EP0290712A1 - Mass spectrometer - Google Patents

Mass spectrometer Download PDF

Info

Publication number
EP0290712A1
EP0290712A1 EP87890179A EP87890179A EP0290712A1 EP 0290712 A1 EP0290712 A1 EP 0290712A1 EP 87890179 A EP87890179 A EP 87890179A EP 87890179 A EP87890179 A EP 87890179A EP 0290712 A1 EP0290712 A1 EP 0290712A1
Authority
EP
European Patent Office
Prior art keywords
octopole
arrangement
mass spectrometer
ions
ion source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87890179A
Other languages
German (de)
French (fr)
Other versions
EP0290712B1 (en
Inventor
Johannes Dr. Villinger
Werner Dr. Federer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
V & F Analyse- und Messtechnik GmbH
Original Assignee
V & F Analyse- und Messtechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by V & F Analyse- und Messtechnik GmbH filed Critical V & F Analyse- und Messtechnik GmbH
Publication of EP0290712A1 publication Critical patent/EP0290712A1/en
Application granted granted Critical
Publication of EP0290712B1 publication Critical patent/EP0290712B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/062Ion guides
    • H01J49/063Multipole ion guides, e.g. quadrupoles, hexapoles

Definitions

  • the invention relates to a mass spectrometer arrangement with an ion source, an adjoining one, receiving a gas mixture and surrounded by an octopole arrangement with a high-frequency 8-pole field acting perpendicular to the main direction of movement of the primary ions supplied by the ion source. as well as a primary mass spectrometer quadrupole connected to the reaction space in the main direction of movement of the low kinetic energy.
  • drift tube arrangements e.g. SIDT-Quasistatic Selected-Ion Drift Tubes
  • the primary ions emerging from an exchangeable ion source enter an octopole storage zone, where they are exposed, for example, to a neutral gas or React gas mixture with production of new ions in known excitation states.
  • the ions From the octopole arrangement or the reaction space surrounding it, the ions enter the mass spectrometer quadrupole, where the type of ion to be investigated is selected in a known manner which is of no further interest here and then introduced into the actual drift chamber via a venturi-type inlet.
  • the arrangement described at the outset can also be used directly as a mass spectrometer analyzer, in which case the gas mixture in the reaction space is examined by producing certain product ions with the primary ions, which, after being selected in the mass spectrometer quadrupole, are directly used by an ion detector can be supplied, which allows a mass spectrometric analysis in a known manner.
  • the octopole arrangement is used in both cases to hold or guide the ions, which at low kinetic energies (in general kinetic energies are understood to be less than 100 eV) due to their own space charge pressure (Coulomb repulsion between the charges) a high divergence in itself of their movement.
  • the requirement for low kinetic kinetic energies is in turn based on the fact that selective, fragment-free ionization - i.e. the generation of a certain type of product ions in a certain gas with a certain primary ion beam with the greatest possible efficiency - only allows small kinetic energies in the ion / molecule center of gravity .
  • the primary ion beam entering the octopole arrangement with low kinetic energy is thus held by a high-frequency 8-pole field perpendicular to the direction of movement of the primary ions in the reaction space, whereby essentially two conditions must apply to the applied high-frequency field:
  • r Radius of the octopole arrangement v r Velocity of the ions in the r direction ⁇ frequency of the RF field e
  • an extractor lens with a potential that is negative compared to the octopole arrangement could be arranged after the reaction space in order to direct the ions from the reaction space into the mass spectrometer quadrupole focus. Under certain circumstances it would also be conceivable to place the quadrupole itself at a potential which is negative compared to the octopole arrangement.
  • the object of the present invention is to improve an arrangement of the type mentioned at the outset in such a way that the disadvantages of the known arrangements are avoided and in particular that the supply rate and supply speed of product ions formed in the reaction space to the mass spectrometer quadrupole are increased in a simple manner.
  • the octopole arrangement is divided in the longitudinal direction into individual regions which are electrically insulated from one another and which, viewed from the ion source to the mass spectrometer quadrupole, are each at a negative DC voltage potential which rises in relation to the previous region.
  • a DC voltage potential is generated at the nth octopole range, which is negative compared to the (n - 1) th range but positive compared to the (n + 1) th range.
  • a homogeneous electric field is generated in the axial direction to the mass spectrometer quadrupole, which serves as the driving force for the product ions.
  • the random movement energy of the product ions is generally not greater than 1 eV, very low field strengths are sufficient, as a result of which disturbances in the mass spectrometer quadrupole due to high kinetic energies of the incoming product ions are reliably avoided.
  • the total DC voltage effective at the octopole is in the range 5 to 30 V.
  • the direct voltage field strength at the octopole is uniformly 0.5 to 3 V / cm, preferably 1 V / cm.
  • the individual octopole regions are connected to a common DC voltage supply via a resistor chain, which enables a simple structure of the arrangement and enables a controlled field profile over the entire length of the octopole arrangement.
  • the mass spectrometer arrangement according to FIG. 1 has an ion source 1 of any design that is not of interest here, a reaction chamber 2 adjoining the ion source 1, and a mass spectrometer connecting the primary ions supplied by the ion source 1 to the reaction chamber 2 in the main direction of movement z Quadrupole 3 on.
  • the reaction chamber 2, to which a gas or gas mixture can be supplied via a connection 4, is surrounded by an octopole arrangement 5 with a high-frequency 8-pole field acting perpendicular to the main direction of movement z of the primary ions, which is used for collection and mounting or guidance of the primary ions, which have a very low kinetic energy of typically below 100 eV.
  • the octopole arrangement 5 is divided in the longitudinal direction - ie in the main direction of movement z of the primary ions emerging from the ion source 1 in a beam - into three individual regions 7, 8, 9 which are electrically insulated from one another and which - from the ion source 1 to the mass spectrometer - Quadrupole 3 seen - lie on the negative direct voltage potential that rises in each case with respect to the previous region.
  • the individual eight rods of the area 7 of the octopole arrangement 5 are indicated in section in FIG. 2. Four of them are contacted together, a high-frequency alternating field (potential V ⁇ ) being applied in a manner not shown here, which causes a high-frequency guide field V eff in the interior between the eight rods of the octopole arrangement, which is indicated in the diagram in FIG. 3 .
  • This potential V eff counteracts the space charge pressure (Coulomb repulsion between the charges) of the ions which have only very low kinetic energy and thus holds them in a cross section which is predetermined by the dimension of the octopole arrangement 5.
  • the potential of the RF field is a parabolic trough, which is quasi raised by the - here uniform over the entire length - potential of the superimposed E field at the entrance of the octopole arrangement. From the illustration in FIG. 5 it is also easy to see figuratively how the ions on the one hand are held in the reaction space defined in the interior of the octopole arrangement and on the other hand are rapidly discharged towards the mass spectrometer quadrupole but with little kinetic energy.

Abstract

In the eight-pole arrangement (5) used for holding and guiding ions having a low kinetic energy, an E-field in the desired ion movement direction is superimposed on the radially acting RF field, as a result of which, despite the kinetic energy of the ions remaining low, safe, rapid deflection to the mass spectrometer quadrupole (3) takes place and the response time and overall sensitivity of the arrangement can be significantly increased. <IMAGE>

Description

Die Erfindung betrifft eine Massenspektrometer-Anordnung, mit einer Ionenquelle, einem an diese anschließenden, ein Gasgemisch aufnehmenden und von einer Oktopol-An­ordnung mit einem senkrecht zur Hauptbewegungsrichtung der von der Ionenquelle gelieferten Primär-Ionen wir­kenden Hochfrequenz-8-Pol-Feld umgebenen Reaktionsraum, sowie einem in Hauptbewegungsrichtung der niedrige Bewegungsenergie aufweisenden Primär-Ionen an den Reaktionsraum anschließenden Massenspektrometer-­Quadrupol.The invention relates to a mass spectrometer arrangement with an ion source, an adjoining one, receiving a gas mixture and surrounded by an octopole arrangement with a high-frequency 8-pole field acting perpendicular to the main direction of movement of the primary ions supplied by the ion source. as well as a primary mass spectrometer quadrupole connected to the reaction space in the main direction of movement of the low kinetic energy.

Derartige Anordnungen sind bekannt und zumindest im Laborbetrieb für zwei unterschiedliche Anwendungsfälle in Verwendung:Such arrangements are known and are used at least in laboratory operation for two different applications:

Einerseits können die Eingangsstufen sogenannter Drift­röhren-Anordnungen (z.B. SIDT-Quasistatic Selected-Ion Drift Tubes) auf diese Weise ausgebildet sein, wobei die aus einer austauschbaren Ionenquelle austretenden Primär-Ionen in eine Oktopol-Speicherzone eintreten, wo sie beispielsweise mit einem neutralen Gas bzw. Gas­gemisch unter Produktion neuer Ionen in bekannten An­regungszuständen reagieren. Aus der Oktopol-Anordnung bzw. dem davon umgebenen Reaktionsraum treten die Ionen in den Massenspektrometer-Quadrupol ein, wo die zu untersuchende Ionenart auf bekannte und hier nicht weiter interessierende Weise ausgewählt und anschließend über einen venturiartigen Einlaß in die eigentliche Driftkammer eingebracht wird.On the one hand, the input stages of so-called drift tube arrangements (e.g. SIDT-Quasistatic Selected-Ion Drift Tubes) can be designed in this way, whereby the primary ions emerging from an exchangeable ion source enter an octopole storage zone, where they are exposed, for example, to a neutral gas or React gas mixture with production of new ions in known excitation states. From the octopole arrangement or the reaction space surrounding it, the ions enter the mass spectrometer quadrupole, where the type of ion to be investigated is selected in a known manner which is of no further interest here and then introduced into the actual drift chamber via a venturi-type inlet.

Andererseits kann die eingangs beschriebene Anordnung auch unmittelbar als Massenspektrometer-Analysator Verwendung finden, wobei in diesem Falle das Gasgemisch im Reaktionsraum dadurch untersucht wird, daß mit den Primär-Ionen bestimmte Produkt-Ionen produziert werden, die nach Selektierung im Massenspektrometer-Quadrupol unmittelbar einem Ionendetektor zugeführt werden können, was in bekannter Weise eine massenspektrometrische Ana­lyse erlaubt.On the other hand, the arrangement described at the outset can also be used directly as a mass spectrometer analyzer, in which case the gas mixture in the reaction space is examined by producing certain product ions with the primary ions, which, after being selected in the mass spectrometer quadrupole, are directly used by an ion detector can be supplied, which allows a mass spectrometric analysis in a known manner.

Die Oktopol-Anordnung dient in beiden Fällen zur Fest­haltung bzw. Führung der Ionen, welche bei niedrigen Bewegungsenergien (darunter werden im allgemeinen Be­wegungsenergien kleiner als 100 eV verstanden) aufgrund ihres eigenen Raumladungsdruckes (Coulomb-Abstoßung zwischen den Ladungen) an sich eine hohe Divergenz in ihrer Bewegung aufweisen. Das Erfordernis niedriger kinetischer Bewegungsenergien ist wiederum darauf be­gründet, daß selektive, fragmentfreie Ionisation - also die Erzeugung einer bestimmten Sorte Produkt-Ionen in einem bestimmten Gas mit einem bestimmten Primär-Ionen­strahl bei möglichst großem Wirkungsgrad - eben nur kleine Bewegungsenergien im Schwerpunktsystem Ion/Mo­lekül erlaubt. Der mit niedriger Bewegungsenergie in die Oktopol-Anordnung einlaufende Primär-Ionenstrahl wird also durch ein Hochfrequenz-8-Pol-Feld senkrecht zur Bewegungsrichtung der Primär-Ionen im Reaktionsraum gehalten, wobei für das angelegte Hochfrequenzfeld im wesentlichen zwei Bedingungen gelten müssen:

Figure imgb0001
Mit:
    r      Radius der Oktopol-Anordnung
    vr      Geschwindigkeit der Ionen in r-Richtung
    ω      Frequenz des HF-Feldes
    e      Elementarladung
    VO      Amplitude des HF-Feldes
    m      Masse der IonenThe octopole arrangement is used in both cases to hold or guide the ions, which at low kinetic energies (in general kinetic energies are understood to be less than 100 eV) due to their own space charge pressure (Coulomb repulsion between the charges) a high divergence in itself of their movement. The requirement for low kinetic kinetic energies is in turn based on the fact that selective, fragment-free ionization - i.e. the generation of a certain type of product ions in a certain gas with a certain primary ion beam with the greatest possible efficiency - only allows small kinetic energies in the ion / molecule center of gravity . The primary ion beam entering the octopole arrangement with low kinetic energy is thus held by a high-frequency 8-pole field perpendicular to the direction of movement of the primary ions in the reaction space, whereby essentially two conditions must apply to the applied high-frequency field:
Figure imgb0001
With:
r Radius of the octopole arrangement
v r Velocity of the ions in the r direction
ω frequency of the RF field
e Elementary charge
V O amplitude of the RF field
m mass of ions

Damit bewegen sich geladene Teilchen in einem zeitunab­hängigen effektiven Potential, das im Zentrum - also längs der Achse - Null ist und gegen die einzelnen Elektrodenstäbe hin wie eine Parabelfunktion höherer Ordnung gegen unendlich ansteigt. Dieses Potential wirkt dem Raumladungsdruck der Ionen entgegen und hält damit den Ionenstrahl in einem Querschnitt, der durch die Di­mension des Innenraumes der Oktopol-Anordnung vorgegeben ist.Thus charged particles move in a time-independent effective potential, which is zero in the center - i.e. along the axis - and rises towards the individual electrode rods like a parabolic function of a higher order against infinity. This potential counteracts the space charge pressure of the ions and thus keeps the ion beam in a cross section which is predetermined by the dimension of the interior of the octopole arrangement.

Als großes Problem hat sich im Zusammenhang mit den be­kannten Anordnungen der eingangs genannten Art die Tat­sache herausgestellt, daß die nach einer Reaktion der Primär-Ionen mit den neutralen Molekülen des Gasge­misches verbleibenden bzw. resultierenden Produkt-Ionen in der Regel keinerlei Information über die notwendige Flugrichtung zum Massenspektrometer-Quadrupol haben, da beim Ionenstoß abhängig von der relativen Masse der beteiligten Teilchen ein Teil des Betrages des Impulses vom Ion auf das neutrale Molekül übertragen wird, nicht aber die Richtung des Impulses. Demgemäß bewegen sich die Produkt-Ionen in Zufallsrichtungen, d.h., die Richtungsverteilung entspricht der translatorischen Boltzmann-Verteilung.A major problem in connection with the known arrangements of the type mentioned at the outset was the fact that the product ions remaining or resulting after a reaction of the primary ions with the neutral molecules of the gas mixture generally do not provide any information about the necessary direction of flight to the mass spectrometer quadrupole, because during ion impact, depending on the relative mass of the particles involved, part of the amount of the momentum is transferred from the ion to the neutral molecule, but not the direction of the momentum. Accordingly, the product ions move in random directions, i.e. the directional distribution corresponds to the translational Boltzmann distribution.

Um nun die Ausbeute an zum Massenpektrometer-Quadrupol gelangenden Produkt-Ionen, die unter Zugrundelegung ausschließlich von Diffusionsvorgängen zum statistischen Ausgleich von Konzentrationsunterschieden natürlich sehr gering ist und vor allen Dingen Messungen von Produkt-Ionen aus bei dynamischen bzw. hochdynamischen Vorgängen entstehenden und durch den Reaktionsraum be­wegten Gasgemischen nicht bzw. nur mit zumeist untrag­bar großen Verzögerungen erlaubt, zu erhöhen, könnte an sich zwar eine gegenüber der Oktopol-Anordnung negatives Potential aufweisende Extraktorlinse nach dem Reaktionsraum angeordnet werden, um die Ionen aus dem Reaktionsraum in den Massenspektrometer-Quadrupol zu fokussieren. Denkbar wäre unter Umständen auch, den Quadrupol selbst auf ein gegenüber der Oktopol-Anordnung negatives Potential zu legen. Beide Maßnahmen sind nicht zielführend, weil für den nötigen elektrischen Feld­durchgriff in den Reaktionsraum bzw. in die Oktopol-­Anordnung sehr hohe Spannungen an diese Extraktorlinse bzw. den Quadrupol gelegt werden müßten. Diese hohen Spannungen von größenordnungsmäßig über 100 eV würden aber wiederum in äußerst nachteiliger Weise die Ionen auf so hohe kinetische Energien beschleunigen, daß die Funktion des nachgeschalteten Massenspektrometer-Quadru­pols schwer beeinträchtigt, d.h. sein Auflösungsver­mögen stark vermindert würde.Now about the yield of product ions reaching the mass spectrometer quadrupole, which is of course very low on the basis only of diffusion processes for the statistical compensation of concentration differences, and above all measurements of product ions from dynamic or highly dynamic processes and through the reaction space not allowed to move moving gas mixtures or only with mostly intolerably large delays, an extractor lens with a potential that is negative compared to the octopole arrangement could be arranged after the reaction space in order to direct the ions from the reaction space into the mass spectrometer quadrupole focus. Under certain circumstances it would also be conceivable to place the quadrupole itself at a potential which is negative compared to the octopole arrangement. Both measures are not expedient because very high voltages would have to be applied to this extractor lens or the quadrupole for the necessary electrical field penetration into the reaction space or into the octopole arrangement. However, these high voltages of the order of magnitude of over 100 eV would in an extremely disadvantageous manner accelerate the ions to such high kinetic energies that the function of the downstream mass spectrometer quadrupole was severely impaired, ie its resolving power would be greatly reduced.

Aufgabe der vorliegenden Erfindung ist es, eine Anordnung der eingangs genannten Art so zu verbessern, daß die ge­nannten Nachteile der bekannten Anordnungen vermieden werden und daß insbesonders auf einfache Weise die Zu­führungsrate und Zuführungsgeschwindigkeit von im Re­aktionsraum gebildeten Produkt-Ionen zum Massenspektro­meter-Quadrupol erhöht werden.The object of the present invention is to improve an arrangement of the type mentioned at the outset in such a way that the disadvantages of the known arrangements are avoided and in particular that the supply rate and supply speed of product ions formed in the reaction space to the mass spectrometer quadrupole are increased in a simple manner.

Dies wird gemäß der vorliegenden Erfindung dadurch er­reicht, daß die Oktopol-Anordnung in Längsrichtung in einzelne, voneinander elektrisch isolierte Bereiche aufgeteilt ist, welche - von der Ionenquelle zum Massen­spektrometer-Quadrupol gesehen - auf jeweils gegenüber dem vorherigen Bereich ansteigendem, negativem Gleich­spannungspotential liegen. Damit wird am jeweils n-ten Oktopol-Bereich ein Gleichspannungspotential erzeugt, das negativ gegenüber dem (n - 1)-ten Bereich aber posi­iv gegenüber dem (n + 1)-ten Bereich ist. Im Zentrum bzw. in der Achse der Oktopol-Anordnung wird damit ein homogenes elektrisches Feld in Achsrichtung zum Massen­spektrometer-Quadrupol erzeugt, welches den Produkt-­Ionen als treibende Kraft dient. Da die Zufalls-Bewegungs­ energie der Produkt-Ionen im allgemeinen nicht größer als 1 eV ist, genügen bereits sehr geringe Feldstärken, wodurch Störungen des Massenspektrometer-Quadrupols durch hohe kinetische Energien der ankommenden Produkt-­Ionen sicher vermieden werden.This is achieved in accordance with the present invention in that the octopole arrangement is divided in the longitudinal direction into individual regions which are electrically insulated from one another and which, viewed from the ion source to the mass spectrometer quadrupole, are each at a negative DC voltage potential which rises in relation to the previous region. In this way, a DC voltage potential is generated at the nth octopole range, which is negative compared to the (n - 1) th range but positive compared to the (n + 1) th range. In the center or in the axis of the octopole arrangement, a homogeneous electric field is generated in the axial direction to the mass spectrometer quadrupole, which serves as the driving force for the product ions. Because the random movement energy of the product ions is generally not greater than 1 eV, very low field strengths are sufficient, as a result of which disturbances in the mass spectrometer quadrupole due to high kinetic energies of the incoming product ions are reliably avoided.

Die am Oktopol insgesamt wirksame Gleichspannung liegt nach einer bevorzugten Ausbildung der Erfindung im Be­reich 5 bis 30 V.According to a preferred embodiment of the invention, the total DC voltage effective at the octopole is in the range 5 to 30 V.

Nach einer weiteren Ausgestaltung der Erfindung ist vorgesehen, daß die Gleichspannungs-Feldstärke am Oktopol gleichmäßig 0,5 bis 3 V/cm beträgt, vorzugsweise 1 V/cm.According to a further embodiment of the invention, it is provided that the direct voltage field strength at the octopole is uniformly 0.5 to 3 V / cm, preferably 1 V / cm.

Da die Zufalls-Bewegungsenergie der Produkt-Ionen im allgemeinen nicht größer als 1 eV ist, genügt an sich eine Feldstärke von 1 V/cm. Dies ergibt z.B. bei einer 10 cm langen Oktopol-Anordnung Produkt-Ionen mit Energien von maximal 10 eV, was für den Massenspektrometer-­Quadrupol keine Störung bewirkt, da dessen Energieakzep­tanz üblicherweise bei etwa 40 eV liegt.Since the random kinetic energy of the product ions is generally not greater than 1 eV, a field strength of 1 V / cm is in itself sufficient. This gives e.g. with a 10 cm long octopole arrangement, product ions with energies of at most 10 eV, which does not cause any disturbance for the mass spectrometer quadrupole, since its energy acceptance is usually around 40 eV.

Gemäß einer bevorzugten weiteren Ausgestaltung der Erfindung liegen die einzelnen Oktopol-Bereiche über eine Widerstandskette an einer gemeinsamen Gleich­spannungsversorgung, was einen einfachen Aufbau der Anordnung ermöglicht und einen kontrollierten Feldver­lauf über die gesamte Länge der Oktopol-Anordnung er­möglicht.According to a preferred further embodiment of the invention, the individual octopole regions are connected to a common DC voltage supply via a resistor chain, which enables a simple structure of the arrangement and enables a controlled field profile over the entire length of the octopole arrangement.

Die Erfindung wird im folgenden noch anhand der Zeich­nung näher erläutert.

  • Fig. 1 zeigt in schematischer,geschnittener Darstellung eine Massenspektrometer-Anordnung nach der vorliegenden Erfindung,
  • Fig. 2 einen schematischen Schnitt durch einen einzelnen Oktopol-Bereich entlang der Linie II-II in Fig. 1 in anderem Maßstab,
  • Fig. 3 ein Potential V/Radius r-Diagramm der Anordnung nach Fig. 2,
  • Fig. 4 eine in drei einzelne Bereiche aufgeteilte Okto­pol-Anordnung zur Verwendung in einer Massenspektro­meter-Anordnung nach der Erfindung und
  • Fig. 5 ein Potential/Radius/Längserstreckung-Diagramm einer Oktopol-Anordnung gemäß Fig. 4.
The invention is explained in more detail below with reference to the drawing.
  • 1 shows a schematic, sectional illustration of a mass spectrometer arrangement according to the present invention,
  • Fig. 2 shows a schematic section through an individual Octopole area along the line II-II in Fig. 1 on a different scale,
  • 3 shows a potential V / radius r diagram of the arrangement according to FIG. 2,
  • Fig. 4 shows an octopole arrangement divided into three individual areas for use in a mass spectrometer arrangement according to the invention and
  • 5 shows a potential / radius / longitudinal extension diagram of an octopole arrangement according to FIG. 4.

Die Massenspektrometer-Anordnung nach Fig. 1 weist eine Ionenquelle 1 von beliebiger, hier nicht näher interes­sierender Bauart, einen an die Ionenquelle 1 anschließen­den Reaktionsraum 2, sowie einen in Hauptbewegungsrich­tung z der von der Ionenquelle 1 gelieferten Primär-Ionen an den Reaktionsraum 2 anschließenden Massenspektrometer-­Quadrupol 3 auf. Der Reaktionsraum 2, dem über einen Anschluß 4 ein Gas bzw. Gasgemisch zugeführt werden kann, ist von einer Oktopol-Anordnung 5 mit einem senk­recht zur Hauptbewegungsrichtung z der Primär-Ionen wirkenden Hochfrequenz-8-Pol-Feld umgeben, das zur Sammlung, Halterung bzw. Führung der eine sehr niedrige Bewegungsenergie von typischerweise unterhalb 100 eV aufweisenden Primär-Ionen dient. Die im Massenspektro­meter-Quadrupol 3 auf hier ebenfalls nicht weiter interessante, bekannte Art selektierten Produkt-Ionen gelangen an einen Ionensensor 6, der ebenfalls von be­kannter bzw. üblicher Bauart sein kann und dessen Funktion und Wirkungsweise hier nicht näher interessiert.The mass spectrometer arrangement according to FIG. 1 has an ion source 1 of any design that is not of interest here, a reaction chamber 2 adjoining the ion source 1, and a mass spectrometer connecting the primary ions supplied by the ion source 1 to the reaction chamber 2 in the main direction of movement z Quadrupole 3 on. The reaction chamber 2, to which a gas or gas mixture can be supplied via a connection 4, is surrounded by an octopole arrangement 5 with a high-frequency 8-pole field acting perpendicular to the main direction of movement z of the primary ions, which is used for collection and mounting or guidance of the primary ions, which have a very low kinetic energy of typically below 100 eV. The product ions selected in the mass spectrometer quadrupole 3, which are likewise of no further interest here, come to an ion sensor 6, which may also be of a known or customary type and whose function and mode of operation are of no greater interest here.

Der Einfachheit der Darstellung wegen sind verschiedene, teilsweise für die Funktion der Anordnung im üblichen Betrieb unerlässliche Zusatzeinrichtungen, wie Blenden bzw. Linsen für den Ionenstrahl oder Vakuumpumpen und Abdichtungen und dergleichen nicht gezeichnet, da sie im Zusammenhang mit der vorliegenden Erfindung von untergeordneter Bedeutung sind.For the sake of simplicity of illustration, various additional devices, such as diaphragms or lenses for the ion beam or vacuum pumps and seals and the like, which are partly essential for the function of the arrangement in normal operation, are not shown, since they are of minor importance in connection with the present invention.

Die Oktopol-Anordnung 5 ist in Längsrichtung - also in Hauptbewegungsrichtung z der aus der Ionenquelle 1 in einem Strahl austretenden Primär-Ionen - in drei einzelne, voneinander elektrisch isolierte Bereiche 7, 8, 9 auf­geteilt, welche - von der Ionenquelle 1 zum Massen­spektrometer-Quadrupol 3 gesehen - auf jeweils gegenüber dem vorherigen Bereich ansteigendem negativen Gleich­spannungspotential liegen.The octopole arrangement 5 is divided in the longitudinal direction - ie in the main direction of movement z of the primary ions emerging from the ion source 1 in a beam - into three individual regions 7, 8, 9 which are electrically insulated from one another and which - from the ion source 1 to the mass spectrometer - Quadrupole 3 seen - lie on the negative direct voltage potential that rises in each case with respect to the previous region.

In Fig. 2 sind die einzelnen acht Stäbe des Bereiches 7 der Oktopol-Anordnung 5 im Schnitt angedeutet. Je vier davon sind gemeinsam kontaktiert, wobei auf hier nicht dargestellte Weise ein hochfrequentes Wechselfeld (Potential V≈ ) angelegt wird, welches im Innenraum zwi­schen den acht Stäben der Oktopol-Anordnung ein Hoch­frequenzführungsfeld Veff bewirkt, welches im Diagramm nach Fig. 3 angedeutet ist. Mit ro und -ro sind in Fig. 3 die Ränder bzw. Oberflächen von zwei gegenüber­liegenden Stäben markiert - es ist zu erkennen, daß das effektive Potential im Zentrum der Anordnung (r = 0) Null ist und gegen die Oktopol-Elektrodenstäbe hin wie eine Parabelfunktion höherer Ordnung gegen unendlich ansteigt. Dieses Potential Veff wirkt dem Raumladungs­druck (Coulomb-Abstoßung zwischen den Ladungen) der nur sehr niedrige Bewegungsenergie aufweisenden Ionen ent­gegen und hält damit diese in einem Querschnitt, der durch die Dimension der Oktopol-Anordnung 5 vorgegeben ist.The individual eight rods of the area 7 of the octopole arrangement 5 are indicated in section in FIG. 2. Four of them are contacted together, a high-frequency alternating field (potential V≈) being applied in a manner not shown here, which causes a high-frequency guide field V eff in the interior between the eight rods of the octopole arrangement, which is indicated in the diagram in FIG. 3 . The edges or surfaces of two opposite rods are marked with r o and -r o in FIG. 3 - it can be seen that the effective potential in the center of the arrangement (r = 0) is zero and towards the octopole electrode rods how a parabolic function of higher order rises towards infinity. This potential V eff counteracts the space charge pressure (Coulomb repulsion between the charges) of the ions which have only very low kinetic energy and thus holds them in a cross section which is predetermined by the dimension of the octopole arrangement 5.

Die auch aus Fig. 4 ersichtliche Aufteilung der gesamten Oktopol-Anordnung 5 in drei einzelne, ein dem Hoch­frequenz-Führungsfeld überlagertes Gleichspannungsfeld erzeugende Bereiche 7, 8, 9 dient dazu, die im Reaktions­raum 2 von den Primär-Ionen in Stößen mit den Gasteil­chen des über den Anschluß 4 zugeführten Gases bzw.The division of the entire octopole arrangement 5, which can also be seen in FIG. 4, into three individual regions 7, 8, 9 which generate a direct current field which is superimposed on the high-frequency guide field, serves to separate the primary ions from the primary ions in collisions with the gas particles Gas supplied via port 4 or

Gasgemisches erzeugten Produkt-Ionen möglichst rasch und vollständig aus dem Reaktionsraum 2 zu bringen und dem Massenspektrometer-Quadrupol 3 (Fig. 1) zur Selek­tion bzw. zum anschließenden Nachweis zuzuführen. In Fig. 4 sind auch schematisch die Potentialanschlüsse an den Bereichen 7, 8, 9 der Oktopol-Anordnung 5 darge­stellt; das Hochfrequenz-Führungsfeld bzw. das Potential V≈ ist für alle drei Bereiche gleich; das überlagerte negative Gleichspannungspotential steigt von U₁ über U₂ bis U₃ an, wobei die entsprechende Feldstärke bei­spielsweise 1 V/cm beträgt. Das Gesamtpotential VTot über die Länge der Oktopol-Anordnung ist aus Fig. 5 zu ersehen. Das Potential des HF-Feldes ist ein parabel­förmiger Trog, der durch das - hier über die ganze Länge gleichmäßige - Potential des überlagerten E-Feldes am Eingang der Oktopol-Anordnung quasi angehoben wird. Aus der Darstellung der Fig. 5 ist auch bildlich leicht zu erkennen, wie die Ionen einerseits in dem im Inneren der Oktopol-Anordnung definierten Reaktionsraum gehalten und andererseits in Richtung zum Massenspektrometer-­Quadrupol rasch aber mit geringer Bewegungsenergie ab­geführt werden.Bring the gas mixture generated product ions as quickly and completely as possible from the reaction chamber 2 and feed them to the mass spectrometer quadrupole 3 (FIG. 1) for selection or subsequent detection. 4 also schematically shows the potential connections at the areas 7, 8, 9 of the octopole arrangement 5; the high-frequency guide field or the potential V≈ is the same for all three areas; the superimposed negative DC voltage potential increases from U₁ to U₂ to U₃, the corresponding field strength being, for example, 1 V / cm. The total potential V Tot over the length of the octopole arrangement can be seen from FIG. 5. The potential of the RF field is a parabolic trough, which is quasi raised by the - here uniform over the entire length - potential of the superimposed E field at the entrance of the octopole arrangement. From the illustration in FIG. 5 it is also easy to see figuratively how the ions on the one hand are held in the reaction space defined in the interior of the octopole arrangement and on the other hand are rapidly discharged towards the mass spectrometer quadrupole but with little kinetic energy.

Abweichend von der dargestellten Aufteilung der Oktopol-­Anordnung 5 in drei einzelne Bereiche könnte natürlich auch eine Aufteilung in zwei oder aber in an sich be­liebig viele Bereiche erfolgen, die - wie erwähnt - auf unterschiedlichem Gleichspannungspotential liegen.Deviating from the shown division of the octopole arrangement 5 into three individual regions, a division into two or, as such, any number of regions could naturally also take place which, as mentioned, are at different DC potentials.

Claims (5)

1. Massenspektrometer-Anordnung, mit einer Ionenquelle, einem an diese anschließenden, ein Gasgemisch auf­nehmenden und von einer Oktopol-Anordnung mit einem senkrecht zur Hauptbewegungsrichtung der von der Ionenquelle gelieferten Primär-Ionen wirkenden Hochfrequenz-8-Pol-Feld umgebenen Reaktionsraum, sowie einem in Hauptbewegungsrichtung der niedrige Bewegungsenergie aufweisenden Primär-Ionen an den Reaktionsraum anschließenden Massenspektrometer-­Quadrupol, dadurch gekennzeich­net, daß die Oktopol-Anordnung (5) in Längsrich­tung in einzelne, voneinander elektrisch isolierte Bereiche (7, 8, 9) aufgeteilt ist, welche - von der Ionenquelle (1) zum Massenspektrometer-Quadrupol (3) gesehen - auf jeweils gegenüber dem vorherigen Bereich ansteigendem, negativem Gleichspannungspo­tential (U₁, U₂, U₃) liegen.1. mass spectrometer arrangement, with an ion source, an adjoining the latter, receiving a gas mixture and surrounded by an octopole arrangement with a high-frequency 8-pole field acting perpendicular to the main direction of movement of the primary ions supplied by the ion source, and a reaction chamber in the main direction of movement of the primary ions having low kinetic energy adjoining the reaction space, the mass spectrometer quadrupole, characterized in that the octopole arrangement (5) is divided in the longitudinal direction into individual regions (7, 8, 9) which are electrically insulated from one another, which - by seen the ion source (1) to the mass spectrometer quadrupole (3) - on each rising relative to the previous area, negative DC voltage potential (U₁, U₂, U₃). 2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß die am Oktopol (5) insgesamte wirksame Gleich­spannung im Bereich von 5 - 30 V liegt.2. Arrangement according to claim 1, characterized in that the total effective DC voltage at the octopole (5) is in the range of 5 - 30 V. 3. Anordnung nach Anspruch 1 oder 2, dadurch gekenn­zeichnet, daß die Gleichspannungs-Feldstärke am Oktopol gleichmäßig 0,5 bis 3 V/cm beträgt.3. Arrangement according to claim 1 or 2, characterized in that the direct voltage field strength at the octopole is uniformly 0.5 to 3 V / cm. 4. Anordnung nach Anspruch 3, dadurch gekennzeichnet, daß die Gleichspannungs-Feldstärke am Oktopol gleichmäßig 1 V/cm beträgt.4. Arrangement according to claim 3, characterized in that the direct voltage field strength at the octopole is evenly 1 V / cm. 5. Anordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die einzelnen Oktopol-Bereiche (7, 8, 9) über eine Widerstandskette an einer gemein­samen Gleichspannungsversorgung liegen.5. Arrangement according to one of claims 1 to 4, characterized in that the individual octopole regions (7, 8, 9) are connected to a common DC voltage supply via a resistor chain.
EP19870890179 1987-05-11 1987-07-20 Mass spectrometer Expired - Lifetime EP0290712B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0117787A AT388629B (en) 1987-05-11 1987-05-11 MASS SPECTROMETER ARRANGEMENT
AT1177/87 1987-05-11

Publications (2)

Publication Number Publication Date
EP0290712A1 true EP0290712A1 (en) 1988-11-17
EP0290712B1 EP0290712B1 (en) 1990-11-07

Family

ID=3508276

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19870890179 Expired - Lifetime EP0290712B1 (en) 1987-05-11 1987-07-20 Mass spectrometer

Country Status (3)

Country Link
EP (1) EP0290712B1 (en)
AT (1) AT388629B (en)
DE (1) DE3766102D1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2232813A (en) * 1989-05-19 1990-12-19 Jeol Ltd Simultaneous detection type mass spectrometer
WO1997007530A1 (en) * 1995-08-11 1997-02-27 Mds Health Group Limited Spectrometer with axial field
DE19628093A1 (en) * 1996-07-12 1998-01-22 Deutsche Forsch Luft Raumfahrt Method of identifying sample molecules
WO2004013891A1 (en) * 2002-08-05 2004-02-12 University Of British Columbia Geometry for generating a two-dimensional substantially quadrupole field
DE10236345A1 (en) * 2002-08-08 2004-02-19 Bruker Daltonik Gmbh Ion-analyzing device for ejecting stored ions on-axis selected by bulk from linear ion traps has apertures, an ion detector and an ion trap made up of high-frequency-wired pole rods
US6800846B2 (en) 2002-05-30 2004-10-05 Micromass Uk Limited Mass spectrometer
US6884995B2 (en) 2002-07-03 2005-04-26 Micromass Uk Limited Mass spectrometer
US6982416B2 (en) 2000-12-15 2006-01-03 V & F Analyse - Und Messtechnik Ges. M.B.H. Method and device for evaluating the state of organisms and natural products and for analyzing a gaseous mixture comprising main constituents and secondary constituents
US7045797B2 (en) 2002-08-05 2006-05-16 The University Of British Columbia Axial ejection with improved geometry for generating a two-dimensional substantially quadrupole field
US7141789B2 (en) 2003-09-25 2006-11-28 Mds Inc. Method and apparatus for providing two-dimensional substantially quadrupole fields having selected hexapole components
US20110057099A1 (en) * 2005-03-29 2011-03-10 Alexander Alekseevich Makarov Ion trapping
EP3418714A1 (en) 2017-06-19 2018-12-26 V&F Analyse- und Messtechnik GmbH Device and method for partial transfer of a liquid sample comprising multiple components, and method for the online determination and analysis of these components

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7675031B2 (en) 2008-05-29 2010-03-09 Thermo Finnigan Llc Auxiliary drag field electrodes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4005291A (en) * 1972-01-04 1977-01-25 Massachusetts Institute Of Technology Ionization method for mass spectrometry
US4234791A (en) * 1978-11-13 1980-11-18 Research Corporation Tandem quadrupole mass spectrometer for selected ion fragmentation studies and low energy collision induced dissociator therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123155A (en) * 1982-12-28 1984-07-16 Jeol Ltd Tetrode mass spectrograph

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4005291A (en) * 1972-01-04 1977-01-25 Massachusetts Institute Of Technology Ionization method for mass spectrometry
US4234791A (en) * 1978-11-13 1980-11-18 Research Corporation Tandem quadrupole mass spectrometer for selected ion fragmentation studies and low energy collision induced dissociator therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF MASS SPECTROMETRY AND ION PROCESSES, Band 73, Nr. 3, 28. November 1986, Seiten 197-235, Elsevier Science Publishers, B.V., Amsterdam, NL; I. SZABO: "New ion-optical devices utilizing oscillatory electric fields.I.Principle of operation and analytical theory of multipole devices with two-dimensional electric fields" *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2232813A (en) * 1989-05-19 1990-12-19 Jeol Ltd Simultaneous detection type mass spectrometer
GB2232813B (en) * 1989-05-19 1993-09-29 Jeol Ltd Simultaneous detection type mass spectrometer
WO1997007530A1 (en) * 1995-08-11 1997-02-27 Mds Health Group Limited Spectrometer with axial field
US5847386A (en) * 1995-08-11 1998-12-08 Mds Inc. Spectrometer with axial field
US6111250A (en) * 1995-08-11 2000-08-29 Mds Health Group Limited Quadrupole with axial DC field
DE19628093A1 (en) * 1996-07-12 1998-01-22 Deutsche Forsch Luft Raumfahrt Method of identifying sample molecules
DE19628093B4 (en) * 1996-07-12 2006-09-21 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method and device for detecting sample molecules
US6982416B2 (en) 2000-12-15 2006-01-03 V & F Analyse - Und Messtechnik Ges. M.B.H. Method and device for evaluating the state of organisms and natural products and for analyzing a gaseous mixture comprising main constituents and secondary constituents
US6800846B2 (en) 2002-05-30 2004-10-05 Micromass Uk Limited Mass spectrometer
US6884995B2 (en) 2002-07-03 2005-04-26 Micromass Uk Limited Mass spectrometer
US6897438B2 (en) 2002-08-05 2005-05-24 University Of British Columbia Geometry for generating a two-dimensional substantially quadrupole field
US7045797B2 (en) 2002-08-05 2006-05-16 The University Of British Columbia Axial ejection with improved geometry for generating a two-dimensional substantially quadrupole field
WO2004013891A1 (en) * 2002-08-05 2004-02-12 University Of British Columbia Geometry for generating a two-dimensional substantially quadrupole field
DE10236345A1 (en) * 2002-08-08 2004-02-19 Bruker Daltonik Gmbh Ion-analyzing device for ejecting stored ions on-axis selected by bulk from linear ion traps has apertures, an ion detector and an ion trap made up of high-frequency-wired pole rods
US7141789B2 (en) 2003-09-25 2006-11-28 Mds Inc. Method and apparatus for providing two-dimensional substantially quadrupole fields having selected hexapole components
US20110057099A1 (en) * 2005-03-29 2011-03-10 Alexander Alekseevich Makarov Ion trapping
US8288714B2 (en) * 2005-03-29 2012-10-16 Thermo Finnigan Llc Ion trapping
EP3418714A1 (en) 2017-06-19 2018-12-26 V&F Analyse- und Messtechnik GmbH Device and method for partial transfer of a liquid sample comprising multiple components, and method for the online determination and analysis of these components
WO2018234245A1 (en) 2017-06-19 2018-12-27 V&F Analyse- Und Messtechnik Gmbh Device and method for partial transfer of a liquid sample, comprising multiple components and method for the online determination and analysis of these components

Also Published As

Publication number Publication date
ATA117787A (en) 1988-12-15
AT388629B (en) 1989-08-10
DE3766102D1 (en) 1990-12-13
EP0290712B1 (en) 1990-11-07

Similar Documents

Publication Publication Date Title
DE102012008250B4 (en) Ion mobility separator for mass spectrometers
DE3423394C2 (en) Runtime mass spectrometer
EP0290712B1 (en) Mass spectrometer
CH615532A5 (en)
DE2461628A1 (en) DEVICE AND METHOD FOR PLASMA PARTICLE SEPARATION
EP0321819B1 (en) Method for the massspectrometric analysis of a gas mixture, and mass sprectrometer for carrying out the method
DE882769C (en) Method and device for the separation of charged particles with different e / m ratios
DE2255302C3 (en) Equipment for secondary ion mass spectroscopy
DE1598072A1 (en) Multipole mass filter
DE1156515B (en) Device for generating negative ions
DE2934408A1 (en) ION SOURCE WITH COLD CATHODE AND EQUIPPED MASS SPECTROMETER
DE102012008249B4 (en) Improved resolution for ion mobility spectrometer
DE19635645C2 (en) Method for the high-resolution spectral recording of analyte ions in a linear time-of-flight mass spectrometer
DE112016005070B4 (en) MASS SPECTROMETRY
DE2331091A1 (en) DEVICE FOR DETERMINING THE ENERGY OF CHARGED PARTICLES
DE2458025A1 (en) DEVICE FOR MASS ANALYSIS AND STRUCTURAL ANALYSIS OF A SURFACE LAYER BY ION SCATTERING
EP0221339B1 (en) Ion cyclotron resonance spectrometer
DE2705430B2 (en) Electrostatic analyzer for charged particles
DE1034884B (en) Device for separating ions of different charge-mass ratios
EP0000865A1 (en) Ion source comprising an ionisation chamber for chemical ionisation
DE2048862A1 (en) Device for spectrophotometri see analysis
DE4317749A1 (en) Mass spectrometer with means for monitoring the radiation emitted when ions collide with a target gas
DE1286647B (en) Electron beam generation system for high-performance amplifier klystrons
DE2362560A1 (en) DOUBLE FOCUSING MASS SPECTROMETER WITH MULTIPLE ION BEAMS
DE2012479C3 (en) Method and device for mass analysis with the aid of a mass filter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19890207

17Q First examination report despatched

Effective date: 19900403

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3766102

Country of ref document: DE

Date of ref document: 19901213

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

ITTA It: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000620

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000623

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000706

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000808

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010720

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050720