EP0010484B1 - Perfectionnement dans la chromisation des aciers par voie gazeuse - Google Patents

Perfectionnement dans la chromisation des aciers par voie gazeuse Download PDF

Info

Publication number
EP0010484B1
EP0010484B1 EP79400724A EP79400724A EP0010484B1 EP 0010484 B1 EP0010484 B1 EP 0010484B1 EP 79400724 A EP79400724 A EP 79400724A EP 79400724 A EP79400724 A EP 79400724A EP 0010484 B1 EP0010484 B1 EP 0010484B1
Authority
EP
European Patent Office
Prior art keywords
nitrogen
steels
chromising
chromium
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79400724A
Other languages
German (de)
English (en)
Other versions
EP0010484A1 (fr
Inventor
Robert Leveque
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Creusot Loire SA
Original Assignee
Creusot Loire SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Creusot Loire SA filed Critical Creusot Loire SA
Priority to AT79400724T priority Critical patent/ATE1529T1/de
Publication of EP0010484A1 publication Critical patent/EP0010484A1/fr
Application granted granted Critical
Publication of EP0010484B1 publication Critical patent/EP0010484B1/fr
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C12/00Solid state diffusion of at least one non-metal element other than silicon and at least one metal element or silicon into metallic material surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering

Definitions

  • the present invention relates to an improvement in chromium-plating by gas of steels with more than 0.2% carbon, more particularly structural steels and tool steels; this improvement makes it possible to significantly increase the thickness of the chromized layer, as well as its toughness.
  • chromization of steels by gas is well known.
  • the formation of chromium-based diffusion alloys on the surface of steels has already been described in numerous invention patents.
  • the transport of chromium to the surface of the material to be treated is carried out by means of halides, which are the only chromium compounds in the vapor state at diffusion temperatures.
  • the passage of chromium in solid solution in the metal is made by exchange between the chromium halide and the iron according to a reaction which, in the case of chlorides, can be written:
  • the reaction must be carried out at high temperature and in the austenitic range, that is to say above 850 ° C. for the usual steels.
  • the surface reaction of carbon and chromium causes on the one hand the formation of a film of chromium carbides, on the other hand a diffusion of carbon towards the area.
  • the surface film consists of two types of carbides, M 23 C 6 , richer in chromium towards the surface and M 7 C 3 , poorer in chromium, towards the metal substrate.
  • M indicates a metal such as der (Fe), chromium (Cr), nickel (Ni), etc ...
  • the surface film has a thickness between 12 and 18 micrometers, and a hardness level between 1200 and 1800 in the Vickers hardness scale. Chromium thus diffuses into steel over a depth generally close to 15 micrometers. In known methods, this depth of chromization never exceeds 20 micrometers.
  • a first solution for increasing the thickness and the toughness of the carbide layers can be constituted by an initial treatment phase consisting of a rapid rise in temperature, in particular in the range 600-900 ° C where usually precipitate carbides M I C 3 in the ferritic structure.
  • an initial treatment phase consisting of a rapid rise in temperature, in particular in the range 600-900 ° C where usually precipitate carbides M I C 3 in the ferritic structure.
  • such a solution would present risks with regard to the initiation of cracking and spalling during heating, in particular for parts of relatively alloyed steels having geometries which are ill-suited to the high stresses of thermal origin which would result from such a cycle of heater.
  • the present invention while applying the principle of chromizing the part in the austenitic phase, avoids the risks mentioned above by first producing a nitrided layer, but without a combination layer, that is to say in such a way that it does not in any way formation of a surface layer of iron and chromium nitrides. Indeed, a surface layer of iron nitrides would remain relatively stable, even at high temperatures, and would constitute a real barrier opposing the diffusion of chromium, this barrier being reinforced by the formation of chromium nitrides linked to an additional contribution. nitrogen.
  • the subject of the present invention is a process for chromizing steels over a depth e greater than 40 micrometers, usable for steels having a carbon content at least equal to 0.2%, in particular for structural steels and for tool steels, consisting of three successive treatments, namely: a nitriding treatment, a gas chromizing treatment and a thermal treatment, and characterized in that the nitriding treatment consists of ionic nitriding of a surface layer with a thickness between 100 and 350 micrometers, produced in an atmosphere consisting of a mixture of nitrogen and hydrogen, at a temperature between 450 ° C and 650 ° C, for a period between 5 and 40 hours , so as to obtain between 1.5% and 2.5% of nitrogen in the nitrided layer, in that the chromization by gas-forming form of chromium carbides, lasting between 5 and 30 hours, is carried out at temperatures between 850 ° C and 1,100 ° C, and in that the heat treatment comprises an oil
  • the ionic nitriding forming the first of the three treatments and carried out under a nitrogen and hydrogen atmosphere is carried out under a partial nitrogen pressure at most equal to 150 Pascals, and under a total gas pressure. between 200 and 1000 Pascals.
  • the chromization forming the second of the three treatments uses a pulverulent mixture based on ferro-chromium and on chloride of ammonium, the latter representing by weight only 0.4% to 1% of the pulverulent mixture, the ferro-chromium powder preferably having a chromium content of between 50% and 75% and a particle size of between 0.5 millimeter and 4 millimeters, without aluminous or magnesium binder.
  • ionic nitriding should be understood to mean a thermochemical treatment of a metal surface by ion bombardment with rarefied gas, performing surface nitriding of the metal part placed in a cathode under an atmosphere. nitrogen and hydrogen at a temperature between 450 ° C and 650 ° C.
  • thermochemical treatments of metal surfaces by ion bombardments, and more particularly nitriding are based on the properties of the electric discharge in rarefied gases, in this case mixtures of nitrogen and hydrogen with possibly hydrocarbons.
  • the reactive gas atmosphere can be chosen independently of the need for its pyrolitic cracking since its activation is obtained by ionization. It is therefore possible to adjust the partial nitrogen pressure so that the phase or phases provided for in the binary iron-nitrogen balance diagram are superficially formed.
  • one of the main advantages of the invention consists, thanks to ionic nitriding, in obtaining a nitrided layer without combination layer, that is to say without iron and chromium nitrides, in a way reliable and repetitive by adjusting the partial pressure of nitrogen as a function of the treatment temperature and the chemical composition of the steel. So, without the risk of cracking, the steel on the surface can quickly pass into the austenitic phase at moderate temperature, because of a nitrogen content of the order of 1.5% to 2.5%.
  • gas chromization can be carried out at greater depth, for example up to 50 micrometers and even more, and with the formation on the surface of a single type of carbonitrides, in Cr 2 (C, N), this which results in a significant increase in the toughness of the coating.
  • a chromium-molybdenum-vanadium steel of the type is treated 35 CDV 12, therefore at 0.35% carbon, in order to obtain a chromization depth of 50 micrometers.
  • the ionic nitriding which constitutes the first of the three successive treatments according to the invention is carried out here in a metal enclosure provided with heat shields and cooled by circulation of water, which enclosure constitutes the anode connected to the ground.
  • the electrical parameters are chosen in such a way that the current increases with the direct voltage produced by the generator and that the sample to be nitrided which constitutes the cathode is covered by the corona corresponding to the abnormal discharge regime. Near the cathode surface, the gaseous ions are formed and accelerated towards the sample and cause it to heat up, which is continued until the temperature chosen to carry out the thermochemical treatment.
  • the temperature regulation is obtained using a thermocouple protected by an alumina sheath and placed in the sample under conditions which prevent arcing.
  • the pressure at which the thermochemical treatment is carried out is generally between 250 and 800 Pascals; a primary pump is sufficient to create the initial vacuum, then to allow the renewal of the nitriding gas near the sample.
  • the nitriding gas mixture is composed of nitrogen and hydrogen.
  • the partial pressures of nitrogen P N for which oh obtains a solid solution of nitrogen in the ferrite network are between 10 and 50 Pascals.
  • the temperature is set on average at 520 ° C and does not deviate from the range between 510 and 530 ° C. Leaving aside the temperature rise and the low pressure setting of the atmosphere, the duration of ion nitriding at good pressure and at the right temperature is 25 hours.
  • the metal piece of CDV 12 steel 35 thus nitrided is then extracted from the ion nitriding furnace and introduced into a case-hardening box which will carry out the second treatment according to the invention, which is gas chromization.
  • the cementing agent used is a powder consisting for 99.5% of ferro-chromium with 60/70% of chromium and for 0.5% of ammonium chloride, without alumina or magnesia.
  • This powder has a particle size between 0.5 and 4 mm, with an average size close to 2.7 mm.
  • This powder is placed at the bottom of the case-hardening box, which has the shape of a vertical cylinder, and it is covered by a partition on which the piece of steel to be chromized is placed.
  • At the upper part of the case-hardening box there is a ferro-chromium reserve in a basket used for the direct regeneration of the active vapor of chromium chloride CrCI 2 . Introduced hydrogen creates a reducing atmosphere.
  • the enclosure is brought to an average temperature of 950 ° C, not deviating from the range 920 ° C-980 ° C, for a period of 20 hours.
  • the ferrous chloride vapors from reaction (1) react on the chromium reserve placed at the top of the body, which regenerates gaseous chromium chloride CrCI 2 which participates in the chromization according to (1).
  • the chromized part undergoes the third treatment according to the invention, that is to say that it is extracted from the case hardening box, it is immediately soaked in oil , then it is introduced into a tempering oven maintained at a temperature of the order of 625 ° C., for 2 hours.
  • the chromized coating thus obtained in the present example according to the invention is to be compared with that of a chromization of known type, not preceded by ionic nitriding.

Description

  • La présente invention concerne un perfectionnement à la chromisation par voie gazeuse des aciers à plus de 0,2% de carbone, plus spécialement les aciers de construction et les aciers à outils; ce perfectionnement permet d'accroître très notablement l'épaisseur de la couche chromisée, ainsi que sa ténacité.
  • La chromisation des aciers par voie gazeuse est bien connue. La formation d'alliages de diffusion à base de chrome sur la surface des aciers a déjà été décrite dans de nombreux brevets d'invention. Le transport de chrome jusqu'à la surface du matériau à traiter se fait au moyen d'halogénures, qui sont les seuls composés au chrome se trouvant à l'état de vapeur aux températures de diffusion. Le passage du chrome en solution solide dans le métal se fair par échange entre l'halogénure de chrome et le fer suivant une réaction qui, dans le cas des chlorures, peut s'écrire:
  • Figure imgb0001
  • Pour obtenir une diffusion suffisante, la réaction doit s'effectuer à haute température et dans le domaine austénitique, c'est à dire au-delà de 850°C pour les aciers usuels. Dans les aciers dont la teneur en carbone est supérieure à 0,2%, la réaction superficielle du carbone et du chrome entraine d'une part la formation d'une pellicule de carbures de chrome, d'autre part une diffusion du carbone vers la surface. La pellicule superficielle est constituée de deux types de carbures, M23C6, plus riche en chrome vers la surface et M7C3, plus pauvre en chrome, vers le substrat métallique.
  • Dans ce qui précède et dans ce qui suit, M désigne un métal tel que le der (Fe), le chrome (Cr), le nickel (Ni), etc...
  • La pellicule superficielle a une épaisseur comprise entre 12 et 18 micromètres, et un niveau de dureté compris entre 1200 et 1800 dans l'échelle de dureté Vickers. Le chrome diffuse ainsi dans l'acier sur une profondeur en général voisine de 15 micromètres. Dans les procédés connus, cette profondeur de chromisation ne dépasse jamais 20 micromètres.
  • L-affinité du chrome pour le carbone est telle qu'il se forme très rapidement, au cours de la montée en température de traitement, une pellicule de carbures du type M,C3 sur la surface des pièces. Cette pellicule gêne la pénétration du chrome à l'intérieur de l'acier par diffusion; il en résulte:
    • 1 ) la formation du deuxième type de carbures M23C6.
    • 2) l'obtention de couches superficielles de carbures relativement minces.
  • Ces couches minces et biphasées présentent l'inconvénient d'être relativement fragiles, en raison de l'état des contraintes qui se trouvent dans les phases curbures après traitement thermique. Le carbure M,C3, de structure colonnaire, se trouve notamment en état de contraintes d'extension, ce qui entraine la formation de fissures qui sont souvent à l'origine des écaillages observés.
  • D'autre part, des traitements successifs de nitruration gazeuse (à des températures supérieurs à 830°C) et de chromisation par diffusion gazeuse, comme décrits par exemple dans le brevet français no. 1,410,647, ont bien permis d'augmenter la dureté des couches chromisées, mais les épaisseurs des revêtements réalisés, constitués par des nitrures et par des carbures de chrome, donc biphasés, étaient aussi faibles que celles des couches précédemment décrites, obtenues par une chromisation non précédée d'une nitruration gazeuse.
  • Le but principal de la présente invention est de trouver un moyen permettant d'obtenir en surface un seul type de carbures, et ceci dans une couche de plus grande épaisseur. Un passage rapide de la pièce à traiter en phase austénitique pourrait constituer une solution pour deux raisons:
    • 1 ) La diffusion du carbone vers la surface est ralentie; en effet, le coefficient de diffusion du carbone en volume dans la phase austénitique du fer est de l'ordre de 10-8 cm2/sec à 900°C, alors qu'il est voisin de 2.10-6 cm2/sec à la même température dans la phase ferritique. Il en résulte donc une réduction de la vitesse de formation des carbures en surface et une accentuation de la diffusion du chrome en profondeur.
    • 2) Le carbure M23C8, de structure cubique à faces centrées a une maille a de 10,6 A°, pratiquement trois fois plus grande que celle de l'austénite (a=3,6 A°), Ce carbure précipite donc beaucoup plus facilement dans la structure austénitique que le carbure M7C3 de structure hexagonale.
  • Donc, une première solution pour l'augmentation de l'épaisseur et de la ténacité des couches de carbures peut être constituée par une phase initiale de traitement consistant en une montée rapide en température, notamment dans le domaine 600-900°C où précipitent habituellement les carbures MIC3 dans la structure ferritique. Toutefois, une telle solution présenterait des risques au niveau des amorçages de fissuration et de tapures au cours du chauffage, notamment pour des pièces en aciers relativement alliés présentant des géométries peu adaptées aux fortes contraintes d'origine thermique qui résulteraient d'un tel cycle de chauffage.
  • La présente invention, tout en appliquant le principe de chromiser la pièce en phase austénitique, évite les risques mentionnés ci-dessus en réalisant au préalable une couche nitrurée, mais sand couche de combinaison, c'est à dire de manière telle qu'il n'y ait en aucune façon formation d'une couche superficielle de nitrures de fer et de chrome. En effet, une couche superficielle de nitrures de fer resterait relativement stable, même à des températures élevées, et constituerait une véritable barrière s'opposant à la diffusion du chrome, cette barrière étant renforcée par la formation des nitrures de chrome liée à un apport supplémentaire d'azote.
  • Ainsi, l'absence de couche de combinaison sur la surface des pièces à traiter ensuite par chromisation est une condition nécessaire à une bonne diffusion du chrome en profondeur, et cette condition est réalisée dans la présente invention.
  • A cet effet, la présente invention a pour objet un procédé de chromisation des aciers sur une profondeur e supérieure à 40 micromètres, utilisable pour des aciers ayant une teneur en carbone au moins égale à 0,2%, notamment pour des aciers de construction et pour des aciers à outils, constitué par trois traitements successifs, à savoir: un traitement de nitruration, un traitement de chromisation par voie gazeuse et un traitement thermique, et caractérisé en ce que le traitement de nitruration est constitué par une nitruration ionique d'une couche superficielle d'épaisseur comprise entre 100 et 350 micromètres, réalisée dans une atmosphère constituée par un mélange d'azote et d'hydrogène, à une température comprise entre 450°C et 650°C, pendant une durée comprise entre 5 et 40 heures, de façon à obtenir entre 1,5% et 2,5% d'azote dans la couche nitrurée, en ce que la chromisation par voie gazeuse formatrice de carbures de chrome, d'une durée comprise entre 5 et 30 heures, est réalisée à des températures comprises entre 850°C et 1.100°C, et en ce que le traitement thermique comprend une trempe à l'huile de la pièce chromisée suivie d'un revenu à une température comprise entre 600°C et 650°C, d'une durée comprise entre 30 minutes et 10 heures selon la dimension de la pièce traitée.
  • Suivant une caractéristique particulière de la présente invention, la nitruration ionique formant le premierdes trois traitements et effectuée sous atmosphère d'azote et d'hydrogène est réalisée sous une pression partielle d'azote au plus égale à 150 Pascals, et sous une pression gazeuse totale comprise entre 200 et 1000 Pascals.
  • Suivant une autre caractéristique particulière de la présente invention, la chromisation formant le second des trois traitements, réalisée par la technique connue des céments sous atmosphère réductrice à base d'hydrogène, utilise un mélange pulvérulent à base de ferro-chrome et de chlorure d'ammonium ce dernier ne représentant en poids que 0,4% à 1% du mélange pulvérulent, la poudre de ferro-chrome présentant de préférence une teneur en chrome comprise entre 50% et 75% et une granulométrie comprise entre 0,5 millimètre et 4 millimètres, sans liant alumineux ni magnésien.
  • Dans tout ce qui précède et dans tout ce qui suit, il faut entendre par "nitruration ionique" un traitement thermo-chimique d'une surface métallique par bombardement ionique en gaz raréfié, réalisant une nitruration superficielle de la pièce métallique placée en cathode sous atmosphère d'azote et d'hydrogène à une température comprise entre 450°C et 650°C.
  • L'intérêt principal de la nitruration ionique est qu'elle rend possible l'exploitation de toutes les éventualités offertes par les diagrammes d'équilibre entre les éléments constituant l'acier traité et I-azote. En effet, les traitements thermo- chimiques de surfaces métalliques par bombardements ioniques, et plus particulièrement la nitruration, sont basés sur les propriétés de la décharge électrique dans les gas raréfiés, en l'occurrence des mélanges d'azote et d'hydrogène avec éventuellement des hydrocarbures. L'atmosphère gazeuse réactive peut être choisie indépendamment de la nécessité de son crackage pyrolitique puisque son activation est obtenue par ionisation. Il est donc possible de régler la pression partielle d'azote de telle sorte que l'on forme superficiellément la ou les phases prévues par le diagramme d'équilibre binaire fer-azote. C'est ainsique pour les pressions d'azote les plus faibles, on forme uniquement une couche de diffusion, solution solide d'azote dans le fer a à des températures généralement comprises entre 450° et 570°C. Dans ce même domaine de température, une augmentation de la pression partielle d'azote conduit tout d'abord à la formation d'une couche de combinaison de nitrures y' (Fe4N), puis de nitrures y' et e (Fe2,3N).
  • Il est possible d'obtenir dans le das des aciers à plus de 0,2% de carbone, et plus spécialement les aciers de construction et les aciers à outils, des couches de diffusion d'azote d'épaisseurs comprises entre 100 et 350 micromètres, cette nitruration ionique étant réalisée dans une atmosphère constituée par un mélange d'azote et d'hydrogène, à une température comprise entre 450 et 570°C, pendant une durée comprise entre 5 et 40 heures de façon à obtenir par exemple sur des profondeurs de 50 à 200 micromètres à partir de la surface des teneurs en azote en solution solide comprises entre 1,5 et 2,5%.
  • Comme on le comprend, l'un des principaux avantages de l'invention consiste, grâce à la nitruration ionique, à obtenir une couche nitrurée sans couche de combinaison, c'est à dire sans nitrures de fer et de chrome, d'une manière fiable et répétitive par ajustement de la pression partielle d'azote en fonction de la température de traitement et de la composition chimique de l'acier. Alors, sans risque de tapures, l'acier en surface peut passer rapidement en phase austénitique à température modérée, à cause d'une teneur en azote de l'ordre de 1,5% à 2,5%.
  • Après quoi la chromisation par voie gazeuse peut s'effectuer à plus grande profondeur, par exemple jusqu'à 50 micromètres et même davantage, et avec formation en surface d'un seul type de carbonitrures, en Cr2(C, N), ce qui entraine une augmentation sensible de la ténacité du revêtement.
  • Afin de bien faire comprendre l'invention, on va décrire ci-après, à titre d'exemple non limitatif, un mode de réalisation du perfectionnement selon l'invention, dans lequel on traite un acier au chrome-molybdène-vanadium, de type 35 CDV 12, donc à 0,35% de carbone, en vue d-obtenir une profondeur de chromisation de 50 micromètres.
  • La nitruration ionique qui constitue le premier des trois traitements successifs selon l'invention est effectuée ici dans une enceinte métallique munie de boucliers thermiques et refroidie par circulation d'eau, laquelle enceinte constitue l'anode reliée à la terre. Les paramètres électriques sont choisis de telle manière que le courant augmente avec la tension continue produite par le générateur et que l'échantillon à nitrurer qui constitue la cathode soit recouvert par l'effluve correspondant au régime de décharge anormale. A proximité de la surface cathodique, les ions gazeux sont formés et accélérés vers l'échantillon et provoquent son échauffement, que l'on poursuit jusqu'à la température choisie pour réaliser le traitement thermochimique. La régulation de température est obtenue à l'aide d'un thermocouple protégé par une gaine en alumine et placé dans l'echantillon dans des conditions qui permettent d'éviter l'amorçage d'arcs.
  • La pression à laquelle le traitement thermo- chimique est réalisé est généralement comprise entre 250 et 800 Pascals; une pompe primaire est suffisante pour faire le vide initial, puis pour permettre le renouvellement du gaz nitrurant à proximité de l'enchantillon. Le mélange gazeux nitrurant est composé d'azote et d'hydrogène. Les pressions partielles d'azote PN pour lesquelles oh obtient une solution solide d'azote dans le réseau de la ferrite sont comprises entre 10 et 50 Pascals. La température est réglée en moyenne à 520°C et ne s'écarte pas du domaine compris entre 510 et 530°C. En laissant de côté la montée en température et la mise en basse pression de l'atmosphère, la durée de la nitruration ionique à bonne pression et à bonne température est de 25 heures. Par ce premier traitement, la teneur moyenne en azote de l'acier entre 50 et 200 micromètres de profondeur atteint 2,196, et la couche nitrurée ne contient pas de nitrures de fer, ni de nitrures de chrome.
  • La pièce métallique en acier 35 CDV 12 ainsi nitrurée est alors extraite du four de nitruration ionique et introduite dans une caisse de cémentation qui va effectuer le deuxième traitement selon l'invention, qui est une chromisation par voie gazeuse.
  • L'agent de cémentation utilisé est une poudre constituée pour 99,5% de ferro-chrome à 60/70% de chrome et pour 0,5% de chlorure d'ammonium, sans alumine ni magnésie. Cette poudre présente une granulométrie comprise entre 0,5 et 4 mm, avec une dimension moyenne voisine de 2,7 mm. Cette poudre este disposée dans le fond de la caisse de cémentation, qui a la forme d'un cylindre vertical, et elle se trouve recouverte par un cloisonnement sur lequel est placée la pièce d'acier à chromiser. A la partie supérieure de la caisse de cémentation se trouve dans un panier une réserve de ferro-chrome servant à la régénération directe de la vapeur active de chlorure de chrome CrCI2. De l'hydrogène introduit crée une atmosphère réductrice.
  • L'enceinte est portée à une température moyenne de 950°C, ne s'écartant pas du domaine 920°C-980°C, pendant une durée de 20 heures.
  • Dans la caisse de cémentation se produisent les phénomènes suivants:
    • Au chauffage, le chlorure d'ammonium se dissocie. L'ion chlore ainsi libéré agit sur le chrome du ferro-chrome pour former du chlorure de chrome CrCI2 à l'état de vapeur, qui produit la chromisation superficielle selon la réaction (1) mentionnée ci-dessus.
  • Les vapeurs de chlorure ferreux issus de la réaction (1) réagissent sur la réserve de chrome placée à la partie supérieure de la caisse, ce qui régénère du chlorure de chrome CrCI2 gazeux qui participe à la chromisation selon (1 ).
  • Après 20 heures de maintien à 920°C-980°C, la pièce chromisée subit le troisième traitement selon l'invention, c'est à dire qu'elle est extraite de la caisse de cémentation, elle est immédiatement trempée à l'huile, puis elle est introduite dans un four de revenu maintenu à une température de l'ordre de 625°C, pendant 2 heures.
  • Après revenu, on observe:
    • - que la couche superficielle contenant les carbonitrures de chrome a une épaisseur voisine de 50 micromètres,
    • -que les carbonitrures de chrome de cette couche superficielle sont à peu près exclusivement du type Cr2(C, N),
    • - que la dureté de cette couche est comprise entre 1800 et 2000 dans l'échelle de Vickers,
    • -qu'elle se fissue sous une charge de 1 kilogramme-force.
  • Le revêtement chromisé ainsi obtenu dans le présent exemple selon l'invention est à comparer avec celui d'une chromisation de type connu, non précédée d'une nitruration ionique.
  • Dans ce cas de type connu:
    • la couche superficielle contenant les carbures de chrome a une épaisseur voisine de 15 micromètres,
    • - on y observe deux phases de carbures de chrome, l'une en M23C6, surtout en surface, l'autre en M,C3, vers le substrat métallique,
    • - la dureté de la couche superficielle est comprise entre 1200 et 1800 dans l'échelle de Vickers, avec des hétérogénéités liées à des porosités superficielles,
    • - la charge à partir de laquelle apparaissent les fissures aux angles des empreintes Vickers est de 300 grammes-force.
  • Il est bien entendu que l'on peut, sans sortir du cadre de l'invention, imaginer des variantes et perfectionnements de détails, de même qu'envisager l'emploi de moyens équivalents.

Claims (3)

1. Procédé de chromisation des aciers sur une profondeur e supérieure à 40 micromètres, utilisable pour des aciers ayant une teneur en carbone au moins égale à 0,2%, constitué par trois traitements successifs, à savoir: un traitement de nitruration, un traitement de chromisation par voie gazeuse et un traitement thermique, et caractérisé en ce que le traitement de nitruration est constitué par une nitruration ionique d'une couche superficielle d'épaisseur comprise entre 100 et 350 micromètres, réalisée dans une atmosphère constituée par un mélange d'azote et d'hydrogène, à une température comprise entre 450°C et 650°C, pendant une durée comprise entre 5 et 40 heures, de façon à obtenir entre 1,5% et 2,5% d'azote dans la couche nitrurée, en ce que la chromisation par voie gazeuse formatrice de carbures de chrome, d'une durée comprise entre 5 et 30 heures, est réalisée à des températures comprises entre 850°C et 1.100°C, et en ce que le traitement thermique comprend une trempe à l'huile de la pièce chromisée suivie d'un revenu à une température comprise entre 600°C et 650°C, d'une durée comprise entre 30 minutes et 10 heurs selon la dimension de la pièce traitée.
2. Procédé de chromisation des aciers selon la revendication 1, caractérisé en ce que la nitruration ionique formant le premier des trois traitements et effectuée sous atmosphère d'azote et d'hydrogène est réalisée sous une pression partielle d'azote au plus ègale à 150 Pascals, et sous une pression gazeuse totale comprise entre 200 et 1000 Pascals.
3. Procédé de chromisation des aciers selon l'une quelconque des revendications 1 et 2, dans lequel la chromisation formant le second des trois traitements est réalisée par la technique connue des céments, sous atmosphère réductrice à base d'hydrogène, et utilise comme cément un mélange pulvérulent à base de ferro-chrome et de chlorure d'ammonium, caractérisé en ce que le mélange pulvérulent contient entre 0,4% et 1% de chlorure d'ammonium, et en ce que la poudre de ferro-chrome présente une tenenur en chrome comprise entre 50% et 75% et une granulométrie comprise entre 0,5 millimètre et 4 millimétres, sans liant alumineux ni magnésien. __
EP79400724A 1978-10-25 1979-10-08 Perfectionnement dans la chromisation des aciers par voie gazeuse Expired EP0010484B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT79400724T ATE1529T1 (de) 1978-10-25 1979-10-08 Verbesserung der inchromierung von stahl in der gasphase.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7830308 1978-10-25
FR7830308A FR2439824A1 (fr) 1978-10-25 1978-10-25 Perfectionnement dans la chromisation des aciers par voie gazeuse

Publications (2)

Publication Number Publication Date
EP0010484A1 EP0010484A1 (fr) 1980-04-30
EP0010484B1 true EP0010484B1 (fr) 1982-09-08

Family

ID=9214133

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79400724A Expired EP0010484B1 (fr) 1978-10-25 1979-10-08 Perfectionnement dans la chromisation des aciers par voie gazeuse

Country Status (7)

Country Link
US (1) US4242151A (fr)
EP (1) EP0010484B1 (fr)
JP (1) JPS6035989B2 (fr)
AT (1) ATE1529T1 (fr)
DE (1) DE2963643D1 (fr)
FR (1) FR2439824A1 (fr)
ZA (1) ZA795719B (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2454471A1 (fr) * 1979-04-20 1980-11-14 Aubert Et Duval Procede de chromisation de pieces metalliques telles que des pieces d'acier et pieces metalliques chromisees
FR2483468A2 (fr) * 1980-05-29 1981-12-04 Creusot Loire Perfectionnement dans la chromisation des aciers par voie gazeuse
US4818351A (en) * 1986-07-30 1989-04-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Method for the surface treatment of an iron or iron alloy article
FR2604188B1 (fr) * 1986-09-18 1992-11-27 Framatome Sa Element tubulaire en acier inoxydable presentant une resistance a l'usure amelioree
GB2204327B (en) * 1987-05-01 1991-07-31 Nii Tekh Avtomobil Promy Deposition of diffusion carbide coatings on iron-carbon alloy articles
US5460875A (en) * 1990-10-04 1995-10-24 Daidousanso Co., Ltd. Hard austenitic stainless steel screw and a method for manufacturing the same
JP3023222B2 (ja) * 1991-08-31 2000-03-21 大同ほくさん株式会社 硬質オーステナイト系ステンレスねじおよびその製法
US5226975A (en) * 1991-03-20 1993-07-13 Cummins Engine Company, Inc. Plasma nitride chromium plated coating method
KR100503497B1 (ko) * 2002-11-25 2005-07-26 한국기계연구원 크롬도금층의 내식성 및 내마모성을 향상시키는 열처리방법
CN1300445C (zh) * 2003-12-26 2007-02-14 东方汽轮机厂 一种汽轮机高温叶片及其热处理工艺
JP4488840B2 (ja) * 2004-08-30 2010-06-23 本田技研工業株式会社 硬質窒化物層の形成方法、並びにこの形成方法により得られたローラーチェーン及びサイレントチェーン
DE102005041080A1 (de) * 2004-08-31 2006-03-16 Tochigi Fuji Sangyo K.K. Reibeingriffsvorrichtung
US9598761B2 (en) * 2009-05-26 2017-03-21 The Gillette Company Strengthened razor blade
JP6637231B2 (ja) * 2014-10-07 2020-01-29 エア・ウォーターNv株式会社 金属の表面改質方法および金属製品
US11396692B2 (en) * 2019-02-21 2022-07-26 Fluid Controls Private Limited Method of heat treating an article
CN112575333A (zh) * 2020-11-24 2021-03-30 江西铜印象文化创意有限公司 一种铜工艺品除杂式表面热处理工艺

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1902503A (en) * 1930-05-29 1933-03-21 Gen Electric Process for coating metals
US2046638A (en) * 1932-04-22 1936-07-07 Link Belt Co Process of treating metal
US3256818A (en) * 1955-11-26 1966-06-21 Berghaus Bernhard Method of reducing barrel wear
US3190772A (en) * 1960-02-10 1965-06-22 Berghaus Bernhard Method of hardening work in an electric glow discharge
US3282746A (en) * 1963-11-18 1966-11-01 Formsprag Co Method of hardening wear surfaces and product
FR1410647A (fr) * 1964-10-05 1965-09-10 Formsprag Co Procédé de durcissement des surfaces frottantes et nouveaux produits industriels obtenus
DE1521325C3 (de) * 1966-04-13 1975-06-26 Elektrophysikalische Anstalt Bernhard Berghaus, Vaduz Verfahren zur Gewinnung von verschleißfesten Gleitflächen mit guten Einlaufeigenschaften auf Werkstücken aus Elsen und Stahl
FR95448E (fr) * 1967-06-27 1970-11-06 Ct Stephanois De Rech Mecaniqu Traitement de surface pour pieces mécaniques.
DE1621268B1 (de) * 1967-10-26 1971-06-09 Berghaus Elektrophysik Anst Verfahren und Vorrichtung zur Ionitrierung von Hochlegierten Staehlen
GB1318887A (en) * 1969-10-31 1973-05-31 Lucas Industries Ltd Method of manufacturing high strength extruded steel components
CH519588A (de) * 1970-02-13 1972-02-29 Berghaus Elektrophysik Anst Verfahren zur Bearbeitung eines Werkstückes mittels einer Glimmentladung und Apparatur zur Durchführung des Verfahrens

Also Published As

Publication number Publication date
FR2439824A1 (fr) 1980-05-23
EP0010484A1 (fr) 1980-04-30
DE2963643D1 (en) 1982-10-28
ZA795719B (en) 1980-10-29
US4242151A (en) 1980-12-30
FR2439824B1 (fr) 1981-05-08
JPS6035989B2 (ja) 1985-08-17
ATE1529T1 (de) 1982-09-15
JPS5558366A (en) 1980-05-01

Similar Documents

Publication Publication Date Title
EP0010484B1 (fr) Perfectionnement dans la chromisation des aciers par voie gazeuse
CH661287A5 (fr) Procede de preparation par diffusion d'une couche protectrice sur des alliages a base de nickel, cobalt et fer.
FR2493348A1 (fr) Procede et dispositif de depot physique par vapeur de produits de revetement durs, notamment pour outils
FR2600082A1 (fr) Procede thermochimique de traitement de surface dans un plasma de gaz reactif, et pieces traitees par ce procede
EP0370838B1 (fr) Procédé de protection de surface de pièces métalliques contre la corrosion à température élevée, et pièce traitée par ce procédé
CA1215901A (fr) Procede de durcissement superficiel de pieces metalliques
FR2633641A1 (fr) Procede et dispositif de protection simultanee des surfaces internes et externes, notamment par aluminisation de pieces en alliages resistant a chaud, a base de ni, co ou fe
EP2478125B1 (fr) Procede pour former sur la surface d'une piece metallique un revêtement protecteur contenant de l'aluminium
EP0509875A1 (fr) Procédé pour le dépôt sur au moins une pièce, notamment une pièce métallique, d'une couche dure à base de pseudo carbone diamant ainsi que pièce revêtue d'une telle couche
EP0532386A1 (fr) Procédé et dispositif de cémentation d'un acier dans une atmosphère à basse pression
KR101849997B1 (ko) 철계 합금의 코팅 방법 및 이에 의하여 제조된 고경도 및 저마찰 특성을 갖는 제품
EP2260120B1 (fr) Procede pour former un revetement protecteur contenant de l'aluminium et du zirconium sur une piece metallique
FR2549085A1 (fr) Procede pour durcir la surface d'objets en materiau ferreux
RU2213802C2 (ru) Способ нанесения покрытий на сплавы
EP0043742B1 (fr) Procédé de chromisation des aciers par voie gazeuse
EP0801142A2 (fr) Procédé de traitement de surface d'une pièce métallique, pièce métallique obtenue et ses applications
Xu et al. Plasma surface alloying
US6602829B1 (en) Method for applying a lubricating layer on an object and object with an adhesive lubricating layer
JP2773092B2 (ja) 表面被覆鋼製品
EP1274873B1 (fr) Procede de traitement de surface d'une piece et piece obtenue
EP0067098B1 (fr) Méthode de nitruration ionique d'une pièce en acier déformée plastiquement au préalable
EP0707661B1 (fr) Procede pour la nitruration a basse pression d'une piece metallique et four pour la mise en uvre dudit procede
JP2006206959A (ja) アルミニウム合金の窒化方法
EP0112206B1 (fr) Procédé de revêtement en carbures de surfaces métalliques
KR101859116B1 (ko) 철계 합금의 코팅 방법 및 이에 의하여 제조된 고내식성 및 고전도도 특성을 갖는 제품

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT NL SE

17P Request for examination filed
ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT NL SE

REF Corresponds to:

Ref document number: 1529

Country of ref document: AT

Date of ref document: 19820915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 2963643

Country of ref document: DE

Date of ref document: 19821028

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940916

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940920

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940928

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940930

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19941018

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19941031

Year of fee payment: 16

Ref country code: BE

Payment date: 19941031

Year of fee payment: 16

EAL Se: european patent in force in sweden

Ref document number: 79400724.5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19951008

Ref country code: AT

Effective date: 19951008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19951009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19951031

Ref country code: BE

Effective date: 19951031

BERE Be: lapsed

Owner name: CREUSOT-LOIRE

Effective date: 19951031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951008

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 79400724.5

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960801

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT