EP0260469A2 - Apparatus for analytically determining organic substances - Google Patents

Apparatus for analytically determining organic substances Download PDF

Info

Publication number
EP0260469A2
EP0260469A2 EP87112082A EP87112082A EP0260469A2 EP 0260469 A2 EP0260469 A2 EP 0260469A2 EP 87112082 A EP87112082 A EP 87112082A EP 87112082 A EP87112082 A EP 87112082A EP 0260469 A2 EP0260469 A2 EP 0260469A2
Authority
EP
European Patent Office
Prior art keywords
mass
substances
mass analyzer
ppm
organic substances
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87112082A
Other languages
German (de)
French (fr)
Other versions
EP0260469B1 (en
EP0260469A3 (en
Inventor
Ahmet Dr. Parlar
Friedrich Prof. Dr. Korte
Frederik Prof. Dr. Coulston
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gesellschaft fur Strahlen- und Umweltforschung Mbh (gsf)
Helmholtz Zentrum Muenchen Deutsches Forschungszentrum fuer Gesundheit und Umwelt GmbH
Coulston International Corp
Original Assignee
Gesellschaft fur Strahlen- und Umweltforschung Mbh (gsf)
Helmholtz Zentrum Muenchen Deutsches Forschungszentrum fuer Gesundheit und Umwelt GmbH
Coulston International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gesellschaft fur Strahlen- und Umweltforschung Mbh (gsf), Helmholtz Zentrum Muenchen Deutsches Forschungszentrum fuer Gesundheit und Umwelt GmbH, Coulston International Corp filed Critical Gesellschaft fur Strahlen- und Umweltforschung Mbh (gsf)
Priority to AT87112082T priority Critical patent/ATE84377T1/en
Publication of EP0260469A2 publication Critical patent/EP0260469A2/en
Publication of EP0260469A3 publication Critical patent/EP0260469A3/en
Application granted granted Critical
Publication of EP0260469B1 publication Critical patent/EP0260469B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/025Detectors specially adapted to particle spectrometers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons

Definitions

  • the invention relates to a device for the analytical determination of organic substances, which are present in concentrations up to the ppm and ppt range, by means of mass analysis, the substances being transferred from a storage container to a mass analyzer, the storage container via a metering device directly with the Mass analyzer connectable and the mass analyzer is a quadrupole mass spectrometer with a Channeltron electro-multiple and mass correction aperture (according to patent application P 35 10 378.7-52).
  • the object underlying the invention is to e. G. To design the device in such a way that substances which are in the ppm to ppt range can also be directly detected by mass analysis.
  • the invention is particularly suitable for determining the photostability of volatile organic compounds (for example environmental chemicals, concentration / time diagrams, half-lives, reaction rate constants), the photostability of compounds which are difficult to evaporate (environmental chemicals which are counted among the 1,2-diketones; the CO formed with a detection limit of 200 ppt), the workplace concentration of organic chemicals in a production facility (benzene and 1,2-trans-dichlorethylene concentration; detection limit 100 ppt - 5 ppb), the concentration of organic chemicals in closed rooms (Pentachlorophenol detection in office rooms; 40 ⁇ g / m3 - 55 ⁇ g / m3), analysis of aqueous and solid samples (benzene detection from the Goldach / Erding river: detection limit 10 ppb; and CO2 detection from the carrier material (silica gel, aluminum oxide neutral, montmorillonide, Sands from Tulorosa, Egypt, Orlando and Saudi Arabia after the mineralization experiments under standardized conditions: detection limit for CO2 at least 100 ppt)) and the concentration
  • Areas of application include blood alcohol determination, determination of volatile compounds in urine (e.g. ketones), determination of chlorinated hydrocarbons in fatty tissue, determination of volatile products from sewage sludge, waste slag and fly ash, monitoring of street and city air (all pollutants including nitrogen oxides, sulfur dioxide and organic environmental chemicals in the air), control of the exhaust gases from internal combustion engines and their correct identification and quantification, checking the completeness of the gas phase reaction in the chemical industry (e.g. ammonia synthesis), thermal decomposability of market articles from the semiconductor industry, determination of hydrogen, helium, nitrogen and other gases in various areas of industry and control of thermal decomposition of organic environmental chemicals in waste incineration and pyrolysis processes.
  • the plant shown in FIG. 1 essentially consists of 3 parts, namely a vacuum-controllable recipient part 1, an optimized mass analyzer system 2 and a special separator system 3.
  • the recipient part 1 consists of a spherical glass reactor 4 with variable recipient sizes between 1 - 400 l and additional inserts, for example irradiators 5, for various purposes.
  • the recipient is surrounded by a heating jacket 6, which enables temperature ranges up to 200 ° C.
  • the entire system 1 can be evacuated to 10 ⁇ 8 torr using a turbomolecular pump 7 (here Galileo PT-60).
  • the reaction chamber 8 can be separated from the pump stand by using a viton-sealed slide valve (backing pump 9: Edwards E2 M8). After the desired pressure has been reached, the samples or sample parts with the substances can be brought into the gas phase from the inlet system 10 and their concentration can be determined with the aid of the pressure measurements.
  • the inlet system 10 consists of a noble metal housing with 4 vacuum sealable openings. From the upper side it is provided with a spring-loaded metal rod 11, with the aid of which the volatile samples, which are located in standardizable capillaries, can be released mechanically. Porcelain boats are available for solid samples.
  • a variable gas valve combination 12 (CJT vacuum technology, Ramelsbach) is accommodated below the inlet system 10 and has the task of admitting gaseous samples into the reactor 4 in a controlled manner.
  • the recipient part 1 offers work opportunities in the pressure ranges 1 - 10 ⁇ 8 torr and in different pressure ranges with different recipient volumes using gas or gas mixtures.
  • the mass analyzer 13 is usually operated in the pressure range between 10 ⁇ 4 and 10 ⁇ 6 torr.
  • the ions both those of the substances to be investigated and the other gas components (impurities), are detected by means of a secondary electron multiplier. If concentrations of the substances in the ppb or ppt range are to be detected, it is not simply sufficient to increase the vacuum range in the mass analyzer 13 accordingly, since in this case the signal / noise ratio makes the measurement impossible. On the other hand, a pure pressure reduction would in turn ensure clean measuring conditions, in the present case, however, it would prevent the detection of the substances, since their concentration in the ion source would be reduced accordingly.
  • the pressure range of the mass analyzer 13 is depressed in ranges of 10 ⁇ 9 torr so that the noise disappears, but the sensitivity of the detection of the substances is considerably improved by the use of the channeltron electromultiplier 14 with mass correction aperture 15. There are quasi pure spectra of the substances.
  • the mass correction aperture 15 is not arranged directly at the Canneltron 14, but is inserted between the entrance to the turbomolecular pump 17 and the entrance to the ion pump 16, i. H. underneath the ion pump 16. This position is particularly favorable since placement above the ion pump could unnecessarily delay the cleaning process.
  • the mass correction orifice 15 serves to regulate and increase the relative residence probabilities or concentrations of the individual molecules in the analyzer 13.
  • its diameter 31 can be adjusted variably either manually or automatically. It has a structure that can correspond to that of an iris diaphragm of an optical camera.
  • the regulator 32 for the mass correction aperture 15/31 can be operated either manually (position of switch 43 in position 33) or automatically (position in position 34).
  • a processor unit 37 In the case of automatic operation, it is connected to a processor unit 37 via a control unit 35 and an interface 36.
  • This processor unit 37 controls or controls the regulator 39 for the channeltron 14 via a further control unit 38 when the switch 40 is switched to position 41 (automatic). Position 42 is again intended for manual operation.
  • variable mass correction aperture 15 is controlled by the processor unit in cooperation with the Channeltron 14. This measure (opening or closing the passage opening 31) leads to a change in the intensity of the fragment ions of the relevant compounds to be measured. Substance-specific settings of the passage opening 31 are necessary for each pressure range in order to optimize the detection limit. In contrast to all previous devices, in which the passage opening constantly to a value, for. B. for nitrogen, the optimum setting of the mass correction aperture 15 can thus be found automatically for each connection to be detected.
  • FIG. 2 This state of affairs is shown in FIG. 2. It shows the course of the intensity in% compared to the area of the passage opening 31 of the mass correction aperture 15 mm2 / 100 for the compounds benzene (curve 44) and trichlorethylene (curve 45).
  • the pressure is set at 2.2 ⁇ 10 ⁇ 6 Torr.
  • curves 44 and 45 illustrate that an optimal passage area (maximum), z. B. at approx. 54 mm2 / 100 and approx. 42 mm2 / 100, for the measurement is automatically adjustable.
  • the outside diameter of the mass correction orifice 15 is 48 mm, its thickness 2 mm.
  • the intensities of the mol and fragment ions are increased by means of the processor unit 37 and the control unit 38 via the output voltages of the Channeltron 14. All peaks belonging to a fragment are registered cumulatively by deliberately reducing the resolution.
  • the separator part 3 between the reactor 4 and the mass analyzer system 2 consists of 3 needle valves 28-2o, which can be combined both in series and in parallel.
  • the needle valve 18 is closed under normal conditions, i.e. the pressures in the reactor 4 are above 10 ⁇ 6 and the concentration of the substances to be examined is correspondingly high. Then the metering must be carried out continuously via the two reducing needle valves 19, 20, so that both the pressure and the concentration of the substances lie in value ranges suitable for the mass analyzer 13. In the event that these value ranges already prevail in the reactor 4, connection can be made directly via the needle valve 18.

Abstract

An apparatus for analytically determining organic substances which are present in concentrations up to the ppm and ppt range by mass analysis, in which the substances are to be transferred from a stock container to a mass analyzer, the stock container can be connected directly to the mass analyzer via a metering apparatus and the mass analyzer is a quadrupole mass spectrometer having a channeltron electron multiplier and a mass correction diaphragm. The object of the invention is to design the above apparatus in such a way that substances which are present in the ppm to ppt range can be detected directly by mass analysis. The solution provided by the invention is characterised in that the passage opening of the mass correction diaphragm can be designed to be variably adjustable.

Description

Die Erfindung betrifft eine Einrichtung zur analytischen Bestimmung von organischen Stoffen, die in Konzentrationen bis in den ppm- und ppt-Bereich vorliegen, mittels Massen­analyse, wobei die Stoffe aus einem Vorratsbehälter in einen Massenanalysator zu überführen sind, der Vorratsbehälter über eine Dosiereinrichtung direkt mit dem Massenanalysator verbindbar und der Massenanalysator ein Quadrupol-Massen­spektrometer mit einem Channeltron-electro-multipler und Massenkorrekturblende ist (gemäß Patentanmeldung P 35 10 378.7-52).The invention relates to a device for the analytical determination of organic substances, which are present in concentrations up to the ppm and ppt range, by means of mass analysis, the substances being transferred from a storage container to a mass analyzer, the storage container via a metering device directly with the Mass analyzer connectable and the mass analyzer is a quadrupole mass spectrometer with a Channeltron electro-multiple and mass correction aperture (according to patent application P 35 10 378.7-52).

Die analytische Bestimmung von organischen Chemikalien in der Gasphase wird aus allgemein bekannten Gründen von großen Schwierigkeiten begleitet, die einen direkten Einfluß auf die Konzentrationsgrenzen der zu messenden Chemikalien aus­üben. Die üblichen Methoden setzen in vielen Fällen einen Anreicherungsschritt voraus. Während dieser komplizierten Prozeduren können aber erhebliche Fehler auftreten, da sowohl die Probennahme als auch die Komprimierung nicht standardi­sierbar sind. Bei Probentransport treten große Substanzver­luste auf, wenn zu diesem Zweck Gasmäuse bzw. Gasspritzen eingesetzt werden. Es ist außerdem zu berücksichtigen, daß im Falle einer Gasphasenreaktion die Umsetzungen während des Transportes naturgemäß weiterlaufen, was mit der Verfälschung der Endresultate direkt gekoppelt ist. In den seltensten Fällen sind die Nachweis- und Bestimmungsmethoden zufrieden­stellend direkt mit dem Probenraum oder Rezipienten kombiniert, wobei die bekannten Systeme auf der Basis der speziellen spektroskopischen Methoden arbeiten.For well-known reasons, the analytical determination of organic chemicals in the gas phase is accompanied by great difficulties which have a direct influence on the concentration limits of the chemicals to be measured. In many cases, the usual methods require an enrichment step. However, considerable errors can occur during these complicated procedures, since both sampling and compression cannot be standardized. Large sample losses occur during sample transport if gas mice or gas syringes are used for this purpose. It must also be taken into account that in the case of a gas phase reaction, the reactions naturally continue during transport, which is directly linked to the falsification of the final results. In the rarest of cases, the detection and determination methods are satisfactorily combined directly with the sample space or recipient, whereby the known systems work on the basis of the special spectroscopic methods.

Es existieren zur Zeit noch nicht einmal Systeme zur Direkt­bestimmung der chemischen Zusammensetzung der Gasphasenge­mische ohne Anreicherung im ppb-Bereich. Der direkte Einsatz von Massenanalysatoren ist ebenfalls für solche Nachweisbereiche ungeeignet, da ihre Betriebsparameter, z.B. der Betriebs­ druckbereich von 10⁻⁴ - 10⁻⁶ torr, ein derart hohes Rausch/­Signal-Verhältnis verursacht, daß die im ppb-Bereich oder darunter vorliegenden Stoffe nicht festgestellt werden können. Eine Reduzierung des Betriebsdruckes auf Werte unterhalb 10⁻⁶ torr, die dem gewünschten Meßbereich nahe kämen, würde lediglich bewirken, daß sowohl das Rauschen als auch das Meßsignal eliminiert sind.At the moment there are not even systems for the direct determination of the chemical composition of the gas phase mixtures without enrichment in the ppb range. The direct use of mass analyzers is also unsuitable for such detection areas because of their operating parameters, for example the operation pressure range from 10⁻⁴ - 10⁻⁶ torr, such a high noise / signal ratio causes that the substances in the ppb range or below cannot be determined. A reduction in the operating pressure to values below 10⁻⁶ torr, which would come close to the desired measuring range, would only have the effect that both the noise and the measuring signal are eliminated.

Die der Erfindung zugrundeliegende Aufgabe besteht darin, die e. g. Einrichtung derart auszugestalten, daß auch Stoffe, die im ppm- bis ppt-Bereich vorliegen, direkt mas­senanalytisch nachgewiesen werden können.The object underlying the invention is to e. G. To design the device in such a way that substances which are in the ppm to ppt range can also be directly detected by mass analysis.

Die Lösung ist erfindungsgemäß im kennzeichnenden Merkmal des Anspruches 1 beschrieben.The solution is described in the characterizing feature of claim 1.

Der weitere Anspruch gibt eine vorteilhafte Ausführungs­form der Erfindung an.The further claim specifies an advantageous embodiment of the invention.

Die Erfindung eignet sich insbesondere zur Bestimmung der Photostabilität leicht flüchtiger organischer Verbindungen (z.B. Umweltchemikalien, Konzentration-/Zeitdiagramme. Halb­wertzeiten, Reaktionsgeschwindigkeitskonstanten), der Photostabilität schwer verdampfbarer Verbindungen (Umwelt­chemikalien, die zu den 1,2-Diketonen gezählt werden; das entstehende CO mit einer Nachweisgrenze von 200 ppt), der Arbeitsplatzkonzentration organischer Chemikalien in einer Produktionsstätte (Benzol und 1,2-trans-Dichlorethylen­Konzentration; Nachweisgrenze 100 ppt - 5 ppb), der Konzen­tration organischer Chemikalien in geschlossenen Räumen (Pentachlorphenol-Nachweis in Büroräumen; 40µg/m³ - ­55µg/m³), Analyse wäßriger und fester Proben (Benzol­nachweis aus dem Fluß Goldach/Kreis Erding: Nachweisgrenze 10 ppb; und CO₂-Nachweis aus dem Trägermaterial (Kieselgel, Aluminiumoxid neutral, Montmorillonid, Sände aus Tulorosa, Ägypten, Libyen und Saudi Arabien nach den Mineralisierungs­exerpimenten unter standardisierten Bedingungen: Nachweis­grenze für CO₂ mind. 100 ppt)) sowie der Konzentration von toxischen Substanzen in Inhalationskammern (Biacetyl, Benzol, Tetrachlorkohlenstoff, Freon 11 und 12, Benzaldehyd, Chlor­benzol und 1,2-Trans-Dichlorethylen; Nachweisgrenze mind. 100 - 500 ppt).The invention is particularly suitable for determining the photostability of volatile organic compounds (for example environmental chemicals, concentration / time diagrams, half-lives, reaction rate constants), the photostability of compounds which are difficult to evaporate (environmental chemicals which are counted among the 1,2-diketones; the CO formed with a detection limit of 200 ppt), the workplace concentration of organic chemicals in a production facility (benzene and 1,2-trans-dichlorethylene concentration; detection limit 100 ppt - 5 ppb), the concentration of organic chemicals in closed rooms (Pentachlorophenol detection in office rooms; 40µg / m³ - 55µg / m³), analysis of aqueous and solid samples (benzene detection from the Goldach / Erding river: detection limit 10 ppb; and CO₂ detection from the carrier material (silica gel, aluminum oxide neutral, montmorillonide, Sands from Tulorosa, Egypt, Libya and Saudi Arabia after the mineralization experiments under standardized conditions: detection limit for CO₂ at least 100 ppt)) and the concentration of toxic substances in inhalation chambers (biacetyl, benzene, carbon tetrachloride, freon 11 and 12, benzaldehyde, chlorobenzene and 1,2-trans-dichlorethylene; detection limit at least 100 - 500 ppt).

Als Anwendungsgebiete eignen sich die Blutalkoholbestimmung, Bestimmung leicht flüchtiger Verbindungen im Urin (z.B. Ketone), Bestimmung chlorierter Kohlenwasserstoffe im Fett­gewebe, Bestimmung leicht flüchtiger Produkte aus dem Klär­schlamm, Müllschlacke und Flugasche, Überwachung der Straßen- ­und Stadtluft (alle Schadstoffe einschließlich Stickoxide, Schwefeldioxid und organische Umweltchemikalien in der Luft), Kontrolle der Abgase aus Verbrennungsmaschinen und deren einwandfreie Identifizierung und Quantifizierung, Überprüfung der Vollständigkeit der Gasphasenreaktion in der chemischen Industrie (z.B. Ammoniak-Synthese), thermi­sche Zersetzbarkeit der Marktartikel aus der Halbleiter­industrie, Bestimmung von Wasserstoff, Helium, Stickstoff und anderen Gasen in verschiedenen Bereichen der Industrie und die Kontrolle der thermischen Zersetzung organischer Umweltchemikalien bei der Müllverbrennung und Pyrolyse-­Prozessen.Areas of application include blood alcohol determination, determination of volatile compounds in urine (e.g. ketones), determination of chlorinated hydrocarbons in fatty tissue, determination of volatile products from sewage sludge, waste slag and fly ash, monitoring of street and city air (all pollutants including nitrogen oxides, sulfur dioxide and organic environmental chemicals in the air), control of the exhaust gases from internal combustion engines and their correct identification and quantification, checking the completeness of the gas phase reaction in the chemical industry (e.g. ammonia synthesis), thermal decomposability of market articles from the semiconductor industry, determination of hydrogen, helium, nitrogen and other gases in various areas of industry and control of thermal decomposition of organic environmental chemicals in waste incineration and pyrolysis processes.

Die Erfindung wird im folgenden anhand eines Ausführungs­beispiels mittels der Fig. 1 und 2 näher erläutert.The invention is explained below with reference to an embodiment using FIGS. 1 and 2.

Die aus Fig. 1 ersichtliche Anlage besteht im wesentlichen aus 3 Teilen, nämlich aus einem Vakuum-kontrollierbaren Rezipiententeil 1, einem optimierten Massenanalysatorsystem 2 und einem speziellen Separatorsystem 3.The plant shown in FIG. 1 essentially consists of 3 parts, namely a vacuum-controllable recipient part 1, an optimized mass analyzer system 2 and a special separator system 3.

Der Rezipiententeil 1 besteht aus einem kugelförmigen Glas­reaktor 4 mit variierbaren Rezipientengrößen zwischen 1 - ­400 l und Zusatzeinsätzen,z.B. Bestrahler 5, für verschiedene Zwecke. Der Rezipient ist von einem Heizmantel 6 umgeben, der Temperaturbereiche bis zu 200°C ermöglicht. Das gesamte System 1 kann mit Hilfe einer Turbomolekularpumpe 7 (hier Galileo PT-60) bis auf 10⁻⁸ torr evakuiert werden. Durch Einsatz eines viton-gedichteten Schieberventils kann der Reaktionsraum 8 vom Pumpenstand getrennt werden (Vorpumpe 9: Edwards E2 M8). Nach Erreichen des gewünschten Druckes können aus dem Einlaßsystem 10 die Proben oder Probenteile mit den Stoffen in die Gasphase gebracht und deren Konzentration mit Hilfe der Druckmessungen bestimmt werden. Das Einlaß­system 10 besteht aus einem Edelmetallgehäuse mit 4 Vakuum­abdichtbaren Öffnungen. Von der oberen Seite ist es mit einem gefederten Metallstab 11 versehen, mit dessen Hilfe die flüchtigen Proben, die sich in standardisierbaren Kapillaren befinden, mechanisch freigesetzt werden können. Für Fest­proben stehen Porzellanschiffchen zur Verfügung. Unterhalb des Einlaßsystems 10 ist eine variierbare Gasventilkombina­tion 12 (CJT Vakuum-Technik, Ramelsbach) untergebracht, die die Aufgabe hat, gasförmige Proben kontrolliert in den Reak­tor 4 einzulassen.The recipient part 1 consists of a spherical glass reactor 4 with variable recipient sizes between 1 - 400 l and additional inserts, for example irradiators 5, for various purposes. The recipient is surrounded by a heating jacket 6, which enables temperature ranges up to 200 ° C. The entire system 1 can be evacuated to 10⁻⁸ torr using a turbomolecular pump 7 (here Galileo PT-60). The reaction chamber 8 can be separated from the pump stand by using a viton-sealed slide valve (backing pump 9: Edwards E2 M8). After the desired pressure has been reached, the samples or sample parts with the substances can be brought into the gas phase from the inlet system 10 and their concentration can be determined with the aid of the pressure measurements. The inlet system 10 consists of a noble metal housing with 4 vacuum sealable openings. From the upper side it is provided with a spring-loaded metal rod 11, with the aid of which the volatile samples, which are located in standardizable capillaries, can be released mechanically. Porcelain boats are available for solid samples. A variable gas valve combination 12 (CJT vacuum technology, Ramelsbach) is accommodated below the inlet system 10 and has the task of admitting gaseous samples into the reactor 4 in a controlled manner.

Der Rezipiententeil 1 bietet Arbeitsmöglichkeiten in den Druckbereichen 1 - 10⁻⁸ torr und in verschiedenen Druckbereichen mit unterschiedlichen Rezipientenvolumen unter Verwendung von Gas bzw. Gasgemischen.The recipient part 1 offers work opportunities in the pressure ranges 1 - 10⁻⁸ torr and in different pressure ranges with different recipient volumes using gas or gas mixtures.

Beim optimierten Massenanalysatorsystem 2 mit dem speziellen Separatorteil 3 wird ein Quadrupol-Massenspektrometer 13 (UTI, 10-02) verwendet, das durch Installation eines channel­tron-electro-multipliers 14 mit einer Massenkorrekturblende 15, sowie durch Einbau einer Ionenpumpe 16 (Varian Vacion 8 l/s) modifiziert ist, wobei die Ionenpumpe 16 senkrecht zu der Massenanalysatorturbomolekularpumpeneinheit 17 ange­bracht wird. Die optimale Funktionsweise der Anlage wurde nach folgenden Punkten bewertet:

  • a) Dichtigkeit des gesamten Systems mit Hilfe der Druckan­stiegsmessungen gegen Zeit, wobei die maximale zulässige Leckrate 1 × 10⁻⁵ torr l/s beträgt und
  • b) Empfindlichkeitsmessungen am Quadrupol 13 anhand der Referenz­verbindungen Benzol, Diacetyl und Chloroform, wobei eine Nachweisgrenze von mindestens 100 ppb erreicht wird.
In the optimized mass analyzer system 2 with the special separator part 3, a quadrupole mass spectrometer 13 (UTI, 10-02) is used, which is achieved by installing a channeltron electro multiplier 14 with a mass correction aperture 15 and by installing an ion pump 16 (Varian Vacion 8 l / s) is modified, the ion pump 16 being mounted perpendicular to the mass analyzer turbomolecular pump unit 17. The optimal functioning of the system was assessed according to the following points:
  • a) tightness of the entire system using the pressure rise measurements against time, the maximum permissible leak rate is 1 × 10⁻⁵ torr l / s and
  • b) Sensitivity measurements on the quadrupole 13 using the reference compounds benzene, diacetyl and chloroform, a detection limit of at least 100 ppb being reached.

Der Massenanalysator 13 wird gewöhnlicherweise im Druckbereich zwischen 10⁻⁴ und 10⁻⁶ torr betrieben. Der Nachweis der Ionen, und zwar sowohl die der zu untersuchenden Stoffe als auch der anderen Gasbestandteile (Verunreinigungen), erfolgt mittels eines Sekundärelektronenvervielfachers. Sollen Konzentrationen der Stoffe im ppb- bzw. ppt-Bereich nachgewiesen werden, genügt es nicht einfach,den Vakuumbereich im Massenanalysator 13 entsprechend zu erhöhen, da in diesem Falle das Signal/Rausch­Verhältnis die Messung unmöglich macht. Andererseits würde zwar eine reine Druckerniedrigung wiederum für saubere Meßbedingungen sorgen, im vorliegenden Falle würde sie den Nachweis der Stoffe aber verhindern, da ihre Konzentration in der Ionenquelle ent­sprechend erniedrigt würde. Bei der Erfindung wird zwar auch der Druckbereich des Massenanalysators 13 in Bereiche von 10⁻⁹ torr heruntergedrückt, so daß das Rauschen ver­schwindet, aber durch die Verwendung des channeltron-electro­multipliers 14 mit Massenkorrekturblende 15 die Empfindlichkeit des Nachweises der Stoffe erheblich verbessert. Es entstehen quasi Reinspektren der Stoffe.The mass analyzer 13 is usually operated in the pressure range between 10⁻⁴ and 10⁻⁶ torr. The ions, both those of the substances to be investigated and the other gas components (impurities), are detected by means of a secondary electron multiplier. If concentrations of the substances in the ppb or ppt range are to be detected, it is not simply sufficient to increase the vacuum range in the mass analyzer 13 accordingly, since in this case the signal / noise ratio makes the measurement impossible. On the other hand, a pure pressure reduction would in turn ensure clean measuring conditions, in the present case, however, it would prevent the detection of the substances, since their concentration in the ion source would be reduced accordingly. In the invention, the pressure range of the mass analyzer 13 is depressed in ranges of 10⁻⁹ torr so that the noise disappears, but the sensitivity of the detection of the substances is considerably improved by the use of the channeltron electromultiplier 14 with mass correction aperture 15. There are quasi pure spectra of the substances.

Die Massenkorrekturblende 15 ist nicht direkt beim Canneltron 14 angeordnet, sondern zwischen dem Eingang zur Turbomole­kularpumpe 17 und dem Zugang zur Ionenpumpe 16 eingefügt, d. h. unterhalb der Ionenpumpe 16. Diese Lage ist besonders günstig, da ene Plazierung oberhalb der Ionenpumpe den Reinigungspro­zeß unnötig verzögern könnte.The mass correction aperture 15 is not arranged directly at the Canneltron 14, but is inserted between the entrance to the turbomolecular pump 17 and the entrance to the ion pump 16, i. H. underneath the ion pump 16. This position is particularly favorable since placement above the ion pump could unnecessarily delay the cleaning process.

Die Massenkorrekturblende 15 dient der Regulierung und Erhö­hung der relativen Aufenthaltswahrscheinlichkeiten bzw. Kon­zentrationen der einzelnen Moleküle im Analysator 13. Hierzu ist ihre Durchtrittsöffnung 31 in ihrem Durchmesser variabel entweder manuell oder automatisch einstellbar. Sie weist einen Aufbau auf, der dem einer Irisblende einer optischen Kamera entsprechen kann. Der Regulator 32 für die Massenkorrektur­blende 15/31 kann entweder von Hand (Stellung des Schalters 43 auf Position 33) oder automatisch (Stellung auf 34) be­trieben werden.The mass correction orifice 15 serves to regulate and increase the relative residence probabilities or concentrations of the individual molecules in the analyzer 13. For this purpose, its diameter 31 can be adjusted variably either manually or automatically. It has a structure that can correspond to that of an iris diaphragm of an optical camera. The regulator 32 for the mass correction aperture 15/31 can be operated either manually (position of switch 43 in position 33) or automatically (position in position 34).

Bei automatischem Betrieb steht er über eine Kontrolleinheit 35 und ein Interface 36 mit einer Prozessoreinheit 37 in Verbindung. Diese Prozessoreinheit 37 kontrolliert bzw. steuert über eine weitere Kontrolleinheit 38 den Regulator 39 für das Channeltron 14, wenn der Schalter 40 auf die Position 41 geschaltet ist (Automatik). Die Stellung 42 ist wiederum für Handbetrieb gedacht.In the case of automatic operation, it is connected to a processor unit 37 via a control unit 35 and an interface 36. This processor unit 37 controls or controls the regulator 39 for the channeltron 14 via a further control unit 38 when the switch 40 is switched to position 41 (automatic). Position 42 is again intended for manual operation.

Die variable Massenkorrekturblende 15 wird in Zusammenarbeit mit dem Channeltron 14 von der Prozessoreinheit gesteuert. Diese Maßnahme (Öffnen oder Schließen der Durchtrittsöffnung 31) führt zur Intensitätsänderung der Fragmentionen der betreffenden, auszumessenden Verbindungen. Für jeden Druck­bereich sind substanzspezifische Einstellungen der Durch­trittsöffnung 31 zur Optimierung der Nachweisgrenze notwen­dig. Im Gegensatz zu allen bisherigen Geräten, bei denen die Durchtrittsöffnung konstant auf einen Wert, z. B. für Stick­stoff, eingestellt wird, kann somit für jede nachzuweisende Verbindung automatisch die optimale Einstellung der Massen­korrekturblende 15 gefunden werden.The variable mass correction aperture 15 is controlled by the processor unit in cooperation with the Channeltron 14. This measure (opening or closing the passage opening 31) leads to a change in the intensity of the fragment ions of the relevant compounds to be measured. Substance-specific settings of the passage opening 31 are necessary for each pressure range in order to optimize the detection limit. In contrast to all previous devices, in which the passage opening constantly to a value, for. B. for nitrogen, the optimum setting of the mass correction aperture 15 can thus be found automatically for each connection to be detected.

Dieser Sachverhalt ist in der Figur 2 dargestellt. Sie zegt den Verlauf der Intensität in % gegenüber der Fläche der Durchtrittsöffnung 31 der Massenkorrekturblende 15 mm²/100 für die Verbindungen Benzol (Kurve 44) und Trichlor ethylen (Kurve 45). Der Druck ist bei 2,2 × 10⁻⁶ Torr fest­gelegt. Beide Kurven 44 und 45 verdeutlichen, daß jeweils eine optimale Durchtrittsfläche (Maximum), z. B. bei ca. 54 mm²/100 und ca. 42 mm²/100, für die Messung automatisch einstellbar ist. Der Außendurchmesser der Massenkorrekturblende 15 be­trägt 48 mm, ihre Dicke 2 mm.This state of affairs is shown in FIG. 2. It shows the course of the intensity in% compared to the area of the passage opening 31 of the mass correction aperture 15 mm² / 100 for the compounds benzene (curve 44) and trichlorethylene (curve 45). The pressure is set at 2.2 × 10⁻⁶ Torr. Both curves 44 and 45 illustrate that an optimal passage area (maximum), z. B. at approx. 54 mm² / 100 and approx. 42 mm² / 100, for the measurement is automatically adjustable. The outside diameter of the mass correction orifice 15 is 48 mm, its thickness 2 mm.

Nach der optimalen Einstellung der Massenkorrekturblende 15 werden mittels der Prozessoreinheit 37 und der Kontrollein­heit 38 über die Outputspannungen des Channeltron 14 die Intensitäten der Mol- und Fragmentionen erhöht. Dabei werden alle die zu einem Fragment gehörenden Peaks durch gezielte Reduzierung der Auflösung kumulierend registriert.After the optimal adjustment of the mass correction aperture 15, the intensities of the mol and fragment ions are increased by means of the processor unit 37 and the control unit 38 via the output voltages of the Channeltron 14. All peaks belonging to a fragment are registered cumulatively by deliberately reducing the resolution.

Der Separatorteil 3 zwischen dem Reaktor 4 und dem Massen­analysatorsystem 2 besteht aus 3 Nadelventilen 28 - 2o, die sowohl in Serie als auch parallel kombiniert wer­den können. Das Nadelventil 18 ist unter normalen Be­dingungen geschlossen, d.h. die Drücke im Reaktor 4 liegen über 10⁻⁶ und die Konzentration der zu untersuchenden Stoffe ist entsprechend hoch. Dann muß die Dosierung über die beiden Reduziernadelventile 19, 20 stufenlos durchgeführt werden, damit sowohl der Druck als auch die Konzentration der Stoffe in für den Massenanalysator 13 geeigneten Wertbe­reichen liegen. Für den Fall, daß bereits diese Wertbereiche im Reaktor 4 vorherrschen, kann direkt über das Nadelventil 18 angeschlossen werden.The separator part 3 between the reactor 4 and the mass analyzer system 2 consists of 3 needle valves 28-2o, which can be combined both in series and in parallel. The needle valve 18 is closed under normal conditions, i.e. the pressures in the reactor 4 are above 10⁻⁶ and the concentration of the substances to be examined is correspondingly high. Then the metering must be carried out continuously via the two reducing needle valves 19, 20, so that both the pressure and the concentration of the substances lie in value ranges suitable for the mass analyzer 13. In the event that these value ranges already prevail in the reactor 4, connection can be made directly via the needle valve 18.

Zur Durchführung der Experimente können kugelförmige Reaktoren 4 aus Pyrexglas verwendet werden, wobei als Lichtquelle 5 unterschiedliche Lampentypen einsetzbar sind. Bei der Ver­wendung des Gasphase-Massenanalysatorsystems 2 wird das folgende Versuchsschema eingehalten:

  • 1. Einschmelzungen der luftfreien Substanzen in Kapillar­röhrchen.
  • 2. Erzeugung der Vakuumbereiche in dem Rezipienten 1 bis auf 10⁻⁷ - 10⁻⁸ torr.
  • 3. Dosierung der Chemikalien aus dem Einlaßsystem 10 in den Reaktor 4 bis zu den Anfangskonzentrationen (1-25 ppm).
  • 4. Stabilisierung des Massenanalysators 13 auf die ange­gebene Konzentration.
  • 5. Betätigung der Lichtquelle 5 nach der Einbrennzeit der Lampe.
  • 6. Messung der Abnahme der Ausgangsverbindungen und Nach­weis der Bildung der Photoprodukte mit Hilfe des opti­mierten Massenanalysatorsystems 2.
Spherical reactors 4 made of pyrex glass can be used to carry out the experiments, 5 different lamp types being usable as the light source. The following test scheme is followed when using the gas phase mass analyzer system 2:
  • 1. Melting of the air-free substances in capillary tubes.
  • 2. Generation of the vacuum areas in the recipient 1 up to 10⁻⁷ - 10⁻⁸ torr.
  • 3. Dosage of the chemicals from the inlet system 10 into the reactor 4 up to the initial concentrations (1-25 ppm).
  • 4. Stabilization of the mass analyzer 13 to the specified concentration.
  • 5. Actuation of the light source 5 after the lamp burn-in time.
  • 6. Measurement of the decrease in the starting compounds and detection of the formation of the photo products with the aid of the optimized mass analyzer system 2.

Claims (2)

1. Einrichtung zur analytischen Bestimmung von organischen Stoffen, die in Konzentrationen bis in den ppm- und ppt-­Bereich vorliegen, mittels Massenanalyse. wobei die Stoffe aus einem Vorratsbehälter in einen Massenanalysa­tor zu überführen sind, der Vorratsbehälter über eine Dosiereinrichtung direkt mit dem Massenanalysator verbind­bar und der Massenanalysator ein Quadrupol-Massenspektro­meter mit einem Channeltron-electro-multiplier und Massen­korrekturblende ist (gemäß Patentanmeldung P 35 10 378.7-52), dadurch gekennzeichnet, daß die Durchtrittsöffnung (31) der Massenkorrekturblende (15) variabel einstellbar aus­gebildet ist.1. Device for the analytical determination of organic substances, which are present in concentrations up to the ppm and ppt range, by means of mass analysis. the substances are to be transferred from a storage container to a mass analyzer, the storage container can be connected directly to the mass analyzer via a metering device and the mass analyzer is a quadrupole mass spectrometer with a Channeltron electro-multiplier and mass correction aperture (according to patent application P 35 10 378.7-52) , characterized in that the passage opening (31) of the mass correction diaphragm (15) is designed to be variably adjustable. 2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die optimale Einstellung der Durchtrittöffnung (31) im Zusammenhang mit den Betriebsgrößen des Channeltron­electro-multipliers (14) von einer Prozessoreinheit (37) automatisch durchführbar ist.2. Device according to claim 1, characterized in that the optimal setting of the passage opening (31) in connection with the operating variables of the Channeltronelectro-multiplier (14) by a processor unit (37) can be carried out automatically.
EP87112082A 1986-09-19 1987-08-20 Apparatus for analytically determining organic substances Expired - Lifetime EP0260469B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87112082T ATE84377T1 (en) 1986-09-19 1987-08-20 EQUIPMENT FOR THE ANALYTICAL DETERMINATION OF ORGANIC SUBSTANCES.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3631862 1986-09-19
DE19863631862 DE3631862A1 (en) 1986-09-19 1986-09-19 DEVICE FOR ANALYTICAL DETERMINATION OF ORGANIC SUBSTANCES

Publications (3)

Publication Number Publication Date
EP0260469A2 true EP0260469A2 (en) 1988-03-23
EP0260469A3 EP0260469A3 (en) 1989-12-27
EP0260469B1 EP0260469B1 (en) 1993-01-07

Family

ID=6309905

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87112082A Expired - Lifetime EP0260469B1 (en) 1986-09-19 1987-08-20 Apparatus for analytically determining organic substances

Country Status (4)

Country Link
EP (1) EP0260469B1 (en)
AT (1) ATE84377T1 (en)
DD (1) DD282779A5 (en)
DE (1) DE3631862A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998015969A2 (en) * 1996-10-09 1998-04-16 Symyx Technologies Mass spectrometers and methods for rapid screening of libraries of different materials
US6063633A (en) * 1996-02-28 2000-05-16 The University Of Houston Catalyst testing process and apparatus
US6864091B1 (en) 2000-08-31 2005-03-08 Symyx Technologies, Inc. Sampling probe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0032984A2 (en) * 1980-01-23 1981-08-05 International Business Machines Corporation Method of and apparatus for measuring trace amounts of oxygen
EP0042789A1 (en) * 1980-06-20 1981-12-30 Bureau De Recherches Geologiques Et Minieres Method for the in situ and continuous high-sensibility measuring of concentrations of gas and volatile products, and apparatus for carrying it out
EP0122006A2 (en) * 1983-03-04 1984-10-17 UTI Instrument Co. System for supplying gas at controlled pressure
EP0195296A2 (en) * 1985-03-22 1986-09-24 Gesellschaft für Strahlen- und Umweltforschung mbH (GSF) Method for the determination of organic matter
JPS61292847A (en) * 1985-06-21 1986-12-23 Hitachi Ltd Mass spectrometer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0032984A2 (en) * 1980-01-23 1981-08-05 International Business Machines Corporation Method of and apparatus for measuring trace amounts of oxygen
EP0042789A1 (en) * 1980-06-20 1981-12-30 Bureau De Recherches Geologiques Et Minieres Method for the in situ and continuous high-sensibility measuring of concentrations of gas and volatile products, and apparatus for carrying it out
EP0122006A2 (en) * 1983-03-04 1984-10-17 UTI Instrument Co. System for supplying gas at controlled pressure
EP0195296A2 (en) * 1985-03-22 1986-09-24 Gesellschaft für Strahlen- und Umweltforschung mbH (GSF) Method for the determination of organic matter
JPS61292847A (en) * 1985-06-21 1986-12-23 Hitachi Ltd Mass spectrometer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, Band 3, Nr. 2, M{rz-April 1985, Seiten 417-423, New York, USA; T.A. GIORGI et al: "An updated review of getters and gettering". *
PATENT ABSTRACTS OF JAPAN, Band 11, Nr. 154 (E-508)(2601), 19 Mai 1987; & JP-A-61 292 847 (HITACHI) 23-12-1986 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6623970B1 (en) 1996-02-28 2003-09-23 University Of Houston Process for testing catalysts using spectroscopy
US6623969B1 (en) 1996-02-28 2003-09-23 University Of Houston Process for testing catalysts using mass spectroscopy
US6063633A (en) * 1996-02-28 2000-05-16 The University Of Houston Catalyst testing process and apparatus
US6908768B2 (en) 1996-02-28 2005-06-21 University Of Houston, Texas Process for testing catalysts using thermography
US6514764B1 (en) 1996-02-28 2003-02-04 University Of Houston, Texas Catalyst testing process with in situ synthesis
US6605470B1 (en) 1996-02-28 2003-08-12 University Of Houston, Texas Process for testing catalysts using detection agents
US6623967B1 (en) 1996-02-28 2003-09-23 University Of Houston Process for testing catalysts using chromatography
US6623968B1 (en) 1996-02-28 2003-09-23 University Of Houston Parallel flow reactor and apparatus for testing catalysts
US6630111B1 (en) 1996-02-28 2003-10-07 University Of Houston Apparatus for testing catalysts using spectroscopy
WO1998015969A2 (en) * 1996-10-09 1998-04-16 Symyx Technologies Mass spectrometers and methods for rapid screening of libraries of different materials
US5959297A (en) * 1996-10-09 1999-09-28 Symyx Technologies Mass spectrometers and methods for rapid screening of libraries of different materials
WO1998015969A3 (en) * 1996-10-09 2000-07-27 Symyx Technologies Inc Mass spectrometers and methods for rapid screening of libraries of different materials
US6864091B1 (en) 2000-08-31 2005-03-08 Symyx Technologies, Inc. Sampling probe
US7071000B2 (en) 2000-08-31 2006-07-04 Symyx Technologies, Inc. Method for sampling reaction products

Also Published As

Publication number Publication date
DE3631862A1 (en) 1988-03-31
EP0260469B1 (en) 1993-01-07
DD282779A5 (en) 1990-09-19
EP0260469A3 (en) 1989-12-27
ATE84377T1 (en) 1993-01-15
DE3631862C2 (en) 1993-08-26

Similar Documents

Publication Publication Date Title
DE3510378C2 (en)
EP2373991A2 (en) Measuring machine and method for detecting the content of oil, hydrocarbons, and oxidizable gases in air or compressed air
Howard et al. Coupled photooxidation-hydride AAS detector for the HPLC of arsenic compounds
EP0795749A2 (en) Ion mobility spectrometry by means of photoionization
WO2004079359A1 (en) Method and test system for detecting harmful substances
DE112020000560T5 (en) Volatility-resolved chemical characterization of suspended matter
DE102018010478B3 (en) PROCEDURE IN MASS SPECTROMETRY USING COLLISION GAS AS ION SOURCE
DE102017004633A1 (en) Elementary analysis system and method
DE2806208C3 (en) Method and device for the detection of sulfur dioxide in a gas sample
DE4213079C2 (en) Sensor for determining a substance with a high molecular weight
EP0448816B1 (en) Apparatus for determining volatile substances in a liquid
DE69530189T2 (en) Improved pulsed discharge system
Niemelä et al. Comparison of microwave-assisted digestion methods and selection of internal standards for the determination of Rh, Pd and Pt in dust samples by ICP-MS
Gordon et al. Direct sampling and analysis of volatile organic compounds in air by membrane introduction and glow discharge ion trap mass spectrometry with filtered noise fields
EP0260469B1 (en) Apparatus for analytically determining organic substances
EP2511703B1 (en) Method for measuring emitting volatile materials from wooden materials and device for measuring volatile materials emitted from wooden materials
DE60220781T2 (en) METHOD FOR DETERMINING THE TOTAL CONCENTRATION OF CARBON MONOXIDE AND HYDROCARBONS IN OXYGEN WITH THE HELP OF ION MOBILITY SPECTROSCOPY
DE102009017932B4 (en) A method for the continuous quantitative determination of an oxidizable chemical compound in an assay medium
DE2757699B2 (en) Gas analyzer with a perineation cell and a detector
Knechtel et al. Wet digestion method for the determination of mercury in biological and environmental samples
DE2521344A1 (en) MASS SPECTROMETIC SYSTEM FOR RAPID AUTOMATIC, SPECIFIC INDENTIFICATION AND QUANTITATIVE DETERMINATION OF CONNECTIONS
WO2018193138A1 (en) Compact measuring appliance and method for detecting hydrocarbons
DE19506875C1 (en) Mercury contaminant conc. determination system
DE4309045C2 (en) Method for the simultaneous determination of organically bound halides in water and device for carrying out the method
DD246627A5 (en) Method for the analytical determination of organic substances

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19880902

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH FR GB IT LI NL SE

RHK1 Main classification (correction)

Ipc: H01J 49/02

17Q First examination report despatched

Effective date: 19910912

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930107

REF Corresponds to:

Ref document number: 84377

Country of ref document: AT

Date of ref document: 19930115

Kind code of ref document: T

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19930820

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950530

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950629

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950830

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950831

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960831

Ref country code: CH

Effective date: 19960831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960820

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970430

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050820