EP0014975A1 - Process for manufacturing compressed bodies from metal powder - Google Patents

Process for manufacturing compressed bodies from metal powder Download PDF

Info

Publication number
EP0014975A1
EP0014975A1 EP80100788A EP80100788A EP0014975A1 EP 0014975 A1 EP0014975 A1 EP 0014975A1 EP 80100788 A EP80100788 A EP 80100788A EP 80100788 A EP80100788 A EP 80100788A EP 0014975 A1 EP0014975 A1 EP 0014975A1
Authority
EP
European Patent Office
Prior art keywords
capsule
pressure
powder
press
pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80100788A
Other languages
German (de)
French (fr)
Other versions
EP0014975B1 (en
Inventor
Hans-Gunnar Larsson
Erik Westman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Norden Holding AB
Original Assignee
ASEA AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASEA AB filed Critical ASEA AB
Priority to AT80100788T priority Critical patent/ATE2489T1/en
Publication of EP0014975A1 publication Critical patent/EP0014975A1/en
Application granted granted Critical
Publication of EP0014975B1 publication Critical patent/EP0014975B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing

Definitions

  • the invention relates to a method for producing compacts from metal powder according to the preamble of claim 1.
  • the compacts are further processed into the desired shapes and dimensions by deforming processing, such as rolling or forging.
  • deforming processing such as rolling or forging.
  • the residual porosity is eliminated, so that a material is obtained with a density that is practically equal to the theoretically possible density.
  • Compacts or finished parts can be made directly by a number of different pressing processes.
  • the powder is obtained by atomizing a liquid jet of metal.
  • the resulting metal droplets are quickly cooled, giving them a favorable, fine structure.
  • This powder is enclosed in capsules and processed at high pressure according to various forging or pressing methods to form a solid body at a temperature which is so far below the melting temperature that undesired structural changes due to grain growth are avoided as far as possible.
  • High-quality tool steel and superalloys are commercially manufactured on a large scale by hot isostatic pressing of powder-filled capsules, which are pressed together in a pressure furnace and at the same time sintered into a practically completely solid body. In this way, both rolled or forged compacts as well as tools that have almost their final shape are produced.
  • Another disadvantage of pressing according to the known method is that the powder which is closest to the capsule wall is cooled during use by contact with colder tool parts, causing the temperature in parts of the powder to drop below the binding temperature before Pressure can be applied.
  • This disadvantage can be avoided to a certain extent by using heated tools.
  • heating the tools has the disadvantage that their strength is reduced.
  • the invention has for its object to develop a powder metallurgical process for the production of compacts of the type mentioned, in which the disadvantages of the known powder metallurgical processes are essentially eliminated.
  • a capsule is first filled with powder and sealed.
  • This capsule is heated to a temperature which, while allowing a bond, however, is so far below the melting temperature such that the structural change insignificant bl f IBT by grain growth during handling and during pressing.
  • the heated capsule is inserted into the mold space of a press and with a layer of an iso surrounding and easily deformable material that transmits the applied pressure forces such that the compact is subjected to all-round pressure. This creates an almost isostatic pressure system.
  • the thickness of the insulating and pressure-transmitting material layer is chosen so that the outside temperature of the material close to the capsule wall can be kept at a value which exceeds the required binding temperature when the capsule is exposed to the compacting pressure.
  • the capsule is advantageously pressed between two punches in an axially movable cylinder which is freely movable during the pressing, so that friction on the cylinder wall impedes the pressing together as little as possible.
  • the insulating and pressure transmitting material can be talc, pyrophyllite or another material with similar properties. It is important that this material be easily deformed and relatively easy to distribute when pressed so that it also exerts radial pressure on the capsule.
  • Talc is an extremely advantageous material because it is easily accessible and inexpensive and has the necessary property .. to act isostatically on the capsule during pressing and to exert a radial pressure in such a way that folding of the capsule sheet is prevented.
  • Talc also has the required heat-insulating properties. This is so good that the temperature in the capsule can be compensated by waiting for the pressing until the surface layer of the material in the capsule, which is cooled when inserted, is transported by heat from the inner parts of the capsule has been reheated.
  • the insulating and force-transmitting material can be applied around the capsule in various ways. Plates and tubular bushings can be made which are placed around the capsule when the heated capsule is inserted into the press. It is also possible to place the capsule on a plate or on a layer of powder or granules made of the insulating and pressure-transmitting material, to fill the gap between the capsule and the surrounding cylinder with a powder or granules and finally to fill the capsule with a plate or to cover a layer of powder or granules.
  • a granulate of talc with such a particle size distribution that the granulate is easy-flowing and at the same time lies with a high degree of filling (density) in the gap between the capsule and the press cylinder.
  • the properties of the talc can be improved by adding a friction-reducing material, such as boron nitride, graphite or molybdenum sulfide.
  • Another way to reduce friction is to spray a layer of lubricating material on the inside of the press cylinder.
  • the wall temperature is so low that an organic lubricant can be used - such as polytetrafluoroethylene. Plates and bushings made of talc can be produced by casting.
  • Talc powder can be mixed with binder and hardener.
  • a mixture of 1 part by volume of 5% hydrochloric acid HCl, 10 parts by volume of ethyl silicate and 15 parts by volume of 90% alcohol can be used as the binder.
  • 1 part by volume of five percent ammonia solution to 20 parts by volume of binder can be used as hardener.
  • the tubes are cast in a centrifugal casting machine.
  • the method according to the invention makes it possible to press capsules with a large length-diameter ratio.
  • the capsule sheets do not fold.
  • a capsule can be pressed in a single-acting press, the length-diameter ratio of which is five or more.
  • a length is preferably chosen which is two to five times the diameter.
  • the length-diameter ratio of the capsule can be twice the above-mentioned values.
  • the capsule size can vary within wide limits. However, a small capsule volume means a large surface area in relation to the volume, which can result in rapid cooling. This can make pressing difficult before the temperature drops below the temperature required to achieve a good bond. As a result, there is a risk that the required density will not be achieved.
  • a capsule with a diameter of 330 mm can be pressed in a press with a pressing force of 3000 Mp at a pressing pressure of approx. 250 MPa. With a length of 1100 mm, the weight of the capsule is approx. 500 kg.
  • a density that is 99% of the theoretical increases at a temperature of 1150 o C, a pressure of 250 MPa and a pressing time of a few minutes. A cycle time of 5 minutes can be achieved. If a compact is thermoformed after pressing, for example by forging or rolling, it is not necessary to achieve a perfect density during pressing. The perfect density can then be achieved by the following processing.
  • the method according to the invention represents a realistic alternative to hot isostatic pressing in a pressurized furnace by means of pressurized gas in cases in which a final compaction to a completely homogeneous material can take place, for example, in a subsequent rolling process.
  • the investment costs are relatively low, the cycle time is short down to about 5 minutes, so that a large capacity is achieved at a low cost.
  • the process therefore makes powder pressing economical for the production of rolled compacts from a simpler material than is used in the known pressing processes.
  • a major advantage of the method according to the invention is also that the requirements placed on the capsule material and its weld seams are significantly lower than in hot isostatic pressing in a gas atmosphere.
  • the capsule only needs to be filled and shaken (vibrated), the density of the filled spherical powder reaching 65 to 70% of the theoretical density.
  • the capsule is then closed with or without prior evacuation. If an evacuation is carried out, it can then be reconnected to nitrogen gas before it is sealed.
  • the figures show capsules 1 and an oven 2 in which the capsules are heated to a temperature suitable for pressing.
  • a handling robot 3 places a capsule taken from the conveyor belt 4 in the oven 2, takes a heated capsule out of the oven 2 and passes it on to the press 5.
  • the press 5 which is described in more detail with reference to FIGS. 2 and 3, is a hydraulic press with a press frame 6, in which a vertically movable press cylinder 7 is attached, which is guided by means of rollers 8 and rails 9.
  • the press cylinder 7 can be moved with the aid of hydraulic lifting cylinders 10 between a charging position according to FIG. 2 and a pressing position according to FIG. 3.
  • In the lower part of the press frame 6 there is an actuating cylinder 11 with a piston 12.
  • a punch 13 adapted to the press cylinder 7 is connected to the piston 12 by means of a holding plate 14 which is fastened to the piston 12 by means of bolts (not shown). This plate is provided with guide rollers 15 which run on the rails 9.
  • the stamp has a length such that its upper end face lies somewhat below the upper end face of the cylinder 7 in the charging position according to FIG. 2.
  • a fixed stamp 16 which is shown by means of a ring 17 and not ten bolt is fastened in the press frame.
  • an annular filling funnel 18 for a granular, heat-insulating and pressure-transmitting material 19 is attached, which is fed to the funnel from a storage container 20 (FIG. 1).
  • Talc is a suitable material. It is easily accessible and cheap, and it is suitable to fill the gap 22 between the capsule 1 and the press cylinder 7 with an appropriate grain size distribution. In consideration of the thermal insulation and the filling of the gap 22, this should be at least 25 mm in size.
  • the press cylinder 7 should have a 50 mm larger diameter than the capsule 1.
  • the pressing is carried out as follows: A plate or layer 21 of talc is applied in the cylinder 7 on the stamp 13. With the help of the robot 3, a heated capsule 1 is removed from the oven 2 and placed on the plate 21. The cylinder 7 is raised so that the upper punch 16 protrudes somewhat into the cylinder. During this lifting, material 19 is fed from the hopper 18 to the gap 22, so that an insulating and pressure-transmitting layer 25 is formed. In addition, a layer of material 21 is applied to the upper end of the capsule 7. The outer parts of the capsule, in particular the edges, cool down when the capsule is transferred from the oven 2 to the press 5. It may therefore be appropriate to wait a little before pressing until the temperature in the capsule 1 has equalized.
  • the cylinder chamber 23 is supplied with pressure medium from a pressure medium source, not shown, via a line 24, so that the capsule 1 is pressed axially between the punches 13 and 16.
  • the cylinder 7 can freely follow the compact, so that the the smallest possible pressing force is lost due to friction and slippage between the compact and the cylinder wall.
  • the cylinder assumes the position shown in FIG. 3.
  • the punch 13 and the cylinder 7 are lowered, and a finished rolled compact is removed using the robot 3.
  • the capsule material must be removed. In many cases the capsule material in the form of scale disappears during the subsequent rolling and the heating required for this.

Abstract

A method for manufacturing billets intended to be subsequently machined into a desired shape by plastic deformation, as by rolling, includes the heating to a predetermined bonding temperature of powder grains enclosed in a capsule, and subjecting the capsule at the bonding temperature to a high pressure sufficient to bond the powder grains together to form a substantially solid body. The capsule is inserted at the bonding temperature into an over-sized forming cavity of a press which includes relatively movable punches, the capsule being completely surrounded within the press by a layer of heat-insulating and pressure-transmitting solid material, such as talc or the like. Thus, when the capsule is subjected to the high pressure upon operation of the press, such material serves as a pressure-transmitting medium through which pressure is applied completely against all sides of the capsule.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Preßlingen aus Metallpulver gemäß dem Oberbegriff des Anspruches 1. Die Preßlinge werden durch verformende Bearbeitung, wie Walzen oder Schmieden, in die gewünschten Formen und Abmessungen weiterverarbeitet. Bei dieser Weiterverarbeitung wird die Restporosität beseitigt, so daß man ein Material mit einer Dichte erhält, die praktisch gleich der theoretisch möglichen Dichte ist.The invention relates to a method for producing compacts from metal powder according to the preamble of claim 1. The compacts are further processed into the desired shapes and dimensions by deforming processing, such as rolling or forging. In this further processing, the residual porosity is eliminated, so that a material is obtained with a density that is practically equal to the theoretically possible density.

Bei konventionellen schmelzmetallurgischen Verfahren nehmen die Schwierigkeiten, Gußblöcke mit homogener Zusammensetzung und ohne Seigerungen oder Poren im oberen Teil eines Gußblockes herzustellen, mit größeren Gehalten an Legierungszusätzen zu. Seigerungen enthaltende Teile müssen entfernt werden, was bedeutet, daß mit zunehmenden Legierungszusätzen die Materialausbeute sinkt und daß die Schwierigkeiten, überhaupt ein homogenes Material mit der gewünschten Zusammensetzung zu bekommen, zunehmen. Die schlechte Ausbeute aufgrund des hohen Schrottanfalls und des hohen Preises der verwendeten Legierungssubstanzen hat hohe Kosten und eine erhebliche Verteuerung des fertigen Materials zur Folge. In einem Artikel mit dem Titel "The Consolidation of Metal Powders by Hot Working within Sheaths" in der Druckschrift "Powder Metallurgy", 1958, Seiten 94 bis'103, beschreibt J. Williams verschiedene Verfahren zur Herstellung von Produkten aus Pulver. Preßlinge oder fertige Teile können direkt durch eine Reihe verschiedener Preßverfahren hergestellt werden. Das Pulver wird durch Zerstäubung eines flüssigen Metallstrahls gewonnen. Die hierdurch entstehenden Metalltröpfchen werden schnell abgekühlt und erhalten dadurch eine günstige, feine Struktur. Dieses Pulver wird in Kapseln eingeschlossen und mit hohem Druck nach verschiedenen Schmiede- oder Preßmethoden zu einem massiven Körper bei einer Temperatur verarbeitet, die so weit unter der Schmelztemperatur liegt, daß eine unerwünschte Strukturveränderung durch Kornwachstum soweit wie möglich vermieden wird. Hochqualitativer Werkzeugstahl und Superlegierungen wird kommerziell in großem Umfang durch isostatisches Heißpressen von pulvergefüllten Kapseln hergestellt, die in einem Druckofen zusammengepreßt und gleichzeitig zu einem praktisch vollkommen massiven Körper gesintert werden. Es werden auf diese Weise sowohl Walz- oder Schmiedepreßlinge als auch nahezu ihre endgültige Form besitzende Werkzeuge bergestellt. Es ist auch bekannt, mit Pulver gefüllte 1.apseln zwischen Werkzeugen zu schmieden oder strangzupressen. In der genannten Druckschrift wird ausgeführt, daß Schmieden in einem geschlossenen Werkzeug zu keinen zufriedenstellenden Produkt führt. Der Grund hierfür besteht u.a. darin, daß die Blechhülle gefaltet wird, daß die äußeren Teile mit nach innen gerichteten Blechfalten entfernt werden müssen, wodurch ein bedeutender Materialverlust entsteht. Die Probleme machen sich besonders stark bemerkbar bei Preßlingen mit einem großen Hiihen-Durchmesserverhältnis. Dies bedeutet, daß das in ier Druckschrift beschriebene Verfahren, Pulver in Kapseln zu pressen, zur Herstellung von langen, zum Walzen geeigneten Preßlingen wenig geeignet ist. Ein weiterer Nachteil bei dem Pressen nach dem bekannten Verfahren besteht darin, daß das Pulver, das an der Kapselwand am dichtesten liegt, während des Einsetzens durch den Kontakt mit kälteren Werkzeugteilen abgekühlt wird, wodurch in Teilen des Pulvers die Temperatur unter die Bindungstemperatur sinkt, bevor Druck aufgebracht werden kann. Dieser Nachteil kann bis zu einem gewissen Grade durch Verwendung erwärmter Werkzeuge verhindert werden. Die Erwärmung der Werkzeuge hat jedoch den Nachteil, daß ihre Festigkeit herabgesetzt wird.In conventional melt metallurgical processes, the difficulties in producing cast blocks with a homogeneous composition and without segregations or pores in the upper part of a cast block increase with higher contents of alloy additives. Parts containing segregations have to be removed, which means that with increasing alloy additions the material yield decreases and the difficulties to get a homogeneous material with the desired composition at all increase. The poor yield due to the high amount of scrap and the high price of the alloy substances used has high costs and a considerable one This increases the cost of the finished material. In an article entitled "The Consolidation of Metal Powders by Hot Working within Sheaths" in "Powder Metallurgy", 1958, pages 94 to 103, J. Williams describes various processes for producing products from powder. Compacts or finished parts can be made directly by a number of different pressing processes. The powder is obtained by atomizing a liquid jet of metal. The resulting metal droplets are quickly cooled, giving them a favorable, fine structure. This powder is enclosed in capsules and processed at high pressure according to various forging or pressing methods to form a solid body at a temperature which is so far below the melting temperature that undesired structural changes due to grain growth are avoided as far as possible. High-quality tool steel and superalloys are commercially manufactured on a large scale by hot isostatic pressing of powder-filled capsules, which are pressed together in a pressure furnace and at the same time sintered into a practically completely solid body. In this way, both rolled or forged compacts as well as tools that have almost their final shape are produced. It is also known to forge or extrude powder-filled 1. capsules between tools. In the cited document it is stated that forging in a closed tool does not lead to a satisfactory product. The reason for this is, among other things, that the sheet metal cover is folded, that the outer parts have to be removed with sheet metal folds facing inwards, which results in a significant loss of material. The problems are particularly noticeable in compacts with a large height-to-diameter ratio. This means that the process described in the publication, powder in capsules to press, for the production of long, suitable for rolling compacts is not very suitable. Another disadvantage of pressing according to the known method is that the powder which is closest to the capsule wall is cooled during use by contact with colder tool parts, causing the temperature in parts of the powder to drop below the binding temperature before Pressure can be applied. This disadvantage can be avoided to a certain extent by using heated tools. However, heating the tools has the disadvantage that their strength is reduced.

Der Erfindung liegt die Aufgabe zugrunde, ein pulvermetallurgisches Verfahren zur Herstellung von Preßlingen der eingangs genannten Art zu entwickeln, bei dem die Nachteile der bekannten pulvermetallurgischen Verfahren im wesentlichen beseitigt sind.The invention has for its object to develop a powder metallurgical process for the production of compacts of the type mentioned, in which the disadvantages of the known powder metallurgical processes are essentially eliminated.

Zur Lösung dieser Aufgabe wird ein Verfahren nach dem Oberbegriff des Anspruches 1 vorgeschlagen, welches Erfindungsgemäß durch die im kennzeichnenden Teil des Anspruches 1 genannten Merkmale gekennzeichnet ist.To achieve this object, a method is proposed according to the preamble of claim 1, which is characterized according to the invention by the features mentioned in the characterizing part of claim 1.

Vorteilhafte Weiterbildungen des Verfahrens nach der Erfindung sind in den Unteransprüchen genannt.Advantageous developments of the method according to the invention are mentioned in the subclaims.

Bei dem Verfahren nach der Erfindung wird zunächst eine Kapsel mit Pulver gefüllt und verschlossen. Diese Kapsel wird auf eine Temperatur erwärmt, die zwar eine Bindung ermöglicht, die jedoch so weit unterhalb der Schmelztemperatur liegt, daß die Strukturveränderung durch Kornwachstum bei der Handhabung und beim Pressen unbedeutend blfibt. Die erwärmte Kapsel wird in den Formraum einer Presse eingesetzt und mit einer Schicht aus einem isolierenden und leichtverformbaren Material umgeben, das die aufgebrachten Druckkräfte derart überträgt, daß der Preßling einem allseitigen Druck ausgesetzt wird. Hierdurch erreicht man ein nahezu isostatisches Drucksystem. Die Dicke der isolierenden und druckübertragenden-Materialschicht wird so gewählt, daß die Außentemperatur des dicht an der Kapselwand liegenden Materials auf einem Wert gehalten werden kann, der die erforderliche Bindungstemperatur übersteigt, wenn die Kapsel dem kompaktierenden Druck ausgesetzt wird. Die Kapsel wird vorteilhaft zwischen zwei Stempeln in einem axial beweglichen Zylinder gepreßt, der während des Pressens frei beweglich ist, so daß eine Reibung an der Zylinderwand das Zusammenpressen so wenig wie möglich behindert.In the method according to the invention, a capsule is first filled with powder and sealed. This capsule is heated to a temperature which, while allowing a bond, however, is so far below the melting temperature such that the structural change insignificant bl f IBT by grain growth during handling and during pressing. The heated capsule is inserted into the mold space of a press and with a layer of an iso surrounding and easily deformable material that transmits the applied pressure forces such that the compact is subjected to all-round pressure. This creates an almost isostatic pressure system. The thickness of the insulating and pressure-transmitting material layer is chosen so that the outside temperature of the material close to the capsule wall can be kept at a value which exceeds the required binding temperature when the capsule is exposed to the compacting pressure. The capsule is advantageously pressed between two punches in an axially movable cylinder which is freely movable during the pressing, so that friction on the cylinder wall impedes the pressing together as little as possible.

Das isolierende und druckübertragende Material kann Talk, Pyrophyllit oder ein anderes Material mit ähnlichen Eigenschaften sein. Es ist wichtig, daß dieses Material leicht verformt und beim Pressen verhältnismäßig leicht verteilt werden kann, damit es auch einen radialen Druck auf die Kapsel ausübt. Talk ist ein außerordentlich vorteilhaftes Material, da es leicht zugänglich und billig ist und die notwendige Eigenschaft..hat, auf die Kapsel beim Pressen isostatisch einzuwirken und einen radialen Druck in solcher Weise auszuüben, daß ein Falten des Kapselbleches verhindert wird. Talk hat auc.i die erforderliche wärmeisolierende Eigenschaft. Diese ist so gut, daß man einen Ausgleich der Temperatur in der Kapsel dadurch erreichen kann, daß man mit dem Pressen wartet, bis die Oberflächenschicht des in der Kapsel befindlichen Materials, die beim Einsetzen abgekühlt wird, durch Wärmetransport von den inneren Teilen der Kapsel her wieder erwärmt worden ist.The insulating and pressure transmitting material can be talc, pyrophyllite or another material with similar properties. It is important that this material be easily deformed and relatively easy to distribute when pressed so that it also exerts radial pressure on the capsule. Talc is an extremely advantageous material because it is easily accessible and inexpensive and has the necessary property .. to act isostatically on the capsule during pressing and to exert a radial pressure in such a way that folding of the capsule sheet is prevented. Talc also has the required heat-insulating properties. This is so good that the temperature in the capsule can be compensated by waiting for the pressing until the surface layer of the material in the capsule, which is cooled when inserted, is transported by heat from the inner parts of the capsule has been reheated.

Das isolierende und kraftübertragende Material kann auf verschiedene Weise um die Kapsel angebracht werden. Es können Platten und rohrförmige Buchsen gefertigt werden, die beim Einsetzen der erwärmten Kapsel in die Presse um die Kapsel herum angebracht werden. Es ist auch möglich, die Kapsel auf eine Platte oder auf eine Schicht aus Pulver oder Körnern aus dem isolierenden und druckübertragenden Material zu stellen, den Zwischenraum zwischen der Kapsel und umgebendem Zylinder mit einem Pulver oder Körnern zu füllen und die Kapsel schließlich mit einer.Platte oder einer Schicht aus Pulver oder Körnern zu bedecken. Im Hinblick auf das Einfüllen ist es zweckmäßig, ein Granulat aus Talk mit einer solchen Korngrößenverteilung zu verwenden, daß das Granulat leichtrinnend ist und sich zugleich mit einem hohen Füllungsgrad (Dichte) in den Spalt zwischen der Kapsel und dem Preßzylinder legt. Die Eigenschaften des Talks können durch Beimischung eines die Reibung herabsetzenden Materials, wie z.B. Bornitrid, Graphit oder Molybdänsulfid, verbessert werden. Eine andere Möglichkeit zur Verringerung der Reibung besteht darin, daß man eine Schicht aus einem Material mit schmierenden Eigenschaften auf die Innenseite des Preßzylinders spritzt. Die Wandtemperatur ist so-niedrig, daß ein organisches Schmiermittel benutzt werden kann - wie z.B. Polytetrafluoräthylen. Platten und Buchsen aus Talk können durch Gießen hergestellt werden. Talkpulver kann mit Bindemittel und Härter gemischt werden. Als Bindemittel kann eine Mischung von 1 Volumenteil fünfprozentige Salzsäure HCl, 10 Volumenteilen Äthylsilikat und 15 Volumenteilen 90-prdzentiger Alkohol verwendet werden. Als Härter kann 1 Volumenteil fünfprozentige Ammoniaklösung zu 20 Volumenteilen Bindemittel verwendet werden. Die Rohre werden in einer Zentrifugalgießmaschine gegossen.The insulating and force-transmitting material can be applied around the capsule in various ways. Plates and tubular bushings can be made which are placed around the capsule when the heated capsule is inserted into the press. It is also possible to place the capsule on a plate or on a layer of powder or granules made of the insulating and pressure-transmitting material, to fill the gap between the capsule and the surrounding cylinder with a powder or granules and finally to fill the capsule with a plate or to cover a layer of powder or granules. With regard to the filling, it is expedient to use a granulate of talc with such a particle size distribution that the granulate is easy-flowing and at the same time lies with a high degree of filling (density) in the gap between the capsule and the press cylinder. The properties of the talc can be improved by adding a friction-reducing material, such as boron nitride, graphite or molybdenum sulfide. Another way to reduce friction is to spray a layer of lubricating material on the inside of the press cylinder. The wall temperature is so low that an organic lubricant can be used - such as polytetrafluoroethylene. Plates and bushings made of talc can be produced by casting. Talc powder can be mixed with binder and hardener. A mixture of 1 part by volume of 5% hydrochloric acid HCl, 10 parts by volume of ethyl silicate and 15 parts by volume of 90% alcohol can be used as the binder. 1 part by volume of five percent ammonia solution to 20 parts by volume of binder can be used as hardener. The tubes are cast in a centrifugal casting machine.

Das Verfahren nach der Erfindung ermöglicht es, Kapseln mit einem großen Längen-Durchmesserverhältnis zu pressen. Ein Falten der Kapselbleche tritt nicht auf. In einer einfach wirkenden Presse kann eine Kapsel gepreßt werden, deren Längen-Durchmesserverhältnis fünf und mehr beträgt. Vorzugsweise wird eine Länge gewählt, die das zwei- bis fünffache des Durchmessers beträgt. In einer doppelt wirkenden Presse mit zwei beweglichen Stempeln oder in einer Presse mit einem beweglichen Stempel und einem beweglichen Preßzylinder kann das Längen-Durchmesserverhältnis der Kapsel das Doppelte der obengenannten Werte haben.The method according to the invention makes it possible to press capsules with a large length-diameter ratio. The capsule sheets do not fold. A capsule can be pressed in a single-acting press, the length-diameter ratio of which is five or more. A length is preferably chosen which is two to five times the diameter. In a double-acting press with two movable rams or in a press with one movable ram and one movable press cylinder, the length-diameter ratio of the capsule can be twice the above-mentioned values.

Die Kapselgröße kann innerhalb weiter Grenzen variieren. Ein kleines Kapselvolumen bedeutet jedoch eine große Oberfläche im Verhältnis zum Volumen, was ein schnelles Abkühlen zur Folge haben kann. Dadurch kann es schwierig werden, das Pressen durchzuführen, bevor die Temperatur unter die zum Erreichen einer guten Bindung erforderlichen Temperatur gesunken ist. Hierdurch besteht die Gefahr, daß die erforderliche Dichte nicht erreicht wird.The capsule size can vary within wide limits. However, a small capsule volume means a large surface area in relation to the volume, which can result in rapid cooling. This can make pressing difficult before the temperature drops below the temperature required to achieve a good bond. As a result, there is a risk that the required density will not be achieved.

Die Möglichkeit, einen Preßling mit einem großen Längen-Durchmesserverhältnis pressen zu können, bedeutet, daß ein relativ schwerer Preßling in einer Presse mit relativ geringer Preßkraft gepreßt werden kann. In einer Presse mit einer Preßkraft von 3000 Mp kann man bei einem Preßdruck von ca. 250 MPa eine Kapsel mit einem Durchmesser von 330 mm pressen. Bei einer Länge von 1100 mm beträgt das Gewicht der Kapsel ca. 500 kg.The possibility of being able to press a compact with a large length / diameter ratio means that a relatively heavy compact can be pressed in a press with a relatively low pressing force. A capsule with a diameter of 330 mm can be pressed in a press with a pressing force of 3000 Mp at a pressing pressure of approx. 250 MPa. With a length of 1100 mm, the weight of the capsule is approx. 500 kg.

Man kann eine 100-prozentige Dichte mit geeigneten Parametern erreichen. Beim Pressen von Schnellstahlpulver kann eine Dichte, welche 99 % der theoretischen übersteigt, bei einer Temperatur von 1150oC, einem Druck von 250 MPa und einer Preßzeit von wenigen Minuten erreicht werden. Eine Zykluszeit von 5 Minuten ist erreichbar. Wenn ein Preßling nach dem Pressen beispielsweise durch Schmieden oder Walzen warmverformt wird, ist es nicht erforderlich, beim Pressen eine vollkommene Dichte zu erreichen. Die vollkommene Dichte kann man dann durch die folgende Bearbeitung erreichen.One can achieve a 100 percent density with suitable parameters. When pressing high-speed steel powder, a density that is 99% of the theoretical increases, at a temperature of 1150 o C, a pressure of 250 MPa and a pressing time of a few minutes. A cycle time of 5 minutes can be achieved. If a compact is thermoformed after pressing, for example by forging or rolling, it is not necessary to achieve a perfect density during pressing. The perfect density can then be achieved by the following processing.

Das Verfahren nach der Erfindung stellt eine realistische Alternative zum isostatischen Heißpressen in einem Druckofen mittels Druckgas in den Fällen dar, in denen eine endgültige Kompaktierung zu einem vollständig homogenen Material beispielsweise in einem folgenden Walzvorgang erfolgen kann. Die Investitionskosten sind verhältnismäßig niedrig, die Zykluszeit ist kurz bis hinunter zu ca. 5 Minuten, so daß eine große Kapazität bei niedrigen Kosten erreicht wird. Das Verfahren macht daher das Pulverpressen auch wirtschaftlich für die Herstellung von Walzpreßlingen aus einfacherem Material als es bei den bekannten Preßverfahren zum Einsatz kommt. Ein wesentlicher Vorteil des Verfahrens nach der Erfindung besteht auch darin, daß die an das Kapselmaterial und deren Schweißnähte gestellten Anforderungen bedeutend niedriger sind als beim isostatischen Heißpressen in Gasatmosphäre. Die Kapsel braucht nur gefüllt und gerüttelt (vibriert) zu werden, wobei die Dichte des eingefüllten sphärischen Pulvers 65 bis 70 % der theoretischen Dichte erreicht. Die Kapsel wird dann mit oder ohne vorausgehende Evakuierung verschlossen. Im Falle der Durchführung einer Evakuierung kann sie anschließend auch erneut an Svickstoffgas angeschlossen werden, bevor sie verschlossen wird.The method according to the invention represents a realistic alternative to hot isostatic pressing in a pressurized furnace by means of pressurized gas in cases in which a final compaction to a completely homogeneous material can take place, for example, in a subsequent rolling process. The investment costs are relatively low, the cycle time is short down to about 5 minutes, so that a large capacity is achieved at a low cost. The process therefore makes powder pressing economical for the production of rolled compacts from a simpler material than is used in the known pressing processes. A major advantage of the method according to the invention is also that the requirements placed on the capsule material and its weld seams are significantly lower than in hot isostatic pressing in a gas atmosphere. The capsule only needs to be filled and shaken (vibrated), the density of the filled spherical powder reaching 65 to 70% of the theoretical density. The capsule is then closed with or without prior evacuation. If an evacuation is carried out, it can then be reconnected to nitrogen gas before it is sealed.

Anhand der Figuren soll das Verfahren nach der Erfindung näher erläutert werden. Es zeigen

  • Fig. 1 eine Prinzipskizze einer Anlage zur Durchführung des Verfahrens,
  • Fig. 2 eine Presse zur Durchführung des Verfahrens mit gerade eingesetztem Preßling,
  • Fig. 3 die Presse gemäß Fig. 2 am Ende eines Preßvorganges.
Based on the figures, the process according to the inven be explained in more detail. Show it
  • 1 is a schematic diagram of a plant for performing the method,
  • 2 is a press for performing the method with the compact just inserted,
  • Fig. 3 shows the press of FIG. 2 at the end of a pressing process.

Die Figuren zeigen Kapseln 1 und einen Ofen 2, in dem die Kapseln auf eine zum Pressen geeignete Temperatur erwärmt werden. Ein Handhabungsroboter 3 setzt eine von dem Transportband 4 genommene Kapsel in den Ofen 2, nimmt eine erwärmte Kapsel aus dem Ofen 2 und führt diese zur Presse 5 weiter.The figures show capsules 1 and an oven 2 in which the capsules are heated to a temperature suitable for pressing. A handling robot 3 places a capsule taken from the conveyor belt 4 in the oven 2, takes a heated capsule out of the oven 2 and passes it on to the press 5.

Die Presse 5, die anhand der Figuren 2 und 3 ausführlicher beschrieben wird, ist eine hydraulische Presse mit einem Pressenrahmen 6, in dem ein vertikal beweglicher Preßzylinder 7 angebracht ist, der mittels Rollen 8 und Schienen 9 geführt wird. Der Preßzylinder 7 kann mit Hilfe hydraulischer Hebezylinder 10 zwischen einer Chargierstellung gemäß Figur 2 und einer Preßstellung gemäß Figur 3 verschoben werden. Im unteren Teil des Pressenrahmens 6 befindet sich ein Betätigungszylinder 11 mit einem Kolben 12. Ein dem Preßzylinder 7 angepaßter Stempel 13 ist mit dem Kolben 12 mit Hilfe einer Halteplatte 14 verbunden, die mittels nicht dargestellter Bolzen am Kolben 12 befestigt ist. Diese Platte ist mit Führungsrollen 15 versehen, die auf den Schienen 9 laufen. Der Stempel hat eine solche Länge, daß seine obere Stirnfläche etwas unterhalb der oberen Stirnfläche des Zylinders 7 in der Chargierstellung gemäß Figur 2 liegt. Am oberen Ende der Presse befindet sich ein fester Stempel 16, der mit Hilfe eines Ringes 17 und nicht dargestellten Bolzen im Pressenrahmen befestigt ist. Am oberen Ende des Preßzylinders ist ein ringförmiger Einfülltrichter 18 für ein kornförmiges, wärmeisolierendes und druckübertragendes Material 19 angebracht, das dem Trichter aus einem Vorratsbehälter 20 (Fig. 1) zugeführt wird. Talk ist ein geeignetes Material. Es ist leicht zugänglich und billig, und es ist geeignet, bei zweckmäßiger Korngrößenverteilung den Spalt 22 zwischen der Kapsel 1 und dem Preßzylinder 7 auszufüllen. Mit Rücksicht auf die Wärmeisolierung und das Ausfüllen des Spalts 22 soll dieser mindestens 25 mm groß sein. Somit soll der Preßzylinder 7 einen 50 mm größeren Durchmesser als die Kapsel 1 haben.The press 5, which is described in more detail with reference to FIGS. 2 and 3, is a hydraulic press with a press frame 6, in which a vertically movable press cylinder 7 is attached, which is guided by means of rollers 8 and rails 9. The press cylinder 7 can be moved with the aid of hydraulic lifting cylinders 10 between a charging position according to FIG. 2 and a pressing position according to FIG. 3. In the lower part of the press frame 6 there is an actuating cylinder 11 with a piston 12. A punch 13 adapted to the press cylinder 7 is connected to the piston 12 by means of a holding plate 14 which is fastened to the piston 12 by means of bolts (not shown). This plate is provided with guide rollers 15 which run on the rails 9. The stamp has a length such that its upper end face lies somewhat below the upper end face of the cylinder 7 in the charging position according to FIG. 2. At the upper end of the press there is a fixed stamp 16, which is shown by means of a ring 17 and not ten bolt is fastened in the press frame. At the upper end of the press cylinder, an annular filling funnel 18 for a granular, heat-insulating and pressure-transmitting material 19 is attached, which is fed to the funnel from a storage container 20 (FIG. 1). Talc is a suitable material. It is easily accessible and cheap, and it is suitable to fill the gap 22 between the capsule 1 and the press cylinder 7 with an appropriate grain size distribution. In consideration of the thermal insulation and the filling of the gap 22, this should be at least 25 mm in size. Thus, the press cylinder 7 should have a 50 mm larger diameter than the capsule 1.

Das Pressen wird wie folgt durchgeführt: Eine Platte oder Schicht 21 aus Talk wird im Zylinder 7 auf dem Stempel 13 aufgebracht. Mit Hilfe des Roboters 3 wird eine erwärmte Kapsel 1 vom Ofen 2 geholt und auf die Platte 21 gesetzt. Der Zylinder 7 wird so angehoben, daß der obere Stempel 16 etwas in den Zylinder hineinragt. Während dieses Anhebens wird dem Spalt 22 Material 19 aus dem Trichter 18 zugeführt, so daß eine isolierende und druckübertragende Schicht 25 gebildet wird. Außerdem wird eine Materialschicht 21 auf dem oberen Ende der Kapsel 7 angebracht. Die äußeren Teile der Kapsel, insbesondere die Kanten,kühlen bei der Überführung der Kapsel vom Ofen 2 zur Presse 5 ab. Es kann daher angebracht sein, mit dem Pressen etwas zu warten, bis sich die Temperatur in der Kapsel 1 ausgeglichen hat.The pressing is carried out as follows: A plate or layer 21 of talc is applied in the cylinder 7 on the stamp 13. With the help of the robot 3, a heated capsule 1 is removed from the oven 2 and placed on the plate 21. The cylinder 7 is raised so that the upper punch 16 protrudes somewhat into the cylinder. During this lifting, material 19 is fed from the hopper 18 to the gap 22, so that an insulating and pressure-transmitting layer 25 is formed. In addition, a layer of material 21 is applied to the upper end of the capsule 7. The outer parts of the capsule, in particular the edges, cool down when the capsule is transferred from the oven 2 to the press 5. It may therefore be appropriate to wait a little before pressing until the temperature in the capsule 1 has equalized.

Der Zylinderkammer 23 wird Druckmittel von einer nicht gezeigten Druckmittelquelle über eine Leitung 24 zugeführt, so daß die Kapsel 1 zwischen den Stempeln 13 und 16 axial zusammengepreßt wird. Bei diesem Pressen kann der Zylinder 7 dem Preßling frei folgen, so daß die kleinstmögliche Preßkraft durch Reibung und Schlupf zwischen Preßling und Zylinderwand verlorengeht. In der Endphase des Pressens nimmt der Zylinder die in Figur 3 gezeigte Stellung ein. Anschließend werden der Stempel 13 und der Zylinder 7 gesenkt, und ein fertiger Walzpreßling wird mit Hilfe des Roboters 3 entnommen. Das Kapselmaterial muß entfernt werden. In vielen Fällen verschwindet das Kapselmaterial in Form von Zunder bei dem folgenden Walzen und den hierfür erforderlichen Erwärmungen.The cylinder chamber 23 is supplied with pressure medium from a pressure medium source, not shown, via a line 24, so that the capsule 1 is pressed axially between the punches 13 and 16. In this pressing, the cylinder 7 can freely follow the compact, so that the the smallest possible pressing force is lost due to friction and slippage between the compact and the cylinder wall. In the final phase of the pressing, the cylinder assumes the position shown in FIG. 3. Then the punch 13 and the cylinder 7 are lowered, and a finished rolled compact is removed using the robot 3. The capsule material must be removed. In many cases the capsule material in the form of scale disappears during the subsequent rolling and the heating required for this.

Claims (8)

1. Verfahren zur Herstellung von Preßlingen aus Pulver, welche Preßlinge durch verformende (plastische) Bearbeitung in-eine gewünschte Form weiterverarbeitet werden, bei welchem Verfahren das Pulver in eine Kapsel eingeschlossen, erwärmt und bei Bindungstemperatur einem solchen Druck ausgesetzt wird, daß die Pulverkörner verbunden werden und einen im wesentlichen massiven, festen Körper bilden, dadurch gekennzeichnet, daß die mit Pulver gefüllte und auf Bindungstemperatur erhitzte geschlossene Kapsel (1) in den Formraum einer Presse eingesetzt und mit einer .isolierenden Schicht (25) aus einem leichtverformbaren Material, vorzugsweise Talk oder Porophyllit, umgeben wird, das beim anschließenden Einführen eines Druckstempels (13, 16) in den Formraum derart als druckübertragendes Mittel wirkt, daß allseitig ein Druck auf die Kapsel (1) ausgeübt wird.1. A process for the production of compacts from powder, which compacts are further processed into a desired shape by deforming (plastic) processing, in which process the powder is enclosed in a capsule, heated and subjected to a pressure at the binding temperature such that the powder grains are bonded and form an essentially solid, solid body, characterized in that the closed capsule (1) filled with powder and heated to the bonding temperature is inserted into the mold space of a press and with a . insulating layer (25) of an easily deformable material, preferably talc or porophyllite, is surrounded, which acts upon the subsequent insertion of a pressure stamp (13, 16) in the mold space in such a way as a pressure-transmitting means that pressure is exerted on the capsule (1) on all sides . 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Preßling (1) an seinen beiden Enden axial von Stempeln (13, 16) in einem während des Pressens im wesentlichen frei axial beweglichen Zylinder (7) beaufschlagt wird.2. The method according to claim 1, characterized in that the compact (1) is acted upon at both ends axially by punches (13, 16) in a cylinder (7) which is substantially freely axially movable during the pressing. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet,daß Platten (21) aus dem isolierenden Material an der unteren und oberen Stirnfläche der Kapsel (1) angebracht werden und daß eine Buchse aus dem isolierenden Material um die Kapsel im Zylinder angebracht wird.3. The method according to claim 1 or 2, characterized in that plates (21) made of the insulating material are attached to the lower and upper end face of the capsule (1) and that a sleeve made of the insulating material is attached to the capsule in the cylinder. 4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Kapsel auf eine Schicht (21) aus isolierendem Material gesetzt wird, daß der Spaltraum (22) zwischen Kapsel und Zylinder mit Pulver oder kornförmigem, isolierendem Material gefüllt wird und daß die obere Stirnfläche der Kapsel mit einer Schicht aus isolierendem Material bedeckt wird.4. The method according to claim 1 or 2, characterized in that the capsule is placed on a layer (21) of insulating material, that the gap (22) between the capsule and cylinder is filled with powder or granular, insulating material and that the upper Face of the capsule is covered with a layer of insulating material. 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß der Spaltraum (22) zwischen Kapsel und Zylinder mit einem kornförmigen Granulat aus Talk gefüllt wird, das gute Rinneigenschaften und eine solche Korngrößenverteilung hat, daß es den Spaltraum mit einem hohen Füllungsgrad ausfüllt.5. The method according to claim 4, characterized in that the gap (22) between the capsule and cylinder is filled with a granular granulate of talc, which has good guttering properties and such a grain size distribution that it fills the gap with a high degree of filling. 6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die isolierende Schicht (25) einen radialen Druck von solcher Größe auf die Kapsel (1) ausübt, daß ein Falten des Kapselbleches verhindert wird.6. The method according to any one of the preceding claims, characterized in that the insulating layer (25) exerts a radial pressure of such size on the capsule (1) that folding of the capsule sheet is prevented. 7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Pressen naph erfolgtem Einsetzen der Kapsel in die Presse zeitlich derart verzögert wird, daß die beim Einsetzen abgekühlte Oberflächenschicht des.Kapselinhalts durch Temperaturausgleich vom Innern der Kapsel her zunächst wieder erwärmt wird.7. The method according to any one of the preceding claims, characterized in that the pressing after the capsule has been inserted into the press is delayed in time such that the surface layer of the capsule content cooled during insertion is first reheated by temperature compensation from the inside of the capsule. 8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Preßparameter so gewählt werden, daß beim Pressen eine 100-prozentige Dichte erreicht wird und daß der Preßling durch die folgende Bearbeitung die gewünschte Festigkeit erhält.8. The method according to any one of the preceding claims, characterized in that the pressing parameters are selected so that a 100 percent density is achieved during pressing and that the compact is given the desired strength by the following processing.
EP80100788A 1979-02-27 1980-02-16 Process for manufacturing compressed bodies from metal powder Expired EP0014975B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80100788T ATE2489T1 (en) 1979-02-27 1980-02-16 PROCESS FOR THE MANUFACTURE OF PRESSINGS FROM METAL POWDER.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE7901734A SE417580B (en) 1979-02-27 1979-02-27 PROCEDURE FOR MANUFACTURING THE SUBSTANCES OF POWDER THROUGH HUGE VERSATILITY PRESSURE
SE7901734 1979-02-27

Publications (2)

Publication Number Publication Date
EP0014975A1 true EP0014975A1 (en) 1980-09-03
EP0014975B1 EP0014975B1 (en) 1983-02-16

Family

ID=20337404

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80100788A Expired EP0014975B1 (en) 1979-02-27 1980-02-16 Process for manufacturing compressed bodies from metal powder

Country Status (6)

Country Link
US (1) US4371396A (en)
EP (1) EP0014975B1 (en)
JP (1) JPS55120499A (en)
AT (1) ATE2489T1 (en)
DE (1) DE3061951D1 (en)
SE (1) SE417580B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3117486A1 (en) * 1980-05-13 1982-01-21 ASEA AB, 72183 Västerås "METHOD FOR THE PRODUCTION OF STAINLESS, FERRITIC-AUSTENITIC STEEL"
EP0105653A1 (en) * 1982-09-20 1984-04-18 The Dow Chemical Company Method and assembly for hot consolidating materials
EP0039014B1 (en) * 1980-04-25 1984-09-19 Asea Ab Method of manufacturing compacts from powder
FR2555480A1 (en) * 1983-11-30 1985-05-31 Deutsche Forsch Luft Raumfahrt PROCESS AND DEVICE FOR THE MANUFACTURE OF COMPACT AGGLOMERATES FROM A FLUID OR SINTERED METAL POWDER
US4596694A (en) * 1982-09-20 1986-06-24 Kelsey-Hayes Company Method for hot consolidating materials
GB2181745A (en) * 1985-08-28 1987-04-29 Avesta Nyby Powder Ab Hot-deformed powder metallurgy articles
US7005104B2 (en) 2000-11-08 2006-02-28 Autoclave, High Pressure & Temperature Limited Power module for an autoclave

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4499049A (en) * 1983-02-23 1985-02-12 Metal Alloys, Inc. Method of consolidating a metallic or ceramic body
JPS6199605A (en) * 1984-10-18 1986-05-17 Hitachi Zosen Corp Hot hydrostatic compressive calcination method
CA1284007C (en) * 1986-02-13 1991-05-14 Robert V. Kromrey Molding method and apparatus using a solid, flowable, polymer medium
US5770136A (en) * 1995-08-07 1998-06-23 Huang; Xiaodi Method for consolidating powdered materials to near net shape and full density
US6042780A (en) * 1998-12-15 2000-03-28 Huang; Xiaodi Method for manufacturing high performance components
GB0413392D0 (en) * 2004-06-16 2004-07-21 Rolls Royce Plc A method of consolidating a power
US20210086409A1 (en) * 2019-09-19 2021-03-25 Flow International Corporation Systems and methods of interim and end of process treatment of manufactured articles using high pressure and waterjets

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1576752A (en) * 1967-07-31 1969-08-01
FR2049146A1 (en) * 1969-06-02 1971-03-26 Wheeling Pittsburgh Steel Corp
US3728111A (en) * 1971-09-21 1973-04-17 Asea Ab Method of manufacturing billets from powder

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3284195A (en) * 1963-06-26 1966-11-08 John M Googin Method of fabricating articles from powders
US3356496A (en) * 1966-02-25 1967-12-05 Robert W Hailey Method of producing high density metallic products
US4041123A (en) * 1971-04-20 1977-08-09 Westinghouse Electric Corporation Method of compacting shaped powdered objects
US3767371A (en) * 1971-07-01 1973-10-23 Gen Electric Cubic boron nitride/sintered carbide abrasive bodies
US3982911A (en) * 1972-11-01 1976-09-28 General Electric Company Process for the preparation of a composite cubic boron nitride layer abrasive body
CA1062866A (en) * 1975-08-22 1979-09-25 Raymond L. Straw Method of uniformly compressing an article in a die and support material used therefor
US4205379A (en) * 1977-05-16 1980-05-27 TRW Inc., Systems & Energy Position determining and dynamic positioning method and system for floating marine well drill platforms and the like
US4234661A (en) * 1979-03-12 1980-11-18 General Electric Company Polycrystalline diamond body/silicon nitride substrate composite

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1576752A (en) * 1967-07-31 1969-08-01
FR2049146A1 (en) * 1969-06-02 1971-03-26 Wheeling Pittsburgh Steel Corp
US3728111A (en) * 1971-09-21 1973-04-17 Asea Ab Method of manufacturing billets from powder

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0039014B1 (en) * 1980-04-25 1984-09-19 Asea Ab Method of manufacturing compacts from powder
DE3117486A1 (en) * 1980-05-13 1982-01-21 ASEA AB, 72183 Västerås "METHOD FOR THE PRODUCTION OF STAINLESS, FERRITIC-AUSTENITIC STEEL"
DE3117486C2 (en) * 1980-05-13 1992-04-30 Asea Ab, Vaesteraas, Se
DE3117486C3 (en) * 1980-05-13 1998-04-09 Asea Ab Process for the production of stainless, ferritic-austenitic steel
EP0105653A1 (en) * 1982-09-20 1984-04-18 The Dow Chemical Company Method and assembly for hot consolidating materials
US4596694A (en) * 1982-09-20 1986-06-24 Kelsey-Hayes Company Method for hot consolidating materials
FR2555480A1 (en) * 1983-11-30 1985-05-31 Deutsche Forsch Luft Raumfahrt PROCESS AND DEVICE FOR THE MANUFACTURE OF COMPACT AGGLOMERATES FROM A FLUID OR SINTERED METAL POWDER
GB2181745A (en) * 1985-08-28 1987-04-29 Avesta Nyby Powder Ab Hot-deformed powder metallurgy articles
GB2181745B (en) * 1985-08-28 1990-03-21 Avesta Nyby Powder Ab A process for the production of powder-metallurgy articles
US7005104B2 (en) 2000-11-08 2006-02-28 Autoclave, High Pressure & Temperature Limited Power module for an autoclave

Also Published As

Publication number Publication date
SE417580B (en) 1981-03-30
US4371396A (en) 1983-02-01
JPS55120499A (en) 1980-09-16
DE3061951D1 (en) 1983-03-24
ATE2489T1 (en) 1983-03-15
EP0014975B1 (en) 1983-02-16
SE7901734L (en) 1980-08-28
JPS646241B2 (en) 1989-02-02

Similar Documents

Publication Publication Date Title
EP0014975B1 (en) Process for manufacturing compressed bodies from metal powder
DE2419014C3 (en) Method of manufacturing stainless steel pipes and application of the method to the manufacture of composite pipes
DE2362499C2 (en) Process for the powder-metallurgical production of extruded bodies
EP0039014A1 (en) Method of manufacturing compacts from powder
DE1929986A1 (en) Conversion of metal waste into useful objects
DE3343210C1 (en) Method and device for the production of compacted shaped bodies
DE2055533B2 (en) PROCESS FOR MANUFACTURING A DENSE ROTATIONAL SYMMETRIC HOT-PRESSED BODY FROM METAL POWDER
DE2360914C2 (en) Binding, deoxidizing and carburizing agents for the manufacture of preforms from metal powders
DE3904776C2 (en)
DE2258485C3 (en)
DE1583742B2 (en) Process for producing flowable metal powders and granulated carbonyl metal powder thus produced
DE2522073A1 (en) PLATE MADE OF AN ALLOY
DE1959430C3 (en) Process for the production of a tight, rotationally symmetrical hot-pressed body from metal powder
DE2724524B2 (en) Container for hot-pressing molded bodies of entangled shape from powder
EP0419685A1 (en) Method and device for making articles from powder materials
EP0356718B1 (en) Method for shaping by extrusion and modifying the mechanical properties of semi-finished products made from metallic-powder alloys having an increased heat resistance
DE2745020A1 (en) PRESSING PROCESS FOR METAL POWDER
EP0039013A1 (en) Extrusion method
DE1920466A1 (en) Process for consolidating workpieces
DE3406171A1 (en) METHOD FOR COMPRESSING A METAL OR CERAMIC BODY
US3340055A (en) Method for producing compacted articles having large length to diameter ratios
EP0074679B1 (en) Process for manufacturing an article from a heat-resisting alloy
DE2029116C3 (en) Process for the manufacture of a dense, elongated, hot-pressed body from metal powder
EP0673694B1 (en) Method of forming metallic bodies with high pressures applied by a pressure transmitting medium, application of the method and device therefor
DE3613507C1 (en) Method for producing rotationally symmetrical explosive bodies

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT DE FR GB IT

17P Request for examination filed

Effective date: 19810103

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT DE FR GB IT

REF Corresponds to:

Ref document number: 2489

Country of ref document: AT

Date of ref document: 19830315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3061951

Country of ref document: DE

Date of ref document: 19830324

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19900123

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19901220

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910201

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19910216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910219

Year of fee payment: 12

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920216

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19921030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT