EP0179264B1 - Verfahren zur Herstellung einer körnigen, freifliessenden Waschmittelkomponente - Google Patents

Verfahren zur Herstellung einer körnigen, freifliessenden Waschmittelkomponente Download PDF

Info

Publication number
EP0179264B1
EP0179264B1 EP85111651A EP85111651A EP0179264B1 EP 0179264 B1 EP0179264 B1 EP 0179264B1 EP 85111651 A EP85111651 A EP 85111651A EP 85111651 A EP85111651 A EP 85111651A EP 0179264 B1 EP0179264 B1 EP 0179264B1
Authority
EP
European Patent Office
Prior art keywords
weight
water
slurry
constituent
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85111651A
Other languages
English (en)
French (fr)
Other versions
EP0179264A1 (de
Inventor
Manfred Balk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to AT85111651T priority Critical patent/ATE38246T1/de
Publication of EP0179264A1 publication Critical patent/EP0179264A1/de
Application granted granted Critical
Publication of EP0179264B1 publication Critical patent/EP0179264B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents ; Methods for using cleaning compositions
    • C11D11/02Preparation in the form of powder by spray drying
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • C11D17/065High-density particulate detergent compositions

Definitions

  • washing powders with a high bulk density have been known for a long time. These include e.g. Agents with a high soda or silicate content, such as used to be were obtained simply by mixing the individual components together or by drying aqueous mixtures on trays or heated rolls, extruding or spray crystallization. These specifically heavy powders tend to cake, usually have poor solution properties and cannot be used in modern washing machines with pre-programmed cycle times. These agents have meanwhile been replaced by specifically light powders with a porous grain structure, which are produced by means of hot spray drying and which, as a rule, are rapidly soluble, but on the other hand require a relatively large volume of packaging and transportation.
  • a granular porous carrier material is produced by spray drying a slurry of inorganic salts such as sodium silicate, sodium sulfate and sodium triphosphate as well as sulfonate surfactants and soaps then sprayed in a mixer with a nonionic surfactant.
  • inorganic salts such as sodium silicate, sodium sulfate and sodium triphosphate
  • soaps soaps then sprayed in a mixer with a nonionic surfactant.
  • nonionic surfactants up to 20% by weight of nonionic surfactants can be applied subsequently to the spray-dried carrier material.
  • a powder addition of e.g. Talc, finely divided silica or calcined clay is recommended.
  • a graying inhibitor in powder form e.g. Carboxymethyl cellulose, can be mixed in afterwards.
  • the powders thus obtained, loaded with nonionic surfactants can have a bulk density of more than 500 g / l, for example 700 g / l and a flowability of e.g. have up to 76% of that of dry sand.
  • the size of these powder particles is between 3.3 mm to 0.075 mm, in particular between 0.83 and 0.15 mm.
  • Granular detergents with a bulk density of at least 500 g / l which consist of essentially spherical particles of a certain grain size and have a fluidity of 70%, based on dry sand, are known from German Offenlegungsschrift 27 42 683. These agents filled in a plastic bottle have a content of 30 to 80% of builders, 2 to 40% of surfactants, which are essentially non-ionic, 0 to 20% of other additives, 0 to 50% of fillers and 3 to 15% Moisture. It is true that the manufacture of the products described in this way is called arbitrary, for example also by spray drying or granulation.
  • the only specifically specified and thus usable way is via a two-stage and therefore complex manufacturing process, in which so-called “base beads” with a porous outer surface and a more or less absorbent inner frame are first produced by spray drying an aqueous slurry, which is then also used the liquid or melted nonionic surfactant is sprayed or soaked.
  • base beads with a porous outer surface and a more or less absorbent inner frame are first produced by spray drying an aqueous slurry, which is then also used the liquid or melted nonionic surfactant is sprayed or soaked.
  • the products have comparatively unfavorable solution properties in cold tap water, so that undissolved components can remain in the induction boxes or in the tub of drum washing machines.
  • DE-AS 17 92 434 is finally a process for the production of granular detergents with a content of 2 to 15 wt .-% of anionic and 5 to 20 wt .-% of nonionic surfactants and 25 to 60 wt .-% tripolyphosphate known by spray drying a slurry.
  • the tripolyphosphate used to prepare the slurry must be partially pre-hydrated. This partial prehydration is necessary in order to produce free-flowing powders.
  • the process provides loose powder with a bulk density of less than 550 g / l and - if the proportion of nonionic surfactant significantly exceeds 15% by weight - only very moderate pouring properties.
  • Such grains resistant to abrasion. Such grains, which usually contain higher proportions of sodium silicate as strength enhancers, usually have only moderate solubility properties, especially in cold water, and in many cases have only a limited absorption capacity for liquid or sticky nonionic surfactants.
  • the individual substances are continuously weighed or measured volumetrically, premixed and transferred to a homogenization device. After passing through a filter in which coarse agglomerates are removed or crushed, the slurry reaches the high-pressure pump via a second homogenization device and from there to the spray tower at a pressure of 30 to 70 bar.
  • This continuous working method avoids longer lifetimes and strong viscosity increases of the slurries, but also leads to powders whose bulk density is 0.1 to a maximum of 0.45 g / ml.
  • Low levels of detergent substance, which is synonymous with a high level of builder salts, and high pressures during spraying favor a higher bulk density, but the upper limit, as stated, is 0.4 to 0.45 g / ml.
  • the spray material must therefore be further processed and mixed with specifically heavy powders in devices specially developed for this purpose. This means a higher investment and work effort.
  • the invention by means of which the problems outlined are solved, is a process for the production of a granular, free-flowing, water-soluble detergent component consisting of essentially round particles with a bulk density of at least 600 g / l and a grain size of 0.1 up to 2 mm with a content of (a) alkoxylated nonionic surfactants, (b) inorganic carrier substances, (c) other organic washing aids and (d) adsorptively or water bound as hydrate, characterized in that for the preparation of the detergent component containing 10 up to 28% by weight of component (a), 40 to 80% by weight of component (b), 0.5 to 10% by weight of component (c), 8 to 20 wt .-% of component (d) and less than 0.5 wt .-% of anionic surfactants, an aqueous formulation of the ingredients, which has a viscosity of 4000 to 20,000 mPa ' s and a temperature of 85 to 105 ° C, continuously homogen
  • Alkoxylated nonionic surfactants suitable for the preparation of the compositions are ethoxylated alcohols having 12 to 24, preferably 14 to 18 carbon atoms and an average of 3 to 20, preferably 4 to 16, glycol ether groups.
  • the hydrocarbon residues can be saturated or monounsaturated, linear or also methyl-branched in the 2-position (oxo residue) and can be derived, for example, from naturally occurring or hydrogenated fat residues and / or synthetic residues.
  • Ethoxylates derived from cetyl, stearyl and oleyl alcohol and mixtures thereof have proven to be particularly suitable.
  • EO ethylene oxide groups
  • tallow fatty alcohol with an average of 10 to 18 EO tallow fatty alcohol with an average of 10 to 18 EO
  • oleyl alcohol with an average of 6 to 12 EO as well as their mixtures.
  • Such mixtures of two and more surfactants with different EO content, in which the proportion of higher ethoxylated alcohols predominates have proven to be particularly advantageous, since the tendency to smoke formation in the exhaust air (so-called pluming) is particularly low and the washing action against mineral ones and fatty soiling is particularly pronounced.
  • Alkoxylated alcohols have also proven to be advantageous in the sense of a low tendency to "pluming", in the production of which 1 to 3 mol of propylene oxide and then 4 to 20, preferably 4 to 7, mol of ethylene oxide were added to the alcohol. You can replace components (a1) and (a2) in whole or in part in the aforementioned mixtures.
  • Ethoxylated alkylphenols with 8 to 12 carbon atoms in the alkyl chain and 4 to 14 EO have also proven to be useful. Mixtures of ethoxylated nonylphenols with (a4) 5 to 7 EO and (a5) 9 to 12 EO in a ratio of 2: 1 to 1: 4 are particularly suitable.
  • nonionic surfactants are those which have a similar distribution of the ethylene glycol or propylene glycol ether groups and are derived from vicinal diols, fatty amines, fatty acid amides and fatty acids.
  • the ethoxylated fatty acid amides also include the fatty acid mono- or diethanolamides or the corresponding fatty acid propanolamides.
  • the water-soluble polyethylene oxide adducts containing 20 to 250 ethylene glycol ether groups and 10 to 100 propylene glycol ether groups on polypropylene glycol, ethylenediaminopolypropylene glycol and alkylpolypropylene glycol with 1 to 10 carbon atoms in the alkyl chain can also be used.
  • the compounds mentioned usually contain 1 to 5 ethylene glycol units per propylene glycol unit.
  • the detergent component according to the invention contains 10 to 28% by weight, preferably 12 to 25% by weight and in particular 15 to 23% by weight, of ethoxylated nonionic surfactants.
  • the content of anionic surfactants in the detergent component i.e. those of the sulfonate or sulfate type, and soap, should be less than 0.5%, preferably 0%. It has been shown that even small amounts of such additives, in particular the smallest additives of soap, cause the grains to swell during spray drying and thus to a decrease in the desired high bulk density and the free-flowing properties.
  • inorganic carrier substances there are primarily builders which can also bind or precipitate the hardness constituents of the water.
  • the polymer phosphates can be mixed with their hydrolysis products, i.e. Orthophosphate and pyrophosphate are present, however, due to the higher washing and calcium binding capacity of the polyphosphates, the lowest possible hydrolysis of the polyphosphate when preparing the slurry and during spray drying should be aimed at by suitable measures.
  • the sodium tripolyphosphate is preferably used in anhydrous form or as a partially hydrated salt with a crystal water content of up to 2% by weight.
  • Suitable carrier substances are in particular also the synthetic bound water-containing sodium aluminosilicates of the zeolite A type. You can replace the polymer phosphates in whole or in part, i.e. their use also enables the production of phosphate-free agents.
  • the zeolites are used in the usual hydrated, finely crystalline form, i.e. they have practically no particles larger than 30 11 m and preferably consist of at least 80% of particles smaller than 10 11 m.
  • Your calcium binding capacity which is determined according to the information in DE 24 12 837, is in the range of 100-200 mg CaO / g.
  • the zeolite NaA can be used in particular, also the zeolite NaX and mixtures of NaA and NaX.
  • Further useful carrier substances which can be present in a mixture with the compounds mentioned above are sodium carbonate, sodium sulfate and magnesium silicate.
  • Compounds with a high adsorption capacity such as finely divided silica, clays or bentonites, may also be present.
  • the proportion of the inorganic carrier substance is a total of 40 to 80% by weight, based on anhydrous or non-hydrated substance, preferably 45 to 70% by weight.
  • the proportion of sodium tripolyphosphate (including the hydrolysis products) is 0 to 60% by weight, preferably 10 to 50% by weight and in particular 20 to 40% by weight.
  • the proportion of the alkali metal silicates is 5 to 20% by weight, preferably 6 to 15% by weight and in particular 6.5 to 12% by weight.
  • the sodium aluminosilicate is present in proportions of 0 to 40% by weight, preferably 3 to 30% by weight and in particular 5 to 25% by weight.
  • the proportion of sodium silicate in such carrier salt mixtures which essentially consist of sodium tripolyphosphate or zeolite and their mixtures, can also be increased beyond the stated maximum content of 20% by weight, without resulting in major disadvantages for the dissolution behavior of the particles .
  • the proportion of zeolites can be up to 65% by weight.
  • the percentage content of polyphosphate in the detergents can be in the range of conventional heavy-duty detergents, the tendency to reduce phosphate is fully taken into account in the invention.
  • the agents according to the present invention are compared to conventional, i.e. specifically light washing powders are used in a much lower dosage; on the other hand, the proportion of phosphate in favor of the proportion of aluminosilicate can be considerable, i.e. can be reduced to, for example, 10% by weight or even eliminated entirely.
  • the process product can also contain so-called co-builders as other organic washing aids, which are able to increase the effect of the polyphosphates and sodium aluminosilicates considerably even in small amounts.
  • Polyphosphonic acids or their alkali metal salts are particularly suitable as co-builders. Suitable polyphosphonic acids are 1-hydroxyethane-1,1-diphosphonic acid, aminotri- (methylenephosphonic acid), ethylenediamine tetra- (methylenephosphonic acid) and their higher homologs, e.g. Diethylenetriaminepenta- (methylenephosphonic acid).
  • Other co-builders are complexing aminopolycarboxylic acids.
  • alkali salts of nitrilotriacetic acid and ethylenediaminotetraacetic acid include in particular alkali salts of nitrilotriacetic acid and ethylenediaminotetraacetic acid.
  • the salts of diethylenetriamineopentaacetic acid and the higher homologues of the aminopolycarboxylic acid mentioned are also suitable.
  • the polyacids mentioned are preferably used as sodium salts.
  • co-builders are the polymeric carboxylic acids or their salts with a molecular weight of at least 350 in the form of the water-soluble sodium or potassium salts, such as polyacrylic acid, polymethacrylic acid, poly-a-hydroxyacrylic acid, polymaleic acid, polyitaconic acid, polymesaconic acid, polybutene tricarboxylic acid and the copolymers the corresponding monomeric carboxylic acids with one another or with ethylenically unsaturated compounds, such as ethylene, propylene, isobutylene, vinyl methyl ether or furan.
  • the copolymer of maleic acid and acrylic acid in a ratio of 5: 1 to 1: 5 may be mentioned as an example.
  • Small amounts of these co-builders are understood to mean proportions of 0.5 to 10, preferably 1 to 5,% by weight, based on the total amount of the detergent component.
  • organic detergent components that may be present in the spray-dried powder component are graying inhibitors, optical brighteners and additives which regulate the viscosity behavior of the slurries, for example alkali metal salts or toluene, cumene or xylene sulfonic acid and optionally polymers which act as thickeners (for example of the Carbopol type ).
  • Suitable graying inhibitors are, in particular, carboxymethyl cellulose, methyl cellulose, furthermore water-soluble polyesters and polyamides from polyvalent carboxylic acids and glycols or diamines, which have free carboxyl groups, betain groups or sulfobetaine groups capable of salt formation, and polymers or copolymers of vinyl alcohol, vinyl amide and acrylamide, colloidally soluble in water, acrylamides and acrylamides .
  • These organic washing aid additives can be present in proportions of 0.5 to 10% by weight.
  • Suitable optical brighteners are the alkali salts of 4,4-bis (-2 "-anilino-4" -morpholino-1,3,5-triazinyl-6 "-amino) -stilbene-2,2-disulfonic acid or similar compounds, which carry a diethanolamino group, a methylamino group or a .beta.-methoxyethylamino group instead of the morpholino group.
  • Brighteners of the substituted diphenylstyrene type for example the alkali metal salts of 4,4-bis (2-sulfostyryl) diphenyl, 4,4-bis, are also suitable (4-chloro-3-sulfostyryl) diphenyl and 4- (4-chlorostyryl) -4- (2-sulfostyryl) diphenyl.
  • the agents usually have a water content of 8 to 20 wt .-%, preferably from 12 to 18 wt .-%, including both the adsorb tiv bound water as well as the water of hydration is to be understood.
  • the proportion of water bound in the hydrated sodium aluminosilicate is about 20% by weight, based on the total amount of the hydrated sodium aluminosilicate; i.e. it is the degree of hydration that is in equilibrium with the environment. This proportion must be taken into account when calculating the amount of water. Basically, the water content should be measured so that there are perfectly free-flowing products. It is preferably 12 to 18% by weight.
  • aqueous active ingredient concentrate (slurry) intended for spray drying is carried out continuously and with the shortest possible residence times.
  • Suitable devices which are suitable for the continuous processing of slurries are known and are described, for example, in the magazine "Soap, Cosmetics, Chemical Specialties", August 1972, pages 27 to 30, 44 and 46, in particular 28-30, under the name " Dosex slurry system »described in more detail. They consist of automatic weighing and dosing devices for the solid and liquid or pasty raw materials as well as continuously working mixers, pumps and filters for the separation of coarse parts.
  • the inflow of raw materials to the mixing device and the outflow of the homogenized slurry to the high-pressure pump and from there to the spraying device is controlled automatically. This allows short dwell times to be achieved and at the same time counteracts the tendency towards inhomogeneities and segregation phenomena in the slurry.
  • the weighed or metered liquid to pasty raw materials are mixed and homogenized in a mixer, in particular in two or three mixers connected in series.
  • the liquid constituents, especially the added water, are expediently preheated, i.e. used with a temperature of at least 60 ° C.
  • the viscosity of the slurry is adjusted to a range from 4000 to a maximum of 20,000 m p as, preferably 5,000 to 15,000 mPa ' s and temperatures from 85 ° C to 105 ° C, for example set to 90 ° C to 102 ° C.
  • the heating is expediently carried out by preheating the liquid raw materials and / or introducing water vapor, in particular superheated water vapor. At the stated temperatures, the hydration of the tripolyphosphate in the slurry is largely prevented or delayed to such an extent that there is no undesirable increase in viscosity within the processing time.
  • This targeted temperature control enables both quick and only moderately hydrating tripolyphosphate qualities to be used.
  • the keeping of liquids and the homogenization of the slurries is supported by the application of strong shear forces with intensive mixing by means of a high-speed stirring device. Turbine stirrers, for example, which run at a number of revolutions of 300 to 600 revolutions per minute are suitable.
  • the use of strong shear forces also prevents the formation of structural viscosities.
  • the use of viscosity-regulating agents additionally ensures that the preferred viscosity ranges are observed.
  • the aqueous batch normally contains a total of 50 to 35% by weight, preferably 45 to 38% by weight, of water, which also contains the water bound by adsorption or hydrate.
  • Higher water contents are inappropriate because they increase the degree of hydrolysis of the tripolyphosphate, increase energy consumption and lead to a lower bulk density.
  • Lower contents can lead to an excessive increase in the viscosity of the slurry and therefore make special measures such as increasing the mixing and conveying capacity or the addition of viscosity-reducing agents such as toluene, xylene or cumene sulfonate necessary.
  • the homogenized slurry After leaving the mixing device, which consists of a single mixer or a cascade of two or more mixers connected in series, the homogenized slurry is pumped to a filter.
  • a dynamic filter is expediently used, by means of which soft agglomerates can be crushed.
  • the slurry then passes through another homogenization device, for example a homogenization pump, and from there it reaches the high-pressure pump, from which it is conveyed to the spray nozzles.
  • the average dwell time of the slurry after the mixture components have been brought together until the transition to the high-pressure part should be kept as short as possible and not be more than 15 minutes, preferably not more than 10 minutes and in particular not more than 5 minutes.
  • the nonionic surfactants are wholly or partially, in particular 50 to 90%, fed into the delivery line leading to the high-pressure pump and homogeneously distributed in the slurry by means of the homogenization pump mentioned.
  • the residence time of the nonionic surfactants can be up to 3, in particular less than Shortened 1 minute and an undesirable increase in viscosity can be countered.
  • Conventional systems can be used to carry out the spray drying process, as are already used for the production of conventional sprayed detergents.
  • Such systems usually consist of towers of round cross-section, which are equipped with ring-shaped spray nozzles in the upper part. They also have supply devices for the dry gases and dedusting systems for the exhaust air.
  • the drying gas is introduced into the lower part of the tower and directed towards the product stream, while in the case of direct current drying, the drying gases are supplied in the top of the drying tower.
  • the pressure at the nozzle inlet is 20 to 45 bar, preferably 30 to 40 bar, the diameter of the nozzle outlet opening 2.5 to 5 mm, preferably 3.0 to 4.0 mm and the ratio of pressure to diameter of the nozzle outlet opening 4-18 bar / mm and preferably 7.5-13.5 bar / mm. Compliance with these parameters is decisive for the grain properties of the process products. Significantly exceeding these limits in both directions leads to the formation of more or less irregularly formed agglomerates with an undesirable structure, particularly when the pressure is increased or the nozzle is narrowed, resulting in a lower bulk density and poorer pouring properties. Too much lowering of the pressure can lead to poor atomization performance and crusting in the area of the nozzle outlet opening and in the tower.
  • the spray drying system is operated with hot air or hot combustion gases, which are preferably conducted in countercurrent to the spray material.
  • the drying gas is expediently introduced tangentially into the tower, which results in a certain swirl effect.
  • the inlet temperature of the dry gas should normally not exceed 250 ° C and should preferably be 180 ° C to 240 ° C, in particular 200 ° C to 240 ° C.
  • Operation with hotter dry gases requires the use of predominantly highly ethoxylated or mixed alkoxylated surfactants in order to prevent smoke formation in the exhaust air. If the surfactant mixtures of low and highly ethoxylated compounds disclosed as preferred above are used, there are no disturbances due to smoke formation if the temperature range from 200 ° C. to 240 ° C. is maintained.
  • the inlet temperature of the dry gas in the spray drying system from 180 ° C. to 240 ° C., preferably from 200 ° C. to 240 ° C., it should be noted that these are temperatures of the gas in the so-called ring channel of the spray tower.
  • the temperature of the dry gas coming into contact with the powder in the lower tower area is usually 10 ° C to 30 ° C lower.
  • the temperature of the drying gases when leaving the drying tower are generally 80 ° C to 95 ° C.
  • the upper value can be subject to certain fluctuations, which include depends on the outside temperature. It should be selected so that the dew point in the downstream dedusting systems is not exceeded.
  • the product leaving the spray tower generally has a temperature of 65 ° C to 80 ° C. It has proven to be advantageous if the product is left immediately after leaving the spray tower, i.e. cools within less than 5 minutes, preferably within 2 minutes, to temperatures below 35 ° C., for example to 20 ° C. to 30 ° C. This can be done, for example, in a pneumatic conveyor system that is sufficiently cold, i.e. air at a temperature of less than 30 ° C is operated. Rapid cooling largely prevents diffusion of the nonionic surfactant onto the surface of the sprayed grains. Non-ionic surfactant diffused onto the surface of the particles can reduce their flowability and bulk density. If the temperature of the cooling air is not sufficient to cool the product sufficiently quickly in the hot season, subsequent powdering is recommended.
  • Finely divided, water-soluble or dispersible solids or fluidizing agents in an amount of 0.01 to 3% by weight, based on the spray product, are suitable for powdering.
  • the finely divided synthetic zeolites of the NaA or NaX type have proven particularly useful as coating agents.
  • the positive effect of these zeolites is not only limited to the improved flowability, but also increases the proportion of builders and thus the washing power of the product.
  • finely divided silica with a large specific surface area in particular pyrogenic silica (Aerosil o ), as a fluidizing agent.
  • the proportion of the fluidizing agent is preferably 0.1 to 2% by weight in the case of the zeolite, and preferably 0.05 to 0.5% by weight in the case of the finely divided silica, based on the granular spray product.
  • powder materials already proposed for powdering sticky detergent granules such as finely divided sodium tripolyphosphate, sodium sulfate, magnesium silicate, talc, Ben Tonite and organic polymers such as carboxymethyl cellulose and urea resins can also be used if they have a grain size of less than 0.1 mm, for example from 0.001 to 0.08 mm.
  • Coarse-particle powder provenances as are usually used in detergents and cleaning agents, must first be comminuted accordingly. Coating agents of this type are preferably used in proportions of 1 to 3% by weight.
  • the spray-dried grains can be coated or powdered before, after or expediently at the same time as the addition of further powder components.
  • powder components include per-compounds, bleach activators (so-called peracid precursors), enzyme granules, foam inhibitors or foam activators and so-called compounds, i.e. Carrier substances and surfactants, in particular anionic surfactants, or powder products consisting of carrier substances and fabric softeners.
  • Water-insoluble coating agents such as zeolite and silica aerogels can also be used before spray drying is complete, i.e. by blowing into the lower part of the drying tower on the detergent granules already formed.
  • the coating agent can be introduced into the tower by metering it into the dry air.
  • the powdering of the spray-dried grains leads, among other things, to a partial smoothing of the grain surface, so that the flow behavior of such grains, which already have very good pourability and flowability, is further improved.
  • the bulk density of the powders can also be increased slightly as a result, since the coating material apparently enables the grains to be packed more densely.
  • the grain spectrum of the spray products determined by sieve analysis is comparatively narrow, i.e. more than 80 wt .-%, usually even more than 85 wt .-% of the grains are within a range between 0.2 and 0.8 mm mesh size. In the case of a conventional spray powder with a low bulk density, this grain size range generally does not account for more than 50 to 70% by weight.
  • the dust content of the powder component according to the invention and the proportion of oversize particles are correspondingly low, so that subsequent sieving of the tower powder or subsequent addition of dust-binding agents is unnecessary.
  • the detergent component according to the invention is free-flowing and, in terms of its flowability, exceeds the known, specifically light, sprayed hollow-sphere powder.
  • Their pourability can be compared with that of dry sand, namely the pourability which can be carried out according to a test given in the examples is in the order of more than 60%, preferably from 75 to 95%, of that of dry sand with a specific grain specification .
  • Another aspect when evaluating a washing powder is the compactibility of the powder. It is inevitable that when a washing powder is automatically filled, it initially takes up a slightly larger bulk volume, which is only slightly reduced even with a brief shaking process. As the packs are transported further to the consumer, compression gradually occurs. The consumer notices this loss of volume when opening the package and often concludes that he has received an incompletely filled package. In the case of conventional, specifically light, hollow spherical powders, this volume loss is 10 to 15%. Granules with predominantly spherical dimensions, e.g. obtained by applying nonionic surfactant to pre-sprayed carrier grains have a volume loss of about 10%. For dry sand, this value is around 8%.
  • the agents according to the invention even exceed these values, i.e. here the volume decreases are usually below 10% and in favorable cases reach a value of 5%.
  • the high volume consistency combined with the excellent pourability, facilitates in particular precise and reproducible dosing during filling and in use.
  • the process product can be mixed with additional powder products which have been produced by customary methods and have a different powder spectrum.
  • additional powder products which have been produced by customary methods and have a different powder spectrum.
  • these powder products also include detergent precursors, so-called compounds, which are composed of anionic sulfonate and / or sulfate surfactants and, if appropriate, soaps together with carriers such as sodium triphosphate, zeolite A and water glass, and by conventional spray drying or mixed granules lation be produced.
  • Textile-softening granules which contain quaternary ammonium compounds as active ingredients together with soluble or insoluble carriers and dispersion inhibitors or which are based on sheet silicates and long-chain tertiary amines are also suitable as additives.
  • These additional powder products are made up of differently designed, known particle shapes, for example more or less spherical beads, prills or granules.
  • This bulk density is 650 to 850 g / l, preferably 700 to 800 g / l.
  • Other powder components that can be added to the spray-dried detergents include substances that are unstable under the spray-drying conditions or that lose some or all of their specific effect or that would adversely change the properties of the spray-drying product. Examples of this are enzymes from the class of proteases, lipases and amylases or their mixtures. Enzymes obtained from bacterial strains or fungi, such as Bacillus subtillis, Bacillus licheniformis and Streptomyces griseus, are particularly suitable. Fragrances and foam suppressants, such as silicones or paraffin hydrocarbons, are also generally added to the spray-dried powder component to avoid loss of effectiveness.
  • Suitable bleaching components for admixing are the perhydrates and per-compounds commonly used in washing and bleaching agents.
  • the perhydrates preferably include sodium perborate, which can be present as a tetrahydrate or as a monohydrate, furthermore the perhydrates of sodium carbonate (sodium percarbonate), sodium pyrophosphate (perpyrophosphate), sodium silicate (persilicate) and urea.
  • the bleach activators include in particular N-acyl compounds.
  • suitable N-acyl compounds are polyacylated alkylenediamines, such as tetraacetylmethylene diamine, tetraacetylethylenediamine, and acylated glycolurils, such as tetraacetylglycoluril.
  • Further examples are N-alkyl-N-sulfonylcarbonamides, N-acylhydantoins, N-acylated cyclic triazoles, urazoles, diketopiperazines, sulfurylamides, cyanurates and imidazolines.
  • acylated sugars such as glucose pentaacetate are particularly suitable as O-acyl compounds.
  • Preferred bleach activators are tetraacetylethylene diamine and glucose pentaacetate.
  • the enzymes, foam-influencing agents and bleach activators can be granulated in a known manner and / or coated with water-soluble or water-dispersible coating substances in order to avoid interactions with the other detergent components during storage of the powdery mixtures.
  • Salts which are customary to absorb water of hydration can serve as granulating agents.
  • Suitable coating substances are water-soluble polymers, such as polyethylene glycol, cellulose ethers, cellulose esters, water-soluble starch ethers and starch esters, and nonionic surfactants of the alkoxylated alcohol, alkylphenol, fatty acid and fatty acid amide type.
  • the detergent component produced according to the invention is only slightly foam-active and can be used in washing machines without problems.
  • the spray-dried powder product is subsequently expanded with foam-active surfactants and surfactant mixtures, preferably in a compound -Form, added.
  • foam-active surfactants and surfactant mixtures preferably in a compound -Form, added.
  • foam-active surfactants and surfactant mixtures preferably in a compound -Form, added.
  • foam-active surfactants and surfactant mixtures preferably in a compound -Form, added.
  • foam-active surfactants and surfactant mixtures preferably in a compound -Form, added.
  • foam-active surfactants and surfactant mixtures preferably in a compound -Form, added.
  • anionic surfactants of the sulfonate and sulfate type as well as zwitterionic surfactants.
  • Such an addition can also lead to a further increase in washing power.
  • Their addition
  • Alkylbenzenesulfonates for example n-dodecylbenzenesulfate, olefin sulfonates, alkanesulfonates, primary or secondary alkyl sulfates, sulfofatty acid esters and sulfates of ethoxylated or propoxylated higher molecular weight alcohols, monoalkylated or dialkylated sulfosuccinates, sulfuric acid esters of fatty acid partial ester sulfonates and fatty acid partial ester glycerides and fatty acid partial esters.
  • Suitable zwitterionic surfactants are alkyl betaines and especially alkyl sulfone betaines, e.g. the 3- (N, N-dimethyl-N-alkylammonium) propane-1-sulfonate and 2-hydroxypropane-1-sulfonate.
  • alkylbenzenesulfonates, olefin sulfonates, alkanesulfonates, fatty alcohol sulfates, a-sulfofatty acid esters are to be regarded as preferred because of their foam-raising and washing-enhancing action. If emphasis is primarily placed on foam activation, the use of sulfates of ethoxylated fatty alcohols, in particular 1 to 3 glycol ether groups, and alkylsulfobetaines is recommended.
  • the anionic surfactants or mixtures thereof are preferably in the form of the sodium or potassium salts and as salts of organic bases, such as mono-, di- or triethanolamine. If the anionic and zwitterionic compounds mentioned have an aliphatic hydrocarbon radical, this should preferably be straight-chain and have 8 to 20, in particular 12 to 18, carbon atoms. In the connection Gen with an araliphatic hydrocarbon radical, the preferably unbranched alkyl chains contain an average of 6 to 16, in particular 8 to 14 carbon atoms.
  • the additional optional anionic and zwitterionic surfactants are also expediently used in granular form.
  • the usual inorganic salts such as sodium sulfate, sodium carbonate, phosphates and zeolites, and mixtures thereof are used as granulation aids or carrier substances.
  • Fabric softening additives generally consist of granules containing a softening quaternary ammonium compound (QAV), e.g. Distearyldimethylammonium chloride, a carrier and an additive which delays dispersion in the wash liquor.
  • QAV softening quaternary ammonium compound
  • a typical such granulate is e.g. polydimethylsiloxane activated from 86% by weight of QAV, 10% by weight of pyrogenic silica and 4% by weight of silicone oil (with pyrogenic silica); another granulate has the composition 30% by weight QAV, 20% by weight sodium triphosphate, 20% by weight zeolite NaA, 15% by weight water glass, 2% by weight silicone oil and the rest water.
  • the aim should be that the bulk density and the average grain size of the particles do not differ significantly from the corresponding parameters of the spray drying products according to the invention, or that the particles do not have a surface that is too rough or too irregular exhibit.
  • the additional powder constituents generally do not exceed a proportion of 10 to 40% by weight, preferably up to 30% by weight (based on the finished mixture), the influence of the additives on the powder properties generally remains small.
  • the device used to prepare the slurries consisted of a cascade of 3 consecutive mixing containers, each with a capacity of 1.5 m 3 .
  • Tanks 1 and 2 were equipped with turbine stirrers (speed 480 rpm).
  • the third tank served as a surge tank for continuous operation.
  • the agitator installed in it rotated at 280 rpm.
  • a maximum fill level of 0.5 m 3 was set in the third container.
  • the average residence time in the 3-stage mixer was less than 5 minutes.
  • the tripolyphosphate was prehydrated (1% water). After complete homogenization, the respective batch contained 96.5 kg of anhydrous solids and 56.7 kg of water (water content 41.0% by weight).
  • the slurry fed to the 3rd mixing tank and continuously removed from it had a viscosity of 11,500 mPa ' s at 95 ° C. It was passed over a dynamic sieve (Ballestra sieve @) in order to destroy any soft agglomerates that might be present.
  • the slurry was then pumped to a continuously operating homogenizer and, after passing through a high-pressure pump under a pressure of 35 bar, fed to the atomizing nozzles of a spray tower via a riser.
  • the single-substance nozzles designed as swirl nozzles had an opening diameter of 3 mm.
  • the ratio of pressure to nozzle opening was 11.3 bar / mm.
  • the throughput was 12 t / hour, based on spray-dried powder.
  • the dry gas (throughput of 60,000 m 3 / hour) introduced from below into the spray tower under swirl and heated by burning natural gas had an inlet temperature of 220 ° C measured in the ring channel and an outlet temperature in the filter of 90 ° C.
  • the dust explosion limit was not reached with a powder concentration between 30 and 200 g / m 3 , ie the product is classified in dust explosion class 0.
  • the smoke meter at the outlet of the exhaust air filter shows a deflection between 0.02 and 0.08 divisions.
  • the spray product was slightly sticky after leaving the spray tower and had a temperature of 70 ° C. It was cooled to a temperature of 26 ° C in less than 1 minute in a pneumatic conveyor. It consisted of non-sticky, free-flowing, essentially round particles with a smooth surface and homogeneous cross-section. The content of coarse fractions (1.6 mm-3 mm) and of dust lay below 0.1% by weight. The bulk density of the grains was 750 g / l and the proportion of water which could be removed at 130 ° C. (drying temperature) was 13.1% by weight.
  • Dry sea sand with the following grain spectrum was chosen as the reference substance.
  • test product 87.0 parts by weight of the test product were mixed with 10 parts by weight of powdered sodium perborate tetrahydrate, which had been sprayed with 0.2 part by weight of perfume oil, 0.5 part by weight of an enzyme granulate, prepared by prilling an enzyme melt, and 2.3 Parts by weight of granulated tetraacetylethylenediamine are mixed, the grain size of the admixed components being in the range between 0.1 and 1 mm. This increases the bulk weight to 760 g / l. The flowability did not change within the error limits.
  • the mixture proved to be a high-quality detergent that can be used in the temperature range between 30 ° and 100 ° C.
  • the flushability and the formation of residues in the input devices of fully automatic washing machines no differences between a loose spray powder and the test product were recognizable.
  • the solution properties of the comparison product listed under (d) were poorer, which led to the formation of residues in the induction device and on the textiles.
  • Example 1 The apparatus described in Example 1, consisting of 3 mixing containers connected in series, was used for the continuous production of the slurry. Via an additional feed provided with a continuously operating metering device, further liquid constituents, in particular liquid or melted nonionic surfactants, could be fed into the line system leading to the high pressure pump between the dynamic sieve and the homogenizer.
  • a mixture of nonylphenol + 6 EO and nonylphenol + 10 EO in a weight ratio of 1: 2 served as nonionic surfactant component (a). Of this, 33% was introduced into the last mixing tank and 67% into the line system leading to the high pressure pump.
  • the recipe corresponded to that in Table 1 with the modification that the proportion of nonionic surfactant was 12.3 kg and the difference up to 123.2 kg consisted of an aqueous sodium sulfate solution (water content 50% by weight).
  • the average residence time of the total batch was less than 5 minutes, that of the nonionic surfactant less than 1 minute.
  • the viscosity of the mixture was 10,800 mPa.s at the outlet of the third mixing container.
  • Spray drying was carried out under the conditions given in Example 1 to a water content of 13.5% by weight which can be removed at 130 ° C.
  • the spray product had a bulk weight of 630 g / l.
  • the proportion of coarse grain (over 1.6 mm) and dust (under 0.1 mm) was less than 0.5% by weight.
  • the pourability based on dry sand was 87%.

Description

  • Waschmittel mit vergleichsweise hohem Schüttgewicht von mehr als 600 g/I haben in neuerer Zeit erhöhtes Interesse gewonnen, da sie bei gleichem Wirkstoffgehalt weniger Verpakkungsvolumen erfordern und damit Einsparungen an Verpackungsrohstoffen ermöglichen. Im Prinzip sind Waschpulver mit hoher Schüttdichte seit langem bekannt. Hierzu zählen z.B. Mittel mit hohem Soda- bzw. Silikatgehalt, wie sie früher z.B. durch einfaches Zusammenmischen der Einzeibestandteile oder durch Trocknen wässriger Gemische auf Horden oder beheizten Walzen, Extrudieren oder Sprühkristallisation erhalten wurden. Diese spezifisch schweren Pulver neigen zum Zusammenbacken, weisen in der Regel mangelhafte Lösungseigenschaften auf und sind in neuzeitlichen Waschmaschinen mit vorprogrammierten Taktzeiten nicht brauchbar. Diese Mittel wurden daher inzwischen von spezifisch leichten, mittels Heisssprühtrocknung hergestellten Pulvern mit poröser Kornstruktur abgelöst, die zwar in der Regel schnellöslich sind, andererseits verhältnismässig viel Verpackungs- und Transportvolumen beanspruchen.
  • Es ist ferner bekannt, dass man das Schüttgewicht derartiger Sprühpulver erhöhen kann, wenn man sie anschliessend mit flüssigen oder geschmolzenen nichtionischen Tensiden besprüht. Man erhöht damit gleichzeitig wegen der günstigen Wascheigenschaften der nichtionischen Tenside die Waschkraft der Mittel und vermeidet das bei Heisssprühtrocknung auftretende Problem der Rauchbildung in der Abluft der Sprühtürme, die durch mitgeführtes nichtionisches Material verursacht wird. Geht man z.B. nach dem Verfahren vor, bei dem das nichtionische Tensid auf sprühgetrocknetes Polyphosphat aufgebracht wird, erhält man jedoch lediglich Schüttgewichte von weniger als 550 g/I. Aus den US Patentschriften 3 838 072, 3 849 327 und 3 886 098 ist ein ähnliches Verfahren bekannt, mit dem durch Sprühtrocknen eines Slurries aus anorganischen Salzen wie Natriumsilikat, Natriumsulfat und Natriumtriphosphat sowie Sulfonat-Tensiden und Seifen ein körniges poröses Trägermaterial hergestellt wird, das man anschliessend in einem Mischer mit einem nichtionischen Tensid besprüht. Auf diese Weise können bis zu 20 Gew.-% an nichtionischen Tensiden nachträglich auf das sprühgetrocknete Trägermaterial aufgebracht werden. Um die Rieselfähigkeit zu verbessern, wird ein Pulverzusatz von z.B. Talk, feinteiliger Kieselsäure oder calciniertem Ton empfohlen. Auch ein Vergrauungsinhibitor in Pulverform, z.B. Carboxymethylcellulose, kann nachträglich hinzugemischt werden. Die so erhaltenen, mit nichtionischen Tensiden beladenen Pulver können ein Schüttgewicht von über 500 g/I, beispielsweise 700 g/I und eine Rieselfähigkeit von z.B. bis zu 76% der von trockenem Sand aufweisen. Die Grösse dieser Pulverteilchen liegt zwischen 3,3 mm bis 0,075 mm, insbesondere zwischen 0,83 und 0,15 mm.
  • Körnige Waschmittel mit einem Schüttgewicht von wenigstens 500 g/I, die aus im wesentlichen kugelförmigen Partikeln bestimmter Korngrösse bestehen und ein Fliessvermögen von 70%, bezogen auf trockenen Sand, aufweisen, sind aus der deutschen Offenlegungsschrift 27 42 683 bekannt. Diese in einer Kunststoffflasche abgefüllten Mittel weisen einen Gehalt von 30 bis 80% an Gerüststoffen, 2 bis 40% an Tensiden, die im wesentlichen nichtionisch sind, 0 bis 20% an sonstigen Zusätzen, 0 bis 50% an Füllstoffen und 3 bis 15% an Feuchtigkeit auf. Zwar wird die Herstellung der so beschriebenen Produkte als beliebig bezeichnet, beispielsweise auch durch Sprühtrocknung oder Granulation. Der einzige konkret angegebene und somit brauchbare Weg führt jedoch über ein zweistufiges und daher aufwendiges Herstellungsverfahren, bei dem man zunächst sogenannte «Basiskügelchen» (base beads) mit poröser Aussenfläche und einem mehr oder weniger saugfähigen Innengerüst durch Sprühtrocknung eines wässrigen Slurries herstellt, die anschliessend mit dem flüssigen bzw. geschmolzenen nichtionischen Tensid besprüht bzw. getränkt werden. Abgesehen von der Aufwendigkeit des Herstellungsverfahrens bereitet es Schwierigkeiten, klebfreie Körner mit einem Gehalt von über 20 Gew.-% an flüssigen bzw. niedrigschmelzenden nichtionischen Tensiden herzustellen. Ausserdem besitzen die Produkte vergleichsweise ungünstige Lösungseigenschaften in kaltem Leitungswasser, so dass ungelöste Anteile in den Einspülkästen bzw. im Laugenbehälter von Trommelwaschmaschinen zurückbleiben können.
  • Aus der DE-AS 17 92 434 ist schliesslich ein Verfahren zur Herstellung von körnigen Waschmitteln mit einem Gehalt von 2 bis 15 Gew.-% an anionischen und 5 bis 20 Gew.-% an nichtionischen Tensiden sowie 25 bis 60 Gew.-% Tripolyphosphat durch Sprühtrocknen eines Slurries bekannt. Das zum Ansetzen des Slurries verwendete Tripolyphosphat muss teilweise prähydratisiert werden. Diese partielle Prähydratisierung ist erforderlich, damit schüttfähige Pulver entstehen. Das Verfahren liefert lockere Pulver mit einem Schüttgewicht von weniger als 550 g/I und - sofern der Anteil an nichtionischem Tensid 15 Gew.-% wesentlich übersteigt - nur sehr mässigen Rieseleigenschaften. So erweist es sich als unmöglich, das Pulver in definierter Menge aus einer Packung oder Flasche in einen Messbecher zu überführen, da es nicht gleichmässig rieselt. Vielmehr kommt es aus der zum Ausschütten geneigten Packung auch bei vorsichtigem Rütteln nicht zum gleichmässigen Ausfliessen, sondern das Pulver staut sich oder es schiesst in unkontrollierbarer Weise aus der Öffnung, wobei es nicht selten zum Überfliessen des Messbechers bzw. Verschütten grösserer Pulvermengen kommt.
  • Es bestand somit die Aufgabe, unter Vermeiden der bekannten Nachteile eine körnige Waschmittelkomponente und daraus ein Waschmittel herzustellen, das
    • a) ein hohes Schüttgewicht aufweist, so dass das Verpackungsvolumen wesentlich, d.h. ca. auf die Hälfte eines üblichen sprühgetrockneten Mittels erniedrigt werden kann,
    • b) einen wesentlich, ca. auf das Doppelte erhöhten Gehalt an waschaktiver Substanz aufweist, so dass der Verbraucher bei trotz geringer, beispielsweise auf die Hälfte erniedrigter Dosierung die gleiche Waschkraft einsetzt wie bei einem herkömmlichen Sprühpulver.
    • c) trotz des sich daraus ergebenden hohen Gehaltes an nichtionischen Tensiden, die bekanntlich die Neigung eines Pulvers zum Kleben erhöhen, so gut rieselfähig ist, dass es sich wie eine Flüssigkeit ausschütten und durch einfaches Vor-und Zurückneigen der Vorratspackung exakt in einen Massbecher dosieren lässt,
    • d) möglichst in einstufiger Verfahrensweise hergestellt werden kann, ohne dass sich dabei besondere verfahrenstechnische Probleme ergeben.
  • Der Fachmann sah sich in diesem Falle vor die folgenden Probleme gestellt:
  • Ein unter üblichen Bedingungen, d.h. mittels Druckzerstäubung von wässrigen Aufschlämmungen durchgeführtes Sprühtrocknungsverfahren erschien für die Lösung dieser Aufgabe wenig aussichtsreich, da diese Arbeitsweise in der Regel zu aufgeblähten, d.h. porösen Körnern mit dementsprechend niedrigen Schüttgewichten führt. Bei einem nachträglichen Zumischen bzw. Tränken mit verflüssigten nichtionischen Tensiden hätten die Poren der Körner zwar mehr oder weniger gefüllt und das Schüttgewicht dementsprechend erhöht werden können, jedoch erfordert die zweistufige Arbeitsweise wegen der Notwendigkeit, grosse Pulvermengen zu dosieren, zu mischen bzw. zu granulieren sowie anschliessend die gröberen Aggregate abzutrennen, einen erheblichen apparativen und zeitlichen Aufwand. Eine solche Arbeitsweise erfordert überdies die Herstellung verhältnismässig fester, d.h. gegen Abrieb beständiger Körner. Derartige Körner, die üblicherweise höhere Anteile an Natriumsilikat als Festigkeitsverbesserer enthalten, besitzen meist nur mässige Löslichkeitseigenschaften insbesondere in kaltem Wasser und weisen vielfach nur ein begrenztes Aufnahmevermögen für flüssige bzw. klebrige nichtionische Tenside auf.
  • Verfahren, derartige Schwerpulver mit hohem Gehalt an nichtionischen Tensiden unmittelbar durch Sprühtrocknung herzustellen, sind nicht bekannt. Zum einen bestanden gegen das Sprühtrocknen von Pulvern mit hohem Tensidgehalt, insbesondere mit hohem Anteil an nichtionischen Tensiden, wegen der Gefahr von Staubexplosionen bzw. wegen der zu erwartenden erheblichen Rauchbildung in der Abluft der Sprühanlagen grosse Bedenken. Deshalb wird in der einschlägigen Fach- und Patentliteratur davor gewarnt, derartige hochtensidhaltige Gemische in Heisssprühtürmen zu verarbeiten und stattdessen vorgeschlagen, höhere Anteile an nichtionischem Tensid durch Sprühgranulierung den vorgefertigten Trägerkörnern zuzumischen. Zum anderen wurden die herkömmlichen Techniken zum Ansetzen und Weiterverarbeiten der wässrigen Konzentrate (Slurries) und die nachfolgende Heisssprühtrocknung ganz gezielt so entwickelt, dass poröse, lockere Pulver mit niedrigem Schüttgewicht entstanden. Diese Techniken erschienen daher wenig geeignet, um damit kompakte, staubarme Pulver mit etwa doppelt so hohem Schüttgewicht zu produzieren.
  • Im wesentlichen kennt man zwei Verfahren zum Ansetzen und Weiterverarbeiten des Slurries. Bei halbkontinuierlicher Arbeitsweise werden mindestens zwei im Wechseltakt betriebene Ansatzbehälter verwendet. Dabei ergeben sich notwendigerweise längere Standzeiten, während der es zu einer Hydratisierung des Tripolyphosphats und zu einer Viskositätserhöhung kommt. Das Versprühen derartiger viskoser Slurries bei Drücken von 30 bis 70 bar mittels Düsen, deren Bohrung üblicherweise einen Durchmesser von 2,5 bis 4 mm aufweist, entstehen ausschliesslich lockere Pulver, deren Schüttgewicht unterhalb 0,4 bis 0,45 g/ml liegt. Ein weiteres, aus «Soap & Cosmetical Specialities», August 1972, Seiten 27-30, 44 und 46 bekanntes Verfahren verwendet kontinuierlich arbeitende Dosierungs-, Misch- und Fördereinrichtungen. Die Einzelstoffe werden kontinuierlich gewogen bzw. volumetrisch abgemessen, vorgemischt und in eine Homogenisierungsvorrichtung überführt. Nach Passieren eines Filters, in dem gröbere Agglomerate entfernt bzw. zerquetscht werden, gelangt der Slurry über eine zweite Homogenisierungsvorrichtung zur Hochdruckpumpe und von dort mit einem Druck von 30 bis 70 bar zum Sprühturm. Diese kontinuierliche Arbeitsweise vermeidet längere Standzeiten und starke Viskositätszunahmen des Slurries, führt aber ebenfalls zu Pulvern, deren Schüttgewicht 0,1 bis maximal 0,45 g/ml beträgt. Geringe Anteile an waschaktiver Substanz, was gleichbedeutend mit einem hohen Anteil an Buildersalzen ist, und hohe Drücke beim Versprühen begünstigen ein höheres Schüttgewicht, jedoch liegt die Obergrenze, wie angegeben, bei 0,4 bis 0,45 g/ml. Zur Herstellung kompakterer Schwerpulver muss daher das Sprühgut weiter aufbereitet und mit spezifisch schweren Pulvern in speziell für diesen Zweck entwickelten Vorrichtungen vermischt werden. Dies bedeutet einen höheren Investitions- und Arbeitsaufwand.
  • Gegenstand der Erfindung, durch welche die aufgezeigten Probleme gelöst werden, ist ein Verfahren zur Herstellung einer körnigen, freifliessenden, in Wasser schnell löslichen Waschmittelkomponente, bestehend aus im wesentlichen rundlichen Teilchen mit einem Schüttgewicht von mindestens 600 g/I und einer Korngrösse von 0,1 bis 2 mm mit einem Gehalt an (a) alkoxylierten nichtionischen Tensiden, (b) anorganischen Trägersubstanzen, (c) sonstigen organischen Waschhilfsstoffen und (d) adsorptiv bzw. als Hydrat gebundenem Wasser, dadurch gekennzeichnet, dass man zwecks Herstellung der Waschmittelkomponente, enthaltend 10 bis 28 Gew.-% des Bestandteils (a), 40 bis 80 Gew.-% des Bestandteils (b), 0,5 bis 10 Gew.-% des Bestandteils (c), 8 bis 20 Gew.-% des Bestandteils (d) und weniger als 0,5 Gew.-% an anionischen Tensiden, einen wässrigen Ansatz der Inhaltsstoffe, der eine Viskosität von 4000 bis 20 000 mPa's und eine Temperatur von 85 bis 105°C aufweist, kontinuierlich homogenisiert und ihn mittels Düsen unter einem Druck von 20 bis 45 bar bei einem Durchmesser der Düsenaustrittsöffnung von 2,5 bis 5 mm in einen Trockenturm versprüht, wobei das Verhältnis von Druck am Düseneingang zum Durchmesser der Düsenaustrittsöffnung 4 bis 18 bar/mm beträgt.
  • Zur Herstellung der Mittel geeignete alkoxylierte nichtionische Tenside sind ethoxylierte Alkohole mit 12 bis 24, vorzugsweise 14 bis 18 Kohlenstoffatomen und durchschnittlich 3 bis 20, vorzugsweise 4 bis 16 Glykolethergruppen. Die Kohlenwasserstoffreste können gesättigt oder einfach ungesättigt, linear oder auch in 2-Stellung methylverzweigt (Oxo-Rest) sein und sich beispielsweise von natürlich vorkommenden bzw. hydrierten Fettresten und bzw. oder synthetischen Resten ableiten. Als besonders geeignet haben sich von Cetyl-, Stearyl- und Oleylalkohol sowie deren Gemischen abgeleitete Ethoxylate erwiesen. Beispiele hierfür sind Talgfettalkohole mit durchschnittlich 4 bis 8 Ethylenoxidgruppen (EO), Talgfettalkohol mit durchschnittlich 10 bis 18 EO und Oleylalkohol mit durchschnittlich 6 bis 12 EO sowie deren Gemische. Solche Gemische aus zwei und mehr Tensiden mit unterschiedlichem EO-Gehalt, in denen der Anteil an höher ethoxylierten Alkoholen überwiegt, haben sich als besonders vorteilhaft erwiesen, da die Neigung zur Rauchbildung in der Abluft (sog. Pluming) besonders gering und die Waschwirkung gegenüber mineralischen und fetthaltigen Anschmutzungen besonders ausgeprägt ist.
  • Beispiele hierfür sind Gemische aus
    • (a1) Talgalkohol mit 4-6 EO,
    • (a2) Talgalkohol mit 12-16 EO,
    • (a3) technischer Oleylalkohol (d.h. Gemische aus Oleyl- und Stearylalkohol) mit 6 bis 12 EO,

    beispielsweise im Verhältnis (a1):(a2) = 2:1 bis 1:4 bzw. (a1 ):(a2):(a3) wie 2:1:1 bis 2:1:4 bzw. 1:1:1 bis 1:4:1.
  • Als vorteilhaft im Sinne einer geringen Neigung zum «Pluming» haben sich auch alkoxylierte Alkohole erwiesen, bei deren Herstellung zunächst 1 bis 3 Mol Propylenoxid und anschliessend 4 bis 20, vorzugsweise 4 bis 7 Mol Ethylenoxid an den Alkohol angelagert wurden. Sie können insbesondere in den vorgenannten Gemischen die Komponenten (a1) und (a2) ganz oder teilweise ersetzen.
  • Als gut brauchbar haben sich auch ethoxylierte Alkylphenole mit 8 bis 12 C-Atomen in der Alkylkette und 4 bis 14 EO erwiesen. Besonders geeignet sind Gemische ethoxylierter Nonylphenole mit (a4) 5 bis 7 EO und (a5) 9 bis 12 EO im Verhältnis 2:1 bis 1 :4.
  • Weitere geeignete nichtionische Tenside sind solche, die eine ähnliche Verteilung der Ethylenglykol- bzw. Propylenglykolethergruppen aufweisen und sich von vicinalen Diolen, Fettaminen, Fettsäureamiden und Fettsäuren ableiten. Zu den ethoxylierten Fettsäureamiden zählen auch die Fettsäuremono- bzw. diethanolamide bzw. die entsprechenden Fettsäurepropanolamide. Brauchbar sind auch die wasserlöslichen, 20 bis 250 Ethylenglykolethergruppen und 10 bis 100 Propylenglykolethergruppen enthaltenden Polyethylenoxidaddukte an Polypropylenglykol, Ethylendiaminopolypropylenglykol und Alkylpolypropylenglykol mit 1 bis 10 Kohlenstoffatomen in der Alkylkette. Die genannten Verbindungen enthalten üblicherweise pro Propylenglykol-Einheit 1 bis 5 Ethylenglykoleinheiten.
  • Die erfindungsgemässe Waschmittelkomponente enthält 10 bis 28 Gew.-%, vorzugsweise 12 bis 25 Gew.-% und insbesondere 15 bis 23 Gew.-% an ethoxylierten nichtionischen Tensiden.
  • Der Gehalt der Waschmittelkomponente an anionischen Tensiden, d.h. solchen vom Sulfonat- bzw. Sulfattyp, sowie Seife, soll weniger als 0,5% vorzugsweise 0% betragen. Es hat sich nämlich gezeigt, dass bereits geringe Mengen an derartigen Zusätzen, insbesondere geringste Zusätze an Seife, bei der Sprühtrocknung zu einem Aufblähen der Körner und damit zu einer Abnahme des erwünschten hohen Schüttgewichts sowie der Rieselfähigkeit führen.
  • Als anorganische Trägersubstanzen kommen in erster Linie Gerüststoffe in Frage, welche auch die Härtebildner des Wassers zu binden bzw. zu fällen vermögen. Hierzu zählen die Polymerphosphate, insbesondere Natriumtripolyphosphat sowie höherkondensierte Polymerphosphate, wie z.B. Natriumtetraphosphat. Die Polymerphosphate können im Gemisch mit ihren Hydrolyseprodukten, d.h. Ortho- und Pyrophosphat, vorliegen, jedoch ist wegen des höheren Wasch- und Calciumbindevermögens der Polyphosphate eine möglichst geringe Hydrolyse des Polyphosphats beim Ansetzen des Slurries und während der Sprühtrocknung durch geeignete Massnahmen anzustreben. Das Natriumtripolyphosphat kommt vorzugsweise in wasserfreier Form oder als teilweise hydratisiertes Salz mit einem Kristallwassergehalt bis zu 2 Gew.-% zum Einsatz.
  • Als Trägersubstanzen eignen sich insbesondere auch die synthetischen gebundenes Wasser enthaltenden Natriumalumosilikate vom Zeolith A-Typ. Sie können die Polymerphosphate ganz oder teilweise ersetzen, d.h. ihr Einsatz ermöglicht auch die Herstellung phosphatfreier Mittel.
  • Die Zeolithe kommen in der üblichen hydratisierten, feinkristallinen Form zum Einsatz, d.h. sie weisen praktisch keine Teilchen grösser als 30 11m auf und bestehen vorzugsweise zu wenigstens 80% aus Teilchen einer Grösse von weniger als 10 11m. Ihr Calciumbindevermögen, das nach den Angaben der DE 24 12 837 bestimmt wird, liegt im Bereich von 100-200 mg CaO/g. Brauchbar ist insbesondere der Zeolith NaA, ferner auch der Zeolith NaX und Mischungen aus NaA und NaX.
  • Ein üblicher Bestandteil der Trägersubstanz sind Alkalimetallsilikate, insbesondere Natriumsilikate der Zusammensetzung Na2 0:Si02 = 1:1,5 bis 3,5, vorzugsweise 1:2 bis 1:2,5. Auch Gemische von Silikaten mit unterschiedlichem Alkaligehalt können verwendet werden, beispielsweise ein Gemisch aus Na2 O:Si.02 = 1:2 und Na2 0 :SiOz = 1:2,5-3,3, wobei jedoch im Interesse eines hohen Schüttgewichtes der Anteil der Silikate mit höherem Na2 O-Gehalt zweckmässigerweise überwiegen sollte.
  • Weitere brauchbare Trägersubstanzen, die im Gemisch mit den vorstehend genannten Verbindungen vorliegen können, sind Natriumcarbonat, Natriumsulfat und Magnesiumsilikat. Auch Verbindungen mit hohem Adsorptionsvermögen, wie feinteilige Kieselsäure, Tone oder Bentonite können gegebenenfalls anwesend sein.
  • Der Anteil der anorganischen Trägersubstanz beträgt insgesamt 40 bis 80 Gew.-%, bezogen auf wasserfreie bzw. nichthydratisierte Substanz, vorzugsweise 45 bis 70 Gew.-%. Der Anteil an Natriumtripolyphosphat (einschl. der Hydrolyseprodukte beträgt) 0 bis 60 Gew.-%, vorzugsweise 10 bis 50 Gew.-% und insbesondere 20 bis 40 Gew.-%. Der Anteil der Alkalimetallsilikate liegt bei 5 bis 20 Gew.-%, vorzugsweise 6 bis 15 Gew.-% und insbesondere 6,5 bis 12 Gew.-%. Das Natriumalumosilikat ist in Anteilen von 0 bis 40 Gew.-%, vorzugsweise 3 bis 30 Gew.-% und insbesondere 5 bis 25 Gew.-% zugegen. Der Anteil an Natriumsilikat kann in solchen Trägersalzgemischen, die im wesentlichen aus Natriumtripolyphosphat bzw. aus Zeolith sowie deren Gemischen bestehen, auch über den angegebenen Maximalgehalt von 20 Gew.-% hinaus erhöht werden, ohne dass sich daraus grössere Nachteile für das Lösungsverhalten der Partikel ergeben. Das gleiche gilt in den Fällen, in denen der Anteil des Natriumalumosilikats über die angegebene Menge von 40 Gew.-% hinaus erhöht wird. In diesen Fällen kann der Anteil an Zeolithen bis zu 65 Gew.-% betragen.
  • Obwohl der prozentuale Gehalt der Mittel an Polyphosphat im Bereich herkömmlicher Vollwaschmittel liegen kann, wird die Tendenz zur Phosphatreduktion bei der Erfindung voll berücksichtigt. Zum einen werden die Mittel gemäss vorliegender Erfindung im Vergleich zu konventionellen, d.h. spezifisch leichten Waschpulvern in sehr viel geringerer Dosierung eingesetzt, zum anderen kann der Anteil an Phosphat zugunsten des Anteils an Alumosilikat erheblich, d.h. bis auf beispielsweise 10 Gew.-% reduziert oder auch gänzlich eliminiert werden.
  • Das Verfahrensprodukt kann als sonstige organische Waschhilfsmittel zusätzlich sogenannte Co-Builder enthalten, die bereits in geringen Mengen die Wirkung der Polyphosphate und Natriumalumosilikate erheblich zu steigern vermögen. Als Co-Builder eignen sich insbesondere Polyphosphonsäuren bzw. deren Alkalimetallsalze. Geeignete Polyphosphonsäuren sind 1-Hydroxyethan-1,1-diphosphonsäure, Amino- tri-(methylenphosphonsäure), Ethylendiaminte- tra-(methylenphosphonsäure) und deren höhere Homologen, wie z.B. Diethylentriaminpenta-(methylenphosphonsäure). Weitere Co-Builder sind komplexierend wirkende Aminopolycarbonsäuren. Hierzu zählen insbesondere Alkalisalze der Nitrilotrieessigsäure und Ethylendiaminotetraessigsäure. Geeignet sind ferner die Salze der Diethylentriaminopentaessigsäure sowie der höheren Homologen der genannten Aminopolycarbonsäure. Die genannten Polysäuren kommen vorzugsweise als Natriumsalze zum Einsatz.
  • Weiterhin eignen sich als Co-Builder die polymeren Carbonsäuren bzw. deren Salze mit einem Molekulargewicht von mindestens 350 in Form der wasserlöslichen Natrium- oder Kaliumsalze, wie Polyacrylsäure, Polymethacrylsäure, Poly-a-hydroxyacrylsäure, Polymaleinsäure, Polyitaconsäure, Polymesaconsäure, Polybutentricarbonsäure sowie die Copolymerisate der entsprechenden monomeren Carbonsäuren untereinander oder mit ethylenisch ungesättigten Verbindungen, wie Ethylen, Propylen, Isobutylen, Vinylmethylether oder Furan. Als Beispiel sei das Copolymere aus Maleinsäure und Acrylsäure im Verhältnis 5:1 bis 1:5 genannt. Unter geringen Mengen dieser Co-Builder werden Mengenanteile von 0,5 bis 10, vorzugsweise 1 bis 5 Gew.-%, bezogen auf die Gesamtmenge der Waschmittelkomponente, verstanden.
  • Weitere organische Waschmittelbestandteile, die in der sprühgetrockneten Pulverkomponente anwesend sein können, sind Vergrauungsinhibitoren, optische Aufheller und Zusätze, die das Viskositätsverhalten des Slurries regulieren, zum Beispiel Alkalisalze oder Toluol-, Cumol- oder Xylolsulfonsäure sowie gegebenenfalls als Verdickungsmittel wirkende Polymere (z.B. vom Typ Carbopol).
  • Als Vergrauungsinhibitoren eignen sich insbesondere Carboxymethylcellulose, Methylcellulose, ferner wasserlösliche Polyester und Polyamide aus mehrwertigen Carbonsäuren und Glykolen beziehungsweise Diaminen, die freie, zur Salzbildung befähigte Carboxylgruppen, Betaingruppen oder Sulfobetaingruppen aufweisen sowie kolloidal in Wasser lösliche Polymere beziehungsweise Copolymere des Vinylalkohols, Vinylpyrrolidons, Acrylamids und Acrylnitrils. Diese organischen Waschhilfsmittelzusätze können in Mengenanteilen von 0,5 bis 10Gew.-% vorliegen.
  • Geeignete optische Aufheller sind die Alkalisalze der 4,4-Bis(-2"-anilino-4"-morpholino-1,3,5-triazinyl-6"-amino)-stilben- 2,2-disulfonsäure oder gleichartige aufgebaute Verbindungen, die anstelle der Morpholinogruppe eine Diethanolaminogruppe, eine Methylaminogruppe oder eine β-Methoxyethylaminogruppe tragen. Weiterhin kommen Aufheller vom Typ der substituierten Diphenylstyryle in Frage, z.B. die Alkalisalze des 4,4-Bis-(2-sulfostyryl)-diphenyls, 4,4-Bis(4-chlor-3-sulfostyryl)-diphenyls und 4-(4-Chlorstyryl)-4-(2-sulfostyryl)-diphenyls.
  • Die Mittel weisen üblicherweise einen Wassergehalt von 8 bis 20 Gew.-%, vorzugsweise von 12 bis 18 Gew.-% auf, worunter sowohl das adsorptiv gebundene Wasser als auch das Hydratwasser zu verstehen ist.
  • Der Anteil des im hydratisierten Natriumalumosilikat gebundenen Wassers liegt bei etwa 20 Gew.-%, bezogen auf die Gesamtmenge des hydratisierten Natriumalumosilikats; d.h. es ist der Hydratisierungsgrad, der sich im Gleichgewicht mit der Umgebung einstellt. Dieser Anteil ist in der Berechnung der Wassermenge mitzuberücksichtigen. Grundsätzlich ist der Wassergehalt so zu bemessen, dass einwandfrei rieselförmige Produkte vorliegen. Vorzugsweise beträgt er 12 bis 18 Gew.-%.
  • Das Ansetzen und Verarbeiten des wässrigen, zur Sprühtrocknung bestimmten Wirkstoffkonzentrates (Slurry) erfolgt kontinuierlich und unter Einhaltung möglichst kurzer Verweilzeiten. Geeignete Vorrichtungen, die sich zur kontinuierlichen Verarbeitung von Slurries eignen, sind bekannt und werden beispielsweise in der Zeitschrift «Soap, Cosmetics, Chemical Specialities», August 1972, Seiten 27 bis 30, 44 und 46, insbesondere 28-30, unter der Bezeichnung «Dosex-Slurry-System» näher beschrieben. Sie bestehen aus automatisch arbeitenden Wiege- und Dosierungsvorrichtungen für die festen und flüssigen bzw. pastösen Rohstoffe sowie kontinuierlich arbeitenden Mischern, Pumpen sowie Filtern zur Abtrennung von Grobanteilen. Der Zufluss der Rohstoffe zu der Mischvorrichtung und der Abfluss des homogenisierten Slurries zur Hochdruckpumpe und von dort zur Sprühvorrichtung wird automatisch gesteuert. Dadurch lassen sich kurze Verweilzeiten erzielen, und gleichzeitig wird der Tendenz zu Inhomogenitäten und Entmischungserscheinungen im Slurry entgegengewirkt.
  • In einer bevorzugten Arbeitsweise werden die abgewogenen bzw. dosierten flüssigen bis pastenförmigen Rohstoffe in einem Mischer, insbesondere in zwei oder drei hintereinandergeschalteten Mischern gemischt und homogenisiert.
  • Die flüssigen Bestandteile, insbesondere das zugesetzte Wasser, werden zweckmässigerweise im vorgewärmten Zustand, d.h. mit einer Temperatur von wenigstens 60 °C eingesetzt. Hierzu zählen insbesondere die aufgeschmolzenen nichtionischen Tenside, das als filterfeuchte Paste vorliegende Alumosilikat sowie die wässrige Lösung des Natriumsilikats (Wasserglas-Lösung). Es empfiehlt sich ferner, diese flüssigen Bestandteile und gegebenenfalls das zusätzliche Wasser vorzulegen und die wasserfreien Bestandteile, insbesondere das wasserfreie bzw. gegebenenfalls teilweise hydratisierte Tripolyphosphat, unter starkem Rühren hinzuzugeben.
  • Um eine ausreichende Fliessfähigkeit des Slurries sowie Sprühprodukte mit günstigen Pulvereigenschaften zu gewährleisten, wird die Viskosität des Slurries auf einen Bereich von 4000 bis maximal 20000 mpa-s, vorzugsweise 5000 bis 15 000 mPa's und Temperaturen von 85 °C bis 105 °C, beispielsweise auf 90 °C bis 102 °C, eingestellt. Das Erhitzen erfolgt zweckmässigerweise durch Vorerhitzen der flüssigen Rohstoffe und/ oder Einleiten von Wasserdampf, insbesondere von überhitztem Wasserdampf. Bei den angegebenen Temperaturen wird die Hydratation des Tripolyphosphats im Slurry weitgehend unterbunden beziehungsweise soweit verzögert, dass kein unerwünschter Viskositätsanstieg innerhalb der Verarbeitungszeit eintritt. Durch diese gezielte Temperaturführung können sowohl schnell als auch nur mässig hydratisierende Tripolyphosphatqualitäten verwendet werden. Das Flüssighalten und das Homogenisieren des Slurries wird durch Anwendung starker Scherkräfte bei intensivem Durchmischen mittels einer schnell laufenden Rührvorrichtung unterstützt. Geeignet sind z.B. Turbinenrührer, die mit einer Tourenzahl von 300 bis 600 Touren pro Minute laufen. Die Anwendung starker Scherkräfte verhindert überdies die Ausbildung von Strukturviskositäten. Im Falle von solchen Slurry-Ansätzen, die kein Natriumtripolyphosphat enthalten, wird durch Verwendung von viskositätsregulierenden Mitteln zusätzlich dafür gesorgt, dass die bevorzugten Viskositätsbereiche eingehalten werden.
  • Der wässrige Ansatz enthält normalerweise insgesamt 50 bis 35 Gew.-%, vorzugsweise 45 bis 38 Gew.-% Wasser, worin auch das adsorptiv bzw. als Hydrat gebundene Wasser enthalten ist. Höhere Wassergehalte sind unzweckmässig, da sie den Hydrolysierungsgrad des Tripolyphosphats erhöhen, den Energieverbrauch steigern und zu einer Erniedrigung des Schüttgewichts führen. Geringere Gehalte können zu einer zu starken Viskositätserhöhung des Slurries führen und machen daher besondere Massnahmen, wie Erhöhung der Misch- und Förderleistung bzw. den Zusatz viskositätserniedrigender Mittel, wie Toluol-, Xylol- oder Cumolsulfonat erforderlich.
  • Nach Verlassen der Mischvorrichtung, die aus einem einzlenen Mischer oder einer Kaskade von hintereinandergeschalteten zwei oder mehreren Mischern besteht, wird der homogenisierte Slurry zu einem Filter gepumpt. Zweckmässigerweise wird ein dynamisches Filter verwendet, mittels dem weiche Agglomerate zerquetscht werden können. Der Slurry passiert dann eine weitere Homogenisierungsvorrichtung, beispielsweise eine Homogenisierungspumpe und gelangt von dort zur Hochdruckpumpe, von der aus sie zu den Sprühdüsen gefördert wird.
  • Die mittlere Verweilzeit des Slurries nach dem Zusammenführen der Mischungsbestandteile bis zum Übergang in den Hochdruckteil soll möglichst kurz gehalten werden und nicht mehr als 15 Minuten, vorzugsweise nicht mehr als 10 Minuten und insbesondere nicht mehr als 5 Minuten betragen.
  • In einer weiteren bevorzugten Ausführungsform werden die nichtionischen Tenside ganz oder teilweise, insbesondere zu 50 bis 90%, in die zur Hochdruckpumpe führende Förderleitung eingespeist und mittels der erwähnten Homogenisierungspumpe in dem Slurry homogen verteilt. Hierdurch kann die Verweilzeit der nichtionischen Tenside auf maximal 3, insbesondere weniger als 1 Minute verkürzt und einer unerwünschten Viskositätszunahme begegnet werden.
  • Für die Durchführung des Sprühtrocknungsverfahrens können konventionelle Anlagen verwendet werden, wie sie auch bereits zur Herstellung konventioneller gesprühter Waschmittel benutzt werden. Solche Anlagen bestehen üblicherweise aus Türmen von rundem Querschnitt, die im oberen Teil mit ringförmig angeordneten Sprühdüsen ausgestattet sind. Sie verfügen weiterhin über Zuführungsvorrichtungen für die Trockengase sowie Entstaubungsanlagen für die Abluft. Bei der im allgemeinen bevorzugten Gegenstromtrocknung wird das Trockengas in den unteren Teil des Turmes eingeführt und dem Produktstrom entgegengeführt, während bei der Gleichstromtrocknung die Zufuhr der Trockengase im Kopf des Trockenturmes erfolgt.
  • Der Druck am Düseneingang beträgt 20 bis 45 bar, vorzugsweise 30 bis 40 bar, der Durchmesser der Düsenaustrittsöffnung 2,5 bis 5 mm, vorzugsweise 3,0 bis 4,0 mm und das Verhältnis von Druck zu Durchmesser der Düsenaustrittsöffnung 4-18 bar/mm und vorzugsweise 7,5-13,5 bar/mm. Die Einhaltung dieser Parameter ist für die Korneigenschaften der Verfahrensprodukte massgebend. Deutliche Überschreitungen dieser Grenzen nach beiden Richtungen führen, insbesondere bei Drucksteigerung bzw. Düsenverengung, zur Ausbildung mehr oder weniger unregelmässig ausgebildeter Agglomerate mit unerwünschter Struktur, wodurch sich ein geringeres Schüttgewicht und schlechtere Rieseleigenschaften ergeben. Ein zu starkes Absenken des Druckes kann zu mangelhafter Zerstäubungsleistung und zum Ansetzen von Krusten im Bereich der Düsenaustrittsöffnung und im Turm führen. Weniger günstige Pulvereigenschaften werden auch bei Düsen mit zu grossen, d.h. einen Durchmesser von 5 mm wesentlich überschreitenden Austrittsöffnungen erhalten. Als besonders günstig hat sich z.B. ein Arbeiten mit einem Druck von ca. 35 bar bei einer Düsenöffnung von ca. 3 mm erwiesen. Zweckmässigerweise verwendet man Düsen, die auf das zu versprühende Gut eine Drallwirkung ausüben.
  • Die Sprühtrocknungsanlage wird mit heisser Luft bzw. heissen Verbrennungsgasen betrieben, die vorzugsweise im Gegenstrom zum Sprühgut geführt werden. Zweckmässigerweise wird das Trockengas tangential in den Turm eingeführt, wodurch sich eine gewisse Drallwirkung ergibt. Die Eintrittstemperatur des Trockengases soll normalerweise 250 °C nicht überschreiten und vorzugsweise 180 °C bis 240 °C, insbesondere 200 °C bis 240 °C, betragen.
  • Ein Betreiben mit heisseren Trockengasen erfordert den Einsatz überwiegend hochethoxylierter bzw. gemischtalkoxylierter Tenside, um eine Rauchbildung in der Abluft zu unterbinden. Werden die vorstehend als bevorzugt offenbarten Tensidmischungen aus niedrig und hochethoxylierten Verbindungen eingesetzt, kommt es bei Einhaltung des Temperaturbereiches von 200 °C bis 240 °C nicht zu Störungen durch Rauchbildung.
  • Hinsichtlich der Eingangstemperatur des Trokkengases in der Sprühtrocknungsanlage von 180 °C bis 240 °C, vorzugsweise von 200 °C bis 240 °C ist anzumerken, dass es sich dabei um Temperaturen des Gases im sogenannten Ringkanal des Sprühturmes handelt. Die Temperatur des im unteren Turmbereich mit dem Pulver in Berührung kommenden Trockengases liegt üblicherweise 10 °C bis 30 °C niedriger.
  • Die Temperatur der Trockengase bei Verlassen des Trockenturmes betragen im allgemeinen 80 °C bis 95 °C. Der obere Wert kann gewissen Schwankungen unterliegen, der u.a. von den Aussentemperaturen abhängt. Er soll so gewählt werden, dass in den nachgeschalteten Entstaubungsanlagen der Taupunkt nicht unterschritten wird.
  • Das den Sprühturm verlassende Produkt weist im allgemeinen eine Temperatur von 65 °C bis 80 °C auf. Es hat sich als vorteilhaft erwiesen, wenn man das Produkt nach Verlassen des Sprühturmes unverzüglich, d.h. innerhalb weniger als 5 Minuten, vorzugsweise innerhalb von 2 Minuten, auf Temperaturen unterhalb 35 °C, beispielsweise auf 20 °C bis 30 °C abkühlt. Dies kann beispielsweise in einer pneumatischen Förderanlage erfolgen, die mit hinreichend kalter, d.h. eine Temperatur von weniger als 30 °C aufweisender Luft betrieben wird. Durch schnelles Abkühlen wird eine Diffusion des nichtionischen Tensids an die Oberfläche der gesprühten Körner weitgehend verhindert. An die Oberfläche der Partikel diffundiertes nichtionisches Tensid kann deren Rieselfähigkeit sowie das Schüttgewicht herabsetzen. Sofern in der heissen Jahreszeit die Temperatur der Kühlluft nicht ausreicht, das Produkt hinreichend schnell abzukühlen, ist ein nachträgliches Pudern empfehlenswert.
  • Zum Pudern eignen sich feinteilige, in Wasser lösliche oder dispergierbare Feststoffe bzw. Fluidisierungsmittel in einer Menge von 0,01 bis 3 Gew.-%, bezogen auf das Sprühprodukt. Hierdurch kann die Rieselfähigkeit noch weiter verbessert bzw. können witterungsbedingte nachteilige Einflüsse auf die Pulvereigenschaften vermieden werden. Als Überzugsmittel haben sich die feinteiligen synthetischen Zeolithe vom Typ NaA bzw. NaX besonders bewährt. Die positive Wirkung dieser Zeolithe beschränkt sich nicht nur auf die verbesserte Rieselfähigkeit, sondern steigert auch den Builderanteil und damit die Waschkraft des Produkts. Weiterhin eignet sich feinteilige Kieselsäure mit grosser spezifischer Oberfläche, insbesondere pyrogene Kieselsäure (Aerosilo), als Fluidisierungsmittel. Der Anteil des Fluidisierungsmittels beträgt im Falle des Zeoliths vorzugsweise 0,1 bis 2 Gew.-%, im Falle der feinteiligen Kieselsäure vorzugsweise 0,05 bis 0,5 Gew.-%, bezogen auf das körnige Sprühprodukt.
  • Andere bekannte und bereits zum Pudern klebriger Waschmittelkörner vorgeschlagene Pulvermaterialien, wie feinteiliges Natriumtripolyphosphat, Natriumsulfat, Magnesiumsilikat, Talk, Bentonit und organische Polymere wie Carboxymethylcellulose und Harnstoffharze, sind ebenfalls brauchbar, sofern sie eine Korngrösse von weniger als 0,1 mm, beispielsweise von 0,001 bis 0,08 mm aufweisen. Grobteiligere Pulverprovenienzen, wie sie üblicherweise in Wasch- und Reinigungsmitteln eingesetzt werden, müssen zuvor entsprechend zerkleinert werden. Überzugsmittel dieser Art werden vorzugsweise in Anteilen von 1 bis 3 Gew.-% eingesetzt.
  • Das Beschichten beziehungsweise Pudern der sprühgetrockneten Körner kann vor, nach oder zweckmässigerweise zugleich mit dem Zumischen weiterer Pulverkomponenten erfolgen. Zu diesen Pulverkomponenten zählen Perverbindungen, Bleichaktivatoren (sogenannte Persäurevorläufer), Enzymgranulate, Schauminhibitoren bzw. Schaumaktivatoren und sogenannte Compounds, d.h. aus Trägersubstanzen und Tensiden, insbesondere anionischen Tensiden, bzw. aus Trägersubstanzen und Textilweichmachern bestehenden Pulverprodukten. Bei gleichzeitigem Einbringen des feinteiligen Überzugs und weiterer Pulverkomponenten kann ein zusätzlicher Mischprozess eingespart werden.
  • Wasserunlösliche Überzugsmittel, wie Zeolith und Kieselsäureaerogele, können auch vor Abschluss der Sprühtrocknung, d.h. durch Einblasen in den unteren Teil des Trockenturmes auf die bereits ausgebildeten Waschmittelkörner aufgebracht werden. Das Einbringen des Beschichtungsmittels in den Turm kann durch Zudosieren zur Trockenluft erfolgen.
  • Das Abpudern der sprühgetrockneten Körner führt unter anderem auch zu einer teilweisen Glättung der Kornoberfläche, so dass auch das Rieselverhalten solcher Körner, die bereits von sich aus über eine sehr gute Schütt- und Rieselfähigkeit verfügen, noch weiter verbessert wird. Auch kann dadurch das Schüttgewicht der Pulver geringfügig erhöht werden, da das Überzugsmaterial offenbar eine dichtere Packung der Körner ermöglicht.
  • Das mittels Siebanalyse bestimmte Kornspektrum der Sprühprodukte ist vergleichsweise eng, d.h. mehr als 80 Gew.-%, meist sogar mehr als 85 Gew.-% der Körner liegen innerhalb eines Bereiches zwischen 0,2 und 0,8 mm Maschenweite. Bei einem konventionellen Sprühpulver mit niedrigem Schüttgewicht entfallen auf diesen Korngrössenbereich im allgemeinen nicht mehr als 50 bis 70 Gew.-%. Dementsprechend niedrig ist auch der Staubanteil der erfindungsgemässen Pulverkomponente sowie der Anteil an Überkorn, so dass sich ein nachträgliches Sieben des Turmpulvers bzw. ein nachträglicher Zusatz an staubbindenden Mitteln erübrigt.
  • Die erfindungsgemässe Waschmittelkomponente ist freifliessend und übertrifft hinsichtlich ihrer Rieselfähigkeit die bekannten, spezifisch leichten, gesprühten Hohlkugelpulver. Man kann ihre Rieselfähigkeit mit der von trockenem Sand vergleichen, und zwar liegt die Rieselfähigkeit, die nach einem in den Beispielen angegebenen Test durchgeführt werden kann, in der Grössenordnung von über 60%, vorzugsweise von 75 bis 95% der eines trockenen Sandes mit bestimmter Kornspezifikation.
  • Überraschend ist, dass trotz des hohen Gehaltes an nichtionischen, zum Kleben neigenden Tensiden und des Fehlens feinporiger, zur Aufnahme dieser Tenside befähigter Hohlräume die Partikel nicht zum Kleben bzw. zur Abgabe dieser klebenden Bestandteile neigen. Im Gegensatz zu solchen Pulvern mit gleich hohem Gehalt an nichtionischem Tensid, bei dem letzteres auf zuvor hergestellte saugfähige Sprühgranulate aufgebracht wurde, lässt sich auch das nichtionische Tensid nicht wieder teilweise durch Abpressen zwischen Filterpapier entfernen. Die erfindungsgemässen Partikel führen daher auch nicht zu einem Fettigwerden bzw. «Durchschlagen» von üblichen, nicht beschichteten Kartonverpakkungen.
  • Ein weiterer Aspekt bei der Beurteilung eines Waschpulvers ist die Verdichtbarkeit des Pulvers. Es ist unvermeidlich, dass bei der automatischen Abfüllung eines Waschpulvers dieses zunächst ein etwas grösseres Schüttvolumen, das sich auch bei einem kurzzeitigen Rüttelprozess nur wenig vermindert, einnimmt. Bei dem weiteren Transport der Packungen bis hin zum Verbraucher tritt dann allmählich eine Verdichtung ein. Der Verbraucher bemerkt diesen Volumenschwund beim Öffnen der Packung und zieht nicht selten daraus den Schluss, er habe eine unvollständig gefüllte Packung erhalten. Bei üblichen spezifisch leichten Hohlkugelpulvern beträgt dieser Volumenverlust 10 bis 15%. Granulate mit überwiegend kugelförmigen Abmessungen, die z.B. durch Aufbringen von nichtionischem Tensid auf vorgesprühte Trägerkörner erhalten werden, weisen Volumenverluste von etwa 10% auf. Bei trokkenem Sand liegt dieser Wert bei ca. 8%. Die erfindungsgemässen Mittel übertreffen selbst noch diese Werte, d.h. hier liegen die Volumenabnahmen in der Regel unter 10% und erreichen in günstigen Fällen einen Wert von 5%. Die hohe Volumenkonstanz, verbunden mit der hervorragenden Rieselfähigkeit erleichtert insbesondere eine genaue und reproduzierbare Dosierung bei der Abfüllung sowie beim Gebrauch.
  • Im übrigen können alle apparativen und verfahrensmässigen Hilfsmittel eingesetzt werden, die in der neuzeitlichen Sprühtrocknungstechnik üblich sind.
  • Das Verfahrensprodukt kann mit zusätzlichen Pulverprodukten, die durch übliche Methoden hergestellt worden sind und ein anderes Pulverspektrum aufweisen, vermischt werden. Dazu gehören beispielsweise die körnigen Bleichmittel, die meist in Granulatform vorliegenden Bleichaktivatoren, Enzyme und schaumbeeinflussenden Mittel. Zu diesen Pulverprodukten gehören aber auch Waschmittelvorprodukte, sogenannte compounds, die aus anionischen Sulfonat- und/oder Sulfattensiden und gegebenenfalls Seifen zusammen mit Trägerstoffen wie Natriumtriphosphat, Zeolith A und Wasserglas aufgebaut sind und durch übliche Sprühtrocknung oder Mischgranulation hergestellt werden. Auch textilweichmachende Granulate, die quartäre Ammoniumverbindungen als Wirkstoffe zusammen mit löslichen oder unlöslichen Trägerstoffen und Dispersionsinhibitoren enthalten, oder die auf Basis Schichtsilikate und langkettigen tertiären Aminen aufgebaut sind, kommen als Zusätze in Betracht. Diese zusätzlichen Pulverprodukte sind aus anders gestalteten, bekannten Partikelformen aufgebaut, beispielsweise aus mehr oder weniger kugelförmigen Beads, Prills oder Granulaten.
  • Sie sollen so beschaffen sein bzw. in solcher Menge eingesetzt werden, dass sie das Schüttgewicht bzw. die Rieseleigenschaften der Mittel nicht bzw. nicht wesentlich herabsetzen. Dieses Schüttgewicht beträgt 650 bis 850 g/l, vorzugsweise 700 bis 800 g/I.
  • Zu den weiteren Pulverkomponenten die den sprühgetrockneten Waschmitteln zugemischt werden können, zählen solche Stoffe, die unter den Bedingungen der Sprühtrocknung instabil sind oder ihre spezifische Wirkung ganz oder teilweise einbüssen oder die Eigenschaften des Sprühtrocknungs-Produktes nachteilig verändern würden. Beispiele hierfür sind Enzyme aus der Klasse der Protease, Lipasen und Amylasen beziehungsweise deren Gemische. Besonders geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtillis, Bacillus licheniformis und Streptomyces griseus gewonnene enzymatische Wirkstoffe. Auch Duftstoffe und Schaumdämpfungsmittel, wie Silicone oder Paraffinkohlenwasserstoffe, werden zwecks Vermeidung von Wirkungsverlusten in der Regel nachträglich der sprühgetrockneten Pulverkomponente zugesetzt.
  • Als Bleichkomponente zum Zumischen kommen die üblicherweise in Wasch- und Bleichmittel verwendeten Perhydrate und Perverbindungen in Frage. Zu den Perhydraten zählen bevorzugt Natriumperborat, das als Tetrahydrat oder auch als Monohydrat vorliegen kann, ferner die Perhydrate des Natriumcarbonats (Natriumpercarbonat), des Natriumpyrophosphats (Perpyrophosphat), des Natriumsilikats (Persilikat) sowie des Harnstoffes.
  • Diese Perhydrate können zusammen mit Bleichaktivatoren zum Einsatz kommen.
  • Bevorzugt kommt Natriumperborat-tetrahydrat in Verbindung mit Bleichaktivatoren als Bleichkomponente in Frage. Zu den Bleichaktivatoren zählen insbesondere N-Acylverbindungen. Beispiele für geeignete N-Acylverbindungen sind mehrfach acylierte Alkylendiamine, wie Tetraacetylmethylendiamin, Tetraacetylethylendiamin sowie acylierte Glykolurile, wie Tetraacetylglykoluril. Weitere Beispiele sind N-Alkyl-N-sulfonylcarbonamide, N-Acylhydantoine, N-acylierte cyclische Triazole, Urazole, Diketopiperazine, Sulfurylamide, Cyanurate und Imidazoline. Als O-Acylverbindungen kommen neben Carbonsäureanhydriden insbesondere acylierte Zucker, wie Glucosepentaacetat in Frage. Bevorzugte Bleichaktivatoren sind Tetraacetylethylendiamin und Glucosepentaacetat.
  • Die Enzyme, schaumbeeinflussende Mittel und Bleichaktivatoren können zwecks Vermeidung von Wechselwirkungen mit den übrigen Waschmittelbestandteilen während der Lagerung der pulverförmigen Gemische in bekannter Weise granuliert und/oder mit wasserlöslichen bzw. in Waschlaugen dispergierbaren Hüllsubstanzen überzogen sein. Als Granulierungsmittel können übliche zur Aufnahme von Hydratwasser befähigte Salze dienen. Geeignete Hüllsubstanzen sind wasserlösliche Polymere, wie Polyethylenglykol, Celluloseether, Celluloseester, wasserlösliche Stärkeether und Stärkeester sowie nichtionische Tenside vom Typ der alkoxylierten Alkohole, Alkylphenole, Fettsäure und Fettsäureamide.
  • Die erfindungsgemäss hergestellte Waschmittelkomponente ist nur wenig schaumaktiv und lässt sich problemlos in Waschautomaten einsetzen. In den Fällen, in denen ein starkes Schäumen der Waschmittel bei der Anwendung erwünscht ist, insbesondere beim Waschen empflindlicher Gewebearten bzw. beim Waschen bei niedrigen Temperaturen, das vielfach von Hand durchgeführt wird, werden dem sprühgetrockenten Pulverprodukt nachträglich schaumaktive Tenside sowie Tensidgemische, vorzugsweise in Compound-Form, zugesetzt. Hierzu zählen bekannte Aniontenside vom Sulfonat- und Sulfattyp sowie zwitterionische Tenside. Ein solcher Zusatz kann darüber hinaus zu einer weiteren Anhebung der Waschkraft führen. Ihr Zusatz kann bis zu 10 Gew.-%, bezogen auf das fertige Gemisch, vorzugsweise 0,2 bis 8 Gew.-%, betragen. Hierfür geeignete Aniontenside sind z.B. Alkylbenzolsulfonate, beispielsweise n-Dodecylbenzolsulfat, Olefinsulfonate, Alkansulfonate, primäre oder sekundäre Alkylsulfate, -Sulfofettsäureester sowie Sulfate von ethoxylierten bzw. propoxylierten höhermolekularen Alkoholen, monoalkylierte bzw. dialkylierte Sulfosuccinate, Schwefelsäureester von Fettsäurepartialglyceriden und Fettsäureester der 1,2-Dihydroxypropansulfonsäure. Als zwitterionische Tenside eignen sich Alkylbetaine und insbesondere Alkylsulfonbetaine, z.B. das 3-(N,N-dimethyl-N-alkylammonium)-propan-1- sulfonat und 2-hydroxypropan-1-sulfonat.
  • Von den genannten Tensiden sind die Alkylbenzolsulfonate, Olefinsulfonate, Alkansulfonate, Fettalkoholsulfate, a-Sulfofettsäureester wegen ihrer schaumanhebenden und gleichzeitig waschverstärkenden Wirkung als bevorzugt anzusehen. Sofern in erster Linie auf Schaumaktivierung Wert gelegt wird, empfiehlt sich die Mitverwendung von Sulfaten ethoxylierter, insbesondere 1 bis 3 Glykolethergruppen aufweisender Fettalkohole sowie von Alkylsulfobetaine.
  • Die anionischen Tenside bzw. deren Gemische liegen vorzugsweise in Form der Natrium- oder Kaliumsalze sowie als Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vor. Sofern die genannten anionischen und zwitterionischen Verbindungen einen aliphatischen Kohlenwasserstoffrest besitzen, soll dieser bevorzugt geradkettig sein und 8 bis 20, insbesondere 12 bis 18 Kohlenstoffatome aufweisen. In den Verbindungen mit einem araliphatischen Kohlenwasserstoffrest enthalten die vorzugsweise unverzweigten Alkylketten im Mittel 6 bis 16, insbesondere 8 bis 14 Kohlenstoffatome.
  • Die zusätzlich fakultativ einzusetzenden anionischen und zwitterionischen Tenside kommen ebenfalls zweckmässigerweise in granulierter Form zum Einsatz. Als Granulierhilfsmittel bzw. Trägersubstanzen werden übliche anorganische Salze, wie Natriumsulfat, Natriumcarbonat, Phosphate und Zeolithe sowie deren Gemische eingesetzt.
  • Textilweichmachende Zusätze bestehen im allgemeinen aus Granulaten, die eine weichmachende quartäre Ammoniumverbindung (QAV), z.B. Distearyldimethylammoniumchlorid, einen Träger und eine, die Dispersion in der Waschflotte verzögernden Zusatz enthalten. Ein typisches derartiges Granulat besteht z.B. aus 86 Gew.-% QAV, 10 Gew.-% pyrogene Kieselsäure und 4 Gew.-% Siliconöl (mit pyrogener Kieselsäure) aktiviertes Polydimethylsiloxan; ein anderes Granulat hat die Zusammensetzung 30 Gew.-% QAV, 20 Gew.-% Natriumtriphosphat, 20 Gew.-% Zeolith NaA, 15 Gew.-% Wasserglas, 2 Gew.-% Silikonöl und Rest Wasser.
  • Bei der Auswahl der Kornspezifikation bzw. bei der Granulierung und dem Umhüllen der Zusatzstoffe ist anzustreben, dass das Schüttgewicht und die mittlere Korngrösse der Partikel von den entsprechenden Parametern der erfindungsgemässen Sprühtrocknungsprodukte nicht wesentlich abweicht bzw. dass die Partikel keine zu rauhe bzw. zu unregelmässige Oberfläche aufweisen. Da die zusätzlichen Pulverbestandteile jedoch im allgemeinen einen Anteil von 10 bis 40 Gew.-%, vorzugsweise bis 30 Gew.-% (bezogen auf fertiges Gemisch) nicht überschreiten, bleibt der Einfluss der Zuschläge auf die Pulvereigenschaften im allgemeinen gering.
  • Beispiel
  • Die zum Ansetzen des Slurries verwendete Vorrichtung bestand aus einer Kaskade von 3 hintereinander geschalteten Mischbehältern mit jeweils 1,5 m3 Fassungsvermögen. Behälter 1 und 2 waren mit Turbinenrührern (Drehzahl 480 U/min) ausgerüstet. Der 3. Behälter diente als Ausgleichsbehälter für den kontinuierlichen Betrieb. Das darin installierte Rührwerk rotierte mit 280 U/min. Um einer Entmischung des Slurries vorzubeugen, wurde im 3. Behälter ein maximaler Füllstand von 0,5 m3 eingestellt. Die mittlere Verweilzeit in der 3 stufigen Mischvorrichtung lag unter 5 Minuten.
  • Im ersten Mischbehälter wurden im 30-Sekunden-Takt Slurryansätze vorgemischt, wobei jede Charge ein Gewicht von 123,2 kg aufwies. Es wurden jeweils zunächst die flüssigen, auf eine Temperatur von 70 °C erwärmten Bestandteile vorgelegt. Diese bestanden aus geschmolzenen nichtionischen Tensiden, dem wässrigen, pumpfähigen Alumosilikat-Filterkuchen und einer Reihe von wässrigen Wirkstofflösungen. Die Zugabe der Feststoffe erfolgte taktweise in kurzen Intervallen, wobei die Reihenfolge der Auflistung der Feststoffe in Tabelle I entspricht. Durch Einleiten von Wasserdampf (6 bar) wurde der flüssige Ansatz auf 95 °C erhitzt. Über eine Überlaufleitung wurde der Ansatz in den 2. Mischbehälter überführt, in dem unter weiterem Einleiten von Wasserdampf der Slurry homogenisiert wurde. Die jeweiligen Einsatzmengen sind in Tabelle 1 aufgeführt.
  • Figure imgb0001
  • Es bedeuten:
    • EO = Ethylenoxidgruppen;
    • Celluloseether = Gemisch aus 2 Teilen Natriumcarboxymethylcellulose und 1 Teil Methylcellulose;
    • EDTMP = Ethylendiaminotetramethylenphosphonat.
  • Das Verhältnis von Natriumsilikat und Natronlauge entsprach einem Verhältnis von Na20:SiOz=1:2. Das Tripolyphosphat war prähydratisiert (1% Wasser). Der jeweilige Ansatz enthielt nach vollständiger Homogenisierung 96,5 kg wasserfreie Feststoffe und 56,7 kg Wasser (Wassergehalt 41,0 Gew.-%).
  • Die dem 3. Mischbehälter zugeführte und diesem kontinuierlich entnommene Aufschlämmung wies eine Viskosität von 11.500 mPa's bei 95 °C auf. Sie wurde über ein dynamisches Sieb (Ballestra-Sieb@) geführt, um gegebenenfalls vorhandene weiche Agglomerate zu zerstören. Der Slurry wurde anschliessend zu einem kontinuierlich arbeitenden Homogenisator gepumpt und nach Passieren einer Hochdruckpumpe unter einem Druck von 35 bar über eine Steigleitung den Zerstäubungsdüsen eines Sprühturms zugeführt. Die als Dralldüsen ausgebildeten Einstoffdüsen wiesen einen Öffnungsdurchmesser von 3 mm auf. Das Verhältnis von Druck zu Düsenöffnung betrug 11,3 bar/mm. Der Durchsatz betrug 12t/ Stunde, bezogen auf sprühgetrocknetes Pulver.
  • Das von unten in den Sprühturm unter Drall eingeführte, durch Verbrennen von Erdgas erhitzte Trockengas (Durchsatz 60.000 m3/Stunde) wies eine im Ringkanal gemessene Eingangstemperatur von 220 °C und eine Ausgangstemperatur im Filter gemessen von 90 °C auf. Die Staubexplosionsgrenze wurde bei einer Pulverkonzentration zwischen 30 und 200 g/m3 nicht erreicht, d.h. das Produkt ist in die Staubexplosionsklasse 0 einzuordnen. Das Rauchmessgerät am Ausgang des Abluftfilters zeigt einen Ausschlag zwischen 0,02 und 0,08 Skalenteilen an.
  • Das Sprühprodukt war nach Verlassen des Sprühturms leicht klebend und wies eine Temperatur von 70 °C auf. Es wurde in einer pneumatischen Förderanlage in weniger als 1 Minute auf eineTemperaturvon26 °C gekühlt. Es bestand aus nicht klebenden, gut rieselfähigen, im wesentlichen rundlichen Teilchen mit glatter Oberfläche und homogenem Querschnitt. Der Gehalt an Grobanteilen (1,6 mm-3 mm) sowie an Staub lag unter 0,1 Gew.-%. Das Schüttgewicht der Körner betrug 750 g/I und der Anteil des bei 130°C (Trocknungstemperatur) entfernbaren Wassers betrug 13,1 Gew.-%. Eine Siebanalyse ergab folgende Kornverteilung (Gew.-%): > 1,6mm = 0%, 1,6-0,8 mm = 3%, 0,8-0,4 mm = 48%, 0,4-0,2 mm = 48%, 0,2-0,1 mm = 1%, < 0,1 mm = 0%.
  • Zur Bestimmung des Rieselverhaltens wurde 1 Liter des Pulvers in einem an seiner Auslauföffnung verschlossenen Trichter mit folgenden Abmessungen gefüllt.
    Figure imgb0002
  • Als Vergleichssubstanz wurde trockener Seesand mit folgendem Kornspektrum gewählt.
    Figure imgb0003
  • Die Auslaufzeit des trockenen Sandes nach Freigabe der Ausflussöffnung wurde mit 100% angesetzt. Es ergaben sich folgende Vergleichswerte (Mittelwerte aus 5 Versuchen):
    Figure imgb0004
    Figure imgb0005
  • Zwecks Konfektionierung wurden 87,0 Gewichtsteile des Versuchsproduktes mit 10 Gewichtsteilen an pulverförmigem Natriumperborat-tetrahydrat, das mit 0,2 Gewichtsteilen Parfümöl besprüht worden war, 0,5 Gewichtsteilen eines Enzym-Granulates, hergestellt durch Verprillen einer Enzym-Schmelze, und 2,3 Gewichtsteilen an granulierten Tetraacetylethylendiamin vermischt, wobei die Korngrösse der zugemischten Bestandteile im Bereich zwischen 0,1 und 1 mm lag. Das Schüttegwicht erhöht sich dadurch auf 760 g/I. Die Rieselfähigkeit änderte sich innerhalb der Fehlergrenzen nicht.
  • Das Gemisch erwies sich als hochwertiges, im Temperaturbereich zwischen 30° und 100 °C einsetzbares Waschmittel. Hinsichtlich der Einspülbarkeit und der Rückstandsbildung in den Eingabevorrichtungen vollautomatischer Waschmaschinen waren keine Unterschiede zwischen einem lockeren Sprühpulver und dem Versuchsprodukt erkennbar. Die Lösungseigenschaften des unter (d) aufgeführten Vergleichsproduktes waren demgegenüber schlechter, wodurch es zu Rückstandsbildung in der Einspülvorrichtung und auf den Textilien kam.
  • Beispiel 2
  • Für die kontinuierliche Herstellung des Slurries wurde die in Beispiel 1 beschriebene Apparatur, bestehend aus 3 hintereinander geschalteten Mischbehältern, verwendet. Über eine zusätzliche, mit einer kontinuierlich arbeitenden Dosierungsvorrichtung versehenen Zuführung konnten weitere Flüssigbestandteile, insbesondere flüssige bzw. geschmolzene nichtionische Tenside, in das zur Hochdruckpumpe führende Leitungssystem zwischen dynamischem Sieb und Homogenisator eingespeist werden.
  • Als nichtionische Tensidkomponente (a) diente ein Gemisch aus Nonylphenol + 6 EO und Nonylphenol + 10 EO im Gewichtsverhältnis 1:2. Hiervon wurden 33% in den letzten Mischbehälter und 67% in das zur Hochdruckpumpe führende Leitungssystem eingeleitet. Die Rezeptur entsprach der in Tabelle 1 mit der Abwandlung, dass der Anteil an nichtionischem Tensid 12,3 kg betrug und die Differenz bis 123,2 kg aus einer wässrigen Natriumsulfat-Lösung (Wassergehalt 50 Gew.-%) bestand. Die mittlere Verweilzeit des Gesamtansatzes betrug weniger als 5 Minuten, die des nichtionischen Tensids weniger als 1 Minute. Die Viskosität des Ansatzes betrug am Ausgang des 3. Mischbehälters 10 800 mPa - s.
  • Die Sprühtrocknung erfolgte unter den in Beispiel 1 angegebenen Bedingungen auf einen bei 130°C entfernbaren Wassergehalt von 13,5-Gew.-%. Das Sprühprodukt wies ein Schüttgewicht von 630 g/I auf. Nach dem Bestäuben (Pudern) mit 2,5 Gew.-% an feinteiligem, kristallinem Zeolith-NaA erhöhte sich das Schüttgewicht auf 680 g/I. 96,5 Gew.-% des Produktes wiesen eine Korngrösse von 0,2 bis 0,8 mm auf. Der Anteil an Grobkorn (über 1,6 mm) und Staub (unter 0,1 mm) lag unter 0,5 Gew.-%. Die auf trockenen Sand bezogene Rieselfähigkeit betrug 87%.

Claims (10)

1. Verfahren zur Herstellung einer körnigen, freifliessenden, in Wasser schnell löslichen Waschmittelkomponente, bestehend aus im wesentlichen rundlichen Teilchen mit einem Schüttgewicht von mindestens 600 g/I und einer Korngrösse von 0,1 bis 2 mm sowie einem Gehalt an (a) alkoxylierten nichtionischen Tensiden, (b) anorganischen Trägersubstanzen, (c) sonstigen organischen Waschhilfsstoffen und (d) adsorptiv bzw. als Hydrat gebundenem Wasser, dadurch gekennzeichnet, dass man zwecks Herstellung der Waschmittelkomponente, enthaltend 10 bis 28Gew.-% des Bestandteils (a), 40 bis 80 Gew.-% des Bestandteils (b), 0,5 bis 10 Gew.-% des Bestandteils (c), 8 bis 20 Gew.-% des Bestandteils (d) und weniger als 0,5 Gew.-% an anionischen Tensiden, einen wässrigen Ansatz der Inhaltsstoffe, der eine Viskosität von 4000 bis 20 000 mPa - s und eine Temperatur von 85 bis 105 °C aufweist, kontinuierlich homogenisiert und ihn mittels Düsen unter einem Druck von 20 bis 45 bar bei einem Durchmesser der Düsenaustrittsöffnung von 2,5 bis 5 mm in einen Trockenturm versprüht, wobei das Verhältnis von Druck am Düseneingang zum Durchmesser der Düsenaustrittsöffnung 4 bis 18 bar/mm beträgt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Gehalt des Mittels an (a) 12 bis 25 Gew.-%, insbesondere 15 bis 23 Gew.-%, an (b) 45 bis 70 Gew.-%, an anionischen Tensiden 0% und an adsorptiv bzw. als Hydrat gebundenem Wasser 12 bis 18 Gew.-% beträgt.
3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, dass der Gehalt an anorganischen Trägersubstanzen 45 bis 70 Gew.-% beträgt, wobei der Anteil an Natriumtripolyphosphat 0 bis 60 Gew.-%, vorzugsweise 10 bis 50 Gew.-%, an Natriumsilikat (Zusammensetzung Na20:Si02 = 1:1,5 bis 1:3,5, vorzugsweise 1:2 bis 1:2,5) 5 bis 20 Gew.-%, vorzugsweise 6 bis 15 Gew.-% und an wasserhaltigem Natriumalumosilikat vom Zeolith-A-Typ 0 bis 40 Gew.-%, vorzugsweise 3 bis 30 Gew.-% beträgt.
4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass man eine Viskosität des wässrigen Ansatzes von 5000 bis 15 000 mPa - s bei einer Temperatur von 90bis102°Ceinste)it.
5. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass man einen Wassergehalt des wässrigen Ansatzes von 50 bis 35 Gew.-%, vorzugsweise von 45 bis 38 Gew.-% einstellt.
6. Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, dass man das Ansetzen und Homogenisieren des wässrigen Ansatzes in einer Kaskade von 2 oder mehreren hintereinandergeschalteten Mischern durchgeführt und eine mittlere Verweilzeit des Ansatzes in den Mischern nicht mehr als 10 Minuten, insbesondere nicht mehrals 5 Minuten einhält.
7. Verfahren nach Anspruch 1 bis 6, dadurch gekennzeichnet, dass das Versprühen des wässrigen Ansatzes unter einem Druck von 30 bis 40 bar mittels Düsen mit einem Durchmesser der Austrittsöffnung von 3,0 bis 4,0 mm erfolgt, wobei das Verhältnis von Druck zu Durchmesser der Austrittsöffnung 7,5 bis 13,5 bar/mm beträgt.
8. Verfahren nach Anspruch 1 bis 7, dadurch gekennzeichnet, dass man die Trockengase auf eine Eingangstemperatur im Sprühturm von180 bis 240 °C einstellt und die Trockengase im Gegenstrom zum versprühten Gut führt.
9. Verfahren nach Anspruch 1 bis 8, dadurch gekennzeichnet, dass man das gesprühte Mittel innerhalb von 2 Minuten auf Temperaturen unterhalb 35 °C abkühlt.
10. Verfahren nach Anspruch 1 bis 9, dadurch gekennzeichnet, dass man das Mittel mit einem feinteiligen Überzugs- bzw. Fluidisierungsmittel pudert.
EP85111651A 1984-09-22 1985-09-14 Verfahren zur Herstellung einer körnigen, freifliessenden Waschmittelkomponente Expired EP0179264B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85111651T ATE38246T1 (de) 1984-09-22 1985-09-14 Verfahren zur herstellung einer koernigen, freifliessenden waschmittelkomponente.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3434854 1984-09-22
DE19843434854 DE3434854A1 (de) 1984-09-22 1984-09-22 Verfahren zur herstellung einer koernigen, freifliessenden waschmittelkomponente

Publications (2)

Publication Number Publication Date
EP0179264A1 EP0179264A1 (de) 1986-04-30
EP0179264B1 true EP0179264B1 (de) 1988-10-26

Family

ID=6246089

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85111651A Expired EP0179264B1 (de) 1984-09-22 1985-09-14 Verfahren zur Herstellung einer körnigen, freifliessenden Waschmittelkomponente

Country Status (6)

Country Link
US (1) US4652391A (de)
EP (1) EP0179264B1 (de)
JP (1) JPS6185499A (de)
AT (1) ATE38246T1 (de)
DE (2) DE3434854A1 (de)
ES (1) ES8609454A1 (de)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8526998D0 (en) * 1985-11-01 1985-12-04 Unilever Plc Detergent powder
DE3545947A1 (de) * 1985-12-23 1987-07-02 Henkel Kgaa Phosphatfreies, granulares waschmittel
ES2020949B3 (es) * 1986-01-17 1991-10-16 Kao Corp Composicion detergente granular de alta densidad.
US4762636A (en) * 1986-02-28 1988-08-09 Ciba-Geigy Corporation Process for the preparation of granules containing an active substance and to the use thereof as speckles for treating substrates
GB8625104D0 (en) * 1986-10-20 1986-11-26 Unilever Plc Detergent compositions
JP3192469B2 (ja) * 1991-05-17 2001-07-30 花王株式会社 ノニオン洗剤粒子の製造方法
GB9113675D0 (en) * 1991-06-25 1991-08-14 Unilever Plc Particulate detergent composition or component
DE4234376A1 (de) * 1992-10-12 1994-04-14 Henkel Kgaa Wertstoffe und Wertstoffgemische für Netz-, Wasch- und/oder Reinigungsmittel in neuer Zubereitungsform
TW240243B (de) * 1992-03-12 1995-02-11 Kao Corp
US5814289A (en) * 1992-03-28 1998-09-29 Hoechst Aktiengesellschaft Process for the peparation of cogranulates comprising aluminosilicates and sodium silicates
US5215731A (en) * 1992-04-08 1993-06-01 Monsanto Company Process for preparing medium density granular sodium tripolyphosphate
CA2096505C (en) * 1992-05-21 1999-09-21 Robert Stanley Lee Exfoliant composition
US5332519A (en) * 1992-05-22 1994-07-26 Church & Dwight Co., Inc. Detergent composition that dissolves completely in cold water, and method for producing the same
GB9214890D0 (en) * 1992-07-14 1992-08-26 Procter & Gamble Washing process
WO1994019444A1 (en) * 1993-02-26 1994-09-01 The Procter & Gamble Company High active enzyme granulates
US5415806A (en) * 1993-03-10 1995-05-16 Lever Brothers Company, Division Of Conopco, Inc. Cold water solubility for high density detergent powders
EP0622454A1 (de) * 1993-04-30 1994-11-02 The Procter & Gamble Company Strukturierung von flüssigen nichtionischen Tensiden vor der Granulierung
US5610131A (en) * 1993-04-30 1997-03-11 The Procter & Gamble Company Structuring liquid nonionic surfactants prior to granulation process
AU673926B2 (en) * 1993-07-13 1996-11-28 Colgate-Palmolive Company, The Process for preparing detergent composition having high bulk density
DE4329988A1 (de) * 1993-09-04 1995-03-09 Henkel Kgaa Sprühgetrocknetes Granulat mit hohem Schüttgewicht
ATE188991T1 (de) * 1993-09-13 2000-02-15 Procter & Gamble Granulare waschmittelzusammensetzungen mit nichtionischem tensid und verfahren zu ihrer herstellung
TW326472B (en) * 1994-08-12 1998-02-11 Kao Corp Method for producing nonionic detergent granules
AU3464295A (en) * 1994-09-26 1996-04-19 Procter & Gamble Company, The Nonaqueous bleach-containing liquid detergent compositions
DE19538028A1 (de) * 1995-10-12 1997-04-17 Sued Chemie Ag Waschmittelzusatz
AU2074397A (en) * 1996-03-15 1997-10-01 Amway Corporation Powder detergent composition having improved solubility
AU2075097A (en) * 1996-03-15 1997-10-01 Amway Corporation Discrete whitening agent particles, method of making, and powder detergent containing same
US5714451A (en) * 1996-03-15 1998-02-03 Amway Corporation Powder detergent composition and method of making
US5714450A (en) * 1996-03-15 1998-02-03 Amway Corporation Detergent composition containing discrete whitening agent particles
US6177397B1 (en) 1997-03-10 2001-01-23 Amway Corporation Free-flowing agglomerated nonionic surfactant detergent composition and process for making same
US7147067B2 (en) * 2002-12-10 2006-12-12 Halliburton Energy Services, Inc. Zeolite-containing drilling fluids
US7140439B2 (en) * 2002-12-10 2006-11-28 Halliburton Energy Services, Inc. Zeolite-containing remedial compositions
US7544640B2 (en) * 2002-12-10 2009-06-09 Halliburton Energy Services, Inc. Zeolite-containing treating fluid
WO2004055150A1 (de) * 2002-12-18 2004-07-01 Henkel Kommanditgesellschaft Auf Aktien Feinpartikuläres mittel
US7448450B2 (en) * 2003-12-04 2008-11-11 Halliburton Energy Services, Inc. Drilling and cementing with fluids containing zeolite
ES2397226T3 (es) 2004-11-02 2013-03-05 Henkel Ag & Co. Kgaa Procedimiento para la preparación de granulados / aglomerados para productos de lavado y limpieza
CN101084300B (zh) * 2004-12-23 2010-09-22 Jp实验室有限公司 制备洗涤剂的方法
DE102006059272A1 (de) * 2006-12-13 2008-06-19 Henkel Kgaa Herstellung von Aminoxidgranulaten und deren Einsatz
WO2008157348A1 (en) 2007-06-13 2008-12-24 The Procter & Gamble Company Skin treatment device
EP2138563A1 (de) * 2008-06-25 2009-12-30 The Procter and Gamble Company Niedriges, reinigungstensidhaltige, feste Waschmittelzusammensetzungen, das außerdem Ton enthalten
EP2138567A1 (de) * 2008-06-25 2009-12-30 The Procter & Gamble Company Sprühtrockenverfahren
CN104959087B (zh) 2010-04-09 2017-08-15 帕西拉制药有限公司 用于配制大直径合成膜囊泡的方法
US8865638B2 (en) 2013-03-15 2014-10-21 Church & Dwight Co., Inc. Unit dose laundry compositions
US9273270B2 (en) 2014-02-20 2016-03-01 Church & Dwight Co., Inc. Unit dose cleaning products for delivering a peroxide-containing bleaching agent

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA852173A (en) * 1970-09-22 Unilever Limited Process for the production of detergent compositions
US2941947A (en) * 1955-06-06 1960-06-21 Monsanto Chemicals Process for the preparation of freeflowing detergent compositions
NO121968C (de) * 1966-06-23 1977-06-13 Mo Och Domsjoe Ab
US3838072A (en) * 1971-03-15 1974-09-24 Colgate Palmolive Co Manufacture of free flowing particulate detergent containing nonionic surface active compound
US3886098A (en) * 1971-03-15 1975-05-27 Colgate Palmolive Co Manufacture of free flowing particulate detergent composition containing nonionic detergent
US3849327A (en) * 1971-11-30 1974-11-19 Colgate Palmolive Co Manufacture of free-flowing particulate heavy duty synthetic detergent composition containing nonionic detergent and anti-redeposition agent
AT330930B (de) * 1973-04-13 1976-07-26 Henkel & Cie Gmbh Verfahren zur herstellung von festen, schuttfahigen wasch- oder reinigungsmitteln mit einem gehalt an calcium bindenden substanzen
US4444673A (en) * 1976-09-29 1984-04-24 Colgate-Palmolive Company Bottle particulate detergent
ZA775371B (en) * 1976-09-29 1979-04-25 Colgate Palmolive Co Bottled particulate detergent
US4083813A (en) * 1976-10-01 1978-04-11 The Procter & Gamble Company Process for making granular detergent composition
GB2082620B (en) * 1977-10-06 1983-02-02 Colgate Palmolive Co Detergent compositions
BE874420A (fr) * 1978-03-02 1979-08-23 Unilever Nv Procede de production de compositions detergentes
DE3472682D1 (en) * 1983-03-25 1988-08-18 Henkel Kgaa Granular, free flowing detergent components and process for their preparation

Also Published As

Publication number Publication date
US4652391A (en) 1987-03-24
EP0179264A1 (de) 1986-04-30
DE3565857D1 (en) 1988-12-01
ES547172A0 (es) 1986-07-16
DE3434854A1 (de) 1986-04-03
JPS6185499A (ja) 1986-05-01
ES8609454A1 (es) 1986-07-16
ATE38246T1 (de) 1988-11-15

Similar Documents

Publication Publication Date Title
EP0179264B1 (de) Verfahren zur Herstellung einer körnigen, freifliessenden Waschmittelkomponente
EP0486592B1 (de) Herstellung verdichteter granulate für waschmittel
EP0228011B1 (de) Phospahtreduziertes, granulares Waschmittel
EP0663946B1 (de) Wertstoffe und wertstoffgemische für netz-, wasch- und/oder reinigungsmittel in neuer zubereitungsform
EP0344629B1 (de) Körniges Adsorptionsmittel mit verbessertem Einspülverhalten
EP0337330B1 (de) Verfahren zur Erhöhung der Dichte sprühgetrockneter, phosphatreduzierter Waschmittel
DE4435743C2 (de) Verfahren zur Herstellung eines Mehrkomponenten-Granulates
DE3444960A1 (de) Koerniges adsorptionsmittel
EP0536110A1 (de) Verfahren zur herstellung von oberflächenaktive mittel enthaltenden granulaten.
WO1993015180A1 (de) Verfahren zur herstellung fester wasch- und reinigungsmittel mit hohem schüttgewicht und verbesserter lösegeschwindigkeit
DE3838086A1 (de) Verfahren zur herstellung zeolithhaltiger granulate hoher dichte
DE2753680C2 (de) Verfahren zur Herstellung pulverförmiger, organische Siliciumpolymere enthaltender Waschmittel mit verbesserten Lösungseigenschaften
EP0120492B1 (de) Körnige, freifliessende Waschmittelkomponente und Verfahren zu ihrer Herstellung
EP0425804B1 (de) Körniges, nichtionische Tenside enthaltendes Additiv für Wasch- und Reinigungsmittel mit verbessertem Einspülverhalten
EP0560802B2 (de) Verfahren zur herstellung von zeolith-granulaten
DE2837504C2 (de) Verfahren zur Herstellung eines schüttfähigen, nichtionische Tenside enthaltenden Wasch- und Reinigungsmittelgranulates
DE2519655A1 (de) Verfahren und vorrichtung zur herstellung spruehgetrockneter, nichtionische tenside enthaltender waschmittel
DD140987A1 (de) Kontinuierliches herstellungsverfahren granulierter wasch-und reinigungsmittel in wirbelschichtapparaten
EP0804535B1 (de) Bleichendes wasch- und reinigungsmittel in granulatform
EP0473622B1 (de) Granulares, nichtionische tenside enthaltendes, phosphatfreies waschmitteladditiv
DE2748970C2 (de) Verfahren zur Herstellung pulverförmiger, organische Siliciumpolymere enthaltender Waschmittel mit verbesserten Lösungseigenschaften
DE3236375A1 (de) Verfahren zur herstellung koerniger waschmittel mit einem gehalt an fettsaeurealkanolamiden
EP1043387A2 (de) Alkylbenzolsulfonat-Granulate
WO2000027961A1 (de) Tensid-granulate durch wirbelschichtgranulation
DE4304475A1 (de) Granuliertes Wasch- und Reinigungsmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19861006

17Q First examination report despatched

Effective date: 19870601

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 38246

Country of ref document: AT

Date of ref document: 19881115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3565857

Country of ref document: DE

Date of ref document: 19881201

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890817

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890823

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19890828

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890911

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19890929

Year of fee payment: 5

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890930

Year of fee payment: 5

Ref country code: GB

Payment date: 19890930

Year of fee payment: 5

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900914

Ref country code: AT

Effective date: 19900914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19900930

Ref country code: CH

Effective date: 19900930

Ref country code: BE

Effective date: 19900930

BERE Be: lapsed

Owner name: HENKEL K.G.A.A.

Effective date: 19900930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910401

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910530

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST