EP0258090B1 - Static tripping device for a circuit breaker with electronic contact wear indication - Google Patents

Static tripping device for a circuit breaker with electronic contact wear indication Download PDF

Info

Publication number
EP0258090B1
EP0258090B1 EP87401714A EP87401714A EP0258090B1 EP 0258090 B1 EP0258090 B1 EP 0258090B1 EP 87401714 A EP87401714 A EP 87401714A EP 87401714 A EP87401714 A EP 87401714A EP 0258090 B1 EP0258090 B1 EP 0258090B1
Authority
EP
European Patent Office
Prior art keywords
circuit breaker
wear
value
current
microprocessor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87401714A
Other languages
German (de)
French (fr)
Other versions
EP0258090A1 (en
Inventor
Luc Weynachter
Vincent Corcoles
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merlin Gerin SA
Original Assignee
Merlin Gerin SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merlin Gerin SA filed Critical Merlin Gerin SA
Priority to AT87401714T priority Critical patent/ATE74238T1/en
Publication of EP0258090A1 publication Critical patent/EP0258090A1/en
Application granted granted Critical
Publication of EP0258090B1 publication Critical patent/EP0258090B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0015Means for testing or for inspecting contacts, e.g. wear indicator

Definitions

  • Circuit breakers often include an insulating envelope, in particular a molded case, which ensures high reliability, but this envelope annoys users accustomed to verifying the state of the contacts of circuit breakers by visual examination. Such a verification is frequent in low-voltage circuit breakers of large size of the open type, which are arranged for disassembly and replacement of the worn contacts. It is important to detect the wear of the contacts in time if we want to avoid the destruction of the entire device and this verification. should be easy and avoid, especially disassembly of parts.
  • Circuit breakers are often equipped with a counter indicating the number of operations and therefore the degree of mechanical wear of the device, but this indication is insufficient to know the wear of the contacts, an opening on short-circuit producing a contact erosion significantly greater than that of a simple cut of the nominal current.
  • a mechanical contact associated with the contacts of the switching device sends a read signal from a memory the data input of which is connected to a current measurement device and the output provides a wear value associated with the current measured at the time of reading.
  • the wear values read in the memory are added together to provide a value representative of the degree of wear of the contacts. If this type of device is used in connection with a circuit breaker, a significant amount of time may elapse between sending a trip order to the circuit breaker and opening the contacts, and it is obvious that the value of the current measured at the time of reading the memory does not correspond to the peak value of the current.
  • EP-A-0147.592 a device in which a microprocessor calculates a value representative of the degree of wear of the contacts from the value i of the current during the breaking and of the number n of breaking by forming l 'integral ⁇ indt, and causing tripping of the circuit breaker when this value is greater than a predetermined threshold.
  • the present invention aims to allow an indication of the degree of wear of the contacts of a circuit breaker without disassembly of this last taking into account the maximum current value during the cut-off time.
  • the trip device is characterized in that the digital processing assembly includes a microprocessor and provides a long delay trip function and / or a short delay trip function, developing a trip order for the circuit breaker, during a exceeding of predetermined thresholds by the current, said order being timed as a function of the value of the signal, and a circuit breaker tripping means being activated by said tripping order, the value of the cut current being the maximum value obtained by comparison, by the microprocessor, between the successive values of said digitized signal which are applied to it between the elaboration of the tripping order of the circuit breaker and the actual opening of the contacts.
  • the trip device In the case of a static trip device, it is advantageous for the trip device to have the peak value of the current cut at each cut.
  • the indication of wear is then particularly simple.
  • the microprocessor can, by comparison with a wear curve entered in a memory, establish the corresponding wear value of the contacts. It suffices to add these wear values to know the general state of the contacts, this state being permanently displayed or preferably on demand, possibly remotely.
  • An alarm or self-protection device by tripping of the circuit breaker can intervene when the degree of wear exceeds a predetermined threshold, the exceeding of the threshold being advantageously observed by the microprocessor itself.
  • the wear indication is not an absolutely exact measurement, other factors than the cut-off peak value, such as the quality of the contact materials, the speed of contact separation or the speed of displacement of the arc, having an influence on the wear of the contacts.
  • the precision is sufficient to be able to set an acceptable threshold below which the contacts can in no case be worn.
  • a verification for example visual, is required and the user can decide to replace the worn contacts or maintain them depending on the circuit breaker if the contacts are only partially worn, by raising the threshold by a value depending on the state of the contacts. Assessing the value of this threshold requires some experience and, of course, more careful monitoring afterwards.
  • the wear indicator according to the invention has the advantage of using the components of the digital static trip device, the capacity of the microprocessor being sufficient to process this additional function.
  • the wear curve which of course depends on the type of circuit breaker, can be easily memorized during the customization of the trip device, in particular when setting the other trip operating values and thresholds.
  • the wear curve is a function of the maximum current cut, and microprocessor processing is considerably simplified by admitting a discrete variation, this approximation being perfectly compatible with the required precision.
  • the wear curve is a stepped curve, which makes it possible to take account of all the singular phenomena and to easily modify the curve.
  • an electrical distribution network with 3 conductors R, S, T, for supplying a load comprises a circuit breaker 10 capable of interrupting the circuit in the open position.
  • the mechanism 12 of the circuit breaker 10 is controlled by a polarized relay 14 for controlling tripping of the circuit breaker in the event of an overload or short-circuit.
  • An auxiliary contact 16, associated with the main contacts of the circuit breaker 10 indicates the position of these main contacts.
  • Each conductor R, S, T is associated with a current transformer 18 which delivers a signal proportional to the current flowing through the associated conductor, this signal being applied to a full-wave rectifier bridge 20.
  • the outputs of the 3 rectifier bridges 20 are connected in series in a circuit comprising a resistor 22, a Zener diode 24 and a diode 26 to make appear at the terminals of the resistor 22 a voltage signal proportional to the maximum value of the current flowing through the conductors R, S, T and at the terminals of the diode 24, a supply voltage of the electronic circuits.
  • the voltage signal is applied to the input of an amplifier 28, the output of which is connected to an analog-digital converter 30.
  • the output of the analog-to-digital converter 30 is connected to an input output 1 of a microprocessor 32.
  • the microprocessor 32 further comprises an output 2 connected to the polarized relay 14, an input 3 receiving the signals from a clock 34, an input 4 connected to a keyboard 36, an input 6 connected to a ROM 38, an input / output 5 connected to a non-volatile NOVRAM memory 40, an output 7 connected to a display device 42 and an input 8 connected to the auxiliary contact 16.
  • the trip device according to FIG. 1 provides the protection function, in particular the long delay trip and / or the short delay trip respectively during an overload and a fault appearing in the circuit of the conductors R, S, T. It is useless to describe in detail this protective function specified in the French patent application N ° 85 03159 of February 25, 1985.
  • the digital signal representative of the maximum value of the current in the conductors R, S, T is applied to input 1 of microprocessor 32 and compared with threshold values stored in a memory to detect any exceeding of these thresholds and generate a delayed or instantaneous tripping order, which is transmitted to relay 14 to cause the opening of the circuit breaker 10.
  • the trip unit can of course perform other functions, in particular earth protection or instantaneous trip.
  • the invention can be used in any type of static microprocessor trigger and is in no way limited to the trigger of the type described above.
  • the current detection means may include current sensors supplying analog signals representative of the derivative of the current di / dt and the output of which is connected to integrating circuits, the output signals of the integrator circuits being transmitted to the microprocessor via an analog-digital converter.
  • the trip unit performs a maintenance function by developing and displaying a value representative of the degree of wear of the contacts. Calculation and tests have shown that each time the circuit breaker is opened, the contacts wear out, the greater the wear, the greater the maximum value of the cut current.
  • FIG. 2 shows by way of example a curve indicating the number N of possible breaker openings as a function of the maximum value of the cut current. This curve is of course valid for a certain type of circuit breaker and we see that after two power outages greater than 64,000 amperes, the contacts are completely worn. If, on the other hand, the cut currents are notably lower, for example between 250 and 500 amperes, the wear of the contacts will only occur after 4000 opening operations.
  • This curve is of course a continuous function, but the step representation according to FIG. 2 facilitates processing by microprocessor. Processing by microprocessor is further facilitated if the value of the current of a given level corresponds to twice the value of the current of the level immediately below, as on the curve represented in FIG. 2.
  • the use of a stepped curve determined experimentally, moreover makes it easy to take into account all the singular phenomena which can be revealed for certain values of the current. It is therefore very easy to modify the correspondence table from time to time if necessary and to adapt the curve to the different types of devices.
  • the microprocessor 32 of the digital static trip device described above is particularly suitable for the realization of this function, the capacities of the microprocessor being generally superabundant in such static trip devices.
  • the maximum value reached by the current during the cut-off is preferably displayed so as to provide the user with an indication of the peak value reached during a trip.
  • the correspondence between the maximum values of the cut current I and the wear value 100 / N is incorporated in the ROM memory 38 connected to the input 6 of the microprocessor 32. In the case where the successive values of the current steps are in a ratio of 2, the correspondence table can be simplified, only the successive values of the wear values having to be stored in the ROM memory 38. In the NOVRAM memory 40 are added and stored the successive wear values and this stored value can be displayed on the display device 42 upon actuation of a maintenance button 44 belonging to the keyboard 36.
  • the flowchart shown in Figure 3 illustrates the maintenance function according to the invention.
  • the tripping order produced by the microprocessor triggers a subroutine consisting in measuring the maximum value I of the cut current from the values supplied by the analog-digital converter 30 on input 1 of the microprocessor 32.
  • the circuit breaker 10 is opened by manual opening or by actuation of a handle or a joystick, the auxiliary contact 16 closes and sends a signal to the input 8 of the microprocessor 32.
  • This signal opening circuit breaker 10 also triggers the subroutine for measuring the maximum value of the cut current.
  • the auxiliary contact 16 also sends a signal to the input 8 when the triggering is automatically controlled by the microprocessor.
  • this signal is not taken into account by the microprocessor which has started measuring the maximum value of the cut current as soon as the trip order is sent.
  • the maximum duration of the cut-off is known, from the sending of the triggering order by the microprocessor and the subroutine for measuring the maximum value of the cut current takes into account all the values of the current supplied to the microprocessor for a predetermined time corresponding to this maximum duration from the sending of the triggering order in the case of an automatic opening or from the reception by the microprocessor of a signal on its entry 8 in the case of manual opening.
  • the microprocessor 32 acquires from the ROM memory 38 the wear value corresponding to this maximum value I and adds this wear value to the content of the NOVRAM memory 40.
  • This program takes place at each opening of the circuit breaker 10 and the values of corresponding wear are added to the NOVRAM 40 memory.
  • the content of the NOVRAM 40 memory is displayed by pressing a button 44 on the keyboard 36 which initiates a cycle of interrogation of the NOVRAM 40 memory and transfer to the device display 42 of the content of this memory 40.
  • the display can of course be permanent, but such a display is of no great interest, the monitoring intervening only periodically especially after trips and large short-circuit current cuts .
  • the user is assured of the correct operation of the circuit breaker, the contacts not being completely worn.
  • a verification of the state of the contacts is essential, this verification being either carried out by the user himself, or by a maintenance specialist who, by visual examination of the contacts or by any other means , can obtain confirmation of the wear of the contacts or possibly note that the wear reached does not yet affect the proper functioning of the circuit breaker. This imprecision is due to external conditions affecting the wear of the contacts and which are difficult to calculate by the microprocessor. Further study of the contact wear factors can reduce this inaccuracy but at the expense of the simplicity of the device.
  • the main interest of the wear indicator according to the invention is to free the user from any monitoring constraint and from any uncertainty for a period relatively long. At the end of this period, a check is required and if the user decides to replace the contacts, he again has a period of the same duration before any further examination.
  • the display device 42 can of course be associated or incorporated an alarm device signaling the crossing of the predetermined wear threshold to signal the user of the obligation to check.
  • the alarm signal can also cause the circuit breaker 10 to open, possibly with an indication of the cause of this opening.
  • the correspondence values between the interrupted currents and the wear of the contacts obviously depend on the type of circuit breaker and these different values can be stored in different ROM memories 38, the appropriate memory being associated with the trip device when the latter is mounted on the corresponding circuit breaker. It is also possible to enter these values when programming the microprocessor 32. Manual opening of the circuit breaker 10 by cutting the nominal current causes reduced wear of the contacts and in a simplified installation, it is possible to neglect this wear. It is then possible to delete the auxiliary contact 16, the microprocessor 32 having the tripping information of the circuit breaker 10 which it transmitted itself to the polarized relay 14. The relationship between the wear value of the contacts and the current cut can also be translated by a mathematical relation supplied to microprocessor 32, which is then capable of directly calculating the wear value.

Abstract

A digital solid-state trip unit of an electrical circuit breaker is equipped with an electrical contact wear indicator enabling the degree of wear of these contacts to be known. Each time the circuit breaker performs a break, the microprocessor determines a contact wear value, in terms of the maximum value of the current broken. The correspondence between the wear value and the current broken is stored in a ROM memory and the successive wear values are added in a NOVRAM memory whose contents are representative of the degree of contact wear. These contents can be displayed to indicate to the user that the condition of the contacts has to be checked.

Description

L'invention est relative à un déclencheur pour un disjoncteur électrique à contacts séparables comprenant:

  • un circuit de détection engendrant un signal analogique proportionnel au courant parcourant le conducteur protégé par le disjoncteur,
  • un convertisseur analogique-numérique ayant une entrée recevant ledit signal analogique et une sortie délivrant un signal numérisé échantillonné correspondant,
  • et un ensemble de traitement numérique, auquel est appliqué le signal numérisé, l'ensemble de traitement numérique comprenant des moyens de détection de la valeur du courant coupé à chaque ouverture du disjoncteur, un dispositif d'élaboration, à chaque ordre d'ouverture d'une valeur d'usure en fonction de ladite valeur du courant et représentative de l'usure des contacts, due à la coupure dudit courant, et un dispositif de sommation et de stockage dans une mémoire (40) desdites valeurs d'usure constituant un indicateur du degré d'usure desdits contacts,
The invention relates to a trip device for an electric circuit breaker with separable contacts comprising:
  • a detection circuit generating an analog signal proportional to the current flowing through the conductor protected by the circuit breaker,
  • an analog-digital converter having an input receiving said analog signal and an output delivering a corresponding sampled digitized signal,
  • and a digital processing assembly, to which the digitized signal is applied, the digital processing assembly comprising means for detecting the value of the current cut at each opening of the circuit breaker, a processing device, at each opening order d '' a wear value as a function of said current value and representative of the contact wear, due to the breaking of said current, and a summation and storage device in a memory (40) of said wear values constituting a indicator of the degree of wear of said contacts,

Le bon fonctionnement d'un disjoncteur électrique dépend de l'état de détérioration des contacts, un mauvais contact provoquant un échauffement par effet Joule et une destruction du disjoncteur. Les disjoncteurs comportent souvent une enveloppe isolante, notamment un boîtier moulé, qui leur assure une grande fiabilité, mais cette enveloppe gêne les utilisateurs habitués à vérifier par examen visuel l'état des contacts des disjoncteurs. Une telle vérification est fréquente dans les disjoncteurs basse tension de fort calibre du type ouvert, qui sont agencés pour un démontage et un remplacement des contacts usés. Il est important de détecter à temps l'usure des contacts si on veut éviter la destruction de l'ensemble de l'appareil et cette vérification doit être facile et éviter, en particulier un démontage des pièces.The proper functioning of an electric circuit breaker depends on the state of deterioration of the contacts, a bad contact causing heating by Joule effect and destruction of the circuit breaker. Circuit breakers often include an insulating envelope, in particular a molded case, which ensures high reliability, but this envelope annoys users accustomed to verifying the state of the contacts of circuit breakers by visual examination. Such a verification is frequent in low-voltage circuit breakers of large size of the open type, which are arranged for disassembly and replacement of the worn contacts. It is important to detect the wear of the contacts in time if we want to avoid the destruction of the entire device and this verification. should be easy and avoid, especially disassembly of parts.

Les disjoncteurs sont souvent équipés d'un compteur indiquant le nombre de manoeuvres et de ce fait le degré d'usure mécanique de l'appareil, mais cette indication est insuffisante pour connaître l'usure des contacts, une ouverture sur court-circuit produisant une érosion des contacts notablement supérieure à celle d'une simple coupure du courant nominal.Circuit breakers are often equipped with a counter indicating the number of operations and therefore the degree of mechanical wear of the device, but this indication is insufficient to know the wear of the contacts, an opening on short-circuit producing a contact erosion significantly greater than that of a simple cut of the nominal current.

Il a, par ailleurs, été proposé de contrôler l'état d'un appareil de commutation en tenant compte du courant coupé.It has also been proposed to control the state of a switching device taking into account the cut current.

Dans un dispositif connu (DE-A-2.727.378), un contact mécanique associé aux contacts de l'appareil de commutation envoie un signal de lecture d'une mémoire dont l'entrée des données est reliée à un dispositif de mesure du courant et la sortie fournit une valeur d'usure associée au courant mesuré au moment de la lecture. Les valeurs d'usure lues dans la mémoire sont additionnées de manière à fournir une valeur représentative du degré d'usure des contacts.Si l'on utilise ce type de dispositif en liaison avec un disjoncteur, il peut s'écouler un temps non négligeable entre l'envoi d'un ordre de déclenchement au disjoncteur et l'ouverture des contacts, et il est bien évident que la valeur du courant mesuré au moment de la lecture de la mémoire ne correspond pas à la valeur crête du courant.In a known device (DE-A-2,727,378), a mechanical contact associated with the contacts of the switching device sends a read signal from a memory the data input of which is connected to a current measurement device and the output provides a wear value associated with the current measured at the time of reading. The wear values read in the memory are added together to provide a value representative of the degree of wear of the contacts. If this type of device is used in connection with a circuit breaker, a significant amount of time may elapse between sending a trip order to the circuit breaker and opening the contacts, and it is obvious that the value of the current measured at the time of reading the memory does not correspond to the peak value of the current.

On connaît, par ailleurs (EP-A-0147.592), un dispositif dans lequel un microprocesseur calcule une valeur représentative du degré d'usure des contacts à partir de la valeur i du courant durant la coupure et du nombre n de coupure en formant l'intégrale ∫ i.n.dt, et provoquant le déclenchement du disjoncteur lorsque cette valeur est supérieure à un seuil prédéterminé.There is also known (EP-A-0147.592), a device in which a microprocessor calculates a value representative of the degree of wear of the contacts from the value i of the current during the breaking and of the number n of breaking by forming l 'integral ∫ indt, and causing tripping of the circuit breaker when this value is greater than a predetermined threshold.

La présente invention a pour but de permettre une indication du degré d'usure des contacts d'un disjoncteur sans démontage de ce dernier en tenant compte de la valeur maximale du courant pendant la durée de la coupure.The present invention aims to allow an indication of the degree of wear of the contacts of a circuit breaker without disassembly of this last taking into account the maximum current value during the cut-off time.

Le déclencheur selon l'invention est caractérisé en ce que l'ensemble de traitement numérique comporte un microprocesseur et assure une fonction de déclenchement long retard et/ou une fonction de déclenchement court retard, élaborant un ordre de déclenchement du disjoncteur, lors d'un dépassement de seuils prédéterminés par le courant, ledit ordre étant temporisé en fonction de la valeur du signal, et un moyen de déclenchement du disjoncteur étant activé par ledit ordre de déclenchement, la valeur du courant coupé étant la valeur maximale obtenue par comparaison, par le microprocesseur, entre les valeurs successives dudit signal numérisé qui lui sont appliquées entre l'élaboration de l'ordre de déclenchement du disjoncteur et l'ouverture effective des contacts.The trip device according to the invention is characterized in that the digital processing assembly includes a microprocessor and provides a long delay trip function and / or a short delay trip function, developing a trip order for the circuit breaker, during a exceeding of predetermined thresholds by the current, said order being timed as a function of the value of the signal, and a circuit breaker tripping means being activated by said tripping order, the value of the cut current being the maximum value obtained by comparison, by the microprocessor, between the successive values of said digitized signal which are applied to it between the elaboration of the tripping order of the circuit breaker and the actual opening of the contacts.

Dans le cas d'un déclencheur statique, il est avantageux que le déclencheur dispose à chaque coupure de la valeur crête du courant coupé. L'indication de l'usure est alors particulièrement simple. En effet, le microprocesseur peut par comparaison à une courbe d'usure introduite dans une mémoire établir la valeur d'usure correspondante des contacts.Il suffit d'additionner ces valeurs d'usure pour connaître l'état général des contacts, cet état étant affiché en permanence ou de préférence à la demande, éventuellement à distance. Un dispositif d'alarme ou d'auto-protection par déclenchement du disjoncteur peut intervenir lorsque le degré d'usure dépasse un seuil prédéterminé, le dépassement du seuil étant avantageusement constaté par le microprocesseur lui-même. L'indication d'usure n'est pas une mesure absolument exacte, d'autres facteurs que la valeur crête coupée, telles que la qualité des matériaux de contacts, la vitesse de séparation des contacts ou la vitesse de déplacement de l'arc, ayant une influence sur l'usure des contacts. Il s'avère néanmoins que la précision est suffisante pour pouvoir fixer un seuil acceptable en dessous duquel les contacts ne peuvent en aucun cas être usés. Lorsque ce seuil est atteint, une vérification, par exemple visuelle, s'impose et l'utilisateur peut décider le remplacement des contacts usés ou le maintien en fonction du disjoncteur si les contacts ne sont que partiellement usés, par relèvement du seuil d'une valeur fonction de l'état des contacts. L'appréciation de la valeur de ce seuil nécessite une certaine expérience et bien entendu une surveillance plus soignée par la suite.In the case of a static trip device, it is advantageous for the trip device to have the peak value of the current cut at each cut. The indication of wear is then particularly simple. In fact, the microprocessor can, by comparison with a wear curve entered in a memory, establish the corresponding wear value of the contacts. It suffices to add these wear values to know the general state of the contacts, this state being permanently displayed or preferably on demand, possibly remotely. An alarm or self-protection device by tripping of the circuit breaker can intervene when the degree of wear exceeds a predetermined threshold, the exceeding of the threshold being advantageously observed by the microprocessor itself. The wear indication is not an absolutely exact measurement, other factors than the cut-off peak value, such as the quality of the contact materials, the speed of contact separation or the speed of displacement of the arc, having an influence on the wear of the contacts. However, it turns out that the precision is sufficient to be able to set an acceptable threshold below which the contacts can in no case be worn. When this threshold is reached, a verification, for example visual, is required and the user can decide to replace the worn contacts or maintain them depending on the circuit breaker if the contacts are only partially worn, by raising the threshold by a value depending on the state of the contacts. Assessing the value of this threshold requires some experience and, of course, more careful monitoring afterwards.

L'indicateur d'usure selon l'invention présente l'avantage d'utiliser les composants du déclencheur statique numérique, la capacité du microprocesseur étant suffisante pour traiter cette fonction additionnelle. La courbe d'usure, qui dépend bien entendu du type de disjoncteur, peut être facilement mémorisée lors de la personnalisation du déclencheur, notamment lors de la fixation des autres valeurs et seuils de fonctionnement du déclencheur. La courbe d'usure est une fonction du courant maximal coupé, et le traitement par microprocesseur est notablement simplifié en admettant une variation discrète, cette approximation étant parfaitement compatible avec la précision requise.The wear indicator according to the invention has the advantage of using the components of the digital static trip device, the capacity of the microprocessor being sufficient to process this additional function. The wear curve, which of course depends on the type of circuit breaker, can be easily memorized during the customization of the trip device, in particular when setting the other trip operating values and thresholds. The wear curve is a function of the maximum current cut, and microprocessor processing is considerably simplified by admitting a discrete variation, this approximation being perfectly compatible with the required precision.

Dans un mode de réalisation préférentiel, la courbe d'usure est une courbe en gradins, ce qui permet de tenir compte de tous les phénomènes singuliers et de modifier facilement la courbe.In a preferred embodiment, the wear curve is a stepped curve, which makes it possible to take account of all the singular phenomena and to easily modify the curve.

D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre d'un mode de mise en oeuvre de l'invention, donné à titre d'exemple non limitatif et représenté aux dessins annexés dans lesquels :

  • la figure 1 est un schéma synoptique du déclencheur selon l'invention ;
  • la figure 2 représente la courbe de variation du nombre de manoeuvres N possibles en fonction de l'intensité du courant coupé I ;
  • la figure 3 est l'organigramme de la fonction de maintenance.
Other advantages and characteristics will emerge more clearly from the description which follows of an embodiment of the invention, given by way of nonlimiting example and shown in the appended drawings in which:
  • Figure 1 is a block diagram of the trigger according to the invention;
  • FIG. 2 represents the curve of variation of the number of possible maneuvers N as a function of the intensity of the cut current I;
  • Figure 3 is the flowchart of the maintenance function.

Sur la figure 1, un réseau de distribution électrique à 3 conducteurs R, S, T, d'alimentation d'une charge (non représentée) comporte un disjoncteur 10 susceptible d'interrompre le circuit en position d'ouverture. Le mécanisme 12 du disjoncteur 10 est piloté par un relais 14 polarisé de commande de déclenchemement du disjoncteur en cas de surcharge ou de court-circuit. Un contact auxiliaire 16, associé aux contacts principaux du disjoncteur 10 indique la position de ces contacts principaux. A chaque conducteur R, S, T, est associé un transformateur de courant 18 qui délivre un signal proportionnel au courant parcourant le conducteur associé, ce signal étant appliqué à un pont redresseur 20 à double alternance.Les sorties des 3 ponts redresseurs 20 sont connectées en série dans un circuit comprenant une résistance 22, une diode Zener 24 et une diode 26 pour faire apparaître aux bornes de la résistance 22 un signal de tension proportionnel à la valeur maximale du courant parcourant les conducteurs R, S, T et aux bornes de la diode 24, une tension d'alimentation des circuits électroniques. Le signal de tension est appliqué à l'entrée d'un amplificateur 28, dont la sortie est reliée à un convertisseur analogique-numérique 30. La sortie du convertisseur analogique-numérique 30 est reliée à une entrée sortie 1 d'un microprocesseur 32. Le microprocesseur 32 comporte de plus une sortie 2 reliée au relais polarisé 14, une entrée 3 recevant les signaux d'une horloge 34, une entrée 4 reliée à un clavier 36, une entrée 6 reliée à une mémoire morte ROM 38, une entrée/sortie 5 reliée à une mémoire non volatile NOVRAM 40, une sortie 7 reliée à un dispositif d'affichage 42 et une entrée 8 reliée au contact auxiliaire 16.In FIG. 1, an electrical distribution network with 3 conductors R, S, T, for supplying a load (not shown) comprises a circuit breaker 10 capable of interrupting the circuit in the open position. The mechanism 12 of the circuit breaker 10 is controlled by a polarized relay 14 for controlling tripping of the circuit breaker in the event of an overload or short-circuit. An auxiliary contact 16, associated with the main contacts of the circuit breaker 10 indicates the position of these main contacts. Each conductor R, S, T is associated with a current transformer 18 which delivers a signal proportional to the current flowing through the associated conductor, this signal being applied to a full-wave rectifier bridge 20. The outputs of the 3 rectifier bridges 20 are connected in series in a circuit comprising a resistor 22, a Zener diode 24 and a diode 26 to make appear at the terminals of the resistor 22 a voltage signal proportional to the maximum value of the current flowing through the conductors R, S, T and at the terminals of the diode 24, a supply voltage of the electronic circuits. The voltage signal is applied to the input of an amplifier 28, the output of which is connected to an analog-digital converter 30. The output of the analog-to-digital converter 30 is connected to an input output 1 of a microprocessor 32. The microprocessor 32 further comprises an output 2 connected to the polarized relay 14, an input 3 receiving the signals from a clock 34, an input 4 connected to a keyboard 36, an input 6 connected to a ROM 38, an input / output 5 connected to a non-volatile NOVRAM memory 40, an output 7 connected to a display device 42 and an input 8 connected to the auxiliary contact 16.

Le déclencheur selon la figure 1, assure la fonction de protection, notamment le déclenchement long retard et/ou le déclenchement court retard respectivement lors d'une surcharge et d'un défaut apparaissant dans le circuit des conducteurs R, S, T. Il est inutile de décrire en détail cette fonction de protection précisée dans la demande de brevet français N° 85 03159 du 25 février 1985.Le signal numérique représentatif de la valeur maximale du courant dans les conducteurs R, S, T, est appliqué à l'entrée 1 du microprocesseur 32 et comparé à des valeurs de seuils stockées dans une mémoire pour détecter tout dépassement de ces seuils et engendrer un ordre de déclenchement temporisé ou instantané, qui est transmis au relais 14 pour provoquer l'ouverture du disjoncteur 10. Le déclencheur peut bien entendu assurer d'autres fonctions, notamment de protection de terre ou de déclenchement instantané.The trip device according to FIG. 1, provides the protection function, in particular the long delay trip and / or the short delay trip respectively during an overload and a fault appearing in the circuit of the conductors R, S, T. It is useless to describe in detail this protective function specified in the French patent application N ° 85 03159 of February 25, 1985.The digital signal representative of the maximum value of the current in the conductors R, S, T, is applied to input 1 of microprocessor 32 and compared with threshold values stored in a memory to detect any exceeding of these thresholds and generate a delayed or instantaneous tripping order, which is transmitted to relay 14 to cause the opening of the circuit breaker 10. The trip unit can of course perform other functions, in particular earth protection or instantaneous trip.

L'invention peut être utilisée dans tout type de déclencheur statique à microprocesseur et n'est en aucune manière limitée au déclencheur du type décrit ci-dessus. A titre d'exemple, nullement limitatif, les moyens de détection du courant peuvent comporter des capteurs de courant fournissant des signaux analogiques représentatifs de la dérivée du courant di/dt et dont la sortie est reliée à des circuits intégrateurs, les signaux de sortie des circuits intégrateurs étant transmis au microprocesseur par l'intermédiaire d'un convertisseur analogique-numérique.The invention can be used in any type of static microprocessor trigger and is in no way limited to the trigger of the type described above. By way of example, in no way limiting, the current detection means may include current sensors supplying analog signals representative of the derivative of the current di / dt and the output of which is connected to integrating circuits, the output signals of the integrator circuits being transmitted to the microprocessor via an analog-digital converter.

Selon la présente invention, le déclencheur assure une fonction de maintenance en élaborant et en affichant une valeur représentative du degré d'usure des contacts. Le calcul et les essais ont montré qu'à chaque ouverture du disjoncteur, les contacts s'usent, l'usure étant d'autant plus importante que la valeur maximale du courant coupé est grande. On a représenté à titre d'exemple sur la figure 2 une courbe indiquant le nombre N d'ouvertures du disjoncteur possibles en fonction de la valeur maximale du courant coupé. Cette courbe est bien entendu valable pour un certain type de disjoncteur et on voit qu'après deux coupures de courant supérieures à 64 000 ampères, les contacts sont totalement usés. Si, par contre, les courants coupés sont notablement plus faibles, par exemple compris entre 250 et 500 ampères, l'usure des contacts n'interviendra qu'après 4000 manoeuvres d'ouverture. En tenant compte de l'échelle logarithmique de la figure 2, on voit que la courbe représente sensiblement une fonction exponentielle correspondant à la relation N x IK2= K1, K1 et K2 étant des constantes caractéristiques du type de disjoncteur. Cette courbe est bien entendu une fonction continue, mais la représentation en gradins selon la figure 2 facilite le traitement par microprocesseur. Le traitement par microprocesseur est encore facilité si la valeur du courant d'un palier donné correspond au double de la valeur du courant du palier immédiatement inférieur, comme sur la courbe représentée à la figure 2. L'utilisation d'une courbe en gradins, déterminée de façon expérimentale, permet de plus de tenir compte facilement de tous les phénomènes singuliers pouvant se révêler pour certaines valeurs du courant. Il est ainsi très facile de modifier ponctuellement la table de correspondance si nécessaire et d'adapter la courbe aux différents types d'appareils. A chaque ouverture du disjoncteur correspond une certaine usure des contacts qui est fonction de la valeur maximale du courant coupé. Cette usure, par exemple représentée par la valeur 100/N se cumule à chaque ouverture du disjoncteur et l'usure totale des contacts est atteinte dans ce cas, lorsque la valeur d'usure atteint le nombre 100. Pour connaître l'état des contacts, il suffit,de mesurer à chaque ouverture du disjoncteur la valeur maximale du courant coupé et de déterminer,à l'aide de la fonction représentée à la figure 2, l'usure correspondante des contacts. Le microprocesseur détermine quelle est la valeur maximale atteinte par le courant en comparant les valeurs successives du courant qui lui sont appliquées entre le moment où il élabore l'ordre de déclenchement et le moment de la coupure effective du circuit à surveiller par le disjoncteur. Par simple addition de ces valeurs d'usure, il est possible de connaître à chaque moment le degré d'usure atteint par les manoeuvres effectuées. Le microprocesseur 32 du déclencheur statique numérique décrit ci-dessus est particulièrement approprié à la réalisation de cette fonction, les capacités du microprocesseur étant généralement surabondantes dans de tels déclencheurs statiques. De plus, la valeur maximale atteinte par le courant lors de la coupure est de préférence affichée de manière à fournir à l'utilisateur une indication de la valeur crête atteinte lors d'un déclenchebent. La correspondance entre les valeurs maximales du courant coupé I et la valeur d'usure 100/N est incorporée dans la mémoire ROM 38 reliée à l'entrée 6 du microprocesseur 32. Dans le cas où les valeurs successives des paliers de courant sont dans un rapport de 2, la table de correspondance peut être simplifiée, seules les valeurs successives des valeurs d'usure ayant à être mémorisées dans la mémoire ROM 38. Dans la mémoire NOVRAM 40 sont additionnées et mémorisées les valeurs d'usure successives et cette valeur mémorisée peut être affichée sur le dispositif d'affichage 42 lors de l'actionnement d'un bouton de maintenance 44 appartenant au clavier 36.According to the present invention, the trip unit performs a maintenance function by developing and displaying a value representative of the degree of wear of the contacts. Calculation and tests have shown that each time the circuit breaker is opened, the contacts wear out, the greater the wear, the greater the maximum value of the cut current. FIG. 2 shows by way of example a curve indicating the number N of possible breaker openings as a function of the maximum value of the cut current. This curve is of course valid for a certain type of circuit breaker and we see that after two power outages greater than 64,000 amperes, the contacts are completely worn. If, on the other hand, the cut currents are notably lower, for example between 250 and 500 amperes, the wear of the contacts will only occur after 4000 opening operations. Taking into account the logarithmic scale of Figure 2, we see that the curve represents substantially an exponential function corresponding to the relation N x I K2 = K1, K1 and K2 being constants characteristics of the type of circuit breaker. This curve is of course a continuous function, but the step representation according to FIG. 2 facilitates processing by microprocessor. Processing by microprocessor is further facilitated if the value of the current of a given level corresponds to twice the value of the current of the level immediately below, as on the curve represented in FIG. 2. The use of a stepped curve, determined experimentally, moreover makes it easy to take into account all the singular phenomena which can be revealed for certain values of the current. It is therefore very easy to modify the correspondence table from time to time if necessary and to adapt the curve to the different types of devices. Each time the circuit breaker is opened, there is a certain wear on the contacts, which is a function of the maximum value of the cut current. This wear, for example represented by the value 100 / N is added to each opening of the circuit breaker and the total wear of the contacts is reached in this case, when the wear value reaches the number 100. To find out the state of the contacts , it suffices to measure the maximum value of the interrupted current at each opening of the circuit breaker and to determine, using the function shown in FIG. 2, the corresponding wear of the contacts. The microprocessor determines what is the maximum value reached by the current by comparing the successive values of the current which are applied to it between the moment when it generates the tripping order and the moment of the actual breaking of the circuit to be monitored by the circuit breaker. By simply adding these wear values, it is possible to know at each moment the degree of wear reached by the maneuvers carried out. The microprocessor 32 of the digital static trip device described above is particularly suitable for the realization of this function, the capacities of the microprocessor being generally superabundant in such static trip devices. In addition, the maximum value reached by the current during the cut-off is preferably displayed so as to provide the user with an indication of the peak value reached during a trip. The correspondence between the maximum values of the cut current I and the wear value 100 / N is incorporated in the ROM memory 38 connected to the input 6 of the microprocessor 32. In the case where the successive values of the current steps are in a ratio of 2, the correspondence table can be simplified, only the successive values of the wear values having to be stored in the ROM memory 38. In the NOVRAM memory 40 are added and stored the successive wear values and this stored value can be displayed on the display device 42 upon actuation of a maintenance button 44 belonging to the keyboard 36.

L'organigramme représenté à la figure 3 illustre la fonction de maintenance selon l'invention. En cas de déclenchement automatique du disjoncteur, l'ordre de déclenchement produit par le microprocesseur déclenche un sous-programme consistant à mesurer la valeur maximale I du courant coupé à partir des valeurs fournies par le convertisseur analogique-numérique 30 sur l'entrée 1 du microprocesseur 32. En cas d'ouverture du disjoncteur 10 par ouverture manuelle ou par actionnement d'une poignée ou d'une manette, le contact auxiliaire 16 se ferme et envoie un signal sur l'entrée 8 du microprocesseur 32. Ce signal d'ouverture du disjoncteur 10 déclenche également le sous-programme de mesure de la valeur maximale du courant coupé. Bien entendu, le contact auxiliaire 16 envoie également un signal sur l'entrée 8 lorsque le déclenchement est commandé automatiquement par le microprocesseur. Dans ce cas cependant, ce signal n'est pas pris en compte par le microprocesseur qui a commencé la mesure de la valeur maximale du courant coupé dès l'envoi de l'ordre de déclenchement. Dans la pratique, on connaît la durée maximale de la coupure, à partir de l'envoi de l'ordre de déclenchement par le microprocesseur et le sous-programme de mesure de la valeur maximale du courant coupé tient compte de toutes les valeurs du courant fournies au microprocesseur pendant un temps prédéterminé correspondant à cette durée maximale à partir de l'envoi de l'ordre de déclenchement dans le cas d'une ouverture automatique ou à partir de la réception par le microprocesseur d'un signal sur son entrée 8 dans le cas d'une ouverture manuelle.The flowchart shown in Figure 3 illustrates the maintenance function according to the invention. In the event of automatic tripping of the circuit breaker, the tripping order produced by the microprocessor triggers a subroutine consisting in measuring the maximum value I of the cut current from the values supplied by the analog-digital converter 30 on input 1 of the microprocessor 32. If the circuit breaker 10 is opened by manual opening or by actuation of a handle or a joystick, the auxiliary contact 16 closes and sends a signal to the input 8 of the microprocessor 32. This signal opening circuit breaker 10 also triggers the subroutine for measuring the maximum value of the cut current. Of course, the auxiliary contact 16 also sends a signal to the input 8 when the triggering is automatically controlled by the microprocessor. In this case, however, this signal is not taken into account by the microprocessor which has started measuring the maximum value of the cut current as soon as the trip order is sent. In practice, the maximum duration of the cut-off is known, from the sending of the triggering order by the microprocessor and the subroutine for measuring the maximum value of the cut current takes into account all the values of the current supplied to the microprocessor for a predetermined time corresponding to this maximum duration from the sending of the triggering order in the case of an automatic opening or from the reception by the microprocessor of a signal on its entry 8 in the case of manual opening.

Le microprocesseur 32 acquiert de la mémoire ROM 38 la valeur d'usure correspondant à cette valeur maximale I et additionne cette valeur d'usure au contenu de la mémoire NOVRAM 40. Ce programme se déroule à chaque ouverture du disjoncteur 10 et les valeurs d'usure correspondantes sont additionnées dans la mémoire NOVRAM 40.L'affichage du contenu de la mémoire NOVRAM 40 est réalisé par enfoncement d'un bouton 44 du clavier 36 qui déclenche un cycle d'interrogation de la mémoire NOVRAM 40 et de transfert dans le dispositif d'affichage 42 du contenu de cette mémoire 40. L'affichage peut bien entendu être permanent, mais un tel affichage est sans grand intérêt, la surveillance n'intervenant que périodiquement notamment après des déclenchements et des coupures de courant de court-circuit important. Tant que la valeur d'usure affichée reste inférieure à un seuil donné qui, dans l'exemple précité, serait la valeur 100, l'utilisateur est assuré du bon fonctionnement du disjoncteur, les contacts n'étant pas totalement usés. Dès le franchissement de ce seuil, une vérification de l'état des contacts s'impose, cette vérification étant soit réalisée par l'utilisateur lui-même, soit par un spécialiste de maintenance qui,par examen visuel des contacts ou par tout autre moyen, peut obtenir confirmation de l'usure des contacts ou éventuellement constater que l'usure atteinte n'affecte pas encore le bon fonctionnement du disjoncteur. Cette imprécision relève des conditions externes affectant l'usure des contacts et difficilement calculables par le microprocesseur. Une étude plus poussée des facteurs d'usure des contacts peut réduire cette imprécision mais au détriment de la simplicité du dispositif. L'intérêt principal de l'indicateur d'usure selon l'invention est de libérer l'utilisateur de toute contrainte de surveillance et de toute incertitude pendant une période relativement longue. A la fin de cette période, un contrôle s'impose et si l'utilisateur décide le remplacement des contacts, il dispose à nouveau d'une période de même durée avant tout nouvel examen. Au dispositif d'affichage 42, peut bien entendu être associé ou incorporé un dispositif d'alarme signalant le franchissement du seuil d'usure prédéterminé pour signaler à l'utilisateur l'obligation d'un contrôle. Le signal d'alarme peut également provoquer l'ouverture du disjoncteur 10 avec éventuellement une indication de la cause de cette ouverture.The microprocessor 32 acquires from the ROM memory 38 the wear value corresponding to this maximum value I and adds this wear value to the content of the NOVRAM memory 40. This program takes place at each opening of the circuit breaker 10 and the values of corresponding wear are added to the NOVRAM 40 memory. The content of the NOVRAM 40 memory is displayed by pressing a button 44 on the keyboard 36 which initiates a cycle of interrogation of the NOVRAM 40 memory and transfer to the device display 42 of the content of this memory 40. The display can of course be permanent, but such a display is of no great interest, the monitoring intervening only periodically especially after trips and large short-circuit current cuts . As long as the displayed wear value remains below a given threshold which, in the above example, would be the value 100, the user is assured of the correct operation of the circuit breaker, the contacts not being completely worn. As soon as this threshold is crossed, a verification of the state of the contacts is essential, this verification being either carried out by the user himself, or by a maintenance specialist who, by visual examination of the contacts or by any other means , can obtain confirmation of the wear of the contacts or possibly note that the wear reached does not yet affect the proper functioning of the circuit breaker. This imprecision is due to external conditions affecting the wear of the contacts and which are difficult to calculate by the microprocessor. Further study of the contact wear factors can reduce this inaccuracy but at the expense of the simplicity of the device. The main interest of the wear indicator according to the invention is to free the user from any monitoring constraint and from any uncertainty for a period relatively long. At the end of this period, a check is required and if the user decides to replace the contacts, he again has a period of the same duration before any further examination. The display device 42 can of course be associated or incorporated an alarm device signaling the crossing of the predetermined wear threshold to signal the user of the obligation to check. The alarm signal can also cause the circuit breaker 10 to open, possibly with an indication of the cause of this opening.

Les valeurs de correspondance entre les courants coupés et l'usure des contacts dépendent bien entendu du type de disjoncteur et ces différentes valeurs peuvent être stockées dans différentes mémoires ROM 38, la mémoire appropriée étant associée au déclencheur lors du montage de celui-ci sur le disjoncteur correspondant. Il est également possible d'introduire ces valeurs lors de la programmation du microprocesseur 32. L'ouverture manuelle du disjoncteur 10 en coupant le courant nominal provoque une usure réduite des contacts et dans une installation simplifiée, il est possible de négliger cette usure. Il est alors possible de supprimer le contact auxiliaire 16, le microprocesseur 32 disposant de l'information de déclenchement du disjoncteur 10 qu'il a transmis lui-même au relais polarisé 14. La relation entre la valeur d'usure des contacts et le courant coupé peut également être traduite par une relation mathématique fourni au microprocesseur 32, lequel est alors capable de calculer directement la valeur d'usure. Il est clair qu'on ne sortirait pas du cadre de l'invention en fournissant la valeur maximale du courant coupé directement au microprocesseur 32 par tout moyen approprié ou si le circuit d'élaboration du signal représentatif de la valeur du courant circulant dans les conducteurs R, S, T, étaient d'un type différent. Il est également possible de traiter les fonctions de déclenchement sur défaut et la fonction de maintenance par des microprocesseurs différents si la capacité de traitement d'un seul microprocesseur s'avère insuffisante.The correspondence values between the interrupted currents and the wear of the contacts obviously depend on the type of circuit breaker and these different values can be stored in different ROM memories 38, the appropriate memory being associated with the trip device when the latter is mounted on the corresponding circuit breaker. It is also possible to enter these values when programming the microprocessor 32. Manual opening of the circuit breaker 10 by cutting the nominal current causes reduced wear of the contacts and in a simplified installation, it is possible to neglect this wear. It is then possible to delete the auxiliary contact 16, the microprocessor 32 having the tripping information of the circuit breaker 10 which it transmitted itself to the polarized relay 14. The relationship between the wear value of the contacts and the current cut can also be translated by a mathematical relation supplied to microprocessor 32, which is then capable of directly calculating the wear value. It is clear that it would not go beyond the scope of the invention to supply the maximum value of the cut current directly to the microprocessor 32 by any appropriate means or if the signal processing circuit representative of the value of the current flowing in the conductors R, S, T, were of a different type. It is also possible to process the fault triggering functions and the maintenance function by different microprocessors if the processing capacity of a single microprocessor proves insufficient.

Claims (8)

1. A trip unit for an electrical circuit breaker with separable contacts comprising:
- a detection circuit (18, 20) generating an analog signal proportional to the current flowing in the conductor protected by the circuit breaker,
- an analog-to-digital converter (30) having an input receiving said analog signal and an output delivering a corresponding sampled digitized signal,
- a digital processing unit, to which the digitized signal is applied, the digital processing unit comprising a detector means of the value of the current broken each time the circuit breaker performs a break, a device generating, at each break order, a wear value in terms of said current value and representative of the contact wear, due to breaking of said current, and a device for summing and storing said wear values in a memory (40) providing an indicator of the degree of wear of said contacts, trip unit, characterized in that the digital processing unit comprises a microprocessor (32) and performs a long delay tripping function (LR) and/or a short delay tripping function (CR) generating a circuit breaker tripping order, when preset thresholds are exceeded, said order being time delayed according to the value of the signal, and a circuit breaker tripping means (12, 14) being actuated by said tripping order, the value of the broken current being the maximum value obtained by comparison, by the microprocessor (32), between the successive values of said digitized signal which are applied to it between the time the circuit breaker tripping order is generated and effective opening of the contacts.
2. The trip unit according to claim 1, characterized in that the maximum value of the current broken is obtained by comparison of the successive values of the digitized signal during a predetermined duration, corresponding to the maximum duration of the break, after generation of the tripping order.
3. The solid-state trip unit according to one of the claims 1 and 2, characterized in that the curve representative of the wear value in terms of the maximum value of the current broken is a stepped curve.
4. The solid-state trip unit according to one of claims 1 to 3, characterized in that said generation devices of summing and storage are included in said microprocessor (32) which comprises a non-volatile NOVRAM memory (40) which is incremented by said corresponding wear value each time the circuit breaker performs a break.
5. The solid-state trip unit according to anyone of the preceding claims, characterized in that it comprises a circuit breaker (10) contact opening detector (16) which, in the case of manual breaking of the circuit breaker, causes a microprocessor (32) interruption during which the corresponding wear value is generated and added in said NOVRAM memory (40).
6. The solid-state trip unit according to one of claims 4 and 5, characterized in that it comprises a request command (44) of said microprocessor (32) to request and display the wear value stored in said NOVRAM memory (40).
7.The solid-state trip unit according to anyone of the preceding claims, characterized in that it comprises an indication and/or alarm device which becomes active when the wear value stored exceeds a preset threshold.
8. The solid-state trip unit according to claim 7, characterized in that said indication device is arranged so as to cause tripping of the circuit breaker (10).
EP87401714A 1986-08-08 1987-07-20 Static tripping device for a circuit breaker with electronic contact wear indication Expired - Lifetime EP0258090B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87401714T ATE74238T1 (en) 1986-08-08 1987-07-20 STATIC RELEASE FOR CIRCUIT BREAKER WITH ELECTRONIC CONTACT WEAR INDICATOR.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8611612 1986-08-08
FR8611612A FR2602610B1 (en) 1986-08-08 1986-08-08 STATIC TRIGGER OF AN ELECTRIC CIRCUIT BREAKER WITH CONTACT WEAR INDICATOR

Publications (2)

Publication Number Publication Date
EP0258090A1 EP0258090A1 (en) 1988-03-02
EP0258090B1 true EP0258090B1 (en) 1992-03-25

Family

ID=9338220

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87401714A Expired - Lifetime EP0258090B1 (en) 1986-08-08 1987-07-20 Static tripping device for a circuit breaker with electronic contact wear indication

Country Status (13)

Country Link
US (1) US4780786A (en)
EP (1) EP0258090B1 (en)
JP (1) JP2735549B2 (en)
CN (1) CN1008957B (en)
AT (1) ATE74238T1 (en)
CA (1) CA1287392C (en)
DE (1) DE3777726D1 (en)
ES (1) ES2030749T3 (en)
FR (1) FR2602610B1 (en)
IN (1) IN169848B (en)
SG (1) SG134292G (en)
YU (1) YU46905B (en)
ZA (1) ZA875742B (en)

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19727986A1 (en) * 1997-07-01 1999-02-04 Kloeckner Moeller Gmbh Circuit for determining residual operating life of electrical switching equipment
US6037555A (en) 1999-01-05 2000-03-14 General Electric Company Rotary contact circuit breaker venting arrangement including current transformer
US6087913A (en) 1998-11-20 2000-07-11 General Electric Company Circuit breaker mechanism for a rotary contact system
US6114641A (en) 1998-05-29 2000-09-05 General Electric Company Rotary contact assembly for high ampere-rated circuit breakers
DE19923362A1 (en) * 1999-05-21 2000-11-23 Abb Patent Gmbh Method for evaluating the condition of circuit breaker contacts based on measurement of arcing time and fault current
US6166344A (en) 1999-03-23 2000-12-26 General Electric Company Circuit breaker handle block
US6172584B1 (en) 1999-12-20 2001-01-09 General Electric Company Circuit breaker accessory reset system
US6175288B1 (en) 1999-08-27 2001-01-16 General Electric Company Supplemental trip unit for rotary circuit interrupters
US6184761B1 (en) 1999-12-20 2001-02-06 General Electric Company Circuit breaker rotary contact arrangement
US6188036B1 (en) 1999-08-03 2001-02-13 General Electric Company Bottom vented circuit breaker capable of top down assembly onto equipment
US6204743B1 (en) 2000-02-29 2001-03-20 General Electric Company Dual connector strap for a rotary contact circuit breaker
US6211758B1 (en) 2000-01-11 2001-04-03 General Electric Company Circuit breaker accessory gap control mechanism
US6211757B1 (en) 2000-03-06 2001-04-03 General Electric Company Fast acting high force trip actuator
US6215379B1 (en) 1999-12-23 2001-04-10 General Electric Company Shunt for indirectly heated bimetallic strip
US6218919B1 (en) 2000-03-15 2001-04-17 General Electric Company Circuit breaker latch mechanism with decreased trip time
US6218917B1 (en) 1999-07-02 2001-04-17 General Electric Company Method and arrangement for calibration of circuit breaker thermal trip unit
US6225881B1 (en) 1998-04-29 2001-05-01 General Electric Company Thermal magnetic circuit breaker
US6229413B1 (en) 1999-10-19 2001-05-08 General Electric Company Support of stationary conductors for a circuit breaker
US6232856B1 (en) 1999-11-02 2001-05-15 General Electric Company Magnetic shunt assembly
US6232570B1 (en) 1999-09-16 2001-05-15 General Electric Company Arcing contact arrangement
US6232859B1 (en) 2000-03-15 2001-05-15 General Electric Company Auxiliary switch mounting configuration for use in a molded case circuit breaker
US6239677B1 (en) 2000-02-10 2001-05-29 General Electric Company Circuit breaker thermal magnetic trip unit
US6239398B1 (en) 2000-02-24 2001-05-29 General Electric Company Cassette assembly with rejection features
US6239395B1 (en) 1999-10-14 2001-05-29 General Electric Company Auxiliary position switch assembly for a circuit breaker
US6252365B1 (en) 1999-08-17 2001-06-26 General Electric Company Breaker/starter with auto-configurable trip unit
US6262872B1 (en) 1999-06-03 2001-07-17 General Electric Company Electronic trip unit with user-adjustable sensitivity to current spikes
US6262642B1 (en) 1999-11-03 2001-07-17 General Electric Company Circuit breaker rotary contact arm arrangement
US6268991B1 (en) 1999-06-25 2001-07-31 General Electric Company Method and arrangement for customizing electronic circuit interrupters
US6281458B1 (en) 2000-02-24 2001-08-28 General Electric Company Circuit breaker auxiliary magnetic trip unit with pressure sensitive release
US6281461B1 (en) 1999-12-27 2001-08-28 General Electric Company Circuit breaker rotor assembly having arc prevention structure
US6300586B1 (en) 1999-12-09 2001-10-09 General Electric Company Arc runner retaining feature
US6310307B1 (en) 1999-12-17 2001-10-30 General Electric Company Circuit breaker rotary contact arm arrangement
US6317018B1 (en) 1999-10-26 2001-11-13 General Electric Company Circuit breaker mechanism
US6326869B1 (en) 1999-09-23 2001-12-04 General Electric Company Clapper armature system for a circuit breaker
US6326868B1 (en) 1997-07-02 2001-12-04 General Electric Company Rotary contact assembly for high ampere-rated circuit breaker
US6340925B1 (en) 2000-03-01 2002-01-22 General Electric Company Circuit breaker mechanism tripping cam
US6346868B1 (en) 2000-03-01 2002-02-12 General Electric Company Circuit interrupter operating mechanism
US6346869B1 (en) 1999-12-28 2002-02-12 General Electric Company Rating plug for circuit breakers
US6362711B1 (en) 2000-11-10 2002-03-26 General Electric Company Circuit breaker cover with screw locating feature
US6366188B1 (en) 2000-03-15 2002-04-02 General Electric Company Accessory and recess identification system for circuit breakers
US6373357B1 (en) 2000-05-16 2002-04-16 General Electric Company Pressure sensitive trip mechanism for a rotary breaker
US6373010B1 (en) 2000-03-17 2002-04-16 General Electric Company Adjustable energy storage mechanism for a circuit breaker motor operator
US6377144B1 (en) 1999-11-03 2002-04-23 General Electric Company Molded case circuit breaker base and mid-cover assembly
US6379196B1 (en) 2000-03-01 2002-04-30 General Electric Company Terminal connector for a circuit breaker
US6380829B1 (en) 2000-11-21 2002-04-30 General Electric Company Motor operator interlock and method for circuit breakers
US6388213B1 (en) 2000-03-17 2002-05-14 General Electric Company Locking device for molded case circuit breakers
US6396369B1 (en) 1999-08-27 2002-05-28 General Electric Company Rotary contact assembly for high ampere-rated circuit breakers
US6400245B1 (en) 2000-10-13 2002-06-04 General Electric Company Draw out interlock for circuit breakers
US6404314B1 (en) 2000-02-29 2002-06-11 General Electric Company Adjustable trip solenoid
US6429659B1 (en) 2000-03-09 2002-08-06 General Electric Company Connection tester for an electronic trip unit
US6429759B1 (en) 2000-02-14 2002-08-06 General Electric Company Split and angled contacts
US6429760B1 (en) 2000-10-19 2002-08-06 General Electric Company Cross bar for a conductor in a rotary breaker
US6448522B1 (en) 2001-01-30 2002-09-10 General Electric Company Compact high speed motor operator for a circuit breaker
US6448521B1 (en) 2000-03-01 2002-09-10 General Electric Company Blocking apparatus for circuit breaker contact structure
US6459059B1 (en) 2000-03-16 2002-10-01 General Electric Company Return spring for a circuit interrupter operating mechanism
US6459349B1 (en) 2000-03-06 2002-10-01 General Electric Company Circuit breaker comprising a current transformer with a partial air gap
US6469882B1 (en) 2001-10-31 2002-10-22 General Electric Company Current transformer initial condition correction
US6472620B2 (en) 2000-03-17 2002-10-29 Ge Power Controls France Sas Locking arrangement for circuit breaker draw-out mechanism
US6476335B2 (en) 2000-03-17 2002-11-05 General Electric Company Draw-out mechanism for molded case circuit breakers
US6476337B2 (en) 2001-02-26 2002-11-05 General Electric Company Auxiliary switch actuation arrangement
US6476698B1 (en) 2000-03-17 2002-11-05 General Electric Company Convertible locking arrangement on breakers
US6479774B1 (en) 2000-03-17 2002-11-12 General Electric Company High energy closing mechanism for circuit breakers
US6496347B1 (en) 2000-03-08 2002-12-17 General Electric Company System and method for optimization of a circuit breaker mechanism
US6531941B1 (en) 2000-10-19 2003-03-11 General Electric Company Clip for a conductor in a rotary breaker
US6559743B2 (en) 2000-03-17 2003-05-06 General Electric Company Stored energy system for breaker operating mechanism
US6586693B2 (en) 2000-03-17 2003-07-01 General Electric Company Self compensating latch arrangement
US6639168B1 (en) 2000-03-17 2003-10-28 General Electric Company Energy absorbing contact arm stop
US6678135B2 (en) 2001-09-12 2004-01-13 General Electric Company Module plug for an electronic trip unit
US6710988B1 (en) 1999-08-17 2004-03-23 General Electric Company Small-sized industrial rated electric motor starter switch unit
US6747535B2 (en) 2000-03-27 2004-06-08 General Electric Company Precision location system between actuator accessory and mechanism
US6804101B2 (en) 2001-11-06 2004-10-12 General Electric Company Digital rating plug for electronic trip unit in circuit breakers
US6806800B1 (en) 2000-10-19 2004-10-19 General Electric Company Assembly for mounting a motor operator on a circuit breaker
US10147572B2 (en) 2016-03-11 2018-12-04 Abb Schweiz Ag Embedded pole and method of assembling same

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3721848A1 (en) * 1987-06-29 1989-01-12 Siemens Ag OVERCURRENT RELEASE DEVICE WITH ADVANCED TRIP
US4870531A (en) * 1988-08-15 1989-09-26 General Electric Company Circuit breaker with removable display and keypad
JPH0834705B2 (en) * 1988-11-16 1996-03-29 株式会社大林組 Switch
AT399430B (en) * 1989-08-23 1995-05-26 Gec Alsthom T & D Gmbh ELECTRONIC DEVICE FOR DETECTING AND STORING SHORT CIRCUIT CURRENCIES SWITCHED OFF IN A CIRCUIT BREAKER
US5136458A (en) * 1989-08-31 1992-08-04 Square D Company Microcomputer based electronic trip system for circuit breakers
FR2654539B1 (en) * 1989-11-16 1994-04-08 Merlin Gerin ELECTRONIC TRIGGER WITH A FRONT PANEL CONSISTING OF A FLAT SCREEN DISPLAY.
US5179290A (en) * 1990-12-17 1993-01-12 Raymond Corporation System of maintaining clean electrical contacts
US5490086A (en) * 1992-03-06 1996-02-06 Siemens Energy & Automation, Inc. Plug-in ground fault monitor for a circuit breaker
US5426592A (en) * 1992-03-06 1995-06-20 Siemens Energy & Automation, Inc. Circuit breaker trip unit which automatically adapts to operated with a particular display module
WO1994007254A1 (en) * 1992-09-14 1994-03-31 Nu-Lec Pty Ltd A memory or signature circuit for switchgear
US5475609A (en) * 1993-03-05 1995-12-12 Square D Company Load interrupter system
CN1042985C (en) * 1993-10-05 1999-04-14 富士电机株式会社 Circuit breaker
US5596263A (en) * 1993-12-01 1997-01-21 Siemens Energy & Automation, Inc. Electrical power distribution system apparatus-resident personality memory module
FR2715765B1 (en) * 1994-02-01 1996-03-29 Gec Alsthom T & D Sa Device for measuring the wear of a circuit breaker.
US5629869A (en) * 1994-04-11 1997-05-13 Abb Power T&D Company Intelligent circuit breaker providing synchronous switching and condition monitoring
US5581433A (en) * 1994-04-22 1996-12-03 Unitrode Corporation Electronic circuit breaker
DE9414333U1 (en) * 1994-09-03 1994-11-03 Abb Patent Gmbh Miniature circuit breakers or residual current circuit breakers
DE19603319A1 (en) * 1996-01-31 1997-08-07 Siemens Ag Method for determining the remaining service life of contacts in switchgear and associated arrangement
FR2756095B1 (en) * 1996-11-15 1998-12-24 Schneider Electric Sa CIRCUIT BREAKER WITH A CIRCUIT BREAKER AND PROCESSING, CALIBRATION AND COMMUNICATION MODULES
JP3466629B2 (en) * 1997-03-26 2003-11-17 シーメンス アクチエンゲゼルシヤフト Method and apparatus for selective distribution network monitoring in switchgear
US6466023B2 (en) * 1998-12-28 2002-10-15 General Electric Company Method of determining contact wear in a trip unit
US6366438B1 (en) 2000-03-06 2002-04-02 General Electric Company Circuit interrupter rotary contact arm
US6421217B1 (en) 2000-03-16 2002-07-16 General Electric Company Circuit breaker accessory reset system
JP3803258B2 (en) 2000-04-03 2006-08-02 Tdk株式会社 High-voltage feedthrough capacitor and magnetron
US6995640B2 (en) 2000-05-16 2006-02-07 General Electric Company Pressure sensitive trip mechanism for circuit breakers
US6882258B2 (en) 2001-02-27 2005-04-19 General Electric Company Mechanical bell alarm assembly for a circuit breaker
FR2834120B1 (en) * 2001-12-21 2004-02-06 Schneider Electric Ind Sa METHOD FOR DETERMINING THE WEAR OF CONTACTS OF A SWITCHING APPARATUS
US6774803B1 (en) * 2002-05-31 2004-08-10 Ameren Corporation Fault trip indicator and maintenance method for a circuit breaker
EP1475813B1 (en) * 2003-05-07 2010-01-27 ABB Technology AG Method and apparatus for controlling switching devices in electrical switchgear
DE102004020045A1 (en) * 2004-04-21 2005-11-10 Siemens Ag Method for determining a residual shift play value indicating wear of switch contacts of a circuit breaker
DE102004062266A1 (en) * 2004-12-23 2006-07-13 Siemens Ag Method and device for safe operation of a switching device
PL2664936T3 (en) * 2012-05-10 2018-12-31 Omicron Electronics Gmbh Measuring device for testing an electrical circuit breaker
FR2998430B1 (en) * 2012-11-20 2016-01-08 Thales Sa ELECTRICAL POWER TRANSMISSION ON DATA TRANSMISSION CABLE
DE102013219243B4 (en) * 2013-09-25 2018-01-18 Robert Bosch Gmbh Method and device for determining the aging of an electronic interruption element, in particular a power contactor
US10243345B2 (en) * 2015-06-30 2019-03-26 AB Schweiz AG Circuit breaker having breaker information module and method of use
US10332698B2 (en) * 2016-12-21 2019-06-25 Eaton Intelligent Power Limited System and method for monitoring contact life of a circuit interrupter
US10340640B2 (en) 2017-05-04 2019-07-02 Schneider Electric USA, Inc. System and method for determining the current condition of power contacts
CN111638448A (en) * 2020-05-15 2020-09-08 中国第一汽车股份有限公司 Contactor fault detection device and method and vehicle
CN115902600A (en) * 2021-08-16 2023-04-04 施耐德电器工业公司 Contactor and method of operating the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US455360A (en) * 1891-07-07 Ferdinand eochow
DE2727378C2 (en) * 1977-06-15 1983-04-07 Siemens AG, 1000 Berlin und 8000 München Device for checking the operability of electrical switching devices
US4535409A (en) * 1981-09-18 1985-08-13 Mcgraw-Edison Company Microprocessor based recloser control
JPS58172927A (en) * 1982-04-02 1983-10-11 株式会社日立製作所 Overload protecting device
JPS59182857U (en) * 1983-05-25 1984-12-05 株式会社戸上電機製作所 Circuit breaker life indicator
SE439692B (en) * 1983-10-24 1985-06-24 Asea Ab DEVICE FOR MONITORING THE CONDITION OF AN ELECTRIC APPLIANCE WITH POWER SWITCHING CONNECTORS, IN PARTICULAR A HIGH VOLTAGE SWITCH
DE3347185A1 (en) * 1983-12-27 1985-07-04 Siemens AG, 1000 Berlin und 8000 München ARRANGEMENT FOR INFLUENCING A SWITCHGEAR
US4550360A (en) * 1984-05-21 1985-10-29 General Electric Company Circuit breaker static trip unit having automatic circuit trimming
FR2578092B1 (en) * 1985-02-25 1987-03-06 Merlin Gerin CIRCUIT BREAKER WITH STATIC TRIGGER WITH SAMPLING AND LOCK AT THE LAST SIGNAL CRETE

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19727986C2 (en) * 1997-07-01 2001-10-11 Moeller Gmbh Circuit arrangement for determining the contact erosion of an electrical switching device
DE19727986A1 (en) * 1997-07-01 1999-02-04 Kloeckner Moeller Gmbh Circuit for determining residual operating life of electrical switching equipment
US6326868B1 (en) 1997-07-02 2001-12-04 General Electric Company Rotary contact assembly for high ampere-rated circuit breaker
US6225881B1 (en) 1998-04-29 2001-05-01 General Electric Company Thermal magnetic circuit breaker
US6114641A (en) 1998-05-29 2000-09-05 General Electric Company Rotary contact assembly for high ampere-rated circuit breakers
US6259048B1 (en) 1998-05-29 2001-07-10 General Electric Company Rotary contact assembly for high ampere-rated circuit breakers
US6087913A (en) 1998-11-20 2000-07-11 General Electric Company Circuit breaker mechanism for a rotary contact system
US6037555A (en) 1999-01-05 2000-03-14 General Electric Company Rotary contact circuit breaker venting arrangement including current transformer
US6166344A (en) 1999-03-23 2000-12-26 General Electric Company Circuit breaker handle block
DE19923362B4 (en) * 1999-05-21 2005-08-11 Abb Patent Gmbh Method for evaluating the contact state of a circuit breaker
DE19923362A1 (en) * 1999-05-21 2000-11-23 Abb Patent Gmbh Method for evaluating the condition of circuit breaker contacts based on measurement of arcing time and fault current
DE19923362C5 (en) * 1999-05-21 2010-06-24 Abb Ag Method for evaluating the contact state of a circuit breaker
US6262872B1 (en) 1999-06-03 2001-07-17 General Electric Company Electronic trip unit with user-adjustable sensitivity to current spikes
US6400543B2 (en) 1999-06-03 2002-06-04 General Electric Company Electronic trip unit with user-adjustable sensitivity to current spikes
US6268991B1 (en) 1999-06-25 2001-07-31 General Electric Company Method and arrangement for customizing electronic circuit interrupters
US6218917B1 (en) 1999-07-02 2001-04-17 General Electric Company Method and arrangement for calibration of circuit breaker thermal trip unit
US6188036B1 (en) 1999-08-03 2001-02-13 General Electric Company Bottom vented circuit breaker capable of top down assembly onto equipment
US6252365B1 (en) 1999-08-17 2001-06-26 General Electric Company Breaker/starter with auto-configurable trip unit
US6710988B1 (en) 1999-08-17 2004-03-23 General Electric Company Small-sized industrial rated electric motor starter switch unit
US6396369B1 (en) 1999-08-27 2002-05-28 General Electric Company Rotary contact assembly for high ampere-rated circuit breakers
US6175288B1 (en) 1999-08-27 2001-01-16 General Electric Company Supplemental trip unit for rotary circuit interrupters
US6232570B1 (en) 1999-09-16 2001-05-15 General Electric Company Arcing contact arrangement
US6326869B1 (en) 1999-09-23 2001-12-04 General Electric Company Clapper armature system for a circuit breaker
US6239395B1 (en) 1999-10-14 2001-05-29 General Electric Company Auxiliary position switch assembly for a circuit breaker
US6229413B1 (en) 1999-10-19 2001-05-08 General Electric Company Support of stationary conductors for a circuit breaker
US6317018B1 (en) 1999-10-26 2001-11-13 General Electric Company Circuit breaker mechanism
US6232856B1 (en) 1999-11-02 2001-05-15 General Electric Company Magnetic shunt assembly
US6377144B1 (en) 1999-11-03 2002-04-23 General Electric Company Molded case circuit breaker base and mid-cover assembly
US6262642B1 (en) 1999-11-03 2001-07-17 General Electric Company Circuit breaker rotary contact arm arrangement
US6300586B1 (en) 1999-12-09 2001-10-09 General Electric Company Arc runner retaining feature
US6310307B1 (en) 1999-12-17 2001-10-30 General Electric Company Circuit breaker rotary contact arm arrangement
US6184761B1 (en) 1999-12-20 2001-02-06 General Electric Company Circuit breaker rotary contact arrangement
US6172584B1 (en) 1999-12-20 2001-01-09 General Electric Company Circuit breaker accessory reset system
US6215379B1 (en) 1999-12-23 2001-04-10 General Electric Company Shunt for indirectly heated bimetallic strip
US6281461B1 (en) 1999-12-27 2001-08-28 General Electric Company Circuit breaker rotor assembly having arc prevention structure
US6346869B1 (en) 1999-12-28 2002-02-12 General Electric Company Rating plug for circuit breakers
US6211758B1 (en) 2000-01-11 2001-04-03 General Electric Company Circuit breaker accessory gap control mechanism
US6239677B1 (en) 2000-02-10 2001-05-29 General Electric Company Circuit breaker thermal magnetic trip unit
US6429759B1 (en) 2000-02-14 2002-08-06 General Electric Company Split and angled contacts
US6281458B1 (en) 2000-02-24 2001-08-28 General Electric Company Circuit breaker auxiliary magnetic trip unit with pressure sensitive release
US6313425B1 (en) 2000-02-24 2001-11-06 General Electric Company Cassette assembly with rejection features
US6239398B1 (en) 2000-02-24 2001-05-29 General Electric Company Cassette assembly with rejection features
US6404314B1 (en) 2000-02-29 2002-06-11 General Electric Company Adjustable trip solenoid
US6204743B1 (en) 2000-02-29 2001-03-20 General Electric Company Dual connector strap for a rotary contact circuit breaker
US6724286B2 (en) 2000-02-29 2004-04-20 General Electric Company Adjustable trip solenoid
US6466117B2 (en) 2000-03-01 2002-10-15 General Electric Company Circuit interrupter operating mechanism
US6388547B1 (en) 2000-03-01 2002-05-14 General Electric Company Circuit interrupter operating mechanism
US6590482B2 (en) 2000-03-01 2003-07-08 General Electric Company Circuit breaker mechanism tripping cam
US6346868B1 (en) 2000-03-01 2002-02-12 General Electric Company Circuit interrupter operating mechanism
US6379196B1 (en) 2000-03-01 2002-04-30 General Electric Company Terminal connector for a circuit breaker
US6340925B1 (en) 2000-03-01 2002-01-22 General Electric Company Circuit breaker mechanism tripping cam
US6448521B1 (en) 2000-03-01 2002-09-10 General Electric Company Blocking apparatus for circuit breaker contact structure
US6459349B1 (en) 2000-03-06 2002-10-01 General Electric Company Circuit breaker comprising a current transformer with a partial air gap
US6211757B1 (en) 2000-03-06 2001-04-03 General Electric Company Fast acting high force trip actuator
US6496347B1 (en) 2000-03-08 2002-12-17 General Electric Company System and method for optimization of a circuit breaker mechanism
US6534991B2 (en) 2000-03-09 2003-03-18 General Electric Company Connection tester for an electronic trip unit
US6429659B1 (en) 2000-03-09 2002-08-06 General Electric Company Connection tester for an electronic trip unit
US6366188B1 (en) 2000-03-15 2002-04-02 General Electric Company Accessory and recess identification system for circuit breakers
US6232859B1 (en) 2000-03-15 2001-05-15 General Electric Company Auxiliary switch mounting configuration for use in a molded case circuit breaker
US6218919B1 (en) 2000-03-15 2001-04-17 General Electric Company Circuit breaker latch mechanism with decreased trip time
US6459059B1 (en) 2000-03-16 2002-10-01 General Electric Company Return spring for a circuit interrupter operating mechanism
US6476335B2 (en) 2000-03-17 2002-11-05 General Electric Company Draw-out mechanism for molded case circuit breakers
US6586693B2 (en) 2000-03-17 2003-07-01 General Electric Company Self compensating latch arrangement
US6472620B2 (en) 2000-03-17 2002-10-29 Ge Power Controls France Sas Locking arrangement for circuit breaker draw-out mechanism
US6373010B1 (en) 2000-03-17 2002-04-16 General Electric Company Adjustable energy storage mechanism for a circuit breaker motor operator
US6639168B1 (en) 2000-03-17 2003-10-28 General Electric Company Energy absorbing contact arm stop
US6476698B1 (en) 2000-03-17 2002-11-05 General Electric Company Convertible locking arrangement on breakers
US6479774B1 (en) 2000-03-17 2002-11-12 General Electric Company High energy closing mechanism for circuit breakers
US6388213B1 (en) 2000-03-17 2002-05-14 General Electric Company Locking device for molded case circuit breakers
US6559743B2 (en) 2000-03-17 2003-05-06 General Electric Company Stored energy system for breaker operating mechanism
US6747535B2 (en) 2000-03-27 2004-06-08 General Electric Company Precision location system between actuator accessory and mechanism
US6373357B1 (en) 2000-05-16 2002-04-16 General Electric Company Pressure sensitive trip mechanism for a rotary breaker
US6400245B1 (en) 2000-10-13 2002-06-04 General Electric Company Draw out interlock for circuit breakers
US6531941B1 (en) 2000-10-19 2003-03-11 General Electric Company Clip for a conductor in a rotary breaker
US6429760B1 (en) 2000-10-19 2002-08-06 General Electric Company Cross bar for a conductor in a rotary breaker
US6806800B1 (en) 2000-10-19 2004-10-19 General Electric Company Assembly for mounting a motor operator on a circuit breaker
US6362711B1 (en) 2000-11-10 2002-03-26 General Electric Company Circuit breaker cover with screw locating feature
US6380829B1 (en) 2000-11-21 2002-04-30 General Electric Company Motor operator interlock and method for circuit breakers
US6448522B1 (en) 2001-01-30 2002-09-10 General Electric Company Compact high speed motor operator for a circuit breaker
US6476337B2 (en) 2001-02-26 2002-11-05 General Electric Company Auxiliary switch actuation arrangement
US6678135B2 (en) 2001-09-12 2004-01-13 General Electric Company Module plug for an electronic trip unit
US6469882B1 (en) 2001-10-31 2002-10-22 General Electric Company Current transformer initial condition correction
US6804101B2 (en) 2001-11-06 2004-10-12 General Electric Company Digital rating plug for electronic trip unit in circuit breakers
US10147572B2 (en) 2016-03-11 2018-12-04 Abb Schweiz Ag Embedded pole and method of assembling same

Also Published As

Publication number Publication date
IN169848B (en) 1991-12-28
ES2030749T3 (en) 1992-11-16
JPS63121422A (en) 1988-05-25
YU148287A (en) 1989-12-31
DE3777726D1 (en) 1992-04-30
ATE74238T1 (en) 1992-04-15
CA1287392C (en) 1991-08-06
FR2602610A1 (en) 1988-02-12
ZA875742B (en) 1988-03-30
US4780786A (en) 1988-10-25
CN1008957B (en) 1990-07-25
YU46905B (en) 1994-06-24
FR2602610B1 (en) 1994-05-20
JP2735549B2 (en) 1998-04-02
EP0258090A1 (en) 1988-03-02
SG134292G (en) 1993-03-12
CN87105402A (en) 1988-02-17

Similar Documents

Publication Publication Date Title
EP0258090B1 (en) Static tripping device for a circuit breaker with electronic contact wear indication
EP1466336B1 (en) Method for determining wear of a switchgear contacts
EP2849196B1 (en) Method for determining a cause of a loss of voltage downstream from a circuit breaker, auxiliary apparatus for a circuit breaker, electric system comprising a circuit breaker and such an auxiliary apparatus
EP2849195B1 (en) Auxiliary device for electric circuit breaker, electrical system comprising a circuit breaker and such an auxiliary device and method to determine the ground of the circuit breaker opening with such an auxiliary device
EP3327747A1 (en) Electrical protection apparatus with test button
FR2481534A1 (en) CIRCUIT BREAKER
WO2012146619A1 (en) System for protecting and monitoring a circuit for distributing direct-current power
EP0987727A1 (en) Discriminating method between an internal arc and an interruption arc in a medium or high voltage circuit breaker
EP2927928A1 (en) Method for determining an overheating of at least one connection terminal of an electrical device, associated auxiliary apparatus, and electrical system including such an electrical device and such an auxiliary apparatus
EP2648010B1 (en) Method for managing alarms in accordance with fault currents in an electrical facility and device for implementing said method
EP3790034A1 (en) Auxiliary electronic protection module and associated shut-off device
FR2712730A1 (en) Immersed electrical transformer protected.
EP0524300A1 (en) Protection device for electrical equipment, machines and installations
FR2564648A1 (en) Circuit breaker with electronic trip and multiple ratings
CA1227832A (en) Appartus for delectinf failures in a chopper equipped electrical power supply
WO2020240097A1 (en) Electric line (l) protection device for detecting a leakage fault, a short-circuit, fault, an overcurrent fault and an arc fault
EP0199256B1 (en) Follow-up device for an electrical-energy distribution transformer
EP3758180B1 (en) Device and method for protecting and/or for monitoring an electrical transformer of the type with liquid dielectric contained in a sealed tank
EP3511970B1 (en) Electronic switch with a detector for providing information about the tripping of the switch on a bus
EP4016578A1 (en) Device for diagnosing a switching event, associated switching device and diagnostic method
EP0105786B1 (en) Branch circuit breaker with an electronic trip device and remotely controlled calibration
EP4075471A1 (en) Auxiliary electrical protecting module, electrical protecting apparatus comprising such module, and associated operating method
BE1010688A7 (en) Differential switch
FR3097648A1 (en) protection and monitoring device for an electric transformer of the liquid dielectric type enclosed in a hermetic tank
WO2018149998A1 (en) Circuit breaker

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES GB IT LI NL SE

17P Request for examination filed

Effective date: 19880627

17Q First examination report despatched

Effective date: 19901218

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES GB IT LI NL SE

REF Corresponds to:

Ref document number: 74238

Country of ref document: AT

Date of ref document: 19920415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3777726

Country of ref document: DE

Date of ref document: 19920430

ITF It: translation for a ep patent filed

Owner name: EUROPATENT S.A.S.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2030749

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930713

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930715

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930726

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19930730

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930731

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930901

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19940720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940721

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940731

Ref country code: CH

Effective date: 19940731

Ref country code: BE

Effective date: 19940731

BERE Be: lapsed

Owner name: MERLIN GERIN

Effective date: 19940731

EUG Se: european patent has lapsed

Ref document number: 87401714.8

Effective date: 19950210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 87401714.8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000719

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010720

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010720

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19950810

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050711

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060731

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070201