EP0263199A1 - Membrane compressor - Google Patents

Membrane compressor Download PDF

Info

Publication number
EP0263199A1
EP0263199A1 EP86114036A EP86114036A EP0263199A1 EP 0263199 A1 EP0263199 A1 EP 0263199A1 EP 86114036 A EP86114036 A EP 86114036A EP 86114036 A EP86114036 A EP 86114036A EP 0263199 A1 EP0263199 A1 EP 0263199A1
Authority
EP
European Patent Office
Prior art keywords
diaphragm
membrane
diameter
housing part
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86114036A
Other languages
German (de)
French (fr)
Other versions
EP0263199B2 (en
EP0263199B1 (en
Inventor
Stephan Dipl-Wirt-Ing Brugger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8195489&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0263199(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to AT86114036T priority Critical patent/ATE65299T1/en
Priority to EP86114036A priority patent/EP0263199B2/en
Priority to DE8626979U priority patent/DE8626979U1/de
Priority to DE8686114036T priority patent/DE3680339D1/en
Publication of EP0263199A1 publication Critical patent/EP0263199A1/en
Application granted granted Critical
Publication of EP0263199B1 publication Critical patent/EP0263199B1/en
Publication of EP0263199B2 publication Critical patent/EP0263199B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms

Definitions

  • the invention relates to a membrane compressor with a compressor housing, which is composed of a lower housing part and an upper housing part.
  • a flexible membrane is firmly clamped with its edge between the lower housing part and the upper housing part.
  • the membrane is inserted between a lower membrane plate and an upper membrane plate, the membrane plates having a smaller diameter than the membrane, so that the membrane remains flexible in the area of its edge.
  • a connecting rod driven by an eccentric is connected to the diaphragm and the diaphragm plates in order to set them together in a stroke movement.
  • the diaphragm, the upper diaphragm plate and the upper housing part delimit a working area, the upper diaphragm plate reaching almost to the upper inner wall of the upper part of the housing at top dead center and an annular channel-shaped dead space remaining in the area of the edge of the diaphragm. It there is also an inlet and an outlet for the medium to be compressed, which are connected to the working space.
  • a piston chamber for receiving the diaphragm and the diaphragm plate in the bottom dead center.
  • Membrane compressors of this type are used to convey or compress liquid or gaseous media.
  • the drive power is between 1 watt and approx. 3 kw, so that such membrane compressors have a wide range of applications.
  • smaller diaphragm compressors with drive powers of up to approximately 200 watts are often used as drive or actuation units for devices in the medical field due to their simple construction. For example, they serve as pumps for inhalers.
  • the design goal of the membrane compressors currently on the market is to cover the largest possible area of application, which means that the highest possible pressure or the highest possible throughput of the flowing medium should be achieved with the available drive power.
  • Conventional diaphragm compressors therefore achieve relatively high, maximum pressures that can be generated even with low drive power. This is expressed in a pressure-volume flow characteristic curve that rises steeply to high pressure values. The maximum pressure is reached with a volume flow of zero. In practice, this corresponds to the case that the outlet of the compressor is shut off, for example by locking.
  • the pressure built up inside the work area reaches up to several times the normal operating pressure.
  • Membrane compressor and devices connected to them must be designed for these high, possible pressure values, although normally no such loads are provided at all.
  • connecting hoses and associated hose connections must be designed to be correspondingly complex in order to be able to cope with the possible maximum pressure.
  • special connection techniques such as hose clamps are necessary.
  • Such elaborate, constructive measures to protect against excess pressure are certainly to be represented when it comes to devices that are built as individual pieces or in small series. In the case of large series devices that are under strong price pressure, such additional expenses represent a considerable cost factor only for safety reasons, which can no longer be accepted.
  • a membrane compressor of the type mentioned at the beginning It is solved in that the working chamber formed in the upper housing part of the compressor housing has a larger diameter than the piston chamber in the lower housing part, in that the diameter of the lower one Membrane plate is noticeably smaller than the diameter of the piston chamber, so that an annular gap remains between the lower membrane plate and the opposite inner wall of the lower housing part, and in that the diameter of the upper membrane plate corresponds at least to that of the lower membrane plate.
  • This design of the diaphragm compressor according to the invention results in a dead space when the top dead center is reached, which is filled with compressed medium.
  • This dead space immediately above the clamped edge of the membrane concentrically surrounds the upper diaphragm plate and is shifted outwards compared to conventional diaphragm compressors. Because the lower diaphragm plate does not reach all the way to the inner edge of the piston space in the lower housing part, the non-stiffened edge area of the flexible diaphragm is enlarged. When the maximum possible pressure is reached, for example when the outlet is blocked, in the dead space mentioned, the membrane can move downward into the annular gap between the lower membrane plate and the edge of the lower housing part; it thus represents overpressure protection.
  • the diameter of the working space is approximately 5 to 15 percent larger than the diameter of the piston space.
  • the diameter of the lower diaphragm plate is approximately 3 to 10 percent smaller than the diameter of the piston chamber.
  • the diameter of the upper membrane plate is larger than the diameter of the lower membrane plate. This results in an increased compression ratio, so that the eccentricity of the driving eccentric can be reduced. Due to the reduced stroke, the edge areas of the membrane that are subjected to bending are less stressed, which leads to an increase in the membrane service life and also in the other moving components.
  • a circumferential groove is expediently provided in the upper housing part, which receives the edge of the membrane. In this groove, the elastic membrane is held in its intended position in the pressed state.
  • the membrane compressor shown in Fig. 1 has a compressor housing (1) which is composed of a lower housing part (2) and an upper housing part (3).
  • a circumferential groove (4) is provided in the housing upper part (3), which receives a membrane (5) made of a flexible material, for example rubber, with its edge (6).
  • the membrane (5) is held in position within the groove (4) by pressing between the lower housing part (2) and the upper housing part (3).
  • a lower membrane plate (7) or an upper membrane plate (8) lie on both sides of the membrane (5).
  • the two diaphragm plates (7, 8) are torsionally rigid, so that the interposed diaphragm (5) remains elastically deformable only in the area of its edge (6).
  • the diaphragm compressor is driven by a motor (not shown).
  • An eccentric (10) is slid onto its motor shaft (9). The eccentric rotary movement is transmitted to a connecting rod (12) via a bearing (11).
  • the free end of the connecting rod (12) is connected to the lower diaphragm plate (7), the upper diaphragm plate (8) and the interposed diaphragm (5) via an intermediate disc (13).
  • a countersunk screw (14) ensures that the diaphragm plate (7, 8) and diaphragm (5) are securely attached to the connecting rod (12).
  • a working space (15) is delimited by the uncovered areas of the membrane (5), the upper membrane plate (8) and the upper housing part (3).
  • the medium to be compressed for example gas
  • enters the working space (15) which it leaves through an outlet (17) after compression.
  • a piston chamber (18) is divided by the membrane (5) from the working chamber (15), which is essentially embedded in the lower housing part (2). At the bottom dead center, this piston chamber (18) receives the diaphragm (5) and the diaphragm plate (7, 8).
  • This dead space (19) denotes the dead space in which compressed medium remains when the upper diaphragm plate (8) comes to rest on the flat inner wall of the upper housing part (3) up to a gap of approx. 0.1 mm at the top dead center.
  • This dead space (19) has the shape of an annular channel and is located in the region of the edge (6) of the membrane (5).
  • Those delimiting lines of the lower diaphragm plate (7), the upper diaphragm plate (8) and the upper housing part (3) are shown in dashed lines, which run differently in a conventional diaphragm compressor than in the diaphragm compressor according to the invention shown here is.
  • the upper diaphragm plate has a much smaller diameter than the lower diaphragm plate (7), while according to the invention the respective diameters are the same.
  • the diameter of the working chamber 15 is larger than the diameter of the piston chamber 18; in conventional compressors, the respective diameters are approximately the same size.
  • the increase in the diameter of the upper diaphragm plate (8) and the working space (15) in the upper housing part (3) in the same direction leads to a displacement of the dead space (19) radially outwards in comparison to conventional compressors (see dashed lines). This displacement of the dead space (19) to the outside is simultaneously associated with an increase in its volume by approximately 40 percent.
  • the diameter of the lower membrane plate (7) is enlarged far into the area of the edge (6) of the membrane (5). If the pressure of the compressed medium in the dead space (19) reaches a certain critical value, the membrane (5) can move downwards into the annular gap (20) between the lower housing part (2) and the lower membrane plate (7), which automatically causes a pressure limitation .
  • Fig. 2 illustrates the effects of the design changes made in the diaphragm compressor according to the invention compared to a conventional compressor.
  • the pressure P built up in the working space (15) (cf. FIG. 1) is above the volume throughput a flowing medium, which flows from the inlet (16) to the outlet (17), applied.
  • the characteristic curve K h of a conventional diaphragm compressor is drawn in, as can be seen in FIG. results. What is striking is the sharp increase in pressure P with a decrease in the flowing volume per unit of time. In the extreme case, the volume flow is equal to 0, which corresponds, for example, to the operation of the compressor with the outlet (17) closed. The pressure P rises to the maximum possible value. This pressure peak, which is possible at any time in conventional diaphragm compressors, must be taken into account; For example, special hose connections are required to connect a hose to the outlet (17). Because of the steepness of the characteristic curve K h , there is also a large scattering range SB h in the characteristic curve field. While the operating point B is shifted to a tolerable extent on a vertical parallel to the ordinate axis up or down, this spreading range has a much stronger effect with regard to the maximum pressure.
  • the diaphragm compressor according to the invention has a characteristic curve K e , which likewise passes through the same operating point B.
  • the characteristic curve K e is substantially flatter, namely almost straight.
  • the maximum pressure that can be generated by the compressor is considerably lower; the spreading range SB e to be taken into account is correspondingly narrower.
  • the same operating point B can be set with the membrane compressor according to the invention, because of the the pressure-volume flow characteristic curve K e, which runs much flatter, dangerous pressure peaks no longer occur even when the outlet (17) is completely shut off.

Abstract

A diaphragm compressor has a compressor housing (1) comprising a bottom section (2) and an upper section (3). A flexible diaphragm (5) is inserted between a bottom diaphragm disc (7) and an upper diaphragm disc (8) and projects laterally. The diaphragm (5) is firmly clamped by its edge (6) between the bottom section (2) and upper section (3) of the housing. A connecting rod (12) produces a lifting motion of the diaphragm (5) and the adjacent diaphragm discs (7, 8). This compresses a medium in a working chamber (15). Below the diaphragm (5) is a piston chamber (18) in the lower section (2) of the housing. The diameter of the working chamber (15) formed in the upper section (3) of the housing has a greater diameter than the piston chamber (18). The diameter of the bottom diaphragm disc (7) is distinctly smaller than the diameter of the piston chamber (18). As a result an annular gap (20) is left between the bottom diaphragm disc (7) and the opposing inside wall of the bottom section (2) of the housing. The diameter of the upper diaphragm disc (8) is thereby at least equal to that of the bottom diaphragm disc (7). The clearance (19) produced at the top dead centre between the upper section (3) of the housing, diaphragm (5) and upper diaphragm disc (8) takes the form of an annular duct and is greatly offset outward in a radial direction in the area of the edge (6) of the diaphragm (5). The proposed diaphragm compressor is outstanding by virtue of an improved characteristic behaviour. The increase in pressure given a reduction in the volume flow occurs much more slowly; the fluctuation in the maximum pressure which can be generated in the working chamber (15) is much less. <IMAGE>

Description

Die Erfindung betrifft einen Membrankompressor mit einem Verdichtergehäuse, das zusammengesetzt ist aus einem Gehäuseunterteil und einem Gehäuseoberteil. Eine flexible Membran ist mit ihrem Rand zwischen Gehäuseunterteil und Gehäuseoberteil fest eingespannt. Zwecks Versteifung ist die Membran zwischen einen unteren Membranteller und einen oberen Membranteller eingelegt, wobei die Membranteller geringeren Durchmesser als die Membran aufweisen, damit diese im Bereich ihres Randes flexibel bleibt. Ein von einem Exzenter angetriebenes Pleuel ist mit der Membran und den Membrantellern verbunden, um diese gemeinsam in eine Hubbewegung zu versetzen. Membran, oberer Membranteller und Gehäuseoberteil umgrenzen einen Arbeitsraum, wobei im oberen Totpunkt der obere Membranteller bis fast an die obere Innenwand des Gehäuseoberteils heranreicht und ein ringkanalförmiger Totraum im Bereich des Randes der Membran verbleibt. Es ist ferner ein Einlaß und ein Auslaß für das zu verdichtende Medium vorgesehen, welche mit dem Arbeitsraum in Verbindung stehen. Im Gehäuseunterteil befindet sich ein Kolbenraum zur Aufnahme der Membran und der Membranteller im unteren Totpunkt.The invention relates to a membrane compressor with a compressor housing, which is composed of a lower housing part and an upper housing part. A flexible membrane is firmly clamped with its edge between the lower housing part and the upper housing part. For the purpose of stiffening, the membrane is inserted between a lower membrane plate and an upper membrane plate, the membrane plates having a smaller diameter than the membrane, so that the membrane remains flexible in the area of its edge. A connecting rod driven by an eccentric is connected to the diaphragm and the diaphragm plates in order to set them together in a stroke movement. The diaphragm, the upper diaphragm plate and the upper housing part delimit a working area, the upper diaphragm plate reaching almost to the upper inner wall of the upper part of the housing at top dead center and an annular channel-shaped dead space remaining in the area of the edge of the diaphragm. It there is also an inlet and an outlet for the medium to be compressed, which are connected to the working space. In the lower part of the housing there is a piston chamber for receiving the diaphragm and the diaphragm plate in the bottom dead center.

Derartige Membrankompressoren werden zum Fördern oder Verdichten von flüssigen oder gasförmigen Medien eingesetzt. Je nach Bauart beträgt die Antriebsleistung zwischen 1 Watt und ca. 3 kw, so daß solche Membrankompressoren ein weites Anwendungsfeld haben. Insbesondere kleinere Membrankompressoren mit Antriebsleistungen bis ungefähr 200 Watt werden aufgrund ihrer einfachen Bauweise häufig als Antriebs- oder Betätigungseinheit für Geräte im medizintechnischen Bereich eingesetzt. Beispielsweise dienen sie als Pumpen für Inhalatoren.Membrane compressors of this type are used to convey or compress liquid or gaseous media. Depending on the design, the drive power is between 1 watt and approx. 3 kw, so that such membrane compressors have a wide range of applications. In particular, smaller diaphragm compressors with drive powers of up to approximately 200 watts are often used as drive or actuation units for devices in the medical field due to their simple construction. For example, they serve as pumps for inhalers.

Konstruktionsziel der bisher auf dem Markt befindlichen Membrankompressoren ist die Abdeckung eines möglichst großen Einsatzbereiches, was bedeutet, daß mit der zur Verfügung stehenden Antriebsleistung ein möglichst hoher Druck oder ein möglichst hoher Durchsatz des strömenden Mediums erreicht werden soll. Herkömmliche Membrankompressoren erreichen deshalb auch bei kleinen Antriebsleistungen relativ hohe, maximal erzeugbare Drücke. Dies kommt in einer zu hohen Druckwerten hin steil ansteigenden Druck-Volumenstrom-Kennlinie zum Ausdruck. Der Maximaldruck wird dabei bei einem Volumenstrom von Null erreicht. In der Praxis entspricht dies dem Falle, daß der Auslaß des Kompressors abgesperrt wird, beispielsweise durch Zuhalten. Der innerhalb des Arbeitsraums aufgebaute Druck erreicht dabei bis zum Mehrfachen des normalen Betriebsdrucks. Membrankompressor und daran angeschlossene Vorrichtungen müssen auf diese hohen, möglichen Druckwerte ausgelegt werden, obwohl im Normalfall derartige Belastungen überhaupt nicht vorgesehen sind. Insbesondere Verbindungsschläuche und zugehörige Schlauchverbindungen müssen entsprechend aufwendig ausgeführt sein, um dem möglichen Höchstdruck gewachsen zu sein. Teilweise sind spezielle Verbindungstechniken, wie Schlauchklemmen, notwendig. In anderen Fällen ist es sogar notwendig, spezielle Sicherheitsventile einzubauen, um im Falle einer Sperrung des Auslasses Beschädigungen zu vermeiden. Derartig aufwendige, konstruktive Maßnahmen zum Schutz gegen Überdruck sind sicherlich dann zu vertreten, wenn es sich um Geräte handelt, die als Einzelstücke oder in kleinen Serien gebaut werden. Bei Großseriengeräten, die unter einem starken Preisdruck stehen, stellen solche Mehraufwendungen lediglich aus Sicherheitsgründen jedoch einen erheblichen Kostenfaktor dar, der nicht mehr in Kauf genommen werden kann.The design goal of the membrane compressors currently on the market is to cover the largest possible area of application, which means that the highest possible pressure or the highest possible throughput of the flowing medium should be achieved with the available drive power. Conventional diaphragm compressors therefore achieve relatively high, maximum pressures that can be generated even with low drive power. This is expressed in a pressure-volume flow characteristic curve that rises steeply to high pressure values. The maximum pressure is reached with a volume flow of zero. In practice, this corresponds to the case that the outlet of the compressor is shut off, for example by locking. The pressure built up inside the work area reaches up to several times the normal operating pressure. Membrane compressor and devices connected to them must be designed for these high, possible pressure values, although normally no such loads are provided at all. In particular, connecting hoses and associated hose connections must be designed to be correspondingly complex in order to be able to cope with the possible maximum pressure. In some cases, special connection techniques such as hose clamps are necessary. In other cases, it is even necessary to install special safety valves to prevent damage if the outlet is blocked. Such elaborate, constructive measures to protect against excess pressure are certainly to be represented when it comes to devices that are built as individual pieces or in small series. In the case of large series devices that are under strong price pressure, such additional expenses represent a considerable cost factor only for safety reasons, which can no longer be accepted.

Angesichts dieser Nachteile im Stand der Technik ist es Aufgabe vorliegender Erfindung, einen Membrankompressor zu schaffen, bei dem der maximal auftretende Druck automatisch und ohne Vorsehen spezieller Bauelemente auf einen unkritischen Wert begrenzt ist, ohne daß bei normalen Betriebsverhältnissen Abstriche hinsichtlich des Wirkungsgrades hingenommen werden müßten.In view of these disadvantages in the prior art, it is an object of the present invention to provide a diaphragm compressor in which the maximum pressure which occurs is automatically limited to an uncritical value without the provision of special components, without sacrificing efficiency in normal operating conditions.

Bei der Lösung dieser Aufgabe wird ausgegangen von einem Membrankompressor der eingangs erwähnten Art; gelöst wird sie dadurch, daß der im Gehäuseoberteil des Verdichtergehäuses ausgebildete Arbeitsraum einen größeren Durchmesser aufweist als der Kolbenraum im Gehäuseunterteil, daß der Durchmesser des unteren Membrantellers merklich kleiner ist als der Durchmesser des Kolbenraums, so daß ein Ringspalt zwischen unterem Membranteller und gegenüberliegender Innenwand des Gehäuseunterteils verbleibt, und dadurch, daß der Durchmesser des oberen Membrantellers mindestens demjenigen des unteren Membrantellers entspricht. Durch diese konstruktive Auslegung des erfindungsgemäßen Membrankompressors ergibt sich bei Erreichen des oberen Totpunkts ein Totraum, welcher mit verdichtetem Medium ausgefüllt ist. Dieser Totraum unmittelbar über dem eingespannten Rand der Membran umgibt den oberen Membranteller konzentrisch und ist gegenüber herkömmlichen Membrankompressoren nach außen verschoben. Dadurch, daß der untere Membranteller nicht ganz bis an den inneren Rand des Kolbenraums im unteren Gehäuseteil heranreicht, ist der nichtversteifte Randbereich der flexiblen Membran vergrößert. Bei Erreichen des maximal möglichen Druckes, beispielsweise bei Sperrung des Auslasses, im erwähnten Totraum kann die Membran nach unten in den Ringspalt zwischen unterem Membranteller und Rand des Gehäuseunterteils ausweichen; sie stellt somit einen Überdruckschutz dar. Zusammen mit der weit nach außen verschobenen Lage des vergrößerten Totraums ergibt sich eine wesentlich verflachte Druck-Volumenstrom-Kennlinie des erfindungsgemäß ausgestalteten Membrankompressors. Bei unverändert günstigem Betriebsverhalten bei normalen Betriebsdrücken steigt der im Arbeitsraum erzeugte Druck bei Verringerung des Volumendurchsatzes wesentlich langsamer an, als dies bei herkömmlichen Kompressoren der Fall ist. Der Maximaldruck, der überhaupt erreicht werden kann, ist erheblich herabgesetzt. Bei einer unabsichtlichen Sperrung des Auslasses werden so gefährliche Druckspitzen vermieden; der Membrankompressor zeichnet sich durch eine selbsttätige Druckbegrenzung aus.In solving this problem, it is assumed that a membrane compressor of the type mentioned at the beginning; It is solved in that the working chamber formed in the upper housing part of the compressor housing has a larger diameter than the piston chamber in the lower housing part, in that the diameter of the lower one Membrane plate is noticeably smaller than the diameter of the piston chamber, so that an annular gap remains between the lower membrane plate and the opposite inner wall of the lower housing part, and in that the diameter of the upper membrane plate corresponds at least to that of the lower membrane plate. This design of the diaphragm compressor according to the invention results in a dead space when the top dead center is reached, which is filled with compressed medium. This dead space immediately above the clamped edge of the membrane concentrically surrounds the upper diaphragm plate and is shifted outwards compared to conventional diaphragm compressors. Because the lower diaphragm plate does not reach all the way to the inner edge of the piston space in the lower housing part, the non-stiffened edge area of the flexible diaphragm is enlarged. When the maximum possible pressure is reached, for example when the outlet is blocked, in the dead space mentioned, the membrane can move downward into the annular gap between the lower membrane plate and the edge of the lower housing part; it thus represents overpressure protection. Together with the position of the enlarged dead space that is shifted far outward, this results in a substantially flattened pressure-volume flow characteristic of the diaphragm compressor designed according to the invention. With unchanged favorable operating behavior at normal operating pressures, the pressure generated in the work space increases significantly more slowly with a reduction in volume throughput than is the case with conventional compressors. The maximum pressure that can be achieved is significantly reduced. If the outlet is blocked unintentionally, dangerous pressure peaks are avoided; the diaphragm compressor is characterized by an automatic pressure limitation.

Spezielle Bauteile zur Druckbegrenzung können entfallen. Ein weiterer Vorteil des vorgeschlagenen Membrankompressors liegt darin, daß der Streubereich der Druck-Volumenstrom-Kennlinien eingeengt ist. Ohne konstruktiven Mehraufwand ergibt sich dadurch eine höhere Fertigungsqualität unter Einhaltung vorgegebener Parameter hinsichtlich des Druck-Volumenstrom-Verhaltens. Mit der Erfindung wurde somit ein Membrankompressor mit einer automatischen Druckbegrenzung geschaffen, welcher besondere Sicherheitsmaßnahmen gegen Überdruck entbehrlich macht. Die gestellte Aufgabe ist gelöst.Special components for pressure limitation can be omitted. Another advantage of the proposed membrane compressor is that the range of the pressure-volume flow characteristics is narrowed. This results in a higher manufacturing quality without additional constructive effort while observing specified parameters with regard to the pressure-volume flow behavior. With the invention, a membrane compressor with automatic pressure limitation was thus created, which makes special safety measures against excess pressure unnecessary. The task is solved.

Bei einer bevorzugten Ausführung des erfindungsgemäßen Membrankompressors ist der Durchmesser des Arbeitsraums ungefähr 5 bis 15 Prozent größer als der Durchmesser des Kolbenraums. Der Durchmesser des unteren Membrantellers ist ungefähr 3 bis 10 Prozent kleiner als der Durchmesser des Kolbenraums gewählt. Eine solche Dimensionierung ergibt ein besonders günstiges Druck-Volumen-Verhalten des Membrankompressors, mit nur mäßigem Druckanstieg bei Verringerung des Volumendurchsatzes.In a preferred embodiment of the diaphragm compressor according to the invention, the diameter of the working space is approximately 5 to 15 percent larger than the diameter of the piston space. The diameter of the lower diaphragm plate is approximately 3 to 10 percent smaller than the diameter of the piston chamber. Such a dimensioning results in a particularly favorable pressure-volume behavior of the diaphragm compressor, with only a moderate increase in pressure while reducing the volume throughput.

In vorteilhafter Weiterbildung der Erfindung ist der Durchmesser des oberen Membrantellers größer als der Durchmesser des unteren Membrantellers. Hierdurch ergibt sich ein erhöhtes Verdichtungsverhältnis, so daß die Exzentrizität des antreibenden Exzenters verringert werden kann. Aufgrund des verringerten Hubes werden die auf Biegung beanspruchten Randbereiche der Membran weniger belastet, was zu einer Erhöhung der Membranlebensdauer sowie auch der übrigen bewegten Bauteile führt.In an advantageous development of the invention, the diameter of the upper membrane plate is larger than the diameter of the lower membrane plate. This results in an increased compression ratio, so that the eccentricity of the driving eccentric can be reduced. Due to the reduced stroke, the edge areas of the membrane that are subjected to bending are less stressed, which leads to an increase in the membrane service life and also in the other moving components.

Zweckmäßigerweise ist im Gehäuseoberteil eine umlaufende Nut vorgesehen, welche den Rand der Membran aufnimmt. In dieser Nut wird die elastische Membran in gepreßtem Zustand in ihrer vorgesehenen Lage gehalten.A circumferential groove is expediently provided in the upper housing part, which receives the edge of the membrane. In this groove, the elastic membrane is held in its intended position in the pressed state.

Ein Ausführungsbe ispiel des erfindungsgemäßen Membrankompressors wird nachstehend anhand der beigefügten Zeichnungen näher erläutert. Es zeigen:

  • Fig. 1 einen Membrankompressor gemäß der Erfindung, in einem Längsschnitt durch das Verdichtergehäuse, in vergrößertem Maßstab; und
  • Fig. 2 das Kennlinienverhalten des Membrankompressors von Fig. 1 im Vergleich zu herkömmlichen Kompressoren, in einem Druck-Volumenstrom-Diagramm.
A Ausführungsbe ispiel the membrane compressor according to the invention is explained below with reference to the accompanying drawings. Show it:
  • Figure 1 shows a diaphragm compressor according to the invention, in a longitudinal section through the compressor housing, on an enlarged scale. and
  • Fig. 2 shows the characteristic behavior of the membrane compressor of Fig. 1 in comparison to conventional compressors, in a pressure-volume flow diagram.

Der in Fig. 1 dargestellte Membrankompressor besitzt ein Verdichtergehäuse (1), das aus einem Gehäuseunterteil (2) und einem Gehäuseoberteil (3) zusammengesetzt ist. Im Gehäuseoberteil (3) ist eine ringsumlaufende Nut (4) vorgesehen, welche eine Membran (5) aus einem flexiblen Material, beispielsweise Gummi, mit ihrem Rand (6) aufnimmt. Die Membran (5) wird durch Pressung zwischen dem Gehäuseunterteil (2) und dem Gehäuseoberteil (3) in ihrer Lage innerhalb der Nut (4) festgehalten. Zu beiden Seiten der Membran (5) liegen ein unterer Membranteller (7) bzw. ein oberer Membranteller (8) an. Die beiden Membranteller (7, 8) sind verwindungssteif, so daß die zwischengelegte Membran (5) lediglich im Bereich ihres Randes (6) elastisch verformbar bleibt.The membrane compressor shown in Fig. 1 has a compressor housing (1) which is composed of a lower housing part (2) and an upper housing part (3). A circumferential groove (4) is provided in the housing upper part (3), which receives a membrane (5) made of a flexible material, for example rubber, with its edge (6). The membrane (5) is held in position within the groove (4) by pressing between the lower housing part (2) and the upper housing part (3). A lower membrane plate (7) or an upper membrane plate (8) lie on both sides of the membrane (5). The two diaphragm plates (7, 8) are torsionally rigid, so that the interposed diaphragm (5) remains elastically deformable only in the area of its edge (6).

Der Membrankompressor wird von einem (nichtdargestellten) Motor angetrieben. Auf dessen Motorwelle (9) ist ein Exzenter (10) aufgeschoben. Die exzentrische Drehbewegung wird über ein Lager (11) auf ein Pleuel (12) übertragen.The diaphragm compressor is driven by a motor (not shown). An eccentric (10) is slid onto its motor shaft (9). The eccentric rotary movement is transmitted to a connecting rod (12) via a bearing (11).

Über eine Zwischenscheibe (13) ist das freie Ende des Pleuels (12) mit dem unteren Membranteller (7), dem oberen Membranteller (8) sowie der zwischengelegten Membran (5) verbunden. Eine Senkkopfschraube (14) sorgt für eine sichere Befestigung der Membranteller (7, 8) und der Membran (5) am Pleuel (12). Bei Drehung der Motorwelle (9) wird der mittlere Bereich der Membran (5) mit den beidseitig anliegenden Membrantellern (7, 8) kolbenartig in eine nahezu senkrechte Hubbewegung versetzt.The free end of the connecting rod (12) is connected to the lower diaphragm plate (7), the upper diaphragm plate (8) and the interposed diaphragm (5) via an intermediate disc (13). A countersunk screw (14) ensures that the diaphragm plate (7, 8) and diaphragm (5) are securely attached to the connecting rod (12). When the motor shaft (9) rotates, the central area of the diaphragm (5) with the diaphragm plates (7, 8) on both sides is set in a piston-like manner in an almost vertical stroke movement.

Von den nichtabgedeckten Bereichen der Membran (5), dem oberen Membranteller (8) und dem Gehäuseoberteil (3) wird ein Arbeitsraum (15) umgrenzt. Über einen Einlaß (16) gelangt das zu verdichtende Medium, beispielsweise Gas, in den Arbeitsraum (15), welchen es durch einen Auslaß (17) nach erfolgter Verdichtung wieder verläßt. Ein Kolbenraum (18) ist durch die Membran (5) vom Arbeitsraum (15) abgeteilt, welcher im wesentlichen im Gehäuseunterteil (2) eingelassen ist. Im unteren Totpunkt nimmt dieser Kolbenraum (18) die Membran (5) und die Membranteller (7, 8) auf.A working space (15) is delimited by the uncovered areas of the membrane (5), the upper membrane plate (8) and the upper housing part (3). Via an inlet (16), the medium to be compressed, for example gas, enters the working space (15), which it leaves through an outlet (17) after compression. A piston chamber (18) is divided by the membrane (5) from the working chamber (15), which is essentially embedded in the lower housing part (2). At the bottom dead center, this piston chamber (18) receives the diaphragm (5) and the diaphragm plate (7, 8).

Mit 19 ist der Totraum bezeichnet, in welchem verdichtetes Medium zurückbleibt, wenn im oberen Totpunkt der obere Membranteller (8) bis auf einen Spalt von ca. 0,1 mm an die ebene Innenwand des Gehäuseoberteils (3)zu liegen kommt. Dieser Totraum (19) hat die Form eines Ringkanals und befindet sich im Bereich des Randes (6) der Membran (5). Gestrichelt eingezeichnet sind diejenigen Begrenzungslinien des unteren Membrantellers (7), des oberen Membrantellers (8) sowie des Gehäuseoberteils (3), welche bei einem herkömmlichen Membrankompressor unterschiedlich verlaufen, als dies bei dem hier gezeigten, erfindungsgemäßen Membrankompressor der Fall ist. Es wird deutlich, daß bei einem herkömmlichen Membrankompressor der obere Membranteller einen wesentlich geringeren Durchmesser aufweist als der untere Membranteller (7), während erfindungsgemäß die jeweiligen Durchmesser gleich sind. Ebenso ist der Durchmesser des Arbeitsraumes 15 größer als der Durchmesser des Kolbenraums 18; bei herkömmlichen Kompressoren sind die jeweiligen Durchmesser etwa gleich groß. Die gleichsinnige Vergrößerung der Durchmesser des oberen Membrantellers (8) sowie des Arbeitsraums (15) im Gehäuseoberteil (3) führt zu einer Verschiebung des Totraums (19) radial nach außen im Vergleich zu herkömmlichen Kompressoren (vgl. gestrichelte Linien). Diese Verschiebung des Totraums (19) nach außen ist gleichzeitig verbunden mit einer Vergrößerung dessen Volumens um ungefähr 40 Prozent. Dagegen ist der Durchmesser des unteren Me mbrantellers (7) bis weit in den Bereich des Randes (6) der Membran (5) hinein vergrößert. Erreicht der Druck des verdichteten Mediums im Totraum (19) einen bestimmten kritischen Wert, so kann die Membran (5) nach unten in den Ringspalt (20) zwischen Gehäuseunterteil (2) und unterem Membranteller (7) ausweichen, wodurch automatisch eine Druckbegrenzung bewirkt wird.19 denotes the dead space in which compressed medium remains when the upper diaphragm plate (8) comes to rest on the flat inner wall of the upper housing part (3) up to a gap of approx. 0.1 mm at the top dead center. This dead space (19) has the shape of an annular channel and is located in the region of the edge (6) of the membrane (5). Those delimiting lines of the lower diaphragm plate (7), the upper diaphragm plate (8) and the upper housing part (3) are shown in dashed lines, which run differently in a conventional diaphragm compressor than in the diaphragm compressor according to the invention shown here is. It is clear that in a conventional diaphragm compressor the upper diaphragm plate has a much smaller diameter than the lower diaphragm plate (7), while according to the invention the respective diameters are the same. Likewise, the diameter of the working chamber 15 is larger than the diameter of the piston chamber 18; in conventional compressors, the respective diameters are approximately the same size. The increase in the diameter of the upper diaphragm plate (8) and the working space (15) in the upper housing part (3) in the same direction leads to a displacement of the dead space (19) radially outwards in comparison to conventional compressors (see dashed lines). This displacement of the dead space (19) to the outside is simultaneously associated with an increase in its volume by approximately 40 percent. In contrast, the diameter of the lower membrane plate (7) is enlarged far into the area of the edge (6) of the membrane (5). If the pressure of the compressed medium in the dead space (19) reaches a certain critical value, the membrane (5) can move downwards into the annular gap (20) between the lower housing part (2) and the lower membrane plate (7), which automatically causes a pressure limitation .

Fig. 2 verdeutlicht die Auswirkungen der beim erfindunsgemäßen Membrankompressor vorgenommenen konstruktiven Änderungen im Vergleich zu einem herkömmlichen Kompressor. Im Diagramm ist der im Arbeitsraum (15) (vgl. Fig. 1) aufgebaute Druck P über dem Volumendurchsatz

Figure imgb0001
eines strömenden Mediums, welches vom Einlaß (16) zum Auslaß (17) strömt, aufgetragen.Fig. 2 illustrates the effects of the design changes made in the diaphragm compressor according to the invention compared to a conventional compressor. In the diagram, the pressure P built up in the working space (15) (cf. FIG. 1) is above the volume throughput
Figure imgb0001
a flowing medium, which flows from the inlet (16) to the outlet (17), applied.

Ausgehend von einem Betriebspunkt B, der den normalen Betriebszustand repräsentiert, ist die Kennlinie K heines herkömmlichen Membrankompressors eingezeichnet, wie er sich aus Fig. 1 unter der Beachtung der gestrichelt eingezeichneten Begrenzungslinien für die Membranteller (7, 8) sowie des Gehäuseoberteils (3) ergibt. Auffällig ist der starke Anstieg des Druckes P bei Verringerung des strömenden Volumens pro Zeiteinheit. Im Extremfall ist der Volumenstrom

Figure imgb0002
gleich 0, was beispielsweise dem Betrieb des Kompressors mit zugehaltenen Auslaß (17) entspricht. Dabei steigt der Druck P auf den maximal möglichen Wert an. Diese jederzeit mögliche Druckspitze bei herkömmlichen Membrankompressoren muß berücksichtigt werden; es sind beispielsweise besondere Schlauchverbindungen zum Anschluß eines Schlauches an den Auslaß (17) erforderlich. Aufgrund der Steilheit der Kennlinie K h ergibt sich ferner ein großer Streubereich SB h im Kennlinienfeld. Während der Betriebspunkt B in noch tolerierbarem Maße auf einer Senkrechten parallel zur Ordinatenachse nach oben bzw. unten verschoben wird, wirkt sich dieser Streubereich bezüglich des Maximaldruckes wesentlich stärker aus.Starting from an operating point B, which represents the normal operating state, the characteristic curve K h of a conventional diaphragm compressor is drawn in, as can be seen in FIG. results. What is striking is the sharp increase in pressure P with a decrease in the flowing volume per unit of time. In the extreme case, the volume flow
Figure imgb0002
is equal to 0, which corresponds, for example, to the operation of the compressor with the outlet (17) closed. The pressure P rises to the maximum possible value. This pressure peak, which is possible at any time in conventional diaphragm compressors, must be taken into account; For example, special hose connections are required to connect a hose to the outlet (17). Because of the steepness of the characteristic curve K h , there is also a large scattering range SB h in the characteristic curve field. While the operating point B is shifted to a tolerable extent on a vertical parallel to the ordinate axis up or down, this spreading range has a much stronger effect with regard to the maximum pressure.

Der erfindungsgemäße Membrankompressor besitzt hingegen eine Kennlinie K e, welche ebenfalls durch denselben Betriebspunkt B geht. Gegenüber der Kennlinie K hverläuft die Kennlinie K e jedoch wesentlich flacher, nämlich nahezu gerade. Bei Verringerung des Volumenstroms

Figure imgb0003
steigt der Druck P wesentlich geringfügiger an als bei Befahren der Kennlinie K h. Der vom Kompressor maximal erzeugbare Druck ist wesentlich geringer; entsprechend schmaler ist der zu berücksichtigende Streubereich SB e. Obwohl mit dem erfindungsgemäßen Membrankompressor der gleiche Betriebspunkt B einstellbar ist, können wegen der wesentlich flacher verlaufenden Druck-Volumenstrom-Kennlinie K e gefährliche Druckspitzen auch dann nicht mehr auftreten, wenn der Auslaß (17) vollständig abgesperrt ist.In contrast, the diaphragm compressor according to the invention has a characteristic curve K e , which likewise passes through the same operating point B. Compared to the characteristic curve K h, however , the characteristic curve K e is substantially flatter, namely almost straight. When the volume flow is reduced
Figure imgb0003
the pressure P increases significantly less than when driving on the characteristic curve K h . The maximum pressure that can be generated by the compressor is considerably lower; the spreading range SB e to be taken into account is correspondingly narrower. Although the same operating point B can be set with the membrane compressor according to the invention, because of the the pressure-volume flow characteristic curve K e, which runs much flatter, dangerous pressure peaks no longer occur even when the outlet (17) is completely shut off.

Verzeichnis der BezugsziffernList of reference numbers

  • 1 Verdichtergehäuse1 compressor housing
  • 2 Gehäuseunterteil (von 1)2 lower housing part (of 1)
  • 3 Gehäuseoberteil (von 1)3 upper housing part (of 1)
  • 4 Nut (in 3) 
    4 groove (in 3)
  • 5 Membran5 membrane
  • 6 Rand (von 5)6 rand (of 5)
  • 7 unterer Membranteller7 lower membrane plate
  • 8 oberer Membranteller 
    8 upper membrane plate
  • 9 Motorwelle9 motor shaft
  • 10 Exzenter10 eccentrics
  • 11 Lager11 bearings
  • 12 Pleuel12 connecting rods
  • 13 Zwischenscheibe13 washer
  • 14 Senkkopfschraube 
    14 countersunk screw
  • 15 Arbeitsraum15 work space
  • 16 Einlaß (in 15)16 inlet (in 15)
  • 17 Auslaß (von 15)17 outlet (of 15)
  • 18 Kolbenraum18 piston chamber
  • 19 Totraum (zwischen 3, 5 und 8)19 dead space (between 3, 5 and 8)
  • 20 Ringspalt (zwischen 2 und 7) 
    20 annular gap (between 2 and 7)
  • K h Kennlinie (herkömmlich)K h characteristic curve (conventional)
  • K e Kennlinie (erfindungsgemäß)K e characteristic curve (according to the invention)
  • B BetriebspunktB operating point
  • SB e, SB h Streubereich
    (der Kennlinien K h bzw. K e) 
    SB e , SB h spreading range
    (of the characteristic curves K h or K e )

Claims (5)

1. Membrankompressor, mit
- einem Verdichtergehäuse (1), das zusammengesetzt ist aus einem G ehäuseunterteil (2) und einem Gehäuseoberteil (3),
- einer flexiblen Membran (5), die mit ihrem Rand (6) zwischen Gehäuseunterteil (2) und Gehäuseoberteil (3) fest eingespannt ist,
- einem unteren Membranteller (7) und einem oberen Membranteller (8), zwischen die die Membran (5) zwecks Versteifung eingelegt ist, wobei die Membranteller (7, 8) geringeren Durchmessers als die Membran (5) aufweisen, damit diese im Bereich ihres Randes (6) flexibel bleibt,
- einem von einem Exzenter (10) angetriebenen Pleuel (12), das mit der Membran (5) und den Membrantellern (7, 8) verbunden ist, um diese gemeinsam in eine Hubbewegung zu versetzen,
- einem Arbeitsraum (15), der von der Membran (5), dem oberen Membranteller (8) und dem Gehäuseoberteil (3) umgrenzt wird, wobei im oberen Totpunkt der obere Membranteller (8) bis fast an die obere Innenwand des Gehäuseoberteils (3) heranreicht und ein ringkanalförmiger Totraum (19) im Bereich des Randes (6) der Membran (5) verbleibt,
- einem Einlaß (16) und einem Auslaß (17) für das zu verdichtende Medium, welche mit dem Arbeitsraum (15) in Verbindung stehen, und
- einem Kolbenraum (18) im Gehäuseunterteil (2) zur Aufnahme der Membran (5) und der Membranteller (7, 8) im unteren Totpunkt,
dadurch gekennzeichnet, daß
- der im Gehäuseoberteil (3) ausgebildete Arbeitsraum (15) einen größeren Durchmesser aufweist als der Kolbenraum (18) im Gehäuseunterteil (2),
- der Durchmesser des unteren Membrantellers (7) merklich kleiner ist als der Durchmesser des Kolbenraums (18), so daß ein Ringspalt (20) zwischen dem unteren Membranteller (7) und der gegenüberliegenden Innenwand des Gehäuseunterteils (2) verbleibt, und
- der Durchmesser des oberen Membrantellers (8) mindestens demjenigen des unteren Membrantellers (7) entspricht.
1. Membrane compressor, with
- A compressor housing (1), which is composed of a lower housing part (2) and an upper housing part (3),
- A flexible membrane (5) which is firmly clamped with its edge (6) between the lower housing part (2) and upper housing part (3),
- A lower membrane plate (7) and an upper membrane plate (8), between which the membrane (5) is inserted for stiffening, the membrane plate (7, 8) having a smaller diameter than the membrane (5) so that they are in the area of their Edge (6) remains flexible,
- a connecting rod (12) driven by an eccentric (10), which is connected to the diaphragm (5) and the diaphragm plates (7, 8) in order to set them together in a stroke movement
- A working space (15), which is delimited by the membrane (5), the upper diaphragm plate (8) and the upper housing part (3), with the upper diaphragm plate (8) almost at the top inner wall of the upper housing part (3 ) and an annular channel-shaped dead space (19) remains in the area of the edge (6) of the membrane (5),
- An inlet (16) and an outlet (17) for the medium to be compressed, which are in communication with the working space (15), and
a piston chamber (18) in the lower housing part (2) for receiving the diaphragm (5) and the diaphragm plate (7, 8) at the bottom dead center,
characterized in that
- The working chamber (15) formed in the upper housing part (3) has a larger diameter than the piston chamber (18) in the lower housing part (2),
- The diameter of the lower diaphragm plate (7) is significantly smaller than the diameter of the piston chamber (18), so that an annular gap (20) between the lower diaphragm plate (7) and the opposite inner wall of the lower housing part (2) remains, and
- The diameter of the upper diaphragm plate (8) corresponds at least to that of the lower diaphragm plate (7).
2. Membrankompressor nach Anspruch 1,
dadurch gekennzeichnet, daß der Durchmesser (15) ungefähr 5 bis 15 Prozent größer ist als der Durchmesser des Kolbenraums (18).
2. Membrane compressor according to claim 1,
characterized in that the diameter (15) is approximately 5 to 15 percent larger than the diameter of the piston chamber (18).
3. Membrankompressor nach Anspruch 1 oder 2,
dadurch gekennzeichnet, daß der Durchmesser des unteren Membrantellers (7) ungefähr 3 bis 10 Prozent kleiner ist als der Durchmesser des Kolbenraums (18).
3. Membrane compressor according to claim 1 or 2,
characterized in that the diameter of the lower diaphragm plate (7) is approximately 3 to 10 percent smaller than the diameter of the piston chamber (18).
4. Membrankompressor nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, daß der Durchmesser des oberen Membrantellers (8) größer ist als der Durchmesser des unteren Membrantellers (7).
4. Membrane compressor according to one of claims 1 to 3,
characterized in that the diameter of the upper membrane plate (8) is larger than the diameter of the lower membrane plate (7).
5. Membrankompressor nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, daß im Gehäuseoberteil (3) eine umlaufende Nut (4) vorgesehen ist, welche den Rand (6) der Membran (5) aufnimmt.
5. Membrane compressor according to one of claims 1 to 4,
characterized in that a circumferential groove (4) is provided in the upper housing part (3), which receives the edge (6) of the membrane (5).
EP86114036A 1986-10-10 1986-10-10 Membrane compressor Expired - Lifetime EP0263199B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT86114036T ATE65299T1 (en) 1986-10-10 1986-10-10 DIAPHRAGM COMPRESSOR.
EP86114036A EP0263199B2 (en) 1986-10-10 1986-10-10 Membrane compressor
DE8626979U DE8626979U1 (en) 1986-10-10 1986-10-10
DE8686114036T DE3680339D1 (en) 1986-10-10 1986-10-10 MEMBRANE COMPRESSOR.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP86114036A EP0263199B2 (en) 1986-10-10 1986-10-10 Membrane compressor

Publications (3)

Publication Number Publication Date
EP0263199A1 true EP0263199A1 (en) 1988-04-13
EP0263199B1 EP0263199B1 (en) 1991-07-17
EP0263199B2 EP0263199B2 (en) 1995-10-04

Family

ID=8195489

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86114036A Expired - Lifetime EP0263199B2 (en) 1986-10-10 1986-10-10 Membrane compressor

Country Status (3)

Country Link
EP (1) EP0263199B2 (en)
AT (1) ATE65299T1 (en)
DE (1) DE3680339D1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR392356A (en) * 1908-07-16 1908-11-25 Martin Falk Improvements to diaphragm vacuum pumps
FR744350A (en) * 1933-04-14
US3947156A (en) * 1972-03-08 1976-03-30 Erich Becker Diaphragm pump, particularly for the generation of vacuum
DE8626979U1 (en) * 1986-10-10 1986-11-20 Brugger, Stephan, Dipl.-Wirtsch.-Ing.(Fh), 8137 Berg, De

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR744350A (en) * 1933-04-14
FR392356A (en) * 1908-07-16 1908-11-25 Martin Falk Improvements to diaphragm vacuum pumps
US3947156A (en) * 1972-03-08 1976-03-30 Erich Becker Diaphragm pump, particularly for the generation of vacuum
DE8626979U1 (en) * 1986-10-10 1986-11-20 Brugger, Stephan, Dipl.-Wirtsch.-Ing.(Fh), 8137 Berg, De

Also Published As

Publication number Publication date
DE3680339D1 (en) 1991-08-22
EP0263199B2 (en) 1995-10-04
ATE65299T1 (en) 1991-08-15
EP0263199B1 (en) 1991-07-17

Similar Documents

Publication Publication Date Title
DE4203677C2 (en) Scroll compressor
DE69723554T2 (en) AIR-DRIVEN DIAPHRAGM PUMP WITH PRESSURE REINFORCEMENT AND OVERPRESSURE VALVE
DE1628144B2 (en) Suction throttle control device
DE2308265A1 (en) ROTATION OR ROTARY LISTON COMPRESSOR SYSTEM WITH OIL CIRCUIT AND VALVE ARRANGEMENTS
DE19530210C2 (en) Swash plate compressor
DE4333143A1 (en) Swash plate refrigerant compressor for vehicle - has series of gas conducting grooves to trap part of compressed fluid
DE2333380A1 (en) HYDROSTATIC PUMPS / MOTOR UNIT
DE19603109C2 (en) Piston refrigerant compressor with improved sealing function
EP3482076A1 (en) Cylinder head cover for a refrigerant compressor
DE10018498B4 (en) valve assembly
DE3633644A1 (en) COMPRESSOR WITH VARIABLE DELIVERY PERFORMANCE
DE19519763C2 (en) Inhalation device compressor with improved membrane set
EP2357115B2 (en) Pressurised air compressor and method for operating same
DE1922269A1 (en) Total power controller
EP0263199A1 (en) Membrane compressor
EP2885540A1 (en) Compressor
EP0922165B1 (en) Vacuum pump
CH704934B1 (en) Vacuum valve.
WO2016023665A1 (en) High-pressure fuel pump and pressure control device
AT3212U1 (en) RADIAL PISTON PUMP
EP0226122A2 (en) Pump
DE3520338A1 (en) PISTON PUMP WITH A SWASHPLATE DISC OR EXCENTRAL
EP1387957A1 (en) Reciprocating engine with an articulation arrangement
DE683594C (en) Automatic capacity control for two or more stage piston compressors for remote gas intermediate stations
DE3704588C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19880621

17Q First examination report despatched

Effective date: 19881202

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19910717

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19910717

Ref country code: FR

Effective date: 19910717

Ref country code: GB

Effective date: 19910717

Ref country code: SE

Effective date: 19910717

REF Corresponds to:

Ref document number: 65299

Country of ref document: AT

Date of ref document: 19910815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3680339

Country of ref document: DE

Date of ref document: 19910822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19911010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19911031

Ref country code: BE

Effective date: 19911031

Ref country code: LI

Effective date: 19911031

Ref country code: CH

Effective date: 19911031

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

BERE Be: lapsed

Owner name: BRUGGER STEPHAN

Effective date: 19911031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920501

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: KNF- NEUBERGER GMBH

Effective date: 19920331

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
26 Opposition filed

Opponent name: KNF- NEUBERGER GMBH

Effective date: 19920331

Opponent name: VEIT GMBH & CO.

Effective date: 19920416

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19951004

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960115

EN Fr: translation not filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991124

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19911031