EP0117590A1 - Combine harvesters - Google Patents

Combine harvesters Download PDF

Info

Publication number
EP0117590A1
EP0117590A1 EP84200233A EP84200233A EP0117590A1 EP 0117590 A1 EP0117590 A1 EP 0117590A1 EP 84200233 A EP84200233 A EP 84200233A EP 84200233 A EP84200233 A EP 84200233A EP 0117590 A1 EP0117590 A1 EP 0117590A1
Authority
EP
European Patent Office
Prior art keywords
straw
crop material
chopping
separating
deflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP84200233A
Other languages
German (de)
French (fr)
Other versions
EP0117590B1 (en
Inventor
Daniel M. Van Overschelde
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Holland NV
Original Assignee
SPERRY NV
SPERRY NV
Ford New Holland NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SPERRY NV, SPERRY NV, Ford New Holland NV filed Critical SPERRY NV
Publication of EP0117590A1 publication Critical patent/EP0117590A1/en
Application granted granted Critical
Publication of EP0117590B1 publication Critical patent/EP0117590B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01FPROCESSING OF HARVESTED PRODUCE; HAY OR STRAW PRESSES; DEVICES FOR STORING AGRICULTURAL OR HORTICULTURAL PRODUCE
    • A01F12/00Parts or details of threshing apparatus
    • A01F12/44Grain cleaners; Grain separators
    • A01F12/442Rotary cleaners
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01FPROCESSING OF HARVESTED PRODUCE; HAY OR STRAW PRESSES; DEVICES FOR STORING AGRICULTURAL OR HORTICULTURAL PRODUCE
    • A01F12/00Parts or details of threshing apparatus
    • A01F12/40Arrangements of straw crushers or cutters

Definitions

  • the present invention relates to combine harvesters and has particular reference to such machines having rotary separating mechanisms.
  • grain is threshed and separated in a threshing and separating mechanism and the separated grain, together with the impurities, such as chaff, dust, straw particles, and tailings, is fed to a cleaning mechanism for cleaning.
  • Clean grain is collected below the cleaning mechanism and fed to a grain tank for temporary storage.
  • the tailings are separated from the clean grain and impurities for reprocessing. This reprocessing either involves recyling the tailings through the threshing and separating mechanism or treating them in a separate tailings rethreshing means.
  • grain refers to that part of the crop which is threshed and separated from the 'discardable part of the crop material which is referred to as "straw”. Incompletely threshed ears are referred to as "tailings”.
  • forward when used in connection with the combine harvester and/or components thereof are determined with reference to the direction of forward operative travel of the combine harvester but should not be construed as limiting.
  • a conventional transversely-extending, threshing mechanism having a threshing cylinder and a cooperable concave is combined with a rotary separating mechanism having a rotor of a width greater than that of the threshing mechanism and disposed parallel thereto with its ends extending transversely past the respective ends of the threshing mechanism.
  • the rotary separating mechanism operates spirally to convey the crop material received from the threshing mechanism towards each of its ends, whilst submitting the crop to a separating action.
  • the incoming layer of crop material has to be divided in two substantially equal portions, each of which is then spirally conveyed from the centre of the separating mechanism to one or other of its ends.
  • the straw issuing from the ends of the separating mechanism is discharged from the machine through respective discharge channels which are called straw hoods, the straw being deflected downwardly at the ends of the straw hoods for final discharge to the ground either through respective discharge openings, or a single opening to which both streams of straw are directed to form a central windrow.
  • straw chopping devices are associated with respective discharge openings so that in.. one mode of operation, straw is first chopped before being discharged through the separate discharge openings, and in an alternative mode of operation, the straw chopping devices- are bypassed and the straw is formed into a central windrow. In these machines, it is necessary to provide means for deflecting straw from the straw chopping devices when the latter are not required
  • a combine harvester comprises a main frame, rotary separating means mounted on the main frame transversely of the machine and operable to subject crop material to a separating action whilst moving it spirally therearound to respective ends of the separating means, chopping means associated with respective ends of the separating means, but spaced therefrom, so as to be capable of receiving crop material from the separating means, and deflector means pivotable about generally vertical axes and disposed between each end of the separating means and the associated chopping means, and selectively positionable so as either to allow crop material to flow to the chopping means from the separating means, or to deflect crop material inwardly of the machine for discharge from the latter in a central windrow.
  • each deflector means is disposed generally parallel to a sidewall of the machine when in the position in which flow of crop material to the chopping means can take place. More specifically, each deflector means may be hingedly mounted on an outer sidewall of the machine, whereby the deflector means lies against that sidewall when in the position in which flow of crop material to the chopping means can take place.
  • Each deflector means may be provided with latch means for releasably securing it in a selected position, each latch means conveniently comprising at least one latch member pivotally mounted on the associated deflector and pivotally attached to an actuating member operable to engage or disengage the latch member with latch receiving means on the main frame located appropriate to the alternative positions of the deflector means.
  • the invention thus provides deflector means which are easy to operate from the standpoint of moving from one operational position to another and which are effective in controlling the flow of crop material in the desired manner.
  • the combine harvester generally indicated at 1, comprises a main chassis or frame 2 supported on a front pair of drive wheels 3 and a rear pair of steerable wheels 4. Supported on the main chassis 2 are an operator's platform 5 with a driver's seat 6 and a steering wheel 7, a grain tank 8, a threshing and separating mechanism indicated generally at 9, a grain cleaning mechanism 11 and an engine (not shown).
  • a conventional heacer 12and straw elevator 13 extend forwardly of the main chassis 2, and the header is pivotally secured to the chassis for generally vertical movement which is controlled by extensible hydraulic cylinders 14.
  • the combine harvester 1 As the combine harvester 1 is propelled forwardly over a field with standing crop, the latter is severed from the stubble by a sickle bar lO on the header 12, whereafter a reel 15 and a header auger ' 16 convey the cut crop to the straw elevator 13 which supplies it to the threshing and separating mechanism 9.
  • the crop received within the threshing and separating mechanism 9 is threshed and separated that is to say the crop (which may be wheat, corn, rice, soybeans, rye, grass seed, barley, oats or other similar crops) is rubbed and beaten, whereby the grain, seed or the like, is loosened and separated from the straw, stalks, coils or other discardable part of the crop.
  • Grain which has been separated from the straw falls onto the grain cleaning mechanism 11 which comprises means to separate chaff and other impurities from the grain, and means to separate unthreshed materials (tailings). Cleaned grain is then elevated into the grain tank 8 and the tailings are reprocessed in separate tailings rethreshers (not shown) and returned to the cleaning mechanism 11 for repeat cleaning action.
  • the header 12 is of the grain type, but clearly other forms of header may.be employed (for example a corn header), depending on the crop to be harvested.
  • a threshing portion 17 of the threshing and separating mechanism 9 comprises a rotatable threshing cylinder 18 cooperable with a stationary threshing concave 19. Rearwardly of the threshing mechanism 17, a deflector beater, or so-called straw beater, 21 with an associated beater grate is provided.
  • the straw beater 21 has a smaller diameter than the threshing cylinder 18 and is arranged above the level of the discharge end of the threshing concave 19.
  • the straw beater 21 and beater grate have substantially the same width as the threshing mechanism 17.
  • a separator portion of the threshing and separating mechanism 9 comprises a first separator rotor or cylinder 2 2 and a second rotor or cylinder 23 cooperable with respective concaves 24 and 25.
  • the second rotor 23 is mounted within a separator housing 26 and both of these components have a width substantially exceeding the width of the first rotor 22 which is the same width as the beater 21 and the threshing mechanism 17.
  • the rotor housing 26 has a width approximately twice that of the rotor 22.
  • the mat of crop material received by the separator rotor 23 from theseparator rotor 22 is divided into two (by means not shown) and the resulting two portions moved spirally around the rotor 23 to respective ends thereof to complete the separating action.
  • the mats of crop material are propelled by the rotor through respective straw hoods 27 for discharge from the machine.
  • the crop material (straw) is discharged from the machine in one of two ways.
  • the straw is discharged in a central windrow by virtue of the two independent streams of straw first being deflected by pivotable deflectors 28 (disposed in the broken line positions of Figure 4), inwardly of the machine.
  • the deflectors 28 are pivoted to a position in which they lie against respective sidewalls 31 of the machine, thereby allowing the straw issuing from the ends of the rotor 23 to flow parallel to the sidewalls until it reaches further deflectors 32 which deflect the straw downwardly to respective straw choppers 33.
  • the straw choppers 33 are rotary devices and they propel chopped straw through respective discharge outlets 34 which are inclined downwardly and flare outwardly, as seen in plan view ( Figure 4), and are effective to spread the straw across the full width of the machine and beyond, this spreading action.being assisted by inclined vanes 35 provided within each outlet.
  • each discharge assist means 36 in the form of a rotor comprising a shaft 37 (common to both assist means - Figure 3) on which are keyed two spaced collars 38 having four equispaced lugs 40 to which are attached respective rotor blades 39 extending radially of the shaft and along the full width of the discharge channel 27.
  • the radially outer edge of each blade 3'9 is turned through 90 0 in a direction which trails with respect to the direction of rotation of the rotor, which is clockwise as seen in Figure 2.
  • Each discharge assist means 36 is provided with a protective shield 41 extending generally below the rotor.
  • Arcuate shields 42 are attached to the opposed sidewalls 31, 43 of each straw hood 27 to prevent straw from becoming wrapped around the shaft 37.
  • Each shield 42 has a flange 44 extending a short distance axially of the shaft 37.'
  • the discharge assist means 36 are driven from the , separator rotor 23 via a belt 45 extending between a pulley 46 on the rotor 23 and & pulley 47 on the shaft 37, via a reversing pulley 48, and a tension pulley 49.
  • the discharge assist means 36 are rotated clockwise, as already mentioned, which is contrary to the direction of rotation of the rotor 23.
  • the shaft 37 is journalled in four bearings 50 mounted in respective sidewalls 31 and in intermediate walls 50', as seen in Figure 3.
  • the desired path of the straw in being transported from the rotor 23 to the rear,. discharge end of the machine is indicated at 51 and it will be seen that each discharge assist means 36 is located below this path between the rotor 23 and the discharge end of the machine.
  • the discharge assist means 36 do not engage the straw which is important as regards the mode of operation in which the straw is formed- into a central windrow. This is because the threshing rotor 18 and the separator rotors 22, 23 have relatively aggressive actions on the crop material with a tendency to,produce shorter and more broken pieces of straw than a machine not employing rotary separating means. Therefore, any engagement of the straw with the discharge assist means would increase the likelihood of straw chopping and breakage which is undesirable when the straw is to be conserved for baling, for example.
  • each discharge assist means 36 is primarily that of a fan, whereby a stream of air is produced generally in the direction of the desired path 51 of straw discharge to assist in keeping the straw confined to that path.
  • the blades 39 serve positively to deflect the straw in the intended paths 51 and thus prevent it from being discharged from the machine prematurely and in all likelihood on to the steerable wheels 4 and associated wheel axle with the possible consequence of the straw building up on these components and eventually blocking the entire straw discharge facilities of the machine.
  • This arrangement of the discharge assist means 36 not only minimises straw breakage, unlike the discharge beaters of known machines, but also minimises power consumption (due to minimal contact with the straw) which is another very important consideration.
  • the deflectors 28 are shown in greater detail in Figure 5 and are in the form of doors hinged at 52.about a generally vertical axis, the hinges being secured to the respective sidewalls 31.
  • Latches 53 are provided for securing the deflectors in the selected position, the latches comprising, for each deflector, a pair of latch members 54 pivoted at 55 to the deflectors and also pivoted at 56 to an actuating bar 57.
  • Each latch member 54 has an extension 58 which passes through an associated slot in an edge flange 59 of -. the deflector 28 for engagement with a slot in a bracket 61 attached to the adjacent sidewall 31 ( Figure 5) when the deflectors are positioned so as to allow straw to pass to the straw choppers 33.
  • the latch member extensions 58 engage respective slots in respective vertical beams 62 which are part of the chassis 2.
  • Each bar 57-.is formed with a handle 63 at the lower end and the other end is attached to the associated deflector 28 by a spring 64, the bar being movable in a generally downward vertical direction against the spring to pivot the latch members 54 and so release the latch member extensions 58 from either the slots in the brackets 61 or the slots in the beams 62, as the case may be.
  • the deflectors 28 can then be swung to the alternative position and the handles 63 released, whereby the springs 64 pull the handles upwardly, thus pivoting the latch members clockwise as seen in Figure 5 to engage the extensions 58 with the newly selected slots. Movement of the bars 57 is guided by respective brackets 65 attached to the deflectors 28 and having slots through which the bars pass.
  • the two straw choppers 33 are mounted on respective shafts 66 ( Figure 2) which carry axially spaced lugs 67 to which are pivotally attached clusters of knives 68.
  • the knives 68 cooperate with stationary blades 69 adjustably mounted in a panel 71 associated with each chopper 33.
  • Each panel 71 has a straight portion which acts as the deflector 32, to deflect straw into the related chopper 33, followed by an arcuate . portion 73 complementary to the circle generated by the tips of the rotating knives 68, which portion acts to guide straw to the outlets 34, and terminating in another generally straight portion 74 forming the top of the related outlet 34.
  • the straw choppers 33 are driven from a shaft 75 which in turn is driven by the engine (not shown) via a belt 76 extending around an input pulley 77 mounted on one end of the shaft 75 by bearings 78, whereby it is rotatable relative to the shaft when a magnetic clutch 79 is inoperative.
  • the clutch 79 is rendered operative, the pulley 77 is clutched to the shaft 75, whereby the latter is driven, and hence the straw choppers 33 are driven in a clockwise direction (as seen in Figure 2) via respective pulleys 81 on the shaft 75, pulleys 82 on the shafts 66, and belts 83.
  • the pulley 77 is continuously rotated but the clutch 79 is .actuated only when the straw choppers 33 are required for use.
  • each chopper unit 33 is such that the straw is moved overtop with respect to the chopper rotors as it moves from the chopper inlets to the stationary knives 69.
  • the transfer of straw through the chopper units 33 is generally aligned with the path 51 of the straw within the straw hoods 27 immediately prior to entering the chopper units, whereby the movement of the straw is smooth and without any abrupt change of direction which reduces greatly the risk of plugging.
  • the straw chopper drive shaft 75 is mounted in a special manner and is in fact floatingly mounted in order to maintain tension in the belt 76 and the two belts 83 without the need to employ the usual tension pulleys.
  • this end of the shaft needs to be capable of two degrees of movement to be able to tension both belts.
  • the other end of the shaft 75 needs only to be capable of one degree of movement since only one of the belts 83 is associated therewith.
  • Figures 6 to 9 show the details of the mounting of the shaft 75.
  • a parallelogram linkage arrangement generally indicated at 84 and comprising a - generally horizontal beam 85 attached to a portion 86 of the main frame or chassis 2 of the machine, a beam 87 generally parallel to the beam 85 and carrying a bearing housing 88 for the associated end of the shaft 75, a generally upright beam 89 pivotally attached at respective ends to the beams 85 and 87, and a rod 91 generally parallel to the beam 89 and also pivotally attached at respective ends to the beams 85 and 87.
  • the beam 89 is offset from the beam 85 and is pivoted on upper and lower spigots 92,93 carried by the beam 85 and the beam 87, respectively, the beam 87 being generally coplanar with the beam 85.
  • the rod 91 is pivotally attached at the lower end to a lug 90 carried by the beam 87 and is slidingly received towards its other end in a slot in a hexagonal abutment member 94 which is pivotally mounted between two arms 95 extending from the beam 85 by respective spigots 96.
  • a compression spring 97 providing tensioning means for the belt 83 acts between a flat on the hexagonal member 94 and a further abutment in the form of a washer 98 provided on the rod 91 and held in a selected position by a nut 99 received on the upper and threaded end of the rod.
  • a cylinder 101 is placed over the spring 97 and serves to limit the compression of the latter by acting between the washer 98 and member 94 when the compression limit is reached.
  • the bearing housing 88 for the end of the shaft 75 is pivotally connected via a plate 100 to one end of a further rod l02 which is also slidingly received in a slot in a further hexagonal abutment member l03 similar to the member 94, the member l03 being mounted between spaced arms 104 and 104' ( Figure 9) extending from the beam 85.
  • a compression spring 105 providing tensioning means for the belt 76 acts between a flat on the hexagonal member 103 and a washer l06 held by a nut l07 on the outer and threaded end of the rod 102, again a cylinder l08 enveloping the spring in order to limit compression thereof.
  • a self-aligning (spherical) bearing l09 is mounted in the bearing housing 88 and the shaft 75 is journalled therein..
  • the springs l05 and 97 serve to urge the related end of the shaft 75 to the right and upwardly, respectively, (as seen in Figure 6) in order to tension the belts 76 and 83, the one movement being independent of the other by virtue of the parallelogram mounting arrangement for this end of the shaft.
  • the spring l05 urges the rod l02 to the right as seen in Figure 6, this moves the bearing housing 88, and hence shaft 75 and beam 87, in the same direction, the spring thus effectively acting on the parallelogram arrangement. Movement of the beam 87 results in the lower ends of the beam 89 and rod 91 also moving to the right whilst simultaneously pivoting and thus not imparting any substantial vertical movement to the shaft 75 which would affect the tension in one or both belts 83.
  • the spring 97 urges the rod l02 upwardly which pulls the beam 87, and hence bearing housing 88 and shaft 75, upwardly to tension the belt 83 without significantly affecting the tension in the belt 76.
  • the spring 115 urges the rod 112 upwardly which pulls the beam 111 carrying a bearing housing 117 for the shaft 75 and movement of the beam thus moves the bearing housing and the shaft, whereby the related belt 83 is tensioned.
  • a self-aligning (spherical) bearing 118 is provided in the housing 117 for the shaft 75. It will be appreciated that the self-aligning bearings l09 and 118 at respective ends of the shaft 75 allow movement of one end for belt tensioning purposes independent of movement of the other end. Further, it will be appreciated that the tension in the belts 76 and 83 is automatically maintained (whereby belt stretch is constantly compensated), and that the initial tension can be set by adjusting the nuts 99, 107 and 110 and hence altering the compressions of the related springs.
  • the combine harvester is provided with the usual air screen 119 through which air is drawn for cooling the engine coolant and/or transmission fluid, the air screen comprising a perforated member 121 in the form of a cylinder closed at one end, save for the perforations in the end as well as in the body, and mounted for rotation.
  • a stationary sector 122 ( Figure 2) which is inperforate and serves to blank off the perforations in successive portions of the member (both at the end and in the body) as the latter rotates past the sector.
  • the sector 122 is arranged at the lowermost portion of the member 121 but in the illustrated embodiment, this means immediately adjacent the top 123 of one of the straw hoods 27 since the air screen 119 is mounted on a panel 124 of the main frame 2 over that straw hood.
  • a transversely extending and generally upright panel 125 extends from the panel 124, whereby the air screen 119 is generally confined at one side and at its lower end which therefore increases the risk of foreign matter being re-circulated on the air screen rather than falling clear thereof.
  • the aperture 127 is rectangular (as shown in Figure 4) and extends transversely of the machine, with an upwardly and forwardly inclined deflector 128 being provided along the downstream edge with respect to the direction of rotation of the air screen.
  • a shield 129 extends from the outer edge of the.deflector 128, beneath the air screen member 121, to the transverse panel 125.
  • the shield 129 is located at the outer edge of the top 123 of the straw hood 27.
  • the deflector 128 is formed with a flange 131 by which it is attached to the underside of the top 123 of the straw hood 27, .this arrangement providing a smooth surface over which the foreign matter and straw can flow which would not be the case if the flange 131.were attached to the upper side of the top 123. The latter arrangement could result in build-up of material leading to blockage of the aperture 127.
  • Figure 10 repeats the extreme left-hand portion of Figure 2 but shows in addition the location of the separator rotor 22 in relation to the rotor 23 and separator housing 26. It will be seen that the ends of the separator mechanism 23, 25 are contained within further housings each formed by a top wall 132 integral with the top wall of the associated separator housing 26, a front transversely extending wall 133 which bridges the associated sidewall 31 with a further but inset sidewall 31' of the machine, and a bottom wall 134 which is V-shaped as seen in end view ( Figure 10) and which houses a grain auger 135.
  • a grain loss sensor 136 which closes off the aperture and which as shown in Figures 11 and 12, comprises a rectangular, dished mounting plate 137 having a flange 138 around its periphery by which it is bolted to the wall 133.
  • a polycarbonate sheet 139 is mounted within, but spaced from,the mouth of the dished plate 137, being spaced also from the main surface of the plate.
  • the space between the sheet 139 and the adjacent surfaces of the plate 137 is filled with a shock resistant material, such as polyurethane foam,and the edges of the sheet are sealed to the plate by a flexible sealant.
  • the sheet 139 carries a piezoelectric crystal 141 which is thus vibrationally isolated from the combine harvester so that spurious signals therefrom are substantially eliminated.
  • the plate 139 and crystal 141 face into the associated further housing at the end of the separator mechanism 23, 25. Any grain separated through the concave 25 at the location of the grain loss sensor 136 are moved generally radially outwardly through the concave and strike the plate 139 thus vibrating it and inducing a signal in the crystal 141 which is representative of the grain still present in the straw and thus of the grain which is going to be lost by virtue of it being discharged with the straw. Measurements have indicated that signals produced by grain separated just prior to the actual discharge ends of the separator mechanism 2C, 25 are indeed representative of the grain losses actually ⁇ occurring at the discharge ends.
  • the location of the grain loss sensors 136 in the vertical walls 133 of the further housings is particularly advantageous in that the sensors are highly accessible, unlike the sensors of the prior art, and yet they function in no less satisfactory manner. Furthermore and even more importantly, there is no likelihood of straw becoming hooked around the sensor resulting in plugging of the machine as there is when the sensor is mounted in the path of crop material below the separating rotor or straw walkers in known machines. This is because, on the one hand, the grain loss sensors 136 are mounted in generally vertical positions in an offset relationship with respect to the separator mechanism 23, 25 rather than below the latter and, on the other hand, because each sensor is made an integral part of the associated wall'133 which, furthermore, is oriented generally vertically.
  • the combine harvester is driven into standing crop which is cut by the sickle bar 10, consolidated centrally of the machine by the header auger 16 and transported to the threshing cylinder 18 by the crop elevator 13.
  • the threshed crop material issuing from the threshing cylinder is fed to the first separator rotor 22 with the assistance of the beater 21 and then passed to the second separator rotor 23..
  • All grain separated from the crop material falls to the cleaning mechanism 11 through the concaves or grates associated with the threshing, beating and separating components referred to, and once cleaned is transported to the grain tank 8.
  • the operator selects whether the straw is to be chopped or windrowed and sets the deflectors 28 in the full or broken line positions, respectively, as seen in Figure 4 by operating the handles 63 to release the latch members 54, swinging the deflectors to the required position and releasing the handles to allow the latch members to engage either the brackets 61 or the beams 62, as the case may be. If straw chopping is required, then the operator also has to actuate the clutch 79 in order to drive the shaft 75 and hence the straw choppers 33 through the belts 83.
  • the discharge of straw from the separator rotor 23 is assisted by the discharge assist means 36, as described, and the stream of straw flowing past the aperture 127 in one of the straw hoods 27 helps to clear the dust, chaff, etc., released from the air screen 119, and also to clear pieces of straw, etc which tend to collect on top of that straw hood around the air screen. Grain separated at the respective ends of the separator mechanism23, 25 impacts upon the associated grain loss sensor 136 which produce signals representative of the grain loss being experienced at that particular time at the discharge end of the separator mechanism.
  • the special flotation arrangement for the shaft 75 ensures that tension in the belts 76 and 83 is automatically held substantially constant so that drive to the straw choppers 33 is always maintained, when required.

Abstract

A combine harvester comprises a main frame (2) rotary separating means (23, 25) mounted on the frame transversely of the machine and operable to subject crop material to a separating action whilst moving it spirally therearound to respective ends of the separating means, chopping means (33) associated with respective ends of the separating means (23, 25), but spaced therefrom, so as to be capable of receiving crop material from the separating means, and deflector means (28) pivotable about generally vertical axes (52) and disposed between each end of the separating means (23, 25) and the associated chopping means (33), and selectively positionable so as either to allow crop material to flow to the chopping means (33) from the separating means (23, 25), or to deflect crop material inwardly of the machine for discharge from the latter in a central windrow.

Description

  • The present invention relates to combine harvesters and has particular reference to such machines having rotary separating mechanisms.
  • In known combine harvesters, grain is threshed and separated in a threshing and separating mechanism and the separated grain, together with the impurities, such as chaff, dust, straw particles, and tailings, is fed to a cleaning mechanism for cleaning. Clean grain is collected below the cleaning mechanism and fed to a grain tank for temporary storage. The tailings are separated from the clean grain and impurities for reprocessing. This reprocessing either involves recyling the tailings through the threshing and separating mechanism or treating them in a separate tailings rethreshing means.
  • While the terms"grain", "straw", and "tailings" are used principally throughout this specification for convenience, it should be understood that these terms are not intended to be limiting. Thus "grain" refers to that part of the crop which is threshed and separated from the 'discardable part of the crop material which is referred to as "straw". Incompletely threshed ears are referred to as "tailings".
  • Also, the terms "forward", "rearward", "left", and "right", when used in connection with the combine harvester and/or components thereof are determined with reference to the direction of forward operative travel of the combine harvester but should not be construed as limiting.
  • Recent developments in combine harvesters have led to so-called rotary machines wherein both threshing and separating are accomplished in mechanisms comprising rotary components cooperable with respective stationary threshing and separating concaves and grates. In conventional combine harvesters, grain separation is accomplished by straw walkers. In rotary combines the crop material is subjected to a much more aggressive and positive separating action during a relatively prolonged period of time,. whereby the efficiency of a rotary combine harvester usually is greater than that of a conventional machine,
  • Several types of rotary combine harvester have appeared on the market and in one such machine a conventional transversely-extending, threshing mechanism having a threshing cylinder and a cooperable concave is combined with a rotary separating mechanism having a rotor of a width greater than that of the threshing mechanism and disposed parallel thereto with its ends extending transversely past the respective ends of the threshing mechanism. The rotary separating mechanism operates spirally to convey the crop material received from the threshing mechanism towards each of its ends, whilst submitting the crop to a separating action. With such a separating mechanism, the incoming layer of crop material has to be divided in two substantially equal portions, each of which is then spirally conveyed from the centre of the separating mechanism to one or other of its ends.
  • The straw issuing from the ends of the separating mechanism is discharged from the machine through respective discharge channels which are called straw hoods, the straw being deflected downwardly at the ends of the straw hoods for final discharge to the ground either through respective discharge openings, or a single opening to which both streams of straw are directed to form a central windrow. In certain machines straw chopping devices are associated with respective discharge openings so that in.. one mode of operation, straw is first chopped before being discharged through the separate discharge openings, and in an alternative mode of operation, the straw chopping devices- are bypassed and the straw is formed into a central windrow. In these machines, it is necessary to provide means for deflecting straw from the straw chopping devices when the latter are not required
  • According to the present invention a combine harvester comprises a main frame, rotary separating means mounted on the main frame transversely of the machine and operable to subject crop material to a separating action whilst moving it spirally therearound to respective ends of the separating means, chopping means associated with respective ends of the separating means, but spaced therefrom, so as to be capable of receiving crop material from the separating means, and deflector means pivotable about generally vertical axes and disposed between each end of the separating means and the associated chopping means, and selectively positionable so as either to allow crop material to flow to the chopping means from the separating means, or to deflect crop material inwardly of the machine for discharge from the latter in a central windrow.
  • Preferably, each deflector means is disposed generally parallel to a sidewall of the machine when in the position in which flow of crop material to the chopping means can take place. More specifically, each deflector means may be hingedly mounted on an outer sidewall of the machine, whereby the deflector means lies against that sidewall when in the position in which flow of crop material to the chopping means can take place.
  • Each deflector means may be provided with latch means for releasably securing it in a selected position, each latch means conveniently comprising at least one latch member pivotally mounted on the associated deflector and pivotally attached to an actuating member operable to engage or disengage the latch member with latch receiving means on the main frame located appropriate to the alternative positions of the deflector means.
  • The invention thus provides deflector means which are easy to operate from the standpoint of moving from one operational position to another and which are effective in controlling the flow of crop material in the desired manner.
  • A combine harvester in accordance with the present invention will now be described in greater detail, by way of example, with reference to the accompanying drawings, in which:
    • Figure 1 is a diagrammatic side elevation of the combine harvester,
    • Figure 2 shows to a larger scale a portion of Figure 1,
    • Figure 3 is an enlarged section on the line III - III of Figure 2,
    • Figure 4 is schematic partial plan view of Figure 1,
    • Figure 5 is an enlarged partial view in the direction of arrow V of Figure 4,
    • Figure 6 is an enlarged view of a portion of Figure 2
    • Figure 7 is a view of the opposite end of the - component-to that shown in Figure 6,
    • Figure 8 is a section on the line VIII - VIII of Figure 6,
    • Figure 9 is a view in the direction of arrow IX of Figure 6,
    • Figure 10 is an enlarged view of a portion of Figure 1,
    • Figure 11 is an enlarged partial view of Figure 10, and
    • Figure 12 is a view from the-right-hand side of Figure 11.
  • With reference to the drawings, particularly Figure 1, the combine harvester, generally indicated at 1, comprises a main chassis or frame 2 supported on a front pair of drive wheels 3 and a rear pair of steerable wheels 4. Supported on the main chassis 2 are an operator's platform 5 with a driver's seat 6 and a steering wheel 7, a grain tank 8, a threshing and separating mechanism indicated generally at 9, a grain cleaning mechanism 11 and an engine (not shown). A conventional heacer 12and straw elevator 13 extend forwardly of the main chassis 2, and the header is pivotally secured to the chassis for generally vertical movement which is controlled by extensible hydraulic cylinders 14.
  • As the combine harvester 1 is propelled forwardly over a field with standing crop, the latter is severed from the stubble by a sickle bar lO on the header 12, whereafter a reel 15 and a header auger '16 convey the cut crop to the straw elevator 13 which supplies it to the threshing and separating mechanism 9. The crop received within the threshing and separating mechanism 9 is threshed and separated that is to say the crop (which may be wheat, corn, rice, soybeans, rye, grass seed, barley, oats or other similar crops) is rubbed and beaten, whereby the grain, seed or the like, is loosened and separated from the straw, stalks, coils or other discardable part of the crop.
  • Grain which has been separated from the straw falls onto the grain cleaning mechanism 11 which comprises means to separate chaff and other impurities from the grain, and means to separate unthreshed materials (tailings). Cleaned grain is then elevated into the grain tank 8 and the tailings are reprocessed in separate tailings rethreshers (not shown) and returned to the cleaning mechanism 11 for repeat cleaning action.
  • The header 12 is of the grain type, but clearly other forms of header may.be employed (for example a corn header), depending on the crop to be harvested.
  • A threshing portion 17 of the threshing and separating mechanism 9 comprises a rotatable threshing cylinder 18 cooperable with a stationary threshing concave 19. Rearwardly of the threshing mechanism 17, a deflector beater, or so-called straw beater, 21 with an associated beater grate is provided. The straw beater 21 has a smaller diameter than the threshing cylinder 18 and is arranged above the level of the discharge end of the threshing concave 19. The straw beater 21 and beater grate have substantially the same width as the threshing mechanism 17.
  • A separator portion of the threshing and separating mechanism 9 comprises a first separator rotor or cylinder 22 and a second rotor or cylinder 23 cooperable with respective concaves 24 and 25. The second rotor 23 is mounted within a separator housing 26 and both of these components have a width substantially exceeding the width of the first rotor 22 which is the same width as the beater 21 and the threshing mechanism 17. Preferably, the rotor housing 26 has a width approximately twice that of the rotor 22.
  • As seen in Figure 4, the mat of crop material received by the separator rotor 23 from theseparator rotor 22 is divided into two (by means not shown) and the resulting two portions moved spirally around the rotor 23 to respective ends thereof to complete the separating action. On reaching the ends of the rotor 23, the mats of crop material (straw) are propelled by the rotor through respective straw hoods 27 for discharge from the machine.
  • The components of the combine harvester so far described are disclosed in greater detail in British Specification No. 2,063,033. to which reference is made.
  • The crop material (straw) is discharged from the machine in one of two ways. In one mode of operation, the straw is discharged in a central windrow by virtue of the two independent streams of straw first being deflected by pivotable deflectors 28 (disposed in the broken line positions of Figure 4), inwardly of the machine. In an alternative mode of operation, the deflectors 28 are pivoted to a position in which they lie against respective sidewalls 31 of the machine, thereby allowing the straw issuing from the ends of the rotor 23 to flow parallel to the sidewalls until it reaches further deflectors 32 which deflect the straw downwardly to respective straw choppers 33. The straw choppers 33 are rotary devices and they propel chopped straw through respective discharge outlets 34 which are inclined downwardly and flare outwardly, as seen in plan view (Figure 4), and are effective to spread the straw across the full width of the machine and beyond, this spreading action.being assisted by inclined vanes 35 provided within each outlet.
  • In order to assist the flow of straw from the rotor 23 through each straw hood 27, the latter is provided with discharge assist means 36 in the form of a rotor comprising a shaft 37 (common to both assist means - Figure 3) on which are keyed two spaced collars 38 having four equispaced lugs 40 to which are attached respective rotor blades 39 extending radially of the shaft and along the full width of the discharge channel 27. The radially outer edge of each blade 3'9 is turned through 900 in a direction which trails with respect to the direction of rotation of the rotor, which is clockwise as seen in Figure 2. Each discharge assist means 36 is provided with a protective shield 41 extending generally below the rotor. Arcuate shields 42 are attached to the opposed sidewalls 31, 43 of each straw hood 27 to prevent straw from becoming wrapped around the shaft 37. Each shield 42 has a flange 44 extending a short distance axially of the shaft 37.'
  • The discharge assist means 36 are driven from the , separator rotor 23 via a belt 45 extending between a pulley 46 on the rotor 23 and & pulley 47 on the shaft 37, via a reversing pulley 48, and a tension pulley 49. Thus the discharge assist means 36 are rotated clockwise, as already mentioned, which is contrary to the direction of rotation of the rotor 23. The shaft 37 is journalled in four bearings 50 mounted in respective sidewalls 31 and in intermediate walls 50', as seen in Figure 3. The desired path of the straw in being transported from the rotor 23 to the rear,. discharge end of the machine is indicated at 51 and it will be seen that each discharge assist means 36 is located below this path between the rotor 23 and the discharge end of the machine. Thus in normal circumstances, the discharge assist means 36 do not engage the straw which is important as regards the mode of operation in which the straw is formed- into a central windrow. This is because the threshing rotor 18 and the separator rotors 22, 23 have relatively aggressive actions on the crop material with a tendency to,produce shorter and more broken pieces of straw than a machine not employing rotary separating means. Therefore, any engagement of the straw with the discharge assist means would increase the likelihood of straw chopping and breakage which is undesirable when the straw is to be conserved for baling, for example.
  • The action of each discharge assist means 36 is primarily that of a fan, whereby a stream of air is produced generally in the direction of the desired path 51 of straw discharge to assist in keeping the straw confined to that path. However, in the event that crop and/or operating conditions are such that the straw has a tendency to fall on to the discharge assist means 36 in passing through the straw hoods 27, then the blades 39 serve positively to deflect the straw in the intended paths 51 and thus prevent it from being discharged from the machine prematurely and in all likelihood on to the steerable wheels 4 and associated wheel axle with the possible consequence of the straw building up on these components and eventually blocking the entire straw discharge facilities of the machine. This arrangement of the discharge assist means 36 not only minimises straw breakage, unlike the discharge beaters of known machines, but also minimises power consumption (due to minimal contact with the straw) which is another very important consideration.
  • The deflectors 28 are shown in greater detail in Figure 5 and are in the form of doors hinged at 52.about a generally vertical axis, the hinges being secured to the respective sidewalls 31. Latches 53 are provided for securing the deflectors in the selected position, the latches comprising, for each deflector, a pair of latch members 54 pivoted at 55 to the deflectors and also pivoted at 56 to an actuating bar 57. Each latch member 54 has an extension 58 which passes through an associated slot in an edge flange 59 of -. the deflector 28 for engagement with a slot in a bracket 61 attached to the adjacent sidewall 31 (Figure 5) when the deflectors are positioned so as to allow straw to pass to the straw choppers 33. In the alternative position shown in broken lines in Figure 4, the latch member extensions 58 engage respective slots in respective vertical beams 62 which are part of the chassis 2.
  • Each bar 57-.is formed with a handle 63 at the lower end and the other end is attached to the associated deflector 28 by a spring 64, the bar being movable in a generally downward vertical direction against the spring to pivot the latch members 54 and so release the latch member extensions 58 from either the slots in the brackets 61 or the slots in the beams 62, as the case may be. The deflectors 28 can then be swung to the alternative position and the handles 63 released, whereby the springs 64 pull the handles upwardly, thus pivoting the latch members clockwise as seen in Figure 5 to engage the extensions 58 with the newly selected slots. Movement of the bars 57 is guided by respective brackets 65 attached to the deflectors 28 and having slots through which the bars pass.
  • Returning now to the straw choppers 33, these are generally conventional devices although not so the drive thereto as will be explained. The two straw choppers 33 are mounted on respective shafts 66 (Figure 2) which carry axially spaced lugs 67 to which are pivotally attached clusters of knives 68. The knives 68 cooperate with stationary blades 69 adjustably mounted in a panel 71 associated with each chopper 33. Each panel 71 has a straight portion which acts as the deflector 32, to deflect straw into the related chopper 33, followed by an arcuate . portion 73 complementary to the circle generated by the tips of the rotating knives 68, which portion acts to guide straw to the outlets 34, and terminating in another generally straight portion 74 forming the top of the related outlet 34.
  • ; The straw choppers 33 are driven from a shaft 75 which in turn is driven by the engine (not shown) via a belt 76 extending around an input pulley 77 mounted on one end of the shaft 75 by bearings 78, whereby it is rotatable relative to the shaft when a magnetic clutch 79 is inoperative. When the clutch 79 is rendered operative, the pulley 77 is clutched to the shaft 75, whereby the latter is driven, and hence the straw choppers 33 are driven in a clockwise direction (as seen in Figure 2) via respective pulleys 81 on the shaft 75, pulleys 82 on the shafts 66, and belts 83. In operation, the pulley 77 is continuously rotated but the clutch 79 is .actuated only when the straw choppers 33 are required for use.
  • Contrary to the arrangement of conventional straw choppers, the direction of rotation of each chopper unit 33 is such that the straw is moved overtop with respect to the chopper rotors as it moves from the chopper inlets to the stationary knives 69.' With this arrangement, the transfer of straw through the chopper units 33 is generally aligned with the path 51 of the straw within the straw hoods 27 immediately prior to entering the chopper units, whereby the movement of the straw is smooth and without any abrupt change of direction which reduces greatly the risk of plugging.
  • The straw chopper drive shaft 75 is mounted in a special manner and is in fact floatingly mounted in order to maintain tension in the belt 76 and the two belts 83 without the need to employ the usual tension pulleys. In view of the fact that one end of the shaft has the belt 76 and one belt 83 associated therewith, and in view of the fact that these two belts extend generally orthogonally giving an angled line of drive between the engine and the straw choppers, then this end of the shaft needs to be capable of two degrees of movement to be able to tension both belts. The other end of the shaft 75 needs only to be capable of one degree of movement since only one of the belts 83 is associated therewith. Figures 6 to 9 show the details of the mounting of the shaft 75.
  • Looking first at the two degree of floating movement afforded to the left-hand end of the shaft 75 (as seen in Figure 8), this is accomplished by a parallelogram linkage arrangement generally indicated at 84 and comprising a - generally horizontal beam 85 attached to a portion 86 of the main frame or chassis 2 of the machine, a beam 87 generally parallel to the beam 85 and carrying a bearing housing 88 for the associated end of the shaft 75, a generally upright beam 89 pivotally attached at respective ends to the beams 85 and 87, and a rod 91 generally parallel to the beam 89 and also pivotally attached at respective ends to the beams 85 and 87. As seen in Figure 9, the beam 89 is offset from the beam 85 and is pivoted on upper and lower spigots 92,93 carried by the beam 85 and the beam 87, respectively, the beam 87 being generally coplanar with the beam 85. The rod 91 is pivotally attached at the lower end to a lug 90 carried by the beam 87 and is slidingly received towards its other end in a slot in a hexagonal abutment member 94 which is pivotally mounted between two arms 95 extending from the beam 85 by respective spigots 96. A compression spring 97 providing tensioning means for the belt 83 acts between a flat on the hexagonal member 94 and a further abutment in the form of a washer 98 provided on the rod 91 and held in a selected position by a nut 99 received on the upper and threaded end of the rod. A cylinder 101 is placed over the spring 97 and serves to limit the compression of the latter by acting between the washer 98 and member 94 when the compression limit is reached.
  • The bearing housing 88 for the end of the shaft 75 is pivotally connected via a plate 100 to one end of a further rod l02 which is also slidingly received in a slot in a further hexagonal abutment member l03 similar to the member 94, the member l03 being mounted between spaced arms 104 and 104' (Figure 9) extending from the beam 85. A compression spring 105 providing tensioning means for the belt 76 acts between a flat on the hexagonal member 103 and a washer l06 held by a nut l07 on the outer and threaded end of the rod 102, again a cylinder l08 enveloping the spring in order to limit compression thereof. A self-aligning (spherical) bearing l09 is mounted in the bearing housing 88 and the shaft 75 is journalled therein..
  • The springs l05 and 97 serve to urge the related end of the shaft 75 to the right and upwardly, respectively, (as seen in Figure 6) in order to tension the belts 76 and 83, the one movement being independent of the other by virtue of the parallelogram mounting arrangement for this end of the shaft. As the spring l05 urges the rod l02 to the right as seen in Figure 6, this moves the bearing housing 88, and hence shaft 75 and beam 87, in the same direction, the spring thus effectively acting on the parallelogram arrangement. Movement of the beam 87 results in the lower ends of the beam 89 and rod 91 also moving to the right whilst simultaneously pivoting and thus not imparting any substantial vertical movement to the shaft 75 which would affect the tension in one or both belts 83. Likewise, the spring 97 urges the rod l02 upwardly which pulls the beam 87, and hence bearing housing 88 and shaft 75, upwardly to tension the belt 83 without significantly affecting the tension in the belt 76.
  • Looking now to the other end of the shaft 75 (Figure 7), this has only one degree of movement, as already explained, and this is accomplished by a generally horizontal beam 111 pivotally attached at one end to the main frame or chassis 2 of the machine and being pivotally attached at the other end to one end of a generally vertical rod 112 slidingly received towards its other end in a slot provided in a bracket 113 attached to the main frame 2. The upper end of the rod 112 is threaded and receives a nut 110 which retains a washer 114. A compression spring 115 acts between the washer 114 and bracket-113 and a cylinder 116 surrounds the spring to limit compression thereof, the spring providing tensioning means for the associated belt 83.
  • The spring 115 urges the rod 112 upwardly which pulls the beam 111 carrying a bearing housing 117 for the shaft 75 and movement of the beam thus moves the bearing housing and the shaft, whereby the related belt 83 is tensioned. Again, a self-aligning (spherical) bearing 118 is provided in the housing 117 for the shaft 75. It will be appreciated that the self-aligning bearings l09 and 118 at respective ends of the shaft 75 allow movement of one end for belt tensioning purposes independent of movement of the other end. Further, it will be appreciated that the tension in the belts 76 and 83 is automatically maintained (whereby belt stretch is constantly compensated), and that the initial tension can be set by adjusting the nuts 99, 107 and 110 and hence altering the compressions of the related springs.
  • Returning now to Figures 2 and 4, it will be seen that the combine harvester is provided with the usual air screen 119 through which air is drawn for cooling the engine coolant and/or transmission fluid, the air screen comprising a perforated member 121 in the form of a cylinder closed at one end, save for the perforations in the end as well as in the body, and mounted for rotation. Within the member 121 there is provided a stationary sector 122 (Figure 2) which is inperforate and serves to blank off the perforations in successive portions of the member (both at the end and in the body) as the latter rotates past the sector. In this way, any dust, chaff or other foreign matter sucked on to the outer surface of the member 121 by the air passing therethrough is released and needs to fall clear of the air screen to avoid being sucked back to portions of the air screen on either side of the sector 122. To this end, the sector 122 is arranged at the lowermost portion of the member 121 but in the illustrated embodiment, this means immediately adjacent the top 123 of one of the straw hoods 27 since the air screen 119 is mounted on a panel 124 of the main frame 2 over that straw hood. A transversely extending and generally upright panel 125 extends from the panel 124, whereby the air screen 119 is generally confined at one side and at its lower end which therefore increases the risk of foreign matter being re-circulated on the air screen rather than falling clear thereof.
  • In the illustrated arrangement, an attempt was made to conduct the released foreign matter away from the air screen 119 through a conduit leading from the latter. Whilst the air flow created-by rotation of the air screen 119 was found sufficient to blow the foreign matter part way down the conduit, it was insufficient to ensure reliable removal of such foreign matter under all conditions. Furthermore, it was noticed that short pieces of straw, which inevitably swirl around the combine harvester in operation, collected on the top 123 of the straw hood 27, especially in the corner at the transverse panel 125 and the top 123. This straw builds up very quickly to such an extent that the top layer is "held" in sliding contact with the air screen 119 thu.s greatly impairing the operation of the latter. Furthermore, such a build up of straw in the vicinity of the engine produces an unacceptable fire hazard.
  • It has been found that by providing an aperture 127 in the top 123 of the straw hood 27 not only is all of the foreign matter released from the air screen 119 by the sector 122 taken clear of the air screen, thereby preventing recirculation, but the straw collected on the top 123 around the air screen is to a large extent also cleared. The aperture 127 is rectangular (as shown in Figure 4) and extends transversely of the machine, with an upwardly and forwardly inclined deflector 128 being provided along the downstream edge with respect to the direction of rotation of the air screen. In addition, a shield 129 extends from the outer edge of the.deflector 128, beneath the air screen member 121, to the transverse panel 125. The shield 129 is located at the outer edge of the top 123 of the straw hood 27. The deflector 128 is formed with a flange 131 by which it is attached to the underside of the top 123 of the straw hood 27, .this arrangement providing a smooth surface over which the foreign matter and straw can flow which would not be the case if the flange 131.were attached to the upper side of the top 123. The latter arrangement could result in build-up of material leading to blockage of the aperture 127.
  • It is thought that the somewhat surprising clearance of both foreign matter and straw through the aperture 127 along the path 126 is a result of the combined action of the rotating air screen 119 producing a flow of air towards the aperture,and the flow of straw within the straw hood 27 from the separator rotor 23 producing a further and assisting stream of air which is augmented by the action of the related discharge assist means 36.. However, satisfactory clearance has been achieved with the air screen rotating and the rotors 18, 21, 22 and 23 and the discharge assist means 36 held stationary.
  • Turning now to Figures 10 to 12, Figure 10 repeats the extreme left-hand portion of Figure 2 but shows in addition the location of the separator rotor 22 in relation to the rotor 23 and separator housing 26. It will be seen that the ends of the separator mechanism 23, 25 are contained within further housings each formed by a top wall 132 integral with the top wall of the associated separator housing 26, a front transversely extending wall 133 which bridges the associated sidewall 31 with a further but inset sidewall 31' of the machine, and a bottom wall 134 which is V-shaped as seen in end view (Figure 10) and which houses a grain auger 135. Within an aperture in each wall 133 there is mounted a grain loss sensor 136 which closes off the aperture and which as shown in Figures 11 and 12, comprises a rectangular, dished mounting plate 137 having a flange 138 around its periphery by which it is bolted to the wall 133. A polycarbonate sheet 139 is mounted within, but spaced from,the mouth of the dished plate 137, being spaced also from the main surface of the plate. The space between the sheet 139 and the adjacent surfaces of the plate 137 is filled with a shock resistant material, such as polyurethane foam,and the edges of the sheet are sealed to the plate by a flexible sealant. The sheet 139 carries a piezoelectric crystal 141 which is thus vibrationally isolated from the combine harvester so that spurious signals therefrom are substantially eliminated. The plate 139 and crystal 141 face into the associated further housing at the end of the separator mechanism 23, 25. Any grain separated through the concave 25 at the location of the grain loss sensor 136 are moved generally radially outwardly through the concave and strike the plate 139 thus vibrating it and inducing a signal in the crystal 141 which is representative of the grain still present in the straw and thus of the grain which is going to be lost by virtue of it being discharged with the straw. Measurements have indicated that signals produced by grain separated just prior to the actual discharge ends of the separator mechanism 2C, 25 are indeed representative of the grain losses actually `occurring at the discharge ends.
  • The location of the grain loss sensors 136 in the vertical walls 133 of the further housings is particularly advantageous in that the sensors are highly accessible, unlike the sensors of the prior art, and yet they function in no less satisfactory manner. Furthermore and even more importantly, there is no likelihood of straw becoming hooked around the sensor resulting in plugging of the machine as there is when the sensor is mounted in the path of crop material below the separating rotor or straw walkers in known machines. This is because, on the one hand, the grain loss sensors 136 are mounted in generally vertical positions in an offset relationship with respect to the separator mechanism 23, 25 rather than below the latter and, on the other hand, because each sensor is made an integral part of the associated wall'133 which, furthermore, is oriented generally vertically.
  • In operation, the combine harvester is driven into standing crop which is cut by the sickle bar 10, consolidated centrally of the machine by the header auger 16 and transported to the threshing cylinder 18 by the crop elevator 13. The threshed crop material issuing from the threshing cylinder is fed to the first separator rotor 22 with the assistance of the beater 21 and then passed to the second separator rotor 23..All grain separated from the crop material falls to the cleaning mechanism 11 through the concaves or grates associated with the threshing, beating and separating components referred to, and once cleaned is transported to the grain tank 8.
  • Before commencing operation, the operator selects whether the straw is to be chopped or windrowed and sets the deflectors 28 in the full or broken line positions, respectively, as seen in Figure 4 by operating the handles 63 to release the latch members 54, swinging the deflectors to the required position and releasing the handles to allow the latch members to engage either the brackets 61 or the beams 62, as the case may be. If straw chopping is required, then the operator also has to actuate the clutch 79 in order to drive the shaft 75 and hence the straw choppers 33 through the belts 83.
  • The discharge of straw from the separator rotor 23 is assisted by the discharge assist means 36, as described, and the stream of straw flowing past the aperture 127 in one of the straw hoods 27 helps to clear the dust, chaff, etc., released from the air screen 119, and also to clear pieces of straw, etc which tend to collect on top of that straw hood around the air screen. Grain separated at the respective ends of the separator mechanism23, 25 impacts upon the associated grain loss sensor 136 which produce signals representative of the grain loss being experienced at that particular time at the discharge end of the separator mechanism.
  • As already described, the special flotation arrangement for the shaft 75 ensures that tension in the belts 76 and 83 is automatically held substantially constant so that drive to the straw choppers 33 is always maintained, when required.

Claims (7)

1. A combine harvester comprising a main frame (2), rotary separating means (23,25) mounted on the frame transversely of the machine and operable to subject crop material to a separating action whilst moving it spirally therearound to respective ends of the separating means and chopping means (33) associated with respective ends of the separating means (23,25), but spaced therefrom, so as to be capable of receiving crop material from the separating means, characterized in that deflector means (28) are provided which are pivotable about generally vertical axes (52) and which are disposed between each end of the separating means (23,25) and the associated chopping means (33), and which are selectively positionable so as either to allow crop material to flow to the chopping means (33) from the separating means (23,25), or to deflect crop material inwardly of the machine for discharge from the latter in a central windrow.
2. A combine harvester according to claim 1, characterized in that each deflector means (28) is disposed generally parallel to a sidewall 131) of the machine when in the position in which flow of crop material to the chopping means (33) can take place.
3. A combine harvester according to claim 2, characterized in that each deflector means (28) is hingedly mounted on an outer sidewall (31) of the- machine, and in that the deflector means (28) lies against that sidewall (31) when in the position in which flow of crop material to the chopping means (33) can take place.
4. A combine harvester according to any of the preceding claims, characterized in that each deflector means (28) is provided with latch means (53) for releasably securing the deflector means (28) in a selected position.
5. A combine harvester according to claim 4, characterized in that each latch means (53) comprises at least one latch member (54) pivotally mounted (55) on the associated deflector (28) and pivotally attached (56) to an actuating member (57) operable to engage or disengage the latch member (54) with latch receiving means (61-62) on the main frame (2) located appropriate to the alternative positions of the deflector means (28).
6. A combine harvester according to any of the preceding claims, characterized in that each chopping means (33) comprises a rotor (66,67,68) fitted with knives (68)and is rotatable in a direction such that crop material passes over the rotor in being chopped and subsequently discharged from the machines.
7. A combine harvester according to claim 6, characterized in that each chopping means (33) further comprises a shield member (71) having an upwardly and forwardly extending portion (32) overlying the rotor and operable to deflect crop material issuing from the separating means (23,25) into the chopping means (33), an arcuate portion (73) complementary to the circle generated by the rotor (66,67,68) and operable to guide crop material through the chopping means,(33), and a downwardly and rearwardly extending portion (74) forming part of a discharge outlet (34) for the chopping means (33).
EP84200233A 1983-02-25 1984-02-21 Combine harvesters Expired EP0117590B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB838305259A GB8305259D0 (en) 1983-02-25 1983-02-25 Combine harvesters
GB8305259 1983-02-25

Publications (2)

Publication Number Publication Date
EP0117590A1 true EP0117590A1 (en) 1984-09-05
EP0117590B1 EP0117590B1 (en) 1987-05-06

Family

ID=10538596

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84200233A Expired EP0117590B1 (en) 1983-02-25 1984-02-21 Combine harvesters

Country Status (5)

Country Link
US (1) US4489734A (en)
EP (1) EP0117590B1 (en)
CA (1) CA1222920A (en)
DE (1) DE3463432D1 (en)
GB (1) GB8305259D0 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0595382A1 (en) * 1992-10-27 1994-05-04 New Holland Belgium N.V. Deflector plate for straw chopper
KR101275344B1 (en) * 2004-01-20 2013-06-14 뉴트리션 쎄라퓨틱스, 인크. Method of using punicic acid to enhance immune response and prevent metabolic disorders

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3735669A1 (en) * 1987-10-22 1989-05-03 Claas Ohg HARVESTER
DE3834102A1 (en) * 1988-10-07 1990-04-12 Claas Ohg HARVESTER
US5112279A (en) * 1991-05-10 1992-05-12 Deere & Company Discharge structure for an axial separator
US6729951B2 (en) * 2002-03-28 2004-05-04 Bechtel Bwxt Idaho, Llc Method and apparatus for selectively harvesting multiple components of a plant material
DE10215026A1 (en) 2002-04-05 2003-11-06 Deere & Co Combine harvester with motorized straw guide
US6939221B1 (en) * 2004-04-26 2005-09-06 Redekop Chaff Systems Ltd. Combine harvester with a spreader having independent spread width control
US7744450B2 (en) * 2006-09-28 2010-06-29 Battelle Energy Alliance, Llc Particulate residue separators for harvesting devices
US7485035B1 (en) * 2007-09-28 2009-02-03 Cnh America Llc Control system for an adjustable deflector
US7731578B2 (en) * 2007-11-01 2010-06-08 Iowa State University Research Foundation, Inc. Air movement unit for biomass conveyance, separation, or combine performance enhancement
US7654892B2 (en) * 2007-11-29 2010-02-02 Deere & Company Tailings re-thresher deflector
US8038518B2 (en) * 2008-04-24 2011-10-18 Deere & Company Fluid cooler located in an air stream of a work assembly of an agricultural combine
US9107349B2 (en) 2012-08-31 2015-08-18 Cnh Industrial America Llc System and method for controlling the spreading of crop residue expelled from an agricultural combine
US9137944B2 (en) 2012-08-31 2015-09-22 Cnh Industrial America Llc Windrow door for an agricultural combine
US8992294B2 (en) 2012-08-31 2015-03-31 Cnh Industrial America Llc Windrow door assembly for an agricultural combine
BE1021163B1 (en) * 2013-09-19 2016-01-15 Cnh Industrial Belgium Nv CUTTER WITH HIGH-CLEANING SET-UP.
BE1024322B1 (en) * 2016-06-28 2018-01-29 Cnh Ind Belgium Nv Fan in threshing drum to prevent blocking of a straw cover
WO2019199898A2 (en) * 2018-04-11 2019-10-17 Cnh Industrial America Llc Rotational rotor discharge deflector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2444550A1 (en) * 1974-09-18 1976-04-01 Hermann Maier Combine harvester with straw chopper - one wall of chopper movable to cover or open opening of discharge shaft
US4056107A (en) * 1976-04-26 1977-11-01 Sperry Rand Corporation Crop residue deflector means
GB2063033A (en) * 1979-11-14 1981-06-03 Sperry Nv Combine harvester
DE3122920A1 (en) * 1980-06-11 1982-05-19 Sperry N.V., 8210 Zedelgem "HARVESTING MACHINE, IN PARTICULAR HARVEST"

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2854046A (en) * 1956-06-20 1958-09-30 Arthur F Devorak Windrowing attachment for combine having a straw chopper
US3018718A (en) * 1958-02-18 1962-01-30 Welger Geb Baler and straw cutter for harvester thresher
AT262680B (en) * 1961-12-01 1968-06-25 Lely Nv C Van Der Drum turner
DE2529019A1 (en) * 1975-06-28 1977-01-20 Fahr Ag Maschf ATTACHMENTS
DE2836099C3 (en) * 1978-08-17 1981-10-22 Gebr.Claas Maschinenfabrik GmbH, 4834 Harsewinkel Combine harvester with a chopper at the end of a straw chute

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2444550A1 (en) * 1974-09-18 1976-04-01 Hermann Maier Combine harvester with straw chopper - one wall of chopper movable to cover or open opening of discharge shaft
US4056107A (en) * 1976-04-26 1977-11-01 Sperry Rand Corporation Crop residue deflector means
GB2063033A (en) * 1979-11-14 1981-06-03 Sperry Nv Combine harvester
DE3122920A1 (en) * 1980-06-11 1982-05-19 Sperry N.V., 8210 Zedelgem "HARVESTING MACHINE, IN PARTICULAR HARVEST"

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0595382A1 (en) * 1992-10-27 1994-05-04 New Holland Belgium N.V. Deflector plate for straw chopper
KR101275344B1 (en) * 2004-01-20 2013-06-14 뉴트리션 쎄라퓨틱스, 인크. Method of using punicic acid to enhance immune response and prevent metabolic disorders

Also Published As

Publication number Publication date
GB8305259D0 (en) 1983-03-30
EP0117590B1 (en) 1987-05-06
DE3463432D1 (en) 1987-06-11
CA1222920A (en) 1987-06-16
US4489734A (en) 1984-12-25

Similar Documents

Publication Publication Date Title
US4489734A (en) Straw discharge deflectors for combine harvesters
CA1046887A (en) Straw discharge means of harvesting machines
US4540003A (en) Offset grain loss sensor for combine harvesters
US8079900B2 (en) Harvester with an additional drum conveyor for straw removal and a single flap for changing between swath deposit and chopping operation
EP0701772B1 (en) Cleaning means for an agricultural harvesting machine
US7950989B2 (en) Combine with an endless conveyor that can be moved between a swath depositing position and a chopper position
US4552547A (en) Straw chopper drive
US4510948A (en) Discharge assist means for combine harvesters
CA1112975A (en) Isolated pneumatic cleaning system
US11744177B2 (en) Cross vented residue disposal system for an enclosed combine body
US4628946A (en) Harvesting machine including chopper means
US4292981A (en) Combine harvester conveyor
CA2252935C (en) Straw chopper
CA1222919A (en) Combine harvester straw hood
EP0516889B1 (en) Deflector means in front of the threshing mechanism of a combine harvester
EP0516894B1 (en) Threshing drum with two-part concave
EP0516893B1 (en) Improved access to the threshing means of a combine harvester
US4149543A (en) Straw discharge means of harvesting machines
EP0516892B1 (en) Improved stone trap for a combine harvester
EP0595382B1 (en) Deflector plate for straw chopper
EP0516891B1 (en) Pivotable grain and chaff elevator
EP0516890A1 (en) Grain and chaff elevator for a combine harvester

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19840221

AK Designated contracting states

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19860131

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NEW HOLLAND N.V.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 3463432

Country of ref document: DE

Date of ref document: 19870611

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011214

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011219

Year of fee payment: 19

Ref country code: DE

Payment date: 20011219

Year of fee payment: 19

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030902

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST