The material prepared at 160°C gave a borderline fail on change in elongation, while the materials prepared at the higher temperatures (170° and 185°C) passed all three ratings. Based on these results, a clear advantage can be seen for the products containing at least a majority of triazole at temperatures above about 155°C and preferably products containing essentially all triazole at temperatures above about 170°C.
  • The results of the VW Viton® tests for the reaction product of two moles of aminoguanidine bicabonate per equivalent of PSA (derived from polybutene having Mn of about 1300) at various reaction temperatures are set forth in Table B below.
    Figure imgb0006
  • Example 11
  • The triazole dispersant of the present invention was tested in a fully formulated lubricating composition con­taining the dispersant at a treat amount sufficient to satisfy the stringent "SG" specifications. The formu­lation in the table below is a lubricating composition according to the present convention comprising 7.7 wt.% polybutenyl-bis-3-amino-1,2,4-triazole dispersant prepared from PSA of equivalent weight about 1950 in which the polybutene has Mn of about 2100. The lubricating composi­tion, among other additives, includes an overbased calcium sulfurized phenate. The formulation was tested in the "VE" test which measures dispersancy by rating average sludge ("AS") average varnish ("AV") and piston varnish ("PV") on a scale of 1 to 10, 10 being the best. Table C
    VE Testing of Triazole Dispersant
    Component Wt.%
    Base Stocks 75.4
    VI Improver
    Overbased Sulfonate 1.40
    Pour Point Depressant
    Zinc Dialkyldithiophosphate
    Overbased Calcium
    Sulfurized Phenate 1.25
    Oxidation Inhibitor .40
    SX-5
    Polybutenyl (Mn 2100) bis-3-amino-1,2,4-triazole 7.70
  • VE Engine Test Results
  • RACS = 9.21 (passing is > 7)
    AS = 9.42 (passing is > 9)
    AV = 6.23 (passing is > 5)
    PV = 6.89 (passing is > 6.5)
    Wear max = 1.0 (passing is < 15)
    Wear avg = .65 (passing is < 5)

    Note:
    "RACS" is Rocker Arm Cover Sludge
    "AS" is average sludge
    "AV" is average varnish
    "PV" is piston varnish
  • As can be seen from the VE engine test results, the lubricating composition of the present invention compris­ing the triazole dispersant in combination with overbased calcium sulfurized phenate provided excellent sludge and varnish cleanliness.
  • Example 12
  • A lubricating composition according to the present invention was formulated to meet "CD" diesel engine spec­ifications. The formulation and its performance in the Caterpillar 1-G2 engine test are shown below in Table D. Table D
    CAT 1-G2 Testing of Lube Oil Containing Triazole Dispersant
    Component Wt.%
    Base Stocks 80.81
    VI Improver 7.4
    Polybutenyl (Mn 2100) bis -3-amino-1,2,4
    Triazole Dispersant 5.0
    Zinc Dialkyldithiophosphate
    Oxidation Inhibitor
    Overbased Calcium
    Sulfurized Phenate 1.5
    Low Base Calcium Sulfonate
    High Base Magnesium Sulfonate
    High Base Calcium Sulfonate
    Polyborate 0.19
    Cat. 1-G2 Test Results
    240 Hours 480 Hours
    Top Groove Fill(1) 49 49
    Weighted Carbon Demerits 58 61
    Weighted Lacquer Demerits 47 81
    Weighted Total Demerits(2) 105 142
    (1) Passing is < 80
    (2) Passing is < 300
  • Example 13
  • This example compares Viton® the fluorohydrocarbon engine seal compatibility of the triazole dispersant of the pres­ent invention with two non-triazole dispersants containing nitrogen groups which are aggressive toward Viton® engine seals. Non-triazole dispersant ("A") was a succinimide dispersant post treated with boron and ("B") was a borated succinate ester-amide. The triazole dispersant of the present invention is "C." The formulation in which the comparison was done was an SG/CD formulation containing overbased calcium sulfurized phenate. The formulation was as follows: Table E
    CAT 1-G2 Testing of Lube Oil Containing Triazole Dispersant
    Component Wt.%
    Zinc Dialkyldithiophosphate
    High Base Magnesium Sulfonate
    High Base Calcium Sulfonate
    High Base Calcium Sulfurized Phenate 1.25
    Oxidation inhibitors
    Diluent 0.10
    Base stocks 80.2
    VI Improver (or dispersant-VI) 8.3
    Dispersant A, B, or C 7-9
  • Table E sets forth the results of testing various concentrations of dispersants A, B, C in the above formu­lation in the VW Viton® test. In the test, samples of the Viton® fluorohydrocarbon rubber are immersed in the test oil and held at 150°C for four days in an oven. The rubber specimens are removed from the oven and rated for cracking and changes in modulus, elongation and tensil strength. Table F
    Dispersant wt.% VW Viton®
    Cracks(1) Δ E(2) Δ TS(3)
    B 7 None 23 31
    A(4) 7 None 11 18
    A(4) 8 None 28 30
    A(4) 9 Weak Cracks 34 35
    A(5) 6 None 32 37
    A(5) 7 Cracks 38 41
    A(5) 9 Cracks 41 42
    C(4) 6 None 12 2.1
    C(4) 7 None 14 6.4
    C(4) 8 None 14 6.4
    C(5) 4 None 20 11
    C(5) 6 None 20 15
    C(5) 8 None 22 18
    Notes:
    1. Passing is no cracks.
    2. Passing is < 35.
    3. Passing is < 45.
    4. Formulation contained 8.3% non-dispersant-VI improver.
    5. Formulation contained 8.3% dispersant VI (Mannich reaction product of olefin copolymer (EP), formaldehyde and alkylene diamine.)
  • The data in Table F demonstrate that, as dispersant treat rate is increased in the formulation of Table E, the for­mulation containing the non-triazole dispersant ("A") deteriorated markedly in terms of engine seal compatibil­ity, and the problem was particularly evident in the for­mulation containing 8.3% of the dispersant VI improver. In sharp contract are the formulations containing the triazole dispersant ("C") of the present invention. Even at the highest level of dispersant, 8%, with 8.3% disper­ sant VI improver in the formulation, the Viton® engine seals held up very well.

Claims (28)

1. A dispersant composition having improved compatibility with fluorohydrocarbon-containing elastomeric engine seals, said dispersant composition comprising the reaction product obtained by reacting a C₄₀-C₂₅₀ hydrocarbyl-substituted succinic anhydride with aminoguanidine, or a basic salt thereof, at a reaction temperature of from about 155°C to about 200°C.
2. The dispersant composition of Claim 1 wherein the hydrocarbyl substituent is polyalkenyl derived from C₃ or C₄ polymerizable olefins.
3. The dispersant composition of Claim 2 wherein the polyalkenyl substituent is polybutenyl derived from polybutene having Mn of about 750 to about 2500; and the polybutenyl succinic anhydride is reacted with aminoguanidine bicarbonate in a ratio of about 1.7 to about 2.0 moles of aminoguanidine bicarbonate per equivalent of polybutenyl succinic anhydride.
4. The dispersant composition of Claim 3 wherein the polybutenyl substituent of the succinic anhydride has Mn of about 1100 to about 1400.
5. The dispersant composition of Claim 3 wherein the polybutenyl substituent of the succinic anhydride is derived from polybutene having Mn of about 1850 to about 2500) and a ratio of Mw: Mn of about 1.2 to about 4.
6. The dispersant composition of Claim 4 or Claim 5 in which the polybutenyl succinic anhydride used to prepare the dispersant is characterised by an SA:PIB ratio of about 0.5 to about 4:1.
7. The dispersant composition of Claim 6 wherein the polybutenyl succinic anhydride used in preparation of the dispersant is characterised by an SA:PIB ratio of about 1.0 to about 1.5:1.
8. The dispersant composition of any of Claims 3 to 7 wherein the polybutenyl succinic anhydride and aminoguanidine bicarbonate are reacted at a temperature between about 165°C and about 200°C to obtain a product which contains, exclusive of any diluent which may be present, at least about 85 wt % of a triazole compound having a characteristic infrared absorbance at 1640 cm⁻¹.
9. The dispersant composition of any preceding claim wherein the reaction temperature is about 170° to about 190°C.
10. The dispersant composition of Claim 9 wherein said reaction product, excluding any diluent which may be presented comprises about 95-100% of a triazole compound having a characteristic infrared absorbance at about 1640 cm⁻¹.
11. The dispersant composition of Claim 10 wherein the triazole is polybutenyl bis-3-amino-1,2,4-triazole.
12. The dispersant composition of any preceding claim wherein the reaction product is treated with a boron-containing compound whereby there is incorporated in the composition about 0.01 to about 5 wt % boron.
13. The dispersant composition of Claim 12 incorporating about 0.1 to about 1.0 wt % boron.
14. A concentrate for formulating lubricating compositions comprising from about 20 to about 90% by weight of a substantially inert diluent and from about 10 to about 80% by weight of a dispersant composition as claimed in any of Claims 1 to 13.
15. A composition suitable as a dispersing agent for lubricating oils, said composition comprising a mixture of dispersant compounds baving nitrogen-containing groups, said mixture comprising (a) at least one dispersant compound which is incompatible with fluorohydrocarbon elastomeric engine seals, or which elicits poor or marginal compatibility with such seals, and (b) a dispersant compound obtained by reacting a polybutenyl-substituted succinic anhydride wherein the polybutenyl group is derived from polybutene of Mn about 750 to about 2500, with amino­guanidine bicarbonate at a reaction temperature of from about 70°C to about 190°C, wherein the relative amounts of (a) and (b) in the mixture are such that the composition is compatible with fluorohydrocarbon engine seals.
16. The composition of Claim 15 wherein dispersant (a) comprises the Mannich base reaction product of a poly­butylphenol, a polyalkylene polyamine and formaldehyde, where the polybutyl group is derived from polybutene having Mn of about 750 to about 2500, and the polyalkylene polyamine is selected from diethylenetriamine, triethylene tetraamine, tetraethylene pentaamine, alkylene diamines, and mixtures thereof.
17. The composition of Claim 15 wherein dispersant (a) comprises a succinimide dispersant obtained by react­ing polybutyenyl succinic anhydride, wherein the polybutyl group is derived from polybutene having Mn of about 750 to about 2500, with a polyalkylene polyamine selected from diethylene triaamine, triethylene tetraamine, tetraethyl­ene pentaamine, alkylene diamines and mixtures thereof.
18. The composition of Claim 15 wherein dispersant (a) is a succinate ester-amide obtained by reacting poly­butenyl succinic anhydride wherein the polybutyl group is derived from polybutene having Mn of about 750 to about 2500 with an alkoxylated alkylene polyamine.
19. A lubricating composition comprising a major amount of an oil of lubricating viscosity and having added thereto a minor amount effective for dispersancy of a dis­persant composition which is compatible with fluorohydro­carbon-containing elastomeric engine seals, said dispersant composition being the reaction product obtained by reacting a C₄₀-C₂₅₀ hydrocarbyl-substituted succinic anhydride with aminoguanidine, or a basic salt of amino­guanidine, at a reaction temperature of from about 155°C to about 200°C and in a ratio of about 1.6 to about 2.2 moles of aminoguanidine, or basic salt thereof, per equivalent of hydrocarbyl-substituted succinic anhydride.
20. The lubricating composition of Claim 19 wherein the hydrocarbyl substituent is polybutenyl derived from polybutene having Mn of about 750 to about 2500, and the polybutenyl succinic anhydride is reacted with aminoguani­dine bicarbonate in a ratio of about 1.7 to about 2.0 moles of aminoguanidine bicarbonate per equivalent of polybutenyl succinic anhydride, at a temperature of about 170°C to about 190°C.
21. The lubricating composition of Claim 19 or 20 wherein the dispersant composition comprises about 0.1 to about 1.0 wt.% boron.
22. The lubricating composition of Claim 21 wherein the added dispersant composition consists essentially of about 40 to about 65 wt.% of a substantially inert diluent and about 35 to about 60 wt.% of said boron-containing dispersant, and wherein the lubricating composition com­prises about 2 to about 10 wt.% of said dispersant compo­sition and a boron level of about 50 to about 1000 ppm.
23. A lubricating composition having improved com­patibility with fluorohydrocarbon-containing elastomeric engine seals, comprising a major proportion of an oil of lubricating viscosity, and having added thereto a minor effective amount of (a) the reaction product obtained by reacting a C₄₀-C₂₅₀ hydrocarbyl-substituted succinic anhy­dride with aminoguanidine, or a basic salt thereof, at a reaction temperature of from about 155°C to about 200°C, and (b) an alkaline earth metal phenate detergent.
24. The composition of Claim 23 wherein the hydro­carbyl substituent of the succinic anhydride used to obtain reaction product (a) is polybutenyl derived from polybutene having Mn of about 750 to about 2500, said polybutenyl succinic anhydride being reacted with amino­guanidine bicarbonate in a ratio of about 1.7 to about 2.0 moles of aminoguanidine bicarbonate per equivalent of polybutenyl succinic anhydride at a temperature of from about 165°C to about 200°C, and the phenate detergent is an overbased calcium sulfurized alkyl phenate.
25. The composition of Claim 24 or 23 wherein the reaction product (a) is post-treated with a boron-contain­ing compound to incorporate about 0.1 to about 1.0 wt.% boron into said reaction product, and about 50 to about 1000 ppm boron into the lubricating composition.
26. A lubricating composition comprising a major amount of an oil of lubricating viscosity and (a) about .01 to about 10 wt.% of a dispersant composition consist­ing of 40 to 65 wt.% of a substantially inert diluent and about 35 to 60 wt.% of a dispersant compound obtained by reacting polybutenyl succinic anhydride, wherein the poly­butenyl portion is derived from polybutene having Mn of about 750 to about 2500, with aminoguanidine bicarbonate at a temperature of about 170 C to about 190°C, and (b) about .01 to about 15 wt.% of a polymeric disper­sant-VI improver.
27. The lubricating composition of Claim 26 wherein the polymeric dispersant-VI improver is selected from (a) the Mannich reaction product of an oxidized ethylene-pro­pylene copolymer, amine, and formaldehyde; and (b) the reaction product obtained by grafting maleic anhydride onto the polymeric backbone of an ethylene-propylene copolymer and then reacting the grafted polymer with an amine.
28. The lubricating composition of Claim 26 or Claim 27 comprising about 50 to about 1000 ppm boron.
EP88309007A 1987-09-30 1988-09-29 Engine seal compatible dispersant for lubricating oils Expired - Lifetime EP0310365B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/103,169 US4908145A (en) 1987-09-30 1987-09-30 Engine seal compatible dispersants for lubricating oils
US103169 1987-09-30

Publications (2)

Publication Number Publication Date
EP0310365A1 true EP0310365A1 (en) 1989-04-05
EP0310365B1 EP0310365B1 (en) 1992-05-13

Family

ID=22293747

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88309007A Expired - Lifetime EP0310365B1 (en) 1987-09-30 1988-09-29 Engine seal compatible dispersant for lubricating oils

Country Status (5)

Country Link
US (1) US4908145A (en)
EP (1) EP0310365B1 (en)
CA (1) CA1333717C (en)
DE (1) DE3871061D1 (en)
ES (1) ES2031242T3 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0460309A1 (en) * 1990-06-06 1991-12-11 Ethyl Petroleum Additives Limited Modified dispersant compositions
EP0663436A1 (en) * 1994-01-14 1995-07-19 Ethyl Petroleum Additives Limited Dispersants for lubricating oil
EP1188813A1 (en) * 2000-09-19 2002-03-20 Ethyl Corporation Lubricants comprising friction modifiers
EP2103672A1 (en) * 2008-02-11 2009-09-23 Afton Chemical Corporation Lubricating composition comprising triazole based lead corrosion inhibitor
US20100037514A1 (en) * 2008-05-13 2010-02-18 Afton Chemical Corporation Fuel additives to maintain optimum injector performance
US20100107479A1 (en) * 2008-11-04 2010-05-06 Duncan Richardson Antifoam fuel additives
GB2465056A (en) * 2008-11-06 2010-05-12 Afton Chemical Corp Conductivity-improving additives for fuel
GB2480612A (en) * 2010-05-24 2011-11-30 Afton Chemical Ltd Oxidation stabilized fuels having enhanced corrosion resistance
BE1019610A5 (en) * 2008-05-13 2012-09-04 Afton Chemical Corp FUEL ADDITIVES TO MAINTAIN OPTIMAL INJECTOR PERFORMANCE.

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5080815A (en) * 1987-09-30 1992-01-14 Amoco Corporation Method for preparing engine seal compatible dispersant for lubricating oils comprising reacting hydrocarbyl substituted discarboxylic compound with aminoguanirise or basic salt thereof
US5174915A (en) * 1987-09-30 1992-12-29 Ethyl Petroleum Additives, Inc. Medium speed diesel engine lubricating oils
US5302304A (en) * 1990-12-21 1994-04-12 Ethyl Corporation Silver protective lubricant composition
US5433875A (en) * 1993-06-16 1995-07-18 Ethyl Corporation Ashless mannich despersants, their preparation, and their use
US5454962A (en) * 1993-06-25 1995-10-03 Ethyl Petroleum Additives, Inc. Fluoroelastomer-friendly crankcase and drivetrain lubricants and their use
GB2293389A (en) 1994-09-26 1996-03-27 Ethyl Petroleum Additives Ltd Mixed zinc salt lubricant additives
US5849047A (en) * 1996-11-01 1998-12-15 Ethyl Corporation Polymeric dispersants and method of making same
US6107258A (en) * 1997-10-15 2000-08-22 Ethyl Corporation Functionalized olefin copolymer additives
US20050027592A1 (en) * 2003-07-30 2005-02-03 Pettigrew F. Alexander Powered platform fuel consumption economy credits method
US8529643B2 (en) 2008-05-13 2013-09-10 Afton Chemical Corporation Fuel additives for treating internal deposits of fuel injectors
US20100292112A1 (en) * 2009-05-14 2010-11-18 Afton Chemical Corporation Extended drain diesel lubricant formulations
US9663743B2 (en) * 2009-06-10 2017-05-30 Afton Chemical Corporation Lubricating method and composition for reducing engine deposits
SG190391A1 (en) * 2010-12-02 2013-06-28 Basf Se Use of the reaction product of a hydrocarbyl-substituted dicarboxylic acid and a nitrogen compound for reducing fuel consumption
US8758456B2 (en) 2011-09-22 2014-06-24 Afton Chemical Corporation Fuel additive for improved performance of low sulfur diesel fuels
US8852297B2 (en) 2011-09-22 2014-10-07 Afton Chemical Corporation Fuel additives for treating internal deposits of fuel injectors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3272746A (en) * 1965-11-22 1966-09-13 Lubrizol Corp Lubricating composition containing an acylated nitrogen compound
US3338832A (en) * 1963-04-29 1967-08-29 Lubrizol Corp Lubricating oil containing reaction product of certain acylated nitrogen containing intermediates and a boron compound
EP0024146A1 (en) * 1979-08-13 1981-02-25 Exxon Research And Engineering Company Improved lubricating compositions
US4379064A (en) * 1981-03-20 1983-04-05 Standard Oil Company (Indiana) Oxidative passivation of polyamine-dispersants
US4491527A (en) * 1982-04-26 1985-01-01 The Lubrizol Corporation Ester-heterocycle compositions useful as "lead paint" inhibitors in lubricants

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1248643B (en) * 1959-03-30 1967-08-31 The Lubrizol Corporation, Cleveland, Ohio (V. St. A.) Process for the preparation of oil-soluble aylated amines
US3869394A (en) * 1971-06-11 1975-03-04 Grace W R & Co Lubricant composition and method
US4111822A (en) * 1976-12-16 1978-09-05 Shell Oil Company Grease compositions
US4257779A (en) * 1976-12-23 1981-03-24 Texaco Inc. Hydrocarbylsuccinic anhydride and aminotriazole reaction product additive for fuel and mineral oils
US4263015A (en) * 1976-12-23 1981-04-21 Texaco Inc. Rust inhibitor and oil composition containing same
US4283296A (en) * 1978-08-21 1981-08-11 Texaco Inc. Amine salt of N-triazolyl-hydrocarbyl succinamic acid and lubricating oil composition containing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3338832A (en) * 1963-04-29 1967-08-29 Lubrizol Corp Lubricating oil containing reaction product of certain acylated nitrogen containing intermediates and a boron compound
US3272746A (en) * 1965-11-22 1966-09-13 Lubrizol Corp Lubricating composition containing an acylated nitrogen compound
EP0024146A1 (en) * 1979-08-13 1981-02-25 Exxon Research And Engineering Company Improved lubricating compositions
US4379064A (en) * 1981-03-20 1983-04-05 Standard Oil Company (Indiana) Oxidative passivation of polyamine-dispersants
US4491527A (en) * 1982-04-26 1985-01-01 The Lubrizol Corporation Ester-heterocycle compositions useful as "lead paint" inhibitors in lubricants

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0460309A1 (en) * 1990-06-06 1991-12-11 Ethyl Petroleum Additives Limited Modified dispersant compositions
EP0663436A1 (en) * 1994-01-14 1995-07-19 Ethyl Petroleum Additives Limited Dispersants for lubricating oil
EP1188813A1 (en) * 2000-09-19 2002-03-20 Ethyl Corporation Lubricants comprising friction modifiers
US7833954B2 (en) 2008-02-11 2010-11-16 Afton Chemical Corporation Lubricating composition
EP2103672A1 (en) * 2008-02-11 2009-09-23 Afton Chemical Corporation Lubricating composition comprising triazole based lead corrosion inhibitor
CN101508932B (en) * 2008-02-11 2017-03-01 雅富顿公司 Lubricant compositions
BE1018579A5 (en) * 2008-05-13 2011-04-05 Afton Chemical Corp FUEL ADDITIVES TO MAINTAIN OPTIMAL INJECTOR PERFORMANCE.
BE1019610A5 (en) * 2008-05-13 2012-09-04 Afton Chemical Corp FUEL ADDITIVES TO MAINTAIN OPTIMAL INJECTOR PERFORMANCE.
US20100037514A1 (en) * 2008-05-13 2010-02-18 Afton Chemical Corporation Fuel additives to maintain optimum injector performance
GB2462696A (en) * 2008-05-13 2010-02-24 Afton Chemical Corp Fuel additives to maintain optimum injector performance
GB2462696B (en) * 2008-05-13 2011-05-04 Afton Chemical Corp Fuel additives to maintain optimum injector performance
US20100107479A1 (en) * 2008-11-04 2010-05-06 Duncan Richardson Antifoam fuel additives
GB2465057B (en) * 2008-11-04 2011-06-15 Afton Chemical Corp Antifoam fuel additives
US9574150B2 (en) * 2008-11-04 2017-02-21 Afton Chemical Corporation Conductivity-improving additives for fuel
US20130133244A1 (en) * 2008-11-04 2013-05-30 Afton Chemical Corporation Conductivity-improving additives for fuel
BE1019144A5 (en) * 2008-11-04 2012-04-03 Afton Chemical Corp ANTI-FOAM ADDITIVES FOR FUELS.
GB2465057A (en) * 2008-11-04 2010-05-12 Afton Chemical Corp Fuel additive concentrate
BE1019145A5 (en) * 2008-11-06 2012-04-03 Afton Chemical Corp ADDITIVES IMPROVING CONDUCTIVITY FOR FUELS.
GB2465056B (en) * 2008-11-06 2012-01-18 Afton Chemical Corp Conductivity-improving additives for fuel
CN101735867B (en) * 2008-11-06 2014-03-05 雅富顿公司 Conductivity-improving additives for fuel
GB2465056A (en) * 2008-11-06 2010-05-12 Afton Chemical Corp Conductivity-improving additives for fuel
GB2480612A (en) * 2010-05-24 2011-11-30 Afton Chemical Ltd Oxidation stabilized fuels having enhanced corrosion resistance

Also Published As

Publication number Publication date
CA1333717C (en) 1994-12-27
DE3871061D1 (en) 1992-06-17
US4908145A (en) 1990-03-13
ES2031242T3 (en) 1992-12-01
EP0310365B1 (en) 1992-05-13

Similar Documents

Publication Publication Date Title
US5080815A (en) Method for preparing engine seal compatible dispersant for lubricating oils comprising reacting hydrocarbyl substituted discarboxylic compound with aminoguanirise or basic salt thereof
EP0310365B1 (en) Engine seal compatible dispersant for lubricating oils
US4767551A (en) Metal-containing lubricant compositions
US5204012A (en) Supplemental rust inhibitors and rust inhibition in internal combustion engines
US4664822A (en) Metal-containing lubricant compositions
AU613194B2 (en) Lubricating oil compositions and concentrates
EP0096539B1 (en) Lubricating oil composition
US4686054A (en) Succinimide lubricating oil dispersant
AU612486B2 (en) Lubricating oil compositions and concentrates
US5994277A (en) Lubricating compositions with improved antioxidancy comprising added copper, a molybdenum containing compound, aromatic amine and ZDDP
EP0277729B1 (en) Lubricant compositions providing wear protection at reduced phosphorus levels
JPH0158239B2 (en)
JP5049330B2 (en) Process for the production of sulfurized phenol additives, intermediates and compositions
EP0280579B1 (en) Low phosphorus/low zinc lubricants
EP0280580B1 (en) Low phosphorus lubricants
EP0451380A1 (en) Succinimide compositions
EP0072645B1 (en) Improved succinimide lubricating oil dispersant
JP2646248B2 (en) Improved lubricating oil composition for internal combustion engines
US4866135A (en) Heterocyclic amine terminated, lactone modified, aminated viscosity modifiers of improved dispersancy
US4889646A (en) Nitrogen containing dispersants treated with mineral acids
JPH01152191A (en) Novel additive for oily composition for obtaining enhanced rustproofness
US6605571B1 (en) Oleaginous concentrates
EP0444830A1 (en) Succinimide composition
AU692888B2 (en) Lubricating oils containing alkali metal additives
CA2327829C (en) Concentrates with high molecular weight dispersants and their preparation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT NL

17P Request for examination filed

Effective date: 19890315

17Q First examination report despatched

Effective date: 19900115

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT NL

REF Corresponds to:

Ref document number: 3871061

Country of ref document: DE

Date of ref document: 19920617

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: ETHYL CORPORATION TE BATON ROUGE, LOUISIANA, VER.

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: ETHYL CORPORATION

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;ETHYL CORPORATION

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950811

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19950914

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960820

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19960930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980603

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19991007

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000901

Year of fee payment: 13

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050921

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050929

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20051017

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060929

BERE Be: lapsed

Owner name: *ETHYL CORP.

Effective date: 20060930