EP0165652B1 - Intraocular lens - Google Patents

Intraocular lens Download PDF

Info

Publication number
EP0165652B1
EP0165652B1 EP85301328A EP85301328A EP0165652B1 EP 0165652 B1 EP0165652 B1 EP 0165652B1 EP 85301328 A EP85301328 A EP 85301328A EP 85301328 A EP85301328 A EP 85301328A EP 0165652 B1 EP0165652 B1 EP 0165652B1
Authority
EP
European Patent Office
Prior art keywords
lens body
lens
peripheral edge
masking means
intraocular lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85301328A
Other languages
German (de)
French (fr)
Other versions
EP0165652A1 (en
Inventor
CHARLES D. kELMAN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0165652A1 publication Critical patent/EP0165652A1/en
Application granted granted Critical
Publication of EP0165652B1 publication Critical patent/EP0165652B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1616Pseudo-accommodative, e.g. multifocal or enabling monovision

Definitions

  • This invention relates to intraocular lenses for the human eye, and, more particularly, to intraocular lenses of the type which can be positioned in the anterior chamber, the posterior chamber, or partially in the anterior chamber and partially in the posterior chamber of the eye.
  • the optic may be made in the form of a two-piece optic, allowing the surgeon to make an incision in the eye smaller than the diameter of the lens body, or optic, and inserting the two parts of the optic separately through the incision.
  • a further possibility is to form the optic out of a flexible material such as silicone and to curl the optic into the shape of a small cylinder which can then be readily inserted into a small incision (EP-A-0099641).
  • This latter construction requires that the curled optic fully assumes its flat initial shape after it is inserted into the eye. Any deviation from such flat shape would result in optical distortion.
  • the material used for such flexible optic is silicone
  • materials in the eye such as, for example, fibrin
  • PMMA's physical properties are such that fibrin and other materials in the eye are constantly washed away from its surface rather than adhering thereto.
  • Glare effect is produced whenever there is located, in the path of the light rays which pass through the pupil to the retina, an edge or similar boundary between regions which are both substantially transparent as distinguished from one being substantially opaque.
  • glare effect will result if a lens body is split into two parts along, e.g. a diameter, or if an optic has a 3 mm diameter while the bundle of light rays passing through the pupil has a transverse cross sectional area which is 6 mm in diameter, since the outermost rays will pass through the optically transparent fluid in the eye while the innermost rays pass through the optic.
  • No such edge glare results howerver in those cases in which one side of the edge or boundary in question is masked, i.e. is opaque, such as for example, the boundary formed by the iris at its inner edge defining the pupil. The opaque iris thus masks without causing glare effect.
  • the invention seeks to provide a new and improved intraocular lens which avoids one or more of the limitations of prior such lenses.
  • an intraocular lens comprises a lens body for focusing light rays on the retina of an eye, said lens body having a pair of imaginary coordinate axes at right angles to one another and to the optical axis and said lens body having a maximum dimension of substantially less than 5 mm along any line drawn through said lens body parallel to a given one of its pair of coordinate axes, said maximum dimension being defined by a pair of opposite peripheral edge portions of said lens body transverse to said one coordinate axis and located apart a distance equal to said maximum dimension, and masking means integrally connected with said lens body and deformable between an expanded condition in which said masking means has a first portion thereof adjacent one of said peripheral exge portions of said lens body and a second portion thereof spaced from and located radially outwardly of said one peripheral edge portion of said lens body for inhibiting light rays which are directed toward said peripheral edge portion from being scattered thereby toward the retina after the lens has been implanted in an eye, and a contracted condition in which said masking means is located substantially entirely within
  • the lens body is of miniature size, i.e. it has at least one dimension sufficiently small in size to permit the lens to be inserted into the eye through an incision substantially less than 5 mm in length, i.e. substantially smaller than the incision now generally required for insertion of conventional lenses.
  • the deformable masking means associated with the lens body helps to prevent glare-effects when the masking means is in expanded condition.
  • the masking means are deformable into a contracted condition in which they pass, together with the lens body, through the desired substantially smaller incision.
  • the masking means comprises two masks, each mask having a first portion thereof adjacent a respective one of said peripheral edge portions of said lens body, and a second portion thereof located radially outwardly of said respective peripheral edge portion when in the expanded condition, and each mask being located substantially entirely within said maximum dimension of said peripheral edge portions when in the contracted condition. Glare at both peripheral edge portions of the lens body can thus be prevented.
  • reference numeral 1 generally indicates an introcular artificial lens according to the preferred embodiment of the present invention.
  • the lens 1 can be formed of any suitable material compatible with the environment of the human eye, such as a non-toxic plastic, for example, polymethylmethacrylate.
  • the lens 1 includes a medial light focusing lens body, or optic 10, having, for example, a convex anterior surface and a generally flat posterior surface and having a pair of imaginary coordinate axes "x" and “y” perpendicular to each other and to the optical axis "o" of the lens body 10. While optics of conventional intraocular lenses are generally round and approximately five to six m ilimeters in diameter, the lens body 10, according to the present invention, may be of any suitable shape, for example, round, oval or rectangular, but has a maximum dimension, in the direction of at least one of said coordinate axes, of substantially less than 5 mm, i.e. substantially less than the corresponding dimension of a conventional intraocular lens optic.
  • the lens 1 further includes position-fixation means 30 having a pair of opposed curved position-fixation members 31, 32 which are preferably resilient filaments of polymethylmethacrylate, or similar material, integrally connected with the lens body.
  • the lens body 10 is preferably oval and is elongated along the Y-Y axis and the position-fixation members 31,32 are preferably connected to opposite ends of such elongated lens body so as to extend generally in the direction of the Y-Y axis.
  • the lens 1 further includes a masking means 20 which in the preferred embodiment shown in Figures 1, 2 and 3, is in the form of a pair of wing members 21 and 22.
  • These wing members are preferably elongated and preferably integrally connected at one end thereof to a connecting stem portion 11 which in turn is integrally connected with the lens body 10 at one of the longitudinal ends of that lens body.
  • the wing members 21 and 22 are generally planar and are located in a plane which, as best seen in Figure 2, is parallel to and closely adjacent to the plane of the lens body 10. Preferably, this is accomplished by forming the connecting stem 11 so that the latter extends both generally radially outwardly of the lens body 10 and posteriorly thereto beyond the posterior surface thereof.
  • the wing members 21, 22 can thus be moved in sliding relation with respect to the flat posterior surface of the lens body 10.
  • the wing members 21, 22 are resiliently connected to the lens body 10 at the stem 11.
  • the wing members 21, 22 are deformable with respect to the lens body 10 between an expanded condition seen in Figure 1 and a contracted condition seen in Figure 3.
  • the wing members 21, 22 preferably have inner marginal edges 21a a and 22a, respectively, which in the normal expanded condition thereof, seen in Figure 1, are located slightly, e.g. 1/4 mm inwardly of the opposed transverse marginal peripheral edges 10a, 10b of the lens body 10.
  • the wing members thus overlap the opposed transverse peripheral edges 10a, 10b, i.e. those edges which are transverse to the X-X coordinate axis.
  • Wing members 21, 22 which form the masking means are preferably optically opaque so as to inhibit light rays which would otherwise impinge upon the transverse peripheral edges 10a, 10b of the lens body, from being scattered by those peripheral edges to the retina of the eye to cause a glare effect.
  • the outer marginal edges 21 b, 22b, respectively, of wing members 21, 22 extend in expanded condition of the masking means to and preferably slightly beyond the perimeter of an imaginary circle P (see Figure 3) of about 5 mm in diameter, which represents the size of the area desired to be covered. This area is covered in part by the lens body 10 and in remaining part by the masking means 20, the latter being of such size and shape as to accomplish that result.
  • the wing members 21, 22 By exerting a compressive force on the wing members 21, 22 they may be swivelled from the Figure 1 to the Figure 3 position thereof, so that even the outermost edges 21 b and 22b thereof will be located within the maximum X-X dimension of the lens body 10.
  • This permits the lens 1 to be inserted through an incision in the cornea which is no greater than would be required for the insertion of the lens body 10 alone in a direction parallel to the "y" axis thereof and which is therefore substantially smaller than the incision which is required for currently known intraocular lenses of this type.
  • the entire lens 1 may be of one-piece construction and may be of polymethylmethacrylate material.
  • the resiliency of the wing members can be controlled by the shape and thickness of the ends 11a, 11b of the individual wing members in the region thereof connected to the stem 11.
  • the structure is formed such that the resilient connection at stem 11 will provide a memory which, upon release of the external force, will return the wing members 21, 22 to their normal expanded position seen in Figure 1.
  • the opacity of the wing members 21, 22 is preferably achieved by leaving the flat surfaces of the wing members in rough, unground, condition.
  • one of the surfaces of the wing members may be coated with an opaque coating.
  • the lens 1' of Figures 4, 5 and 6 has a lens body 10' of rectangular shape, though it will be understood that it could also be of elliptical, or even of round shape. However, the elliptical or rectangular shape is preferred since such optics permit more light to enter the eye through the optic when the pupil is dilated, as for example for night vision. Since under normal light conditions, a pupil size of less than about 3 mm diameter is to be expected, a 3 mm diameter optic will be appropriate. Under poor light conditions, on the other hand, the pupil may dilate to about 5 mm in diameter.
  • the masking means is in the form of a pair of sheet members 40a, 40b.
  • these sheet members 40a, 40b are preferably flat and preferably of soft resilient material such as silicone bonded edge-to-edge to the elongated peripheral edges 10a', 10b' of the lens body 10' and thus overlying such peripheral edges.
  • the masking means 40a, 40b are substantially coplanar with the lens body 10' and, since they are of flexible sheet material, can be resiliently deformed into the condition thereof shown in Figure 6, i.e. folded under the lens body 10' so as to overlie substantially in their entirety the posterior surface of the lens body 10'.
  • the resilient nature of the masking means 40 will return the latter to the expanded condition thereof shown in Figures 4 and 5.
  • the masking means are in the form of a pair of wing members as seen in Figures 1, 2 and 3 or in the form of a pair of sheet members as seen in Figures 4, 5 and 6, or in another form, it is important that the transverse peripheral edges 10a and 10b of the lens body 10 and the transverse peripheral edges 10a' and 10b' of lens body 10' are not left free to scatter light rays. Either they are covered by the wing members 21, 22 overlying them anteriorly or posteriorly, such as seen in Figures 1, 2 and 3, or they are covered by having directly bonded to them, edge-to-edge, a resilient sheet material such as shown in Figures 4, 5 and 6 in which event the masking means overlie the edge portion by being outwardly adjacent thereto.
  • the lens 1' may alternatively be of round shape (not shown) and have a round ring-shaped masking means of a soft resilient material fully surrounding it.
  • the preferred lens body has a maximum dimension along any line therethrough in a direction parallel to a given one of the said pair of coordinate axes, of about 3 mm.
  • the dimension along the X axis of optic 10' in Figure 4 may be about 3 mm and the dimension along the Y axis may be about 6 mm. This will provide the additional light needed for better night vision without increasing that dimension of the lens which controls the size of the incision, i.e. in this case, the "X" dimension.
  • the masking means need only be provided in connection with the peripheral edges substantially transverse to the "X" axis, i.e.
  • edges 10a and 10b for the Figure 1 embodiment and 10a' and 10b' for the Figure 4 embodiment need not be provided along the marginal regions at the top and bottom of the elongated optic.
  • the only marginal edges which will normally be within the bundles of light rays impinging on the retina through the pupil of the eye and therefore the only edges which need to be masked are the transverse peripheral edges such as edges 10a', 10b' in Figure 4.
  • Lens 1" in Figure 7 has a rectangular optic 10" identical to the optic 10' in Figure 4 except that optic 10" is provided with a pair of stems 11 a and 11b extending at opposite elongated ends thereof.
  • Position-fixation members 31, 32 preferably extend from the stems 11a a and 11b b as shown and may be formed as one-piece with the lens body 10".
  • the masking means 50a, 50b according to the Figure 7 embodiment are substantially identical to the masking means 20 in Figure 1 except that instead of the wing members 50a and 50b being connected to a single stem 11, they are each connected to a different one of the stems 11a and 11 spaced from each other along the Y axis at opposite ends of the lens body 10" and situated generally intermediate the transverse edge portions 10a" and 10b" of lens body 10".
  • Elongated wing member 50a is integrally connected at one end thereof with stem 11a while elongated wing member 50b is integrally connected at one end thereof with stem 11 b.
  • the stems 11 a, 11 b, the connecting portions 51 a, 51 and the wing members 50a, 50b are all part of the masking means and are shaped so as to cover that part of the imaginary circle (which circle represents a transverse cross-sectional area of about 6 mm) which is not covered by the lens body 10".
  • the wing members 50a, 50b are deflectable into the contracted condition of Figure 8 by sliding under the posterior surface of lens body 10" so that the outer maximum dimension of any line drawn through the lens 1" in a direction parallel to the X axis will be no greater than the maximum X dimension of the lens body 10".
  • the connecting portions 51a, 51b are sufficiently thin so as to permit the wing members 50a, 50b to flex the expanded condition thereof in Figure 7 to the contracted condition in Figure 8.
  • an intraocular lens constructed in accordance with the invention has the advantage that the lens can be inserted into the eye through an incision which is smaller than the incisions currently required for conventional intraocular lenses. It should be noted that currently the incision must be at least 5 mm in length as determined by the minimum size optic in conventional use. Since incisions of only approximately 2.5 mm to 3 mm in length are required to remove the cataracted natural lens it is of course highly desirable to have an intraocular lens which will not require a larger incision.

Description

  • This invention relates to intraocular lenses for the human eye, and, more particularly, to intraocular lenses of the type which can be positioned in the anterior chamber, the posterior chamber, or partially in the anterior chamber and partially in the posterior chamber of the eye.
  • One type of intraocular lens is described and claimed in my US patent 4253200 issued March 3, 1981. Such a lens is inserted into the eye through a corneo-scleral incision that may be also used to remove a natural lens. To minimize the possibility of injury to the eye, it is important that the incision be made as small as possible. According to that patent the size of the incision is dependent nearly entirely on the diameter of the optic. In order to further reduce the size of the incision, therefore, the size of the optic would have to be reduced. This can be accomplished in several ways. First, the optic may be made in the form of a two-piece optic, allowing the surgeon to make an incision in the eye smaller than the diameter of the lens body, or optic, and inserting the two parts of the optic separately through the incision. In the case of the two-piece optic, depending on where the optic is split and depending on the means used for connecting the two pieces together there may result, in some instances, an undesirable glare effect at the juncture of the two pieces. A second possibility is to form the lens with an optic of reduced size, at least in one dimension thereof which must pass through the incision. However, the undesirable glare effect described above has in the past also precluded the use of such optics which were substantially smaller than 5 mm in diameter, or at least had one dimension (transverse to the optical axis) of such substantially smaller size. The reason was that some of the light rays entering the eye would impinge on the peripheral marginal regions of such miniature optic which, because of the small dimensions involved, are located in the path of such light rays and would scatter the rays toward the retina.
  • A further possibility is to form the optic out of a flexible material such as silicone and to curl the optic into the shape of a small cylinder which can then be readily inserted into a small incision (EP-A-0099641). This latter construction requires that the curled optic fully assumes its flat initial shape after it is inserted into the eye. Any deviation from such flat shape would result in optical distortion.
  • Also if the material used for such flexible optic is silicone, materials in the eye, such as, for example, fibrin, may collect on the optic due to the surface characteristics of silicone. It is therefore preferred to make the optic out of a material such as polymethylmethacrylate (PMMA) which is not only relatively rigid but also does not have properties which cause any of the materials in the eye to adhere thereto. PMMA's physical properties are such that fibrin and other materials in the eye are constantly washed away from its surface rather than adhering thereto.
  • Glare effect is produced whenever there is located, in the path of the light rays which pass through the pupil to the retina, an edge or similar boundary between regions which are both substantially transparent as distinguished from one being substantially opaque. For example, glare effect will result if a lens body is split into two parts along, e.g. a diameter, or if an optic has a 3 mm diameter while the bundle of light rays passing through the pupil has a transverse cross sectional area which is 6 mm in diameter, since the outermost rays will pass through the optically transparent fluid in the eye while the innermost rays pass through the optic. No such edge glare results howerver in those cases in which one side of the edge or boundary in question is masked, i.e. is opaque, such as for example, the boundary formed by the iris at its inner edge defining the pupil. The opaque iris thus masks without causing glare effect.
  • The invention seeks to provide a new and improved intraocular lens which avoids one or more of the limitations of prior such lenses.
  • In accordance with the invention an intraocular lens comprises a lens body for focusing light rays on the retina of an eye, said lens body having a pair of imaginary coordinate axes at right angles to one another and to the optical axis and said lens body having a maximum dimension of substantially less than 5 mm along any line drawn through said lens body parallel to a given one of its pair of coordinate axes, said maximum dimension being defined by a pair of opposite peripheral edge portions of said lens body transverse to said one coordinate axis and located apart a distance equal to said maximum dimension, and masking means integrally connected with said lens body and deformable between an expanded condition in which said masking means has a first portion thereof adjacent one of said peripheral exge portions of said lens body and a second portion thereof spaced from and located radially outwardly of said one peripheral edge portion of said lens body for inhibiting light rays which are directed toward said peripheral edge portion from being scattered thereby toward the retina after the lens has been implanted in an eye, and a contracted condition in which said masking means is located substantially entirely within said maximum dimension of said pair of opposite peripheral edge portions of said lens body for permitting inserting of said lens through an incision in an eye which is substantially less than 5 mm in length. The lens body is of miniature size, i.e. it has at least one dimension sufficiently small in size to permit the lens to be inserted into the eye through an incision substantially less than 5 mm in length, i.e. substantially smaller than the incision now generally required for insertion of conventional lenses. The deformable masking means associated with the lens body helps to prevent glare-effects when the masking means is in expanded condition. For insertion, the masking means are deformable into a contracted condition in which they pass, together with the lens body, through the desired substantially smaller incision.
  • Preferably, the masking means comprises two masks, each mask having a first portion thereof adjacent a respective one of said peripheral edge portions of said lens body, and a second portion thereof located radially outwardly of said respective peripheral edge portion when in the expanded condition, and each mask being located substantially entirely within said maximum dimension of said peripheral edge portions when in the contracted condition. Glare at both peripheral edge portions of the lens body can thus be prevented.
  • For a better understanding of the present invention, reference is made to the following description, taken in connection with the accompanying drawings, in which:-
    • Figure 1 is a front elevational view of an intraocular lens embodying a preferred form of the present invention with the masking means in normal expanded condition thereof;
    • Figure 2 is a side elevational view of the intraocular lens represented in Figure 1;
    • Figure 3 is a front elevational view of the intraocular lens represented in Figures 1 and 2 showing the masking means in contracted condition;
    • Figure 4 is a front elevational view similar to the view in Figure 1, of another embodiment of a lens constructed in acordance with the invention showing the masking means in normal expanded condition;
    • Figure 5 is a transverse sectional view along line 5-5 of Figure 4;
    • Figure 6 is a transverse sectional view similar to the view in Figure 5 showing the masking means in contracted condition thereof;
    • Figure 7 is a front elevational view of an intraocular lens according to still another embodiment of the invention and showing the masking means thereof in expanded condition;
    • Figure 8 is a rear elevational view of the intraocular lens of Figure 7 in contracted condition thereof.
  • Referring now particularly to Figures 1, 2 and 3 of the drawings, reference numeral 1 generally indicates an introcular artificial lens according to the preferred embodiment of the present invention. The lens 1 can be formed of any suitable material compatible with the environment of the human eye, such as a non-toxic plastic, for example, polymethylmethacrylate.
  • The lens 1 includes a medial light focusing lens body, or optic 10, having, for example, a convex anterior surface and a generally flat posterior surface and having a pair of imaginary coordinate axes "x" and "y" perpendicular to each other and to the optical axis "o" of the lens body 10. While optics of conventional intraocular lenses are generally round and approximately five to six m ilimeters in diameter, the lens body 10, according to the present invention, may be of any suitable shape, for example, round, oval or rectangular, but has a maximum dimension, in the direction of at least one of said coordinate axes, of substantially less than 5 mm, i.e. substantially less than the corresponding dimension of a conventional intraocular lens optic. The lens 1 further includes position-fixation means 30 having a pair of opposed curved position- fixation members 31, 32 which are preferably resilient filaments of polymethylmethacrylate, or similar material, integrally connected with the lens body.
  • The lens body 10 is preferably oval and is elongated along the Y-Y axis and the position- fixation members 31,32 are preferably connected to opposite ends of such elongated lens body so as to extend generally in the direction of the Y-Y axis.
  • The lens 1 further includes a masking means 20 which in the preferred embodiment shown in Figures 1, 2 and 3, is in the form of a pair of wing members 21 and 22. These wing members are preferably elongated and preferably integrally connected at one end thereof to a connecting stem portion 11 which in turn is integrally connected with the lens body 10 at one of the longitudinal ends of that lens body. The wing members 21 and 22 are generally planar and are located in a plane which, as best seen in Figure 2, is parallel to and closely adjacent to the plane of the lens body 10. Preferably, this is accomplished by forming the connecting stem 11 so that the latter extends both generally radially outwardly of the lens body 10 and posteriorly thereto beyond the posterior surface thereof. The wing members 21, 22 can thus be moved in sliding relation with respect to the flat posterior surface of the lens body 10.
  • In this embodiment, the wing members 21, 22 are resiliently connected to the lens body 10 at the stem 11. Thus, the wing members 21, 22 are deformable with respect to the lens body 10 between an expanded condition seen in Figure 1 and a contracted condition seen in Figure 3. The wing members 21, 22 preferably have inner marginal edges 21a a and 22a, respectively, which in the normal expanded condition thereof, seen in Figure 1, are located slightly, e.g. 1/4 mm inwardly of the opposed transverse marginal peripheral edges 10a, 10b of the lens body 10. The wing members thus overlap the opposed transverse peripheral edges 10a, 10b, i.e. those edges which are transverse to the X-X coordinate axis.
  • Wing members 21, 22 which form the masking means, are preferably optically opaque so as to inhibit light rays which would otherwise impinge upon the transverse peripheral edges 10a, 10b of the lens body, from being scattered by those peripheral edges to the retina of the eye to cause a glare effect. The outer marginal edges 21 b, 22b, respectively, of wing members 21, 22 extend in expanded condition of the masking means to and preferably slightly beyond the perimeter of an imaginary circle P (see Figure 3) of about 5 mm in diameter, which represents the size of the area desired to be covered. This area is covered in part by the lens body 10 and in remaining part by the masking means 20, the latter being of such size and shape as to accomplish that result.
  • By exerting a compressive force on the wing members 21, 22 they may be swivelled from the Figure 1 to the Figure 3 position thereof, so that even the outermost edges 21 b and 22b thereof will be located within the maximum X-X dimension of the lens body 10. This permits the lens 1 to be inserted through an incision in the cornea which is no greater than would be required for the insertion of the lens body 10 alone in a direction parallel to the "y" axis thereof and which is therefore substantially smaller than the incision which is required for currently known intraocular lenses of this type.
  • It will be seen that in order to swivel the wing members 21, 22 from the Figure 1 to the Figure 3 position thereof, an external force must be applied either by the surgeon placing and thereafter maintaining the wing members in the contracted condition with his surgical tools during insertion into the eye, or by use of a suture, not shown, maintaining the members in the condition seen in Figure 3. In either event, upon release of the external force the wing members will automatically be returned by the resilient connections 11a, 11b at stem 11, to the expanded condition thereof seen in Figure 1, in which condition they will remain after seating of the lens in the eye. It will be seen that, according to this embodiment of the invention, the wing members 21, 22 overlie the lens body 10 either only partially, when in the Figure 1 expanded conditions or substantially in the entirety, when in the contracted Figure 3 condition. According to the preferred embodiment, the entire lens 1 may be of one-piece construction and may be of polymethylmethacrylate material. Once the material is fixed, the resiliency of the wing members can be controlled by the shape and thickness of the ends 11a, 11b of the individual wing members in the region thereof connected to the stem 11. Preferably the structure is formed such that the resilient connection at stem 11 will provide a memory which, upon release of the external force, will return the wing members 21, 22 to their normal expanded position seen in Figure 1. In such one-piece construction, the opacity of the wing members 21, 22 is preferably achieved by leaving the flat surfaces of the wing members in rough, unground, condition. Alternatively, one of the surfaces of the wing members may be coated with an opaque coating.
  • Referring now more particularly to Figures 4, 5 and 6 there is shown another embodiment of the present invention. The lens 1' of Figures 4, 5 and 6 has a lens body 10' of rectangular shape, though it will be understood that it could also be of elliptical, or even of round shape. However, the elliptical or rectangular shape is preferred since such optics permit more light to enter the eye through the optic when the pupil is dilated, as for example for night vision. Since under normal light conditions, a pupil size of less than about 3 mm diameter is to be expected, a 3 mm diameter optic will be appropriate. Under poor light conditions, on the other hand, the pupil may dilate to about 5 mm in diameter. It is therefore preferred to have an elongated optic which while narrow in width will, at least along the length thereof, accommodate as much of the available light as possible under poor light conditions. According to this embodiment of the invention the masking means is in the form of a pair of sheet members 40a, 40b. As best seen in Figure 5 these sheet members 40a, 40b are preferably flat and preferably of soft resilient material such as silicone bonded edge-to-edge to the elongated peripheral edges 10a', 10b' of the lens body 10' and thus overlying such peripheral edges. When reference is made herein to the masking means overlying portions of the periphery of the lens body, it is inteded to include not only those structures in which the masking means is located anteriorly or posteriorly of the lens body but also those structures in which the masking means is located radially outwardly of the lens body, i.e. in edge-to-edge adjacency, as for example, in the lens of Figures 4, 5 and 6. Thus, the masking means 40a, 40b according to this latter embodiment, are substantially coplanar with the lens body 10' and, since they are of flexible sheet material, can be resiliently deformed into the condition thereof shown in Figure 6, i.e. folded under the lens body 10' so as to overlie substantially in their entirety the posterior surface of the lens body 10'. Upon removal of the external force maintaining the masking means 40 in the condition shown in Figure 6, the resilient nature of the masking means 40 will return the latter to the expanded condition thereof shown in Figures 4 and 5.
  • Whether the masking means are in the form of a pair of wing members as seen in Figures 1, 2 and 3 or in the form of a pair of sheet members as seen in Figures 4, 5 and 6, or in another form, it is important that the transverse peripheral edges 10a and 10b of the lens body 10 and the transverse peripheral edges 10a' and 10b' of lens body 10' are not left free to scatter light rays. Either they are covered by the wing members 21, 22 overlying them anteriorly or posteriorly, such as seen in Figures 1, 2 and 3, or they are covered by having directly bonded to them, edge-to-edge, a resilient sheet material such as shown in Figures 4, 5 and 6 in which event the masking means overlie the edge portion by being outwardly adjacent thereto. In either event, the glare effect which would result from light rays impinging on the transverse peripheral edges 10a and 10b, or 10a' and 10b' of the miniature optic 10 or 10' respectively and being thereby scattered toward the retina, is inhibited by the provision of an artificial iris in the form of the masking means shown.
  • It will be seen that the lens 1' may alternatively be of round shape (not shown) and have a round ring-shaped masking means of a soft resilient material fully surrounding it.
  • The preferred lens body, according to the present invention, has a maximum dimension along any line therethrough in a direction parallel to a given one of the said pair of coordinate axes, of about 3 mm. For example, the dimension along the X axis of optic 10' in Figure 4 may be about 3 mm and the dimension along the Y axis may be about 6 mm. This will provide the additional light needed for better night vision without increasing that dimension of the lens which controls the size of the incision, i.e. in this case, the "X" dimension. It will be seen that the masking means need only be provided in connection with the peripheral edges substantially transverse to the "X" axis, i.e. edges 10a and 10b for the Figure 1 embodiment and 10a' and 10b' for the Figure 4 embodiment and need not be provided along the marginal regions at the top and bottom of the elongated optic. As a consequence of the elongated shape of the optic, the only marginal edges which will normally be within the bundles of light rays impinging on the retina through the pupil of the eye and therefore the only edges which need to be masked are the transverse peripheral edges such as edges 10a', 10b' in Figure 4.
  • In Figure 7 there is shown still another embodiment of the present invention. Lens 1" in Figure 7 has a rectangular optic 10" identical to the optic 10' in Figure 4 except that optic 10" is provided with a pair of stems 11 a and 11b extending at opposite elongated ends thereof. Position- fixation members 31, 32 preferably extend from the stems 11a a and 11b b as shown and may be formed as one-piece with the lens body 10". The masking means 50a, 50b according to the Figure 7 embodiment are substantially identical to the masking means 20 in Figure 1 except that instead of the wing members 50a and 50b being connected to a single stem 11, they are each connected to a different one of the stems 11a and 11 spaced from each other along the Y axis at opposite ends of the lens body 10" and situated generally intermediate the transverse edge portions 10a" and 10b" of lens body 10". Elongated wing member 50a is integrally connected at one end thereof with stem 11a while elongated wing member 50b is integrally connected at one end thereof with stem 11 b. The stems 11 a, 11 b, the connecting portions 51 a, 51 and the wing members 50a, 50b are all part of the masking means and are shaped so as to cover that part of the imaginary circle (which circle represents a transverse cross-sectional area of about 6 mm) which is not covered by the lens body 10". As is the case with the embodiment of Figures 1, 2 and 3, the wing members 50a, 50b are deflectable into the contracted condition of Figure 8 by sliding under the posterior surface of lens body 10" so that the outer maximum dimension of any line drawn through the lens 1" in a direction parallel to the X axis will be no greater than the maximum X dimension of the lens body 10". The connecting portions 51a, 51b are sufficiently thin so as to permit the wing members 50a, 50b to flex the expanded condition thereof in Figure 7 to the contracted condition in Figure 8.
  • From the foregoing description it will be apparent that an intraocular lens constructed in accordance with the invention has the advantage that the lens can be inserted into the eye through an incision which is smaller than the incisions currently required for conventional intraocular lenses. It should be noted that currently the incision must be at least 5 mm in length as determined by the minimum size optic in conventional use. Since incisions of only approximately 2.5 mm to 3 mm in length are required to remove the cataracted natural lens it is of course highly desirable to have an intraocular lens which will not require a larger incision.

Claims (23)

1. An intraocular lens (1; 1'; 1") comprising: a lens body (10; 10'; 10") for focusing light rays on the retina of an eye, said lens body having a pair of imaginary coordinate axes (x, y) at right angles to one another and to the optical axis (o) and said lens body having a maximum dimension of substantially less than 5 mm along any line drawn through said lens body parallel to a given one (x) of its pair of coordinate axes, said maximum dimension being defined by a pair of opposite peripheral edge portions (10a, 10b; 10a', 10b'; 10a", 10b") of said lens body transverse to said one coordinate axis (x) and located apart a distance equal to said maximum dimension, and masking means (20, 21, 22; 40a, 40b; 50a, 50b) integrally connected with said lens body and deformable between an expanded condition in which said masking means has a first portion (21 a, 22a) thereof adjacent one of said peripheral edge portions of said lens body and a second portion (21b, 22b) thereof spaced from and located radially ourwardly of said one peripheral edge portion of said lens body for inhibiting light rays which are directed toward said peripheral edge portion from being scattered thereby toward the retina after the lens has been implanted in an eye, and a contracted condition in which said masking means is located substantially entirely within said maximum dimension of said pair of opposite peripheral edge portions of said lens body for permitting insertion of said lens through an incision in an eye which is substantially less than 5 mm in length.
2. An intraocular lens according to claim 1 in which the masking means comprises two masks (21, 22; 40a, 40b; 50a, 50b), each mask having a first portion thereof adjacent a respective one of said peripheral edge portions of said lens body, and a second portion thereof located radially outwardly of said respective peripheral edge portion when in-the expanded condition, and each mask being located substantially entirely within said maximum dimension of said peripheral edge portions when in the contracted condition.
3. An intraocular lens according to claim 1 or claim 2 in which said masking means is resiliently deformable from said expanded to said contracted condition thereof by application of an external force and said masking means returns substantially to its expanded condition upon removal of said external force.
4. An intraocular lens according to any one of the preceding claims in which said masking means is integrally connected with said lens body other than at said opposite peripheral edge portions.
5. An intraocular lens according to any one of the preceding claims in which said lens body has a further dimension in a direction parallel to the other (y) of its coordinate axes which is substantially greater than said maximum dimension.
6. An intraocular lens according to claim 5 in which said lens body (10) has a generally elliptical periphery and said maximum dimension is the minor axis (x) of the ellipse, and is preferably about 3 mm.
7. An intraocular lens according to claim 5 in which said lens body (10'; 10") is generally rectangular and said maximum dimension is the shorter dimension of the rectangle, the preferred dimensions of the rectangle being about 3 mm and about 6 mm respectively.
8. An intraocular lens according to any one of the preceding claims and further comprising position-fixation means (31, 32) connected with said lens body for seating said lens in the eye.
9. An intraocular lens according to any one of the preceding claims in which said masking means comprises optically opaque means.
10. An intraocular lens according to claim 2 in which each mask (40a, 40b) is a sheet of resiliently deformable material bonded to a respective one of said transverse peripheral edge portions (10a', 10b') of said lens body.
11. An intraocular lens according to claim 10 in which each said sheet (40a, 40b) is bonded along its inner edge to said respective one of said peripheral edge portions of said lens body and each sheet and said lens body are substantially coplanar when said masking means is in expanded condition thereof, each sheet having free outer portions comprising said second portion of said masking means which are folded under said lens body when said masking means is in said contracted condition.
12. An intraocular lens according to claim 10 or claim 11 in which each sheet is optically opaque silicone.
13. An intraocular lens according to claim 12 in which said sheets together substantially surround said lens body.
14. An intraocular lens according to claim 2 in which each mask is a wing portion (21, 22) located in a plane parallel and adjacent to the plane of said lens body (10), said wing portions being such as to substantially overlie in their combined entirety said lens body when said masking means is in said contracted condition.
15. An intraocular lens according to claim 14 in which each wing portion is swivellably connected with said lens body at a peripheral region of said lens body intermediate the aforesaid pair of peripheral portions (10a, 10b) of said lens body.
16. An intraocular lens according to claim 15 in which each wing portion is connected to said lens body through a stem portion (11) extending generally radially with respect to said lens body at said intermediate peripheral region thereof, said swivellable connection including resilient means for returning said wing portions to their initial expanded condition on release of an externally applied contracting force.
17. An intraocular lens according to any one of claims 14to 16 in which each wing portion has an inner edge (21a, 22a) corresponding generally to the shape of the associated transverse peripheral edge portion (10a, 10b) of said lens body, said inner edges being located slightly inwardly of and overlying said peripheral edge portions of said lens body when said masking means is in said expanded condition.
18. An intraocular lens according to claim 17 in which said lens body is of oval shape and includes a stem (11) at one longitudinal end thereof, each said wing portion being elongated and resiliently connected at one end thereof to said stem and each said wing portion having an inner curved edge generally corresponding to the curvature of the marginal peripheral portion of said lens body which it overlies.
19. An intraocular lens according to any one of claims 14 to 18 in which said wing portions are each of generally elongated shape, each having a pair of opposite end portions, and each wing portion connected only at one of its ends to said lens body.
20. An intraocular lens according to claim 19 in which said lens body is of elongated shape, said transverse peripheral edge portions extending generally in the direction of elongation of said lens body and said lens body including a stem portion extending from one end thereof, each said wing portion being connected to said stem portion.
21. An intraocular lens according to claim 19 in which said lens body (10") is of elongated shape, said transverse peripheral edge portion extending generally in the direction of elongation of said lens body and said lens body including a pair of stem portions (11 a, 11b) extending from opposite ends, respectively, of said lens body each said wing portion (50a, 50b) being connected to an opposite one of said pair of stem portions respectively.
22. An intraocular lens according to claim 2 in which said lens body covers an area, in a plane perpendicular to the optical axis of the lens body, which is smaller than the area within an imaginary circle (P), in said plane, of 5 mm diameter centered on the optical axis, said masking means being shaped and dimensioned such as to substantially cover the remaining area within said imaginary circle when said masking means are in said expanded condition thereof.
23. An intraocular lens according to claim 22 in which said opposite peripheral edge portions of said lens body are subtended by and lie substantially within said imaginary circle and said first portions of said masking means are adjacent to said opposite peripheral edge portions along the entire length of the latter lying within said imaginary circle.
EP85301328A 1984-05-21 1985-02-27 Intraocular lens Expired EP0165652B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/612,584 US4605409A (en) 1984-05-21 1984-05-21 Intraocular lens with miniature optic having expandable and contractible glare-reducing means
US612584 1984-05-21

Publications (2)

Publication Number Publication Date
EP0165652A1 EP0165652A1 (en) 1985-12-27
EP0165652B1 true EP0165652B1 (en) 1988-05-04

Family

ID=24453786

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85301328A Expired EP0165652B1 (en) 1984-05-21 1985-02-27 Intraocular lens

Country Status (8)

Country Link
US (1) US4605409A (en)
EP (1) EP0165652B1 (en)
JP (1) JPS60250328A (en)
BR (1) BR8500982A (en)
CA (1) CA1218805A (en)
DE (1) DE3562453D1 (en)
ES (2) ES286842Y (en)
IE (1) IE56248B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8752958B2 (en) 1999-03-01 2014-06-17 Boston Innovative Optics, Inc. System and method for increasing the depth of focus of the human eye
US8864824B2 (en) 2003-06-17 2014-10-21 Acufocus, Inc. Method and apparatus for aligning a mask with the visual axis of an eye
US9005281B2 (en) 2009-08-13 2015-04-14 Acufocus, Inc. Masked intraocular implants and lenses
US9138142B2 (en) 2003-05-28 2015-09-22 Acufocus, Inc. Masked intraocular devices
US9204962B2 (en) 2013-03-13 2015-12-08 Acufocus, Inc. In situ adjustable optical mask
US9427922B2 (en) 2013-03-14 2016-08-30 Acufocus, Inc. Process for manufacturing an intraocular lens with an embedded mask
US9427311B2 (en) 2009-08-13 2016-08-30 Acufocus, Inc. Corneal inlay with nutrient transport structures
US9545303B2 (en) 2011-12-02 2017-01-17 Acufocus, Inc. Ocular mask having selective spectral transmission

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4834754A (en) * 1983-07-08 1989-05-30 Shearing Steven P Intraocular lens
DE3583387D1 (en) * 1984-12-03 1991-08-08 Precision Cosmet Co Inc INTRAOCULAR LENS WITH FOLDABLE SIDE PARTS.
US4743254A (en) * 1985-01-31 1988-05-10 American Hospital Supply Company Small incision intraocular lens
US4759762A (en) * 1985-03-08 1988-07-26 Grendahl Dennis T Accommodating lens
US4781717A (en) * 1985-07-24 1988-11-01 Grendahl Dennis T Intraocular lens
US4774036A (en) * 1985-08-01 1988-09-27 Dennis T. Grendahl Method of making an intraocular lens
US4676791A (en) * 1985-08-01 1987-06-30 Surgidev Corporation Intraocular lens and method for making same
IT1197356B (en) * 1985-10-15 1988-11-30 Storz Instr Co INTRAOCULAR LENSES WITH ANTI-GLARE EDGES
US4718906A (en) * 1986-03-11 1988-01-12 Mackool Richard J Intraocular lens
EP0246754A1 (en) * 1986-04-21 1987-11-25 Kelman, Charles D. Intraocular lens having glare-inhibiting means
US4759763A (en) * 1986-11-03 1988-07-26 Precision-Cosmet Co., Inc. Foldable intraocular lens
US4753653A (en) * 1986-11-03 1988-06-28 Precision-Cosmet Co., Inc. Foldable bifocal intraocular lens
DE3768771D1 (en) * 1986-11-03 1991-04-25 Precision Cosmet Co Inc FOLDABLE INTRAOCULAR LENS.
US4764169A (en) * 1986-12-04 1988-08-16 Grendahl Dennis T Intraocular lens
US5176686A (en) * 1987-03-26 1993-01-05 Poley Brooks J Apparatus for packaging, folding, rigidifying and inserting an intraocular lens
US4911714A (en) * 1987-03-26 1990-03-27 Poley Brooks J Foldable intraocular lens and improved fold retaining means
US4769034A (en) * 1987-03-26 1988-09-06 Poley Brooks J Folded intraocular lens, method of implanting folded intraocular lens
US4819631A (en) * 1987-03-26 1989-04-11 Poley Brooks J Folded intraocular lens, method of implanting it, retainer, and apparatus for folding lens
US4917680A (en) * 1988-06-30 1990-04-17 Poley Brooks J Folded intraocular lens with endless band retainer
US4808181A (en) * 1987-08-07 1989-02-28 Kelman Charles D Intraocular lens having roughened surface area
US5074876A (en) * 1987-12-04 1991-12-24 Kelman Charles D Two piece intraocular lens
GB2215076A (en) * 1988-02-02 1989-09-13 Dennis T Grendahl Intraocular lens having a hard optic and a soft skirt
US4833890A (en) * 1988-04-04 1989-05-30 Kelman Charles D Bipartite intraocular lens
US5089024A (en) * 1988-04-19 1992-02-18 Storz Instrument Company Multi-focal intraocular lens
US4932966A (en) * 1988-08-15 1990-06-12 Storz Instrument Company Accommodating intraocular lens
US5044743A (en) * 1988-12-20 1991-09-03 Allergan, Inc. Corrective lens system
US4911715A (en) * 1989-06-05 1990-03-27 Kelman Charles D Overlapping two piece intraocular lens
US4955904A (en) * 1989-08-21 1990-09-11 The Beth Israel Hospital Association Masked intraocular lens and method for treating a patient with cataracts
US5266074A (en) * 1990-11-30 1993-11-30 Menicon Co., Ltd. Intraocular lens having annular groove formed in its peripheral portion
JP2540879Y2 (en) * 1990-11-30 1997-07-09 株式会社メニコン Intraocular lens
WO1992014421A1 (en) * 1991-02-21 1992-09-03 Grendahl Dennis T Halo-reducing ophthalmic lens for small incision implant surgery
US5578081A (en) * 1991-11-12 1996-11-26 Henry H. McDonald Eye muscle responsive artificial lens unit
US5203789A (en) * 1991-11-12 1993-04-20 Henry H. McDonald Foldable plastic optical lens with reduced thickness light blocking segments
US5578080A (en) * 1991-11-12 1996-11-26 Henry H. McDonald Plastic optical lens with reduced thickness light blocking segments, and anchoring means
US5203790A (en) * 1991-11-12 1993-04-20 Henry H. McDonald Foldable plastic optical lens with reduced thickness light blocking segments, and anchoring means
US5476512A (en) * 1991-11-18 1995-12-19 Sarfarazi; Faezeh Anterior capsular fixating lens for posterior capsular ruptures
US6692525B2 (en) 1992-02-28 2004-02-17 Advanced Medical Optics, Inc. Intraocular lens
US5476513A (en) * 1992-02-28 1995-12-19 Allergan, Inc. Intraocular lens
DE69325000T2 (en) * 1992-09-28 1999-12-16 Iolab Corp Artificial eye lens with reduced edge glare
US5549614A (en) * 1993-03-18 1996-08-27 Tunis; Scott W. Apparatus for folding flexible intraocular lenses
US5556400A (en) * 1994-12-27 1996-09-17 Tunis; Scott W. Methods of preparing and inserting flexible intraocular lenses and a configuration for flexible intraocular lenses
US5549670A (en) * 1995-05-09 1996-08-27 Allergan, Inc. IOL for reducing secondary opacification
US5693094A (en) 1995-05-09 1997-12-02 Allergan IOL for reducing secondary opacification
US20050177230A1 (en) * 1996-08-27 2005-08-11 Craig Young IOL for reducing secondary opacification
US20020095211A1 (en) * 1995-05-09 2002-07-18 Craig Young IOL for reducing secondary opacification
US5628797A (en) * 1996-02-23 1997-05-13 Richer; Homer E. Cosmetic anterior chamber, intraocular lens and implantation method
US5769889A (en) * 1996-09-05 1998-06-23 Kelman; Charles D. High myopia anterior chamber lens with anti-glare mask
US5769890B1 (en) * 1997-01-16 2000-09-05 Surgical Concepts Inc Placement of second artificial lens in eye to correct for optical defects of first artificial lens in eye
US5928282A (en) * 1997-06-13 1999-07-27 Bausch & Lomb Surgical, Inc. Intraocular lens
US5843188A (en) * 1997-10-20 1998-12-01 Henry H. McDonald Accommodative lens implantation
US6129759A (en) * 1997-12-10 2000-10-10 Staar Surgical Company, Inc. Frosted haptic intraocular lens
US6468306B1 (en) 1998-05-29 2002-10-22 Advanced Medical Optics, Inc IOL for inhibiting cell growth and reducing glare
US6162249A (en) * 1998-05-29 2000-12-19 Allergan IOI for inhibiting cell growth and reducing glare
US6884262B2 (en) * 1998-05-29 2005-04-26 Advanced Medical Optics, Inc. Enhanced intraocular lens for reducing glare
US6228115B1 (en) 1998-11-05 2001-05-08 Bausch & Lomb Surgical, Inc. Intraocular lenses with improved axial stability
US6264693B1 (en) * 1998-12-11 2001-07-24 Bausch & Lomb Surgical, Inc. Air abrasive texturing process for intraocular implants
US6171337B1 (en) * 1999-03-31 2001-01-09 Miles A. Galin Positive power anterior chamber ocular implant
US8556967B2 (en) 1999-04-09 2013-10-15 Faezeh Mona Sarfarazi Interior bag for a capsular bag and injector
US7662179B2 (en) * 1999-04-09 2010-02-16 Sarfarazi Faezeh M Haptics for accommodative intraocular lens system
US6200344B1 (en) 1999-04-29 2001-03-13 Bausch & Lomb Surgical, Inc. Inraocular lenses
US6190410B1 (en) 1999-04-29 2001-02-20 Bausch & Lomb Surgical, Inc. Intraocular lenses
US6461384B1 (en) 1999-06-17 2002-10-08 Bausch & Lomb Incorporated Intraocular lenses
US6406739B1 (en) 2000-01-12 2002-06-18 Alcon Universal Ltd. Coating compositions and methods for reducing edge glare in implantable ophthalmic lenses
US6475240B1 (en) 2000-02-02 2002-11-05 Advanced Medical Optics, Inc. Anterior chamber intraocular lens and methods for reducing pupil ovalling
US6398809B1 (en) 2000-04-12 2002-06-04 Bausch & Lomb Incorporated Intraocular lens
US6616693B1 (en) 2000-05-03 2003-09-09 Advanced Medical Optics, Inc. Flexible fixation members for angle-supported anterior chamber intraocular lenses
US6648741B2 (en) 2002-03-14 2003-11-18 Advanced Medical Optics, Inc. Apparatus for protecting the edge geometry of an intraocular lens during glass bead polishing process
US20040068317A1 (en) * 2002-10-07 2004-04-08 Knight Patricia M. Anterior chamber intraocular lens with size and position indicators
US7303582B2 (en) * 2003-03-21 2007-12-04 Advanced Medical Optics, Inc. Foldable angle-fixated intraocular lens
EP1694252B1 (en) 2003-12-09 2017-08-09 Abbott Medical Optics Inc. Foldable intraocular lens and method of making
US7615073B2 (en) 2003-12-09 2009-11-10 Advanced Medical Optics, Inc. Foldable intraocular lens and method of making
US20070067031A1 (en) * 2005-09-22 2007-03-22 Alcon, Inc. Intraocular lens
US8568478B2 (en) * 2006-09-21 2013-10-29 Abbott Medical Optics Inc. Intraocular lenses for managing glare, adhesion, and cell migration
US20080077238A1 (en) * 2006-09-21 2008-03-27 Advanced Medical Optics, Inc. Intraocular lenses for managing glare, adhesion, and cell migration
US7993398B2 (en) * 2007-04-24 2011-08-09 Abbott Medical Optics Inc. Angle indicator for capsular bag size measurement
WO2009120910A1 (en) 2007-04-24 2009-10-01 Abbott Medical Optics Inc. Systems for ocular measurements
US9216080B2 (en) 2007-08-27 2015-12-22 Amo Groningen B.V. Toric lens with decreased sensitivity to cylinder power and rotation and method of using the same
US8974526B2 (en) 2007-08-27 2015-03-10 Amo Groningen B.V. Multizonal lens with extended depth of focus
EP2243052B1 (en) 2008-02-15 2011-09-07 AMO Regional Holdings System, ophthalmic lens, and method for extending depth of focus
US8439498B2 (en) 2008-02-21 2013-05-14 Abbott Medical Optics Inc. Toric intraocular lens with modified power characteristics
US8862447B2 (en) 2010-04-30 2014-10-14 Amo Groningen B.V. Apparatus, system and method for predictive modeling to design, evaluate and optimize ophthalmic lenses
US10004593B2 (en) 2009-08-13 2018-06-26 Acufocus, Inc. Intraocular lens with elastic mask
US8357196B2 (en) * 2009-11-18 2013-01-22 Abbott Medical Optics Inc. Mark for intraocular lenses
WO2011075651A1 (en) 2009-12-18 2011-06-23 Abbott Medical Optics Inc. Limited echelette lens, systems and methods
AU2011336183B2 (en) 2010-12-01 2015-07-16 Amo Groningen B.V. A multifocal lens having an optical add power progression, and a system and method of providing same
WO2013123265A1 (en) * 2012-02-16 2013-08-22 Acufocus, Inc. Masked ocular device for implantation adjacent to an intraocular lens
CA2877203A1 (en) 2012-12-04 2014-06-12 Amo Groningen B.V. Lenses, systems and methods for providing binocular customized treatments to correct presbyopia
JP2017534404A (en) 2014-11-19 2017-11-24 アキュフォーカス・インコーポレーテッド Cleavage mask for treating presbyopia
EP3359987B1 (en) 2015-10-05 2024-02-28 AcuFocus, Inc. Methods of molding intraocular lenses
JP7055747B2 (en) 2015-11-24 2022-04-18 アキュフォーカス・インコーポレーテッド Toric small aperture intraocular lens with extended depth of focus
EP3413839A1 (en) 2016-02-09 2018-12-19 AMO Groningen B.V. Progressive power intraocular lens, and methods of use and manufacture
AU2017238517B2 (en) 2016-03-23 2021-11-11 Johnson & Johnson Surgical Vision, Inc. Ophthalmic apparatus with corrective meridians having extended tolerance band
CA3018570A1 (en) 2016-03-23 2017-09-28 Johnson & Johnson Surgical Vision, Inc. Ophthalmic apparatus with corrective meridians having extended tolerance band
EP3522771B1 (en) 2016-10-25 2022-04-06 Amo Groningen B.V. Realistic eye models to design and evaluate intraocular lenses for a large field of view
US10739227B2 (en) 2017-03-23 2020-08-11 Johnson & Johnson Surgical Vision, Inc. Methods and systems for measuring image quality
CA3082053A1 (en) 2017-11-30 2019-06-06 Amo Groningen B.V. Intraocular lenses that improve post-surgical spectacle independent and methods of manufacturing thereof
EP3790508A4 (en) 2018-05-09 2022-02-09 AcuFocus, Inc. Intraocular implant with removable optic
US11886046B2 (en) 2019-12-30 2024-01-30 Amo Groningen B.V. Multi-region refractive lenses for vision treatment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4172297A (en) * 1976-02-24 1979-10-30 Inprohold Establishment Artificial implant lens
US4056855A (en) * 1976-04-07 1977-11-08 Charles Kelman Intraocular lens and method of implanting same
US4168547A (en) * 1977-04-01 1979-09-25 Medicinska Akademia Anterior-chamber lens-carrier
US4450593A (en) * 1981-11-09 1984-05-29 Lynell Medical Technology Inc. Intraocular and contact lens construction
US4402579A (en) * 1981-07-29 1983-09-06 Lynell Medical Technology Inc. Contact-lens construction
US4435856A (en) * 1982-04-14 1984-03-13 Esperance Francis A L Bifocal intraocular lens structure and spectacle actuation frame
US4608049A (en) * 1982-06-28 1986-08-26 Kelman Charles D Intraocular lens and method of inserting an intraocular lens into an eye
US4535488A (en) * 1982-09-30 1985-08-20 Haddad Heskel M Anterior-posterior chamber intraocular lens

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8752958B2 (en) 1999-03-01 2014-06-17 Boston Innovative Optics, Inc. System and method for increasing the depth of focus of the human eye
US9138142B2 (en) 2003-05-28 2015-09-22 Acufocus, Inc. Masked intraocular devices
US8864824B2 (en) 2003-06-17 2014-10-21 Acufocus, Inc. Method and apparatus for aligning a mask with the visual axis of an eye
US9005281B2 (en) 2009-08-13 2015-04-14 Acufocus, Inc. Masked intraocular implants and lenses
US9427311B2 (en) 2009-08-13 2016-08-30 Acufocus, Inc. Corneal inlay with nutrient transport structures
US9492272B2 (en) 2009-08-13 2016-11-15 Acufocus, Inc. Masked intraocular implants and lenses
US9545303B2 (en) 2011-12-02 2017-01-17 Acufocus, Inc. Ocular mask having selective spectral transmission
US9204962B2 (en) 2013-03-13 2015-12-08 Acufocus, Inc. In situ adjustable optical mask
US9427922B2 (en) 2013-03-14 2016-08-30 Acufocus, Inc. Process for manufacturing an intraocular lens with an embedded mask
US9573328B2 (en) 2013-03-14 2017-02-21 Acufocus, Inc. Process for manufacturing an intraocular lens with an embedded mask

Also Published As

Publication number Publication date
IE56248B1 (en) 1991-05-22
ES286842Y (en) 1986-12-01
EP0165652A1 (en) 1985-12-27
ES286842U (en) 1986-04-16
JPH0467980B2 (en) 1992-10-30
DE3562453D1 (en) 1988-06-09
ES290356Y (en) 1987-01-16
CA1218805A (en) 1987-03-10
ES290356U (en) 1986-05-16
JPS60250328A (en) 1985-12-11
US4605409A (en) 1986-08-12
BR8500982A (en) 1986-04-15
IE850281L (en) 1985-11-21

Similar Documents

Publication Publication Date Title
EP0165652B1 (en) Intraocular lens
US4629460A (en) Intraocular lens
US4596578A (en) Intraocular lens with miniature optic
US4418431A (en) Intraocular lens
US5769889A (en) High myopia anterior chamber lens with anti-glare mask
EP0591480B1 (en) Intraocular lens having haptic
US5071432A (en) Anterior chamber intraocular implant
US4664665A (en) Intraocular lens with foldable sides
US4955902A (en) Decentered intraocular lens
US4504981A (en) Intraocular lens
US4932970A (en) Ophthalmic lens
US5776191A (en) Fixation system for intraocular lens structures
EP1292247B1 (en) Accommodating intraocular lens
EP0865261B1 (en) Single piece foldable intraocular lens
US4725278A (en) Intraocular lens
US5015254A (en) Intraocular posterior chamber lens
US4833890A (en) Bipartite intraocular lens
US5074876A (en) Two piece intraocular lens
US4657546A (en) Intraocular lens
GB2124500A (en) Improved fixation system for intraocular lens structures
JPH0356732B2 (en)
JP2004505667A (en) Two-piece "L" -shaped fake IOL
EP1138282A1 (en) Intraocular lens assembly
WO1994013225A1 (en) Intraocular achromatic lens
EP0177143B1 (en) Intraocular lens with a vaulted optic

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19860618

17Q First examination report despatched

Effective date: 19870910

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19880531

REF Corresponds to:

Ref document number: 3562453

Country of ref document: DE

Date of ref document: 19880609

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930111

Year of fee payment: 9

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940225

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940228

Ref country code: CH

Effective date: 19940228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940228

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940413

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940414

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940426

Year of fee payment: 10

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19950228

BERE Be: lapsed

Owner name: KELMAN CHARLES D.

Effective date: 19950228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19951031

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19950901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST