EP0048325B1 - Heissgaskühler mit einem Druckbehälter - Google Patents

Heissgaskühler mit einem Druckbehälter Download PDF

Info

Publication number
EP0048325B1
EP0048325B1 EP81105938A EP81105938A EP0048325B1 EP 0048325 B1 EP0048325 B1 EP 0048325B1 EP 81105938 A EP81105938 A EP 81105938A EP 81105938 A EP81105938 A EP 81105938A EP 0048325 B1 EP0048325 B1 EP 0048325B1
Authority
EP
European Patent Office
Prior art keywords
hot gas
pressure vessel
insert
shell
jacket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81105938A
Other languages
English (en)
French (fr)
Other versions
EP0048325A3 (en
EP0048325A2 (de
Inventor
Georg Ziegler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer AG
Original Assignee
Gebrueder Sulzer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=4319189&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0048325(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Gebrueder Sulzer AG filed Critical Gebrueder Sulzer AG
Publication of EP0048325A2 publication Critical patent/EP0048325A2/de
Publication of EP0048325A3 publication Critical patent/EP0048325A3/de
Application granted granted Critical
Publication of EP0048325B1 publication Critical patent/EP0048325B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1838Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines the hot gas being under a high pressure, e.g. in chemical installations
    • F22B1/1846Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines the hot gas being under a high pressure, e.g. in chemical installations the hot gas being loaded with particles, e.g. waste heat boilers after a coal gasification plant
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/78High-pressure apparatus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/86Other features combined with waste-heat boilers

Definitions

  • the invention relates to a hot gas cooler according to the preamble of claim 1.
  • a hot gas cooler of this type is known from DE-OS 27 26 716 in the form of a high-temperature waste heat boiler.
  • the hot gas inlet channel is located at the lower end of the pressure vessel, so that the pressure compensation connection also branches off in the area of the lower end. If, for example, a leak is formed halfway up the cooling insert, hot gas passes through the cooling insert into the intermediate space because the gas pressure in the intermediate space decreases as a result of the leak. The gas entering the gap through the leak hits the wall of the pressure vessel and can locally overheat this wall, which could lead to a container explosion.
  • this object is achieved by the features of the characterizing part of claim 1.
  • the hot gas inlet duct and thus also the pressure compensation connection at the upper end of the interior, a higher pressure is established on the outside of the cooling insert because of the cooler gas column there than on its inside, and that over the entire height of the insert.
  • the pressure in the space is increased by connecting the pressure compensation connection in the area of the interior that is enlarged compared to the inlet duct. It is thereby achieved that if a leak occurs on the cooling insert, no hot gas can flow outward into the intermediate space through the leak, but at most cooled gas from the intermediate space enters the interior of the cooling insert.
  • Claim 3 teaches an appropriate use of existing elements as a cooler.
  • Claim 4 shows one of the invention's own possibilities for controlling the leakage: If a significant leakage occurs, the temperature of the gas rises in the area of the cooler outlet. This temperature is therefore a suitable measure of the size of a leak.
  • the features of claim 5 provide a way of comparing the measured temperature, so that leakage can also be inferred when starting and stopping as well as when changes in load.
  • a hot gas cooler 1 consists of a pressure vessel 2 with a cylindrical, double-walled insert 3, which is supplied below with cooling water via a radial supply nozzle 4.
  • the insert 3 forms a conical surface 6, to which a neck 8 connects, to which an outlet connection 9 for the cooling water is provided.
  • the neck 8 penetrates the pressure vessel 2 through a nozzle 10 with a flange 11.
  • the insert 3 has a flange 12 to which a funnel 16 with a neck 18 is tightly connected via a bellows 14.
  • This neck 18 also penetrates the pressure vessel 2 through a connector 20 with a flange 21.
  • the necks 8 and 18 are connected to the connectors 10 and 20 in a gas-tight manner.
  • a pressure compensation connection 30 is now provided in the area of the cone surface 6, which opens into the intermediate space 5 via a cooler 32 forming the cooling section.
  • the cooler 32 is connected in parallel to the flow path of the coolant in the insert 3 via a supply line 35 and a discharge line 36.
  • At the outlet of the cooler 32 there is a thermocouple 38 which is opposed by a thermocouple 39 installed in the space 5.
  • the thermocouples 38 and 39 are electrically connected in series in such a way that the signal directed to a display device 40 is proportional to the temperature difference at the measuring points of the two thermocouples 38 and 39.
  • a gas of, for example, 1,400 ° C. flows from the hot gas source (not shown) through the neck 8 into the interior 7 of the insert 3, in which it emits heat to the cooled insert 3 primarily by gas radiation.
  • the gas leaves the insert via the neck 18.
  • a pressure is set in the intermediate space 5, which is the same as the pressure on the conical surface 6, because when the system starts up, the gas in the insert increases with increasing pressure Pressure compensation connection 30 flows into the intermediate space 5 via the cooler 32.
  • the gas stagnating in the intermediate space 5 assumes a temperature which lies between the wall temperature of the insert 3 and that of the pressure vessel 2.
  • a leak now occurs for example on the bellows 14, a flow which depends on the pressure drop between the conical surface 6 and the bellows 14 forms in the intermediate space 5, the hot gas being cooled to a still permissible temperature depending on the amount of gas flowing through the leak .
  • the temperature drop in the cooler 32 is smaller with a large flow rate than with a small flow rate, it forms a measure of the size of the leak. This drop in temperature can be measured by determining the temperature at the inlet and outlet of the cooler 32 or by comparison with the undisturbed temperature, as shown in FIG gur 1 is shown.
  • an alarm device can be provided, which can also directly actuate a shutdown device if the input signal is correspondingly high.
  • the insert in FIG. 2 consists of a shirt 42 with an interior space 7 and a jacket 43, both of which are formed in their central section 44 as concentric circular cylinders with dense walls.
  • Shirt and coat consist of tubes 50 welded to one another via webs.
  • the tubes 50 of the shirt 42 are forked in a lower region 45, so that they no longer form a partition there, but instead allow the flue gas flowing through the shirt to pass into an annular space 25 between the shirt 42 and coat 43.
  • All tubes 50 are connected at their lower end to a distributor 52.
  • a part of the tubes 50 forming the jacket is bent outwards in a knee shape from the cylinder surface, so that the openings of the tubes 50 in the distributor 52 do not lie on the same jacket line, which would lead to a weakening of the distributor.
  • the webs each extend between adjacent straight tubes, so that the jacket 43 also forms a gas-tight wall in section 45.
  • the tubes 50 are bent toward the axis of the pressure vessel.
  • Part of the tubes of the shirt as well as the jacket form gas-tight shoulder surfaces 55 and 57 and gas-tight, adjoining necks 59 and 60.
  • Shirt 42 and coat 43 are hung on drawstrings 64 and 65 on two beam wreaths 68 and 69.
  • the drawstrings 64 are connected in the area between the two shoulders 55 and 57 to form a dense cylindrical wall.
  • the tubes of the neck 59 are an upper edge of the neck but they are deflected upwards at the lower end of the shirt and leave the annular space 25 via the line 78. Slag and soot particles fall largely into the funnel 16 due to the force of gravity, from which they flow with the water introduced there can be discharged.
  • the tubes 50 of the shirt 42 and the jacket 43 which are welded to one another form, for example, heating surfaces, preferably evaporator heating surfaces of a steam generator through which the flow is forced.
  • the tubes 50 can also be directly gas-tightly welded to one another instead of via webs.

Description

  • Die Erfindung betrifft einen Heissgaskühler nach dem Oberbegriff des Anspruchs 1.
  • Ein Heissgaskühler dieser Art ist aus der DE-OS 27 26 716 in Form eines Hochtemperatur-Abhitzekessels bekannt. Bei diesem Abhitzekessel befindet sich der Heissgaseintrittskanal am unteren Ende des Druckgefässes, do dass auch die Druckausgleichsverbindung im Bereich des unteren Endes abzweigt. Bildet sich beispielsweise in halber Höhe des Kühleinsatzes ein Leck, so tritt heisses Gas durch den Kühleinsatz hindurch in den Zwischenraum, weil infolge des Lecks der Gasdruck im Zwischenraum sich erniedrigt. Das durch das Leck in den Zwischenraum eintretende Gas trifft auf die Wand des Druckgefässes und kann dabei diese Wand lokal überhitzen, was zu einer Behälterexplosion führen könnte.
  • Es ist Aufgabe der Erfindung, bei einem Heissgaskühler der eingangs genannten Art sicherzustellen, dass im Falle einer Leckbildung am Kühleinsatz eine Gasströmung nur aus dem Zwischenraum in den Kühleinsatz hinein auftritt, sodass die Behälterwand ausschliesslich von gekühltem Gas bestrichen wird.
  • Diese Aufgabe wird erfindungsgemäss durch die Merkmale des Kennzeichens des Anspruchs 1 gelöst. Durch das Anordnen des Heissgaseintrittskanals und damit auch der Druckausgleichsverbindung am oberen Ende des Innenraumes stellt sich auf der Aussenseite des Kühleinsatzes wegen der dort kühleren Gassäule ein höherer Druck ein als auf seiner Innenseite, und zwar über die gesamte Höhe des Einsatzes. Überdies wird durch den Anschluss der Druckausgleichsverbindung im Bereich des gegenüber dem Eintrittskanal erweiterten Innenraumes der Druck im Zwischenraum erhöht. Dadurch wird erreicht, dass bei einem Auftreten eines Lecks am Kühleinsatz kein Heissgas durch das Leck nach aussen in den Zwischenraum strömen kann, sondern allenfalls gekühltes Gas aus dem Zwischenraum in den Innenraum des Kühleinsatzes gelangt.
  • Die Merkmale nach Anspruch 2 ergeben eine besonders raumsparende Lösung bei verhältnismässig kurzem Druckbehälter.
  • Anspruch 3 lehrt eine zweckmässige Ausnützung bereits vorhandener Elemente als Kühler.
  • Anspruch 4 zeigt eine der Erfindung eigene Möglichkeit zur Kontrolle der Leckage: Tritt eine erhebliche Leckage auf, so steigt die Temperatur des Gases im Bereich des Kühlerausgangs. Diese Temperatur ist somit ein geeignetes Mass für die Grösse einer Leckage.
  • Die Merkmale nach Anspruch 5 schaffen eine Vergleichsmöglichkeit für die gemessene Temperatur, sodass auch beim An- und Abfahren sowie bei Laständerungen auf eine Leckage geschlossen werden kann.
  • Die Erfindung wird nun an in der Zeichnung schematisch dargestellten Ausführungsbeispielen näher erläutert.
  • Es zeigen:
    • Figur 1: einen Längsschnitt durch einen Heissgaskühler mit Einbauten.
    • Figur 2: einen ebensolchen Längsschnitt durch einen Heissgaskühler gemäss Anspruch 2.
  • In Figur 1 besteht ein Heissgaskühler 1 aus einem Druckbehälter 2 mit einem zylindrischen, doppelwandigen Einsatz 3, der unten über einen radialen Zufuhrstutzen 4 mit Kühlwasser versorgt wird. Oben bildet der Einsatz 3 eine Konusfläche 6, an die ein Hals 8 anschliesst, dem ein Austrittsstutzen 9 für das Kühlwasser vorgesehen ist. Der Hals 8 durchdringt den Druckbehälter 2 durch einen Stutzen 10 mit Flansch 11.
  • Am unteren Ende weist der Einsatz 3 einen Flansch 12 auf, an dem über einen Balg 14 ein Trichter 16 mit Hals 18 dicht angeschlossen ist. Dieser Hals 18 durchdringt ebenfalls den Druckbehälter 2 durch einen Stutzen 20 mit Flansch 21. Die Hälse 8 und 18 sind mit den Stutzen 10 bzw. 20 gasdicht verbunden.
  • Nach der Erfindung ist nun im Bereich der Konusfläche 6 eine Druckausgleichverbindung 30 vorgesehen, die über einen die Kühlstrecke bildenden Kühler 32 in den Zwischenraum 5 mündet. Der Kühler 32 ist über eine Zufuhrleitung 35 und eine Abfuhrleitung 36 zum Strömungspfad des Kühlmittels im Einsatz 3 parallelgeschaltet. Am Austritt des Kühlers 32 ist ein Thermoelement 38 angeordnet, dem ein im Raum 5 angebrachtes Thermoelement 39 gegenübersteht. Die Thermoelemente 38 und 39 sind elektrisch derart in Serie geschaltet, dass das auf ein Anzeigegerät 40 geleitete Signal der Temperaturdifferenz an den Messstellen der beiden Thermoelemente 38 und 39 proportional verläuft.
  • Bei Normalbetrieb strömt von einer nicht gezeichneten Heissgasquelle ein Gas von beispielsweise 1 400 °C durch den Hals 8 in den Innenraum 7 des Einsatzes 3, in dem es vorwiegend durch Gasstrahlung Wärme an den gekühlten Einsatz 3 abgibt. Mit einer Temperatur von etwa 500 °C verlässt das Gas den Einsatz über den Hals 18. Im Zwischenraum 5 stellt sich ein Druck ein, der dem Druck an der Konusfläche 6 gleich ist, da beim Anfahren der Anlage mit zunehmendem Druck im Einsatz Gas durch die Druckausgleichverbindung 30 über den Kühler 32 in den Zwischenraum 5 strömt. Das im Zwischenraum 5 stagnierende Gas nimmt eine Temperatur an, die zwischen der Wandtemperatur des Einsatzes 3 und jener des Druckbehälters 2 liegt.
  • Tritt nun eine Leckage, beispielsweise am Balg 14 auf, so bildet sich im Zwischenraum 5 eine vom Druckabfall zwischen der Konusfläche 6 und dem Balg 14 abhängige Strömung aus, wobei das Heissgas abhängig von der durch das Leck strömenden Gasmenge auf eine noch zulässige Temperatur hinuntergekühlt wird. Da der Temperaturabfall im Kühler 32 bei grosser Durchströmmenge kleiner ist als bei kleiner Durchströmmenge, bildet er ein Mass für die Grösse des Lecks. Dieser Temperaturabfall kann gemessen werden durch die Bestimmung der Temperatur am Eintritt und am Austritt des Kühlers 32 oder aber durch Vergleich mit der nicht gestörten Temperatur, wie dies in Figur 1 dargestellt ist. An Stelle eines Anzeigegerätes 40 lässt sich eine Alarmeinrichtung vorsehen, die bei entsprechend hohem Eingangssignal auch direkt eine Abstelleinrichtung betätigen kann.
  • In Figur 2 sind Teile die solchen von Figur 1 entsprechen, gleich bezeichnet. Im Gegensatz zu Figur 1 besteht der Einsatz in Figur 2 aus einem Hemd 42 mit Innenraum 7 und einem Mantel 43, die beide in ihrem mittleren Abschnitt 44 als konzentrische Kreiszylinder mit dichten Wänden ausgebildet sind. Hemd und Mantel bestehen aus über Stege miteinander verschweissten Rohren 50. Die Rohre 50 des Hemdes 42 sind in einem unteren Bereich 45 aufgegabelt, sodass sie dort keine Trennwand mehr bilden, sondern dem durch das Hemd strömenden Rauchgas Durchgang gewähren in einen ringförmigen Zwischenraum 25 zwischen Hemd 42 und Mantel 43.
  • Sämtliche Rohre 50 sind an ihrem unteren Ende an einem Verteiler 52 angeschlossen. Ein Teil der den Mantel bildenden Rohre 50 ist dabei knieförmig aus der Zylinderfläche gegen aussen ausgebogen, sodass die Einmündungen der Rohre 50 in den Verteiler 52 nicht auf derselben Mantellinie liegen, was zu einer Schwächung des Verteilers führen würde. Im Bereich dieser Ausbiegungen erstrecken sich die Stege jeweils zwischen benachbarten gerade durchlaufenden Rohren, sodass der Mantel 43 auch im Abschnitt 45 eine gasdichte Wand bildet. In einem oberhalb des mittleren Abschnitts 44 gelegenen Abschnitt 46 sind die Rohre 50 gegen die Achse des Druckbehälters hin abgekröpft. Dabei bildet ein Teil der Rohre des Hemdes wie auch des Mantels gasdichte Schulterflächen 55 beziehungsweise 57 und gasdichte, daran anschliessende Hälse 59 beziehungsweise 60. Im Bereich der Übergänge zu den Schultern 55 und 57 wird ein Teil der Rohre zur Bildung einer dichten Wand überzählig. Diese mit 50' bezeichneten Rohre verlaufen als freies Bündel zwischen den feste Wände bildenden Schultern 55 und 57 und Hälsen 59 und 60. Sämtliche Rohre 50 und 50' münden sodann in einen in einer horizontalen Ebene koaxial zum Behälter angeordneten Ringkollektor 62.
  • Hemd 42 und Mantel 43 sind über Zugbänder 64 und 65 an zwei Balkenkränzen 68 und 69 aufgehängt. Dabei sind die Zugbänder 64 im Bereich zwischen den beiden Schultern 55 und 57 zu einer dichten zylindrischen Wand verbunden.
  • Die Rohre des Halses 59 sind, eine Oberkante des Halses sondern sie werden am unteren Ende des Hemdes nach oben umgelenkt und verlassen den Ringraum 25 über die Leitung 78. Schlacke-und Russteilchen fallen grösstenteils durch Schwerkraftwirkung in den Trichter 16, aus dem sie mit dem dort eingebrachten Wasser ausgetragen werden.
  • Bei stationärem Normalbetrieb herrscht beidseits der Druckausgleichsverbindung derselbe Druck. Der Zwischenraum zwischen den Hälsen wird in diesem Fall nicht durchströmt. Bildet sich ein Leck, so wird dies wahrscheinlich an einer Stelle sein, an welcher innenseitig der Gasdruck tiefer liegt als an der Stelle 82. Ein solches Leck hat somit eine Gasströmung von der Stelle 82 über die Stelle 84 an der Messstelle 90 vorbei zur Folge, die am Anzeigegerät 92 wegen der steigenden Temperatur festgestellt werden kann.
  • Die miteinander verschweissten Rohre 50 des Hemdes 42 und des Mantels 43 bilden beispielsweise Heizflächen, vorzugsweise im Zwanglauf durchströmte Verdampferheizflächen, eines Dampferzeugers.
  • Die Rohre 50 können - statt über Stege - auch direkt miteinander gasdicht verschweisst sein.

Claims (5)

1. Heissgaskühler mit einem vertikal angeordneten Druckbehälter und darin befindlichem, einen vertikalen von Heissgas durchströmten Innenraum bildendem, die Wand des Druckbehälters vor unzulässigem Wärmeeinfall abschirmendem Kühleinsatz aus miteinander dichtverschweissten, von einem Wärmeübertragungsmedium durchflossenen Rohren, wobei der Kühleinsatz heissgaseintrittsseitig über einen die Wand des Druckbehälters durchdringenden Eintrittskanal an eine Heissgasquelle angeschlossen ist und gasausgangsseitig einen Austrittskanal aufweist, der ebenfalls die Druckbehälterwand durchdringt, wobei der Eintritts- und Austrittskanal kleineren Querschnitt aufweisen als der Innenraum und wobei ferner aus dem Bereich des Heissgaseintrittes eine Druckausgleichsverbindung mit einer Kühlstrecke zum Zwischenraum zwischen dem Kühleinsatz und der Druckbehälterwand führt, dadurch gekennzeichnet, dass der Eintrittskanal (8; 71 ) für das Heissgas am oberen Ende des Innenraums (7) angeordnet ist und dass die Druckausgleichsverbindung (30; 82,84) vom obersten Teil des Innenraums (7) ausgeht.
2. Heissgaskühler nach Anspruch 1, dadurch gekennzeichnet, dass der Einsatz aus einem inneren Hemd (42) und einem äusseren Mantel (43) besteht, dass zwischen Hemd (42) und Mantel (43) ein Ringraum (25) vorgesehen ist, der an seinem dem Eintrittskanal (71 ) gegenüberliegenden Ende mit dem Innenraum (7) des Hemdes in Verbindung steht, dass an einem dem Eintrittskanal (71) benachbarten Ende des Ringraums (25) mindestens ein Austrittskanal (78) für das gekühlte Gas ausgeht und dass am gleichen Ende des Ringraums (25) ein im wesentlichen geschlossener, von Hemd (42) und Mantel (43) begrenzter gekühlter Ringraumabschnitt sich anschliesst, über den die Druckausgleichsverbindung (82,84) zum Raum (5) zwischen Einsatz und Druckbehälterwand führt, wobei Hemd (42) und Mantel (43) Bestandteile der Kühlstrecke sind.
3. Heissgaskühler nach Anspruch 2, dadurch gekennzeichnet dass aus Hemd (42) und aus Mantel (43) herausgebogene Rohre (50') zusätzliche Kühlflächen der Kühlstrecke bilden.
4. Heissgaskühler nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass im Bereich des Ausganges der Kühlstrecke ein erster Temperaturfühler (38;90) angeordnet ist.
5. Heissgaskühler nach Anspruch 4, dadurch gekennzeichnet, dass vorzugsweise auf derselben Höhe und auf demselben Radius wie der erste Temperaturfühler (38), jedoch in Umfangsrichtung des Druckgefässes (2) gegenüber jenem versetzt, ein zweiter Temperaturfühler (39) vorgesehen ist, der zum ersten in einer Vergleichsanordnung steht.
EP81105938A 1980-09-19 1981-07-28 Heissgaskühler mit einem Druckbehälter Expired EP0048325B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH705280A CH643649A5 (de) 1980-09-19 1980-09-19 Heissgaskuehler mit einem druckbehaelter.
CH7052/80 1980-09-19

Publications (3)

Publication Number Publication Date
EP0048325A2 EP0048325A2 (de) 1982-03-31
EP0048325A3 EP0048325A3 (en) 1982-05-26
EP0048325B1 true EP0048325B1 (de) 1984-12-27

Family

ID=4319189

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81105938A Expired EP0048325B1 (de) 1980-09-19 1981-07-28 Heissgaskühler mit einem Druckbehälter

Country Status (6)

Country Link
US (1) US4385501A (de)
EP (1) EP0048325B1 (de)
JP (1) JPS5784986A (de)
CH (1) CH643649A5 (de)
DE (2) DE3043853C2 (de)
ZA (1) ZA815917B (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL187177C (nl) * 1982-07-12 1991-06-17 Stork Ketel & App Vertikale stralingsketel.
US4876987A (en) * 1988-06-27 1989-10-31 Texaco, Inc. Synthetic gas cooler with thermal protection
US4936376A (en) * 1988-06-27 1990-06-26 Texaco Inc. Synthetic gas cooler with thermal protection
DE4300776C2 (de) * 1993-01-14 1995-07-06 Steinmueller Gmbh L & C Verfahren zum Kühlen eines staubbeladenen Rohgases aus der Vergasung eines festen kohlenstoffhaltigen Brennstoffes in einem Reaktor unter Druck und Anlage zur Durchführung des Verfahrens
WO1996026396A1 (en) * 1995-02-23 1996-08-29 Sang Kyeong Kim Multistep water heater having a device for increasing combustion efficiency
US6001221A (en) * 1998-01-12 1999-12-14 Big Beans Holding Ltd. Extraction and drying apparatus
DE19809859A1 (de) * 1998-03-07 1999-09-09 Mann & Hummel Filter Vorrichtung zur Kühlung von Gasen
US6726914B2 (en) 2001-10-16 2004-04-27 Kazuko Kuboyama Method of reduction of aroma extract and resulting extract
FR2885825B1 (fr) * 2005-05-20 2008-12-19 Serimer Dasa Soc Par Actions S Dispositif pour le centrage et le serrage de pieces tubulaires
CN101135432B (zh) * 2006-09-01 2013-04-24 巴布考克及威尔考克斯公司 用于容纳和冷却合成气体的蒸汽发生器
US8834584B2 (en) 2009-09-28 2014-09-16 General Electric Company Method of assembly and apparatus for cooling syngas
CN106545831A (zh) * 2017-01-24 2017-03-29 北京金泰瑞和工程科技有限公司 废热锅炉换热器及固定床加压气化系统
CN110655958B (zh) * 2019-08-28 2020-11-17 武汉理工大学 一种基于煤气化炉体结构的立体式智能监测抑爆方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1734262A (en) * 1927-01-22 1929-11-05 Lutschen Ewald Cooler
US1983832A (en) * 1931-09-08 1934-12-11 Walter C Bailey Apparatus for dehydrating oil and water emulsions
US2215729A (en) * 1937-09-02 1940-09-24 Ruttimann Robert Device for pasteurizing liquids
NL105948C (de) * 1956-10-19 1963-09-16
DE1596323A1 (de) * 1967-06-06 1970-04-02 Walther & Cie Ag Synthesegaserzeuger mit Gaskuehler,die in einem Druckzylinder angeordnet sind
JPS5139319B2 (de) * 1972-03-31 1976-10-27
JPS5123845A (ja) * 1974-08-20 1976-02-26 Daikin Ind Ltd Netsukokanki
US4013122A (en) * 1975-05-05 1977-03-22 Richard William Long Diver's gas heater
DE2705558B2 (de) * 1977-02-10 1980-10-23 Ruhrchemie Ag, 4200 Oberhausen Verfahren und Vorrichtung zum Vergasen von festen Brennstoffen, insbesondere Kohle durch partielle Oxidation
DE2726716C2 (de) * 1977-06-14 1986-07-03 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen Stehender Hochtemperatur-Abhitzekessel
US4228848A (en) * 1979-01-23 1980-10-21 Grumman Energy Systems, Inc. Leak detection for coaxial heat exchange system
CH653360A5 (de) * 1980-09-19 1985-12-31 Sulzer Ag Heissgaskuehler an einer kohlevergasungsanlage.

Also Published As

Publication number Publication date
EP0048325A3 (en) 1982-05-26
DE3043853C2 (de) 1985-04-04
EP0048325A2 (de) 1982-03-31
DE3043853A1 (de) 1982-04-08
US4385501A (en) 1983-05-31
CH643649A5 (de) 1984-06-15
JPS5784986A (en) 1982-05-27
JPH0253714B2 (de) 1990-11-19
DE3167938D1 (en) 1985-02-07
ZA815917B (en) 1982-08-25

Similar Documents

Publication Publication Date Title
EP0048325B1 (de) Heissgaskühler mit einem Druckbehälter
EP0048326B2 (de) Heissgaskühler zu einer Kohlevergasungsanlage
EP0657010B1 (de) Dampferzeuger
EP0160161B1 (de) Wärmetauscher zum Kühlen von Gasen
DE2008311B2 (de) Waermetauscher
EP0077851A2 (de) Gaskühler-Anordnung zu Kohlevergasungsanlage
DE2054578A1 (de) Mantel und Rohrenwarmeaustauscher zur Dampferzeugung
EP0366606B1 (de) Heissgaskühlanlage zu einer Kohlevergasungsanlage
DE3602935A1 (de) Verfahren zum abkuehlen von aus einem vergasungsreaktor kommenden prozessgasen und waermetauscher zur durchfuehrung des verfahrens
DE2448904A1 (de) Kuehleinrichtung fuer stueckfoermige schuettgueter
DE3208421C2 (de)
DE2208397A1 (de) Dampfgenerator
DE3247392C2 (de)
DE2536757C3 (de) Dampferzeuger mit Beheizung durch Flüssigmetall
DE2813808C2 (de)
DE2844077C2 (de)
DE2903567C2 (de)
DE2754021C2 (de) Stehender Überhitzer mit Wasserabscheider
DE2807166C2 (de)
DE3012596C2 (de)
DE4221130C2 (de) Wasserrohr-Dampferzeuger mit vertikal angeordneten Fieldrohren
EP0630397B1 (de) Verfahren zum kühlen eines staubbeladenen rohgases aus der vergasung eines festen kohlenstoffhaltigen brennstoffes
EP0233997B1 (de) Wärmetauscher, insbesondere zur Kühlung von Prozessgas oder zur Erhitzung von Dampf
EP0060338A2 (de) Brennstoffbefeuerter Heizkessel
DE1124527B (de) Waermetauschanordnung, insbesondere fuer Reaktoranlagen, mit in sich geschlossenem Kuehlmittelkreislauf

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

17P Request for examination filed

Effective date: 19810728

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 3167938

Country of ref document: DE

Date of ref document: 19850207

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: DEUTSCHE BABCOCK AKTIENGESELLSCHAFT

Effective date: 19850921

NLR1 Nl: opposition has been filed with the epo

Opponent name: DEUTSCHE BABCOCK AKTIENGESELLSCHAFT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890712

Year of fee payment: 9

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890731

Year of fee payment: 9

Ref country code: GB

Payment date: 19890731

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19890824

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890831

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19900731

BERE Be: lapsed

Owner name: GEBRUDER SULZER A.G.

Effective date: 19900731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19910329

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state
APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO