EP0000734B1 - Verfahren zur Herstellung von Stäben oder Rohren konstanten Profils aus Faserverbundwerkstoffen - Google Patents

Verfahren zur Herstellung von Stäben oder Rohren konstanten Profils aus Faserverbundwerkstoffen Download PDF

Info

Publication number
EP0000734B1
EP0000734B1 EP78100512A EP78100512A EP0000734B1 EP 0000734 B1 EP0000734 B1 EP 0000734B1 EP 78100512 A EP78100512 A EP 78100512A EP 78100512 A EP78100512 A EP 78100512A EP 0000734 B1 EP0000734 B1 EP 0000734B1
Authority
EP
European Patent Office
Prior art keywords
fiber
profiles
fibers
impregnated
monofils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78100512A
Other languages
English (en)
French (fr)
Other versions
EP0000734B2 (de
EP0000734A1 (de
Inventor
Lothar Dr. Preis
Rolf-Joachim Förster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6015811&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0000734(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0000734A1 publication Critical patent/EP0000734A1/de
Application granted granted Critical
Publication of EP0000734B1 publication Critical patent/EP0000734B1/de
Publication of EP0000734B2 publication Critical patent/EP0000734B2/de
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0003Producing profiled members, e.g. beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • B29C70/205Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres the structure being shaped to form a three-dimensional configuration
    • B29C70/207Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres the structure being shaped to form a three-dimensional configuration arranged in parallel planes of fibres crossing at substantial angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/247Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using fibres of at least two types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/16Rigid pipes wound from sheets or strips, with or without reinforcement

Definitions

  • a number of processes are known for the continuous production of profiles from fiber composite materials. All of these processes have in common that semi-finished products made of organic, inorganic or metallic fibers in the form of fiber strands, fiber mats or fabrics are drawn off from a storage rack, impregnated with liquid reactive resin and cured into profiles in a curing section with simultaneous shaping in nozzle tools.
  • the processes differ in the type of impregnation, the shape and the hardening.
  • For the shaping nozzle constructions made of high quality tool steels are customary, which are heated with steam, oil or electrically and their sliding surfaces to reduce friction and wear, often tempered surface layers, e.g. B. hard chrome plating. With such shaping tools, relatively difficult profiles can be produced.
  • the method according to the invention differs in that the helical fibers are organic fibers or monofilaments or mixtures of organic and inorganic fibers or monofilaments.
  • the invention relates to a process for the production of profiles from fiber composite materials, wherein strands of fiber materials impregnated continuously with liquid reactive resins immediately after impregnation or in the area of a pre-curing section are wrapped or braided with stretched and / or pre-oriented and / or textured fibers or monofilaments and in one subsequent hardening section can be hardened, which is characterized in that the fibers or monofilaments consist of polyamide, thermoplastic polyesters, polycarbonates, polyacrylonitrile, modacrylic, polyolefins, polyvinyl chloride, polytetrafluoroethylene, cellulose, regenerated cellulose, cellulose esters, polyvinyl alcohol or polyurethane.
  • fiber materials are used in the usual way, e.g. impregnated with a liquid reaction resin in an impregnation bath, the resin content being determined by nozzles, rollers or the like.
  • Devices which correspond to the prior art are set.
  • the impregnation of the impregnated fiber material with the appropriate fiber materials after impregnation according to the invention can be carried out immediately after the fiber strands have left the impregnation bath. In some cases it is also advantageous to carry out the wrapping only after a pre-curing process - but always in the liquid phase of the reactive resin.
  • the actual curing takes place in the usual way, for example by convective heat transfer wear, heat radiation or by microwaves in a heating duct.
  • conventional winding machines are suitable, e.g. Diagonal winding machines, such as those used for the production of reinforced hoses, or machines used for the production of insulation in the winding or braiding process.
  • Machines for wrapping wires e.g. guitar strings are also suitable.
  • the impregnated fiber material can be wrapped in the form of circumferential windings with a small pitch. Screw windings with gradients that can be set within wide limits are also possible. Another type of wrapping is the application of diagonal (cross) windings. Common braiding processes are also suitable for applying the organic fibers to the impregnated fiber strands.
  • An essential feature of the method according to the invention is that by wrapping with stretched or pre-oriented or textured organic fibers, in contrast to wrapping with inorganic fibers, profiles with exact circular cross sections without using a shaping unit, e.g. B. a shaping nozzle can be generated.
  • the impregnated strands can be wrapped with fibers or monofilaments on an inner mold and hardened into closed hollow profiles without any further outer mold.
  • profile production is that by wrapping a flat impregnated strand of fiber material with stretched and / or pre-oriented or textured organic fibers, flat profiles or angle profiles can be produced in a simple manner only by using a roll calibration.
  • microwave curing is particularly advantageously possible, since the impregnated fiber strands can absorb the radiation without weakening over relatively long distances.
  • inorganic fibers can also be applied as additional reinforcements, or fiber mixtures of organic and inorganic fibers for additional reinforcement of the fiber composite materials, for wrapping the impregnated fiber materials.
  • the effect of the shaping achieved with the wrapping of the impregnated fiber materials with stretched and / or pre-oriented or textured organic fibers or monofilaments is based, in addition to a uniform application of the winding, in particular on the fact that during the pre-hardening or hardening process, shrinkage forces are released which are caused by proportion, type, degree of stretch and / or pre-orientation and / or texturing and the geometric arrangement of the organic fibers are determined.
  • the organic fibers are selected in such a way that the shrinkage peaks become effective before the gel phase of the reaction resin used is reached.
  • the shrinkage forces occurring depend not only on the type of fiber material used, but also on the proportion (coverage) and on the degree of stretching and / or the pre-orientation as well as on the geometric arrangement of the organic fibers on the profile to be wrapped.
  • the shrinking forces of the organic fibers can also be used specifically to achieve high fiber contents with an almost ideal longitudinal orientation of the reinforcing fibers and to air-free profiles that have a largely homogeneous fiber distribution. This results in significant increases in module and strength of the profile with significantly improved reproducibility of these values. Berte processes with an external shape cannot achieve such fiber contents and strengths and orientations due to the frictional forces that occur.
  • the strength transverse to the longitudinal direction of the profile is particularly significantly improved in the case of predominantly unidirectionally reinforced profiles.
  • the notch sensitivity of the profiles produced in this way is significantly reduced by the wrapping with organic fibers
  • the method according to the invention also makes it possible to impregnate several individual strands with different impregnating resins, to combine them by wrapping them and to harden them into a uniform fiber composite material.
  • a uniform fiber composite material is obtained in that the shrinkage forces released during hardening combine the individual fiber strands into a profile with a homogeneous fiber distribution but different matrix materials.
  • the resin excess generated on the profile surface by the shrinking forces of the stretched or pre-oriented and / or textured organic fibers can serve, as already described, for the complete impregnation of further fiber materials.
  • decorative profiles can be created by using differently colored fiber materials as well as profiled surfaces.
  • the type, proportion, degree of stretch and geometric orientation of the organic fibers can be used to adjust the excess resin such that additionally applied fiber materials are only partially impregnated.
  • the fibers lying on the profile surface do not or only incompletely impregnate them, giving simple options for improved bond adhesion, e.g. B. when embedding the profiles in thermoplastics.
  • the wrapping material is chosen as similar as possible to the thermoplastic used.
  • the claimed method is suitable for fiber composites made of glass fibers, organic fibers, carbon fibers and metal fibers.
  • the fibers can, for example. are in the form of fiber strands such as yarns, filament yarns, twisted yarns, rovings and spinning threads etc. or as textile fabrics and / or as fiber mats.
  • Suitable matrix materials are e.g. B. reaction resins such as unsaturated polyester resins, epoxy resins, methacrylate resins, polyurethane resins, novolak resins, polybismaleinimides or cyanate resins, the heat of which during the curing process, or whose curing temperatures exceed values at which the organic fibers used shrink.
  • reaction resins such as unsaturated polyester resins, epoxy resins, methacrylate resins, polyurethane resins, novolak resins, polybismaleinimides or cyanate resins, the heat of which during the curing process, or whose curing temperatures exceed values at which the organic fibers used shrink.
  • Stretched and or pre-oriented and / or textured organic fibers or monofilaments made of polyamides, thermoplastic polyesters, polycarbonates, polyacrylonitrile, modacrylic, polyolefins, polyvinyl chloride, polytetrafluoroethylene, cellulose and regenerated cellulose, cellulose esters or polyvinyl alcohol and polyurethane fibers are suitable as materials for wrapping the impregnated fiber materials.
  • the shrinking temperature of the organic fibers depends on the starting polymer and the conditions during fiber production and stretching or texturing.
  • a suitable organic fiber must be selected according to the curing conditions of the matrix material used, as already described.
  • Profiles that are produced by the method according to the invention are suitable with their homogeneous fiber arrangement, the high fiber contents and their freedom from voids and similar imperfections as well as with their resin-rich or their pure resin surfaces due to their strengths for the reinforcement of concrete as tensioning wires or tensioning ropes, whereby advantageous the improved possibilities for applying force, the reduced notch sensitivity and the increased transverse strength of predominantly unidirectionally reinforced profiles come into play.
  • a particular advantage when used outdoors is the high weather resistance of the profiles thanks to their pure resin surface.
  • the mm by a flawless round outlet nozzle 10 only at the end of the impregnating bath was' 0 pulled to adjust the resin content and was then cured without any further molding in an electrically heated tube furnace was noted that the rod unre g el was moderately formed, and having a rough surface with partially exposed glass fibers. The deviations from the ideal circular shape were up to 10%.
  • the glass content of this rod was 76.4% by weight.
  • glass fiber strands were impregnated with polyester resin and, after leaving the impregnation bath, were wrapped with an outlet nozzle full of 10 mm 0 with e-glass spun threads of 3100 dtex and polyester (PETP) filament yarn consisting of 34 individual filaments, a total titer of 167 dtex and a (stretch) aspect ratio of 1: 4 in equal proportions.
  • PETP polyethylene glycol
  • the coverage was chosen to be 100% in one position by means of screw windings with a pitch of 15 °. After curing at temperatures between 160 and 195 ° C, a perfect round profile without longitudinal cracks was obtained.
  • notch tests were carried out on approximately 15 mm long profile sections with the stamp of a conventional bending testing machine (tip radius 1 mm) and compression tests between flat plates, the profile axis being arranged perpendicular to the direction of force was. Compared to the non-wrapped comparative bar, the breaking loads were about 35% higher. In the pressure test between flat plates, an average of 15% higher values were achieved compared to the comparison rod. Tensile tests based on DIN 53455 showed approx. 10% higher strength compared to a comparison bar with approx.
  • Example 1 carbon fiber strands were soaked in a resin bath and the fiber content was adjusted in a rectangular nozzle with a cross section of 20 ⁇ 2 mm. After the fiber bundle emerged from the nozzle, the fiber strand was wrapped with a cross winding at ⁇ 75 ° to the longitudinal axis of the rod with Perlongarn consisting of 18 individual filaments and a total titer of 67 dtex stretch ratio 1: 2.8 with a coverage of about 30% and after a pre-hardening stretch three pairs of rollers calibrated, the profile was covered on both sides with siliconized paper, and then hardened. A profile with a smooth surface and rounded edges was obtained. It showed thickness fluctuations of 2% along the length, the profile surfaces were parallel to each other. The profile was completely free of longitudinal cracks.
  • glass rovings were soaked in a soaking bath and the soaked rovings were adjusted to the desired resin content in a multiple nozzle in a ring arrangement.
  • the fiber strands were passed over a cylindrical drag core as the inner form and in the area of a pre-curing section still on the tow core with Perlon monofilaments 0.20 mm 0 ( ⁇ 400 dtex) with a stretch ratio of 1: 4 by screw windings with a cover wrapped by about 40%.
  • the profiles were cured at temperatures between 140 and 160 ° C.

Description

  • Zur kontinuierlichen Herstellung von Profilen aus Faser-Verbundwerkstoffen sind eine Reihe von Verfahren bekannt. Allen diesen Verfahren ist gemeinsam, daß Halbzeuge aus organischen, anorganischen oder metallischen Fasern in der Form von Fasersträngen, Fasermatten oder Geweben von einem Vorratsgestell abgezogen, mit flüssigem Reaktionsharz imprägniert und in einer Härtungsstrecke bei gleichzeitiger Formgebung in Düsenwerkzeugen zu Profilen ausgehärtet werden. Im einzelnen unterscheiden sich die Verfahren durch die Art der Imprägnierung, die Formgebung und die Härtung. Für die Formgebung sind Düsenkonstruktionen aus hochwertigen Werkzeugstählen üblich, die mit Dampf, Ö oder elektrisch beheizt werden und deren Gleitflächen zur Verringe rung von Reibung und Verschleiß vielfach vergütete Oberflächenschichten, z. B. Hartverchromungen, aufweisen. Mit derartigen formgebenden Werkzeugen können verhältnismäßig schwierige Profile gefertigt werden. Es hat sich in der Praxis gezeigt, daß der Einsatz derartig komplexer Werkzeuge eine sehr genaue Abstimmung aller Systemkomponenten erfordert. Eine Reihe von Reaktionsharzen kann z. B. wegen ihrer Reaktivität oder aber aufgrund der Reibungsverhältnisse trotz der Verwendung von Trennmitteln bei den zur exakten Formgebung erforderlichen großen Düsenlängen nicht eingesetzt werden.
  • Die hohen, in den Düsen auftretenden Reibungskräfte begrenzen den Fasergehalt der Faser-Verbundwerkstoffe, sie stören die Faserorientierung und bedingen hohe Abzugskräfte. Die Verringerung der Reibung z.B. durch den Einsatz von Teflonwerkzeugen bringt neben den Vorteilen geringer Reibung und der Möglichkeit einer Mikrowellenaushärtung der Reaktionsharze jedoch gravierende Nachteile durch Formenstandzeiten, die sehr gering gegenüber denen der Stahlwerkzeuge sind.
  • Um die aufgezählten Nachteile beim Einsatz von Stahlwerkzeugen zumindest bei einfachen kreisförmigen oder elliptischen Querschnitten zu vermindern, ist auch vorgeschlagen worden, das imprägnierte Fasermaterial mit Trennfolie zu umwickeln. Dadurch wird eine Härtung ohne weitere Formgebung in einer nachfolgenden einfachen Härtungsstrecke möglich. Nachteilig bei diesem Verfahren sind die Kosten und der Aufwand für das Auf- und Abwickeln der im allgemeinen nicht mehrfach verwendbaren Trennfolien und die nicht einwandfreien Oberflächen, die häufig eine Nacharbeit erfordern.
  • Die Umwicklung der imprägnierten Stränge mit Glasfaserprodukten ermöglicht ebenfalls die Herstellung einfacher Profile ohne zusätzliche Formgebung. Nachteilig bei diesen Verfahren sind die schlechten Oberflächen der Profile sowie das Auftreten von Härtungsrissen selbst bei relativ kleinen Querschnitten.
  • Gemäß der DE-OS 1 504 197 ist ein Verfahren zur Herstellung von Stäben, Profilen und Rohren aus Faser-Verbundwerkstoffen bekannt, bei dem Fasern von einem Zettelbaum 1, Fig. 1, kontinuierlich durch Führungsbleche 2 zusammengefaßt werden. Die Fasern werden dann in eine heizbare und mit Kunstharz gefüllte Tränkwanne 4 eingeführt und gleichzeitig durch Düsen 5 and 6 geformt. Unmittelbar nach der Imprägnierung wird schraubenförmiges Fasermaterial mit Hilfe einer Wickelvorrichtung 7 auf das getränkte Fasermaterial gewickelt. Danach läuft das Material in ein dielektrisches Feld 9 zum Härteofen 10. Auf Seite 6, Zeilen 9 bis 11 wird beschrieben, daß durch besondere Spannvorrichtungen die Fäden so gebremst werden, daß sie mit einem bestimmten Zug auf das getränkte Fasermaterial aufgebracht werden.
  • Demgegenüber unterscheidet sich das Verfahren gemäß Erfindung dadurch, daß die schraubenförmigen Fasern organische Fasern oder Monofile oder Gemische aus organischen und anorganischen Fasern oder Monofilen sind.
  • Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Profilen aus Faserverbundwerkstoffen, wobei kontinuierlich mit flüssigen Reaktionsharzen imprägnierte Stränge aus Faserwerkstoffen unmittelbar nach der Imprägnierung oder im Bereich einer Vorhärtungsstrecke mit verstreckten und/oder vororientierten und/oder texturierten Fasern oder Monofilen umwickelt oder umflochten und in einer nachfolgenden Härtungsstrecke qusgehärtet werden, das dadurch gekennzeichnet ist, daß die Fasern oder Monofile aus polyamiden, thermoplastischen Polyestern, Polycarbonaten, Polyacrylnitril, Modacryl, Polyolefinen, Polyvinylchlorid, Polytetrafluorethylen, Cellulose, regenerierter Cellulose, Celluloseester, Polyvinylalkohol oder Polyurethan bestehen.
  • 11. Beschreibung des Verfahrens
  • Bei dem beanspruchten Verfahren werden Faserwerkstoffe in üblicher Weise, z.B. in einem Tränkbad mit einem flüssigen Reaktionsharz imprägniert, wobei der Harzgehalt durch Düsen, Rollen o.ä. Vorrichtungen, die dem Stand der Technik entsprechen, eingestellt wird.
  • Die nach Tränkung erfolgende erfindungsgemäße Umwicklung des imprägnierten Fasermaterials mit den dazu geeigneten Faserwerkstoffen kann unmittelbar nach dem Austritt der Faserstränge aus dem Tränkbad durchgeführt werden. In manchen Fällen ist es auch vorteilhaft, die Umwicklung erst nach einem Vorhärtungsprozeß - stets aber in der flüssigen Phase des Reaktionsharzes - vorzunehmen.
  • Die eigentliche Härtung erfolgt auf übliche Weise z.B. durch konvektive Wärmeübertragung, Wärmestrahlung oder durch Mikrowellen in einem Heizkanal.
  • Für die Umwicklung der getränkten, bzw. imprägnierten Faserwerkstoffe mit den verstreckten oder vororientierten oder texturierten organischen Fasern entsprechend der Erfindung eignen sich übliche Wickelmaschinen, z.B. Diagonalwickelmaschinen, wie sie zur Herstellung verstärkter Schläuche, oder Maschinen, die zur Herstellung von Isolationen im Wickel- oder im Flechtverfahren verwendet werden. Ebenso sind Maschinen zur Umwicklung von Drähten (z.B. Gitarrensaiten) geeignet.
  • Das Umwickeln des getränkten Fasermaterials kann in der Form von Umfangswicklungen mit geringer Steigung vorgenommen werden. Ebenso sind Schraubenwicklungen mit in weiten Grenzen einstellbaren Steigungen möglich. Eine weitere Art der Umwicklung besteht im Aufbringen von Diagonal(Kreuz)-Wicklungen. Es eignen sich ebenso auch übliche Flechtverfahren zum Aufbringen der organischen Fasern auf die getränkten Faserstränge.
  • Bei der Ausführung von Schraubenwicklungen, Kreuzwicklungen oder Umflechtungen ist je nach gewünschten Eigenschaften (Effekten) die Bedeckung der imprägnierten Faserwerkstoffe mit den verstreckten oder vororientierten oder texturierten organischen Fasern in weiten Grenzen bis zur mehrfachen Überdeckung möglich.
  • Wesentliches Merkmal des erfindungsgemäßen Verfahrens ist, daß durch die Umwicklung mit verstreckten oder vororientierten oder texturierten organischen Fasern im Gegensatz zur Umwicklung mit anorganischen Fasern Profile mit exakten Kreisquerschnitten ohne Verwendung einer Formgebungseinheit, z. B. einer formgebenden Düse, erzeugt werden können.
  • Andere geometrisch einfache und exakte Querschnittsformen - z. B. Ellipsen - lassen sich durch Umwickeln von getränkten Faserwerkstoffen mit organischen Fasern erzeugen, wenn der aus dem Tränkbad austretende Strang z. B. einen annähernd rechteckigen Querschnitt aufweist.
  • Neben der Möglichkeit, Profile mit geometrisch einwandfreiem Querschnitt ohne formgebende Düsen zu erzeugen, können die imprägnierte Stränge auf einer Innenform mit den Fasern oder Monofilen umwickelt und ohne weitere Außenform zu geschlossene Hohlprofilen gehärtet werden.
  • Eine weitere Möglichkeit der Profilherstellung besteht darin, daß durch die Umwicklung eines flachen getränkten Stranges aus Fasermaterial mit verstreckten und/oder vororientierten oder texturierten organischen Fasern in einfacher Weise Flachprofile oder Winkelprofile nur durch den Einsatz einer Rollenkalibrierung hergestellt werden können.
  • Durch das Fehlen formgebender Düsen ist besonders vorteilhaft eine Mikrowellenhärtung möglich, da die getränkten Faserstränge über relativ lange Strecken die Strahlung ungeschwächt absorbieren können.
  • Besonders interessante Möglichkeiten ergeben sich dadurch, daß zur Umwicklung der getränkten Faserwerkstoffe neben verstreckten und/oder vororientierten oder texturierten organischen Fasern auch anorganische Fasern als zusätzliche Verstärkungen, oder Fasergemische aus organischen und anorganischen Fasern zur zusätzlichen Verstärkung der Faser-Verbundwerkstoffe aufgebracht werden können.
  • Der mit der Umwicklung der getränkten Faserwerkstoffe mit verstreckten und/oder vororientierten oder texturierten organischen Fasern oder Monofilen erreichte Effekt der Formgebung beruht neben einem gleichmäßigen Aufbringen der Wicklung insbesondere darauf, daß beim Vorhärtungsoder beim Härtungsprozeß Schrumpfkräfte frei werden, die durch Anteil, Art, Streckgrad und/oder Vororientierung und/oder Texturierung und die geometrische Anordnung der organischen Fasern bestimmt werden. Die organischen Fasern werden so ausgewählt, daß die Schrumpfkräte noch vor dem Erreichen der Gelphase des verwendeten Reaktionsharzes wirksam werden. Die auftretenden Schrumpfkräfte hängen außer von der Art des verwendeten Fasermaterials ab vom Anteil (Überdeckung) und vom Streckgrad und/oder der Vororientierung sowie von der geometrischen Anordnung der organischen Fasern auf dem zu umwickelnden Profil.
  • Für die zuvor genannten Beispiele der Formgebung hat sich gezeigt, daß bereits eine relativ geringe Überdeckung von etwa 12 % ausreichend ist, um die beschriebenen Effekte zu erzeugen.
  • Gleichzeitig wird durch die Schrumpfkräfte stets eine harzreiche Profiloberfläche erzeugt. Bei entsprechender Auswahl an Art, Menge und Anordnung des organischen Fasermaterials erhält man Profile mit einer sie völlig umschließenden Reinharzschicht, die bei anderen Fertigungsverfahren nur durch einen zusätzlichen Fertigungsschritt erreicht werden kann.
  • Einer der Vorteile eines derartigen in einem Verfahrensschritt erzeugten Harzmantels ist die verbesserte Handhabung ohne störende Verstärkungsfasern an der Profiloberfläche. Daraus resultiert weiterhin eine wesentlich verbesserte Witterungsbeständigkeit, die üblicherweise nur durch eine zusätzliche Beschichtung mit den ihr innewohnenden Haftungsproblemen zu erreichen ist.
  • Die Schrumpfkräfte der organischen Fasern lassen sich zudem gezielt auch zum Erreichen hoher Fasergehalte bei nahezu idealer Längsorientierung der Verstärkungsfasern und zu luftblasenfreien Profilen nutzen, die eine weitgehend homogene Faserverteilung aufweisen. Daraus ergeben sich wesentliche Erhöhungen in Modul und Festigkeiten des Profils mit deutlich verbesserter Reproduzierbarkeit dieser Werte. Berte Verfahren mit äußerer Formgebung sind derartige fasergehaIte` und Festigkeiten sowie Orientierungen wegen der auftretenden Reibungskräfte nicht zu erreichen.
  • Durch die Umwicklung getränkter Faserwerkstoffe mit organischen Fasern wird bei vorwiegend unidirektional verstärkten Profilen die Festigkeit quer zur Längsrichtung des Profils (Querfestigkeit) besonders deutlich verbessert. Ebenso wird durch die Umwicklung mit organischen Fasern die Kerbempfindlichkeit der auf diese Weise hergestellten Profile erheblich herabgesetzt
  • Gezielte und im allgemeinen erhebliche Verbesserungen der Biege- und Torsionssteifigkeit beliebiger symmetrischer Profile lassen sich durch das Umwickeln von getränkten Faserwerkstoffen in der Weise erreichen, daß sowohol geeignete organische Fasern als auch vornehmlich anorganische Fasern zur Umwicklung verwendet werden. Auf diese Weise läßt sich der Vorteil der Imprägnierung der zusätzlich aufgebrachten Fasern ohne weiteres Tränkbad allein durch den auftretenden Schrumpfeffekt der organischen Fasern mit dem Vorteil des Steifigkeitsgewinnes verknüpfen. Das Umwickeln mit beiden Faserarten kann in getrennten Verfahrensschritten, besonders vorteilhaft aber gleichzeitig erfolgen.
  • Das erfindungsgemäße Verfahren ermöglicht es auch, mehrere Einzelstränge mit verschiedenen Imprägnierharzen zu tränken, durch das Umwickeln zusammenzufassen und zu einem einheitlichen Faser-Verbundwerkstoff auszuhärten. Ein einheitlicher Faser-Verbundwerkstoff wird dabei dadurch erhalten, daß die bei der Härtung frei werdenden Schrumpfkräfte die einzelnen Faserstränge zu einem Profil mit homogener Faserverteilung, aber unterschiedlichen Matrixwerkstoffen verbinden.
  • Der durch die Schrumpfkräfte der verstreckten oder vororientierten und/oder texturierten organischen Fasern an der Profiloberfläche erzeugte Harzüberschuß kann wie bereits beschrieben zur vollständigen Imprägnierung weiterer Faserwerkstoffe dienen. Damit lassen sich beispielsweise auch dekorative Profile durch die Verwendung unterschiedlich eingefärbter Faserwerkstoffe ebenso erzeugen wie profilierte Oberflächen.
  • Darüber hinaus kann über Art, Anteil, Streckgrad und geometrische Orientierung der organischen Fasern der Harzüberschuß so eingestellt werden, daß zusätzlich aufgebrachte Faserwerkstoffe nur teilweise imprägniert werden.
  • Beim zusätzlichen Umwickeln der Profile mit organischen Fasern ergeben sich durch die an der Profiloberfläche liegenden nicht oder nur unvollständig imprägnierten Fasern einfache Möglichkeiten, eine verbesserte Verbundhaftung z. B. beim Einbetten der Profile in Thermoplaste zu erreichen. Hierzu wird das Wickelmaterial möglichst artgleich zum verwendeten Thermoplasten gewählt.
  • Beim zusätzlichen Umwickeln der Profile mit anorganischen Fasern z. B. Glasfasern ergeben sich durch die beschriebenen Effekte besonders günstige Verhältnisse beim Einleiten von Zugkräften z. B. in Krafteinleitungselemente durch die vergrößerte Profiloberfläche, die sowohl mit einer Profilierung als auch mit unvollständig getränkten Fasern erhalten wird.
  • 111. Werkstoffe
  • Das beanspruchte Verfahren eignet sich für Faser-Verbundwerkstoffe aus Glasfasern, organischen Fasern, Kohlenstoff-Fasern und Metallfasern. Die Fasern können zB. in der Form von Fasersträngen wie Garnen, Filamentgarnen, Zwirnen, Rovings und Spinnfäden usw. oder als textiles Gewebe und/oder als Fasermatten vorliegen.
  • Geeignete Matrixwerkstoffe sind z. B. Reaktionsharze wie ungesättigte Polyesterharze, Epoxidharze, Methacrylatharze, Polyurethanharze, Novolakharze, Polybismaleinimide oder auch Cyanatharze, deren Wärmetönung beim Härtungsprozeß, oder deren Härtungstemperaturen Werte überschreiten, bei denen die verwendeten organischen Fasern schrumpfen.
  • Als Werkstoffe zur Umwicklung der getränkten Faserwerkstoffe eignen sich verstrecke und oder vororientierte und/oder texturierte organische Fasern oder Monofile aus Polyamiden, thermoplastischen Polyestern, Polycarbonaten, Polyacrylnitril, Modacryl, Polyolefinen, Polyvinylchlorid, Polytetrafluoräthylen, Cellulose und regenerierter Cellulose, Celluloseestern oder Polyvinylalkohol sowie Polyurethanfasern.
  • Die Schrumpftemperatur der organischen Fasern hängt ab vom Ausgangspolymer und von den Bedingungen bei der Faserherstellung und Verstreckung bzw. Texturierung. Die Auswahl einer geeigneten organischen Faser muß nach den Härtungsbedingungen des eingesetzten Matrixwerkstoffes erfolgen wie bereits geschrieben.
  • Profile, die nach dem erfindungsgemäßen Verfahren hergestellt werden, eignen sich mit ihrer homogenen Faseranordnung, den hohen Fasergehalten und ihrer Freiheit von Hohlräumen und ähnlichen Störstellen sowie mit ihren harzreichen oder ihren Reinharzoberflächen aufgrund ihrer Festigkeiten für die Armierung von Beton als Spanndrähte oder Spannseile, wobei vorteilhaft die verbesserten Möglichkeiten zur Krafteinleitung, die verringerte Kerbempfindlichkeit und die erhöhte Querfestigkeit vorwiegend unidirektional verstärkter Profile zum Tragen kommen. Von besonderem Vorteil beim Einsatz im Freien ist die hohe Witterungsbeständigkeit der Profile durch ihre Reinharzoberfläche.
  • Hohe Festigkeiten und damit verbundene günstige elektrische Eigenschaften erlauben den Einsatz der nach dem erfindungsgemäßen Verfahren hergestellten Profile auch im Elektrosektor z. B. als Festigkeitsträger in Isolatoren oder für Fahrdrahtabspannungen und im Elektromaschinenbau.
  • Beispiel 1
  • Beim Herstellen eines Rundstabes aus Glasrovings und Polyesterharz, der nur am Ende des Tränkbades durch eine einwandfreie runde Ausgangsdüse von 10 mm 0 zur Einstellung des Harzgehaltes gezogen' wurde und der anschließend ohne jede weitere Formgebung in einem elektrisch beheizten Rohrofen ausgehärtet wurde, war festzustellen, daß der Stab unregel- mäßig geformt war und eine rauhe Oberfläche mit teilweise freiliegenden Glasfasern aufwies. Die Abweichungen von der idealen Kreisform betrugen bis zu 10 %. Der Glasgehalt dieses Stabes betrug 76,4 Gew.%.
  • Beispiel 2
  • Auf die gleiche Weise imprägnierte Glasfaserstränge, die nach dem Verlassen der Ausgangsdüse des Tränkbades von 10 mm 0 und einer Länge von 5 mm mit Perlon-Filamentgarn, bestehend aus 140 Einzelfilamenten mit einem Gesamttiter von 940 dtex und einem Streckverhältnis von 1:3,2 in einer Schraubenwicklung bis zu einer Überdeckung von ca. 20 % in einer Wickellage umwickelt wurden, ergaben nach der Härtung mit Temperaturen zwischen 140 und 180°C Rundprofile ohne Längs- und Querrisse mit weniger als 1 % Abweichung von der Kreisform. Der Glasgehalt des Stabes nach dem Abschleifen der organischen Faser betrug 81,5 Gew.%. Die Oberfläche des so hergestellten Stabes ist glatt und hochglänzend. Die Dicke der Reinharzschicht der Oberfläche beträgt ca. 100 µm.
  • Beispiel 3
  • Ähnlich wie im Beispiel 1 wurden Glasfaserstränge mit Polyesterharz imprägniert und nach dem Verlassen des Tränkbades mit einer Ausgangsdüse voll 10 mm 0 umwickelt mit E-Glas-Spinnfäden von 3100 dtex und Polyester-(PETP) Filamentgarn bestehend aus 34 Einzelfilamenten, einem Gesamttiter von 167 dtex und einem (Ver-)streckungsverhältnis von 1:4 zu jeweils gleichen Anteilen. Die Bedeckung wurde durch Schraubenwicklungen mit einer Steigung von 15° zu 100 % in einer Lage gewählt. Nach der Härtung bei Temperaturen zwischen 160 und 195°C wurde ein einwandfreies Rundprofil ohne Längsrisse erhalten. Zur Prüfung der Kerbempfindlichkeit und der Belastbarkeit senkrecht zur Profilachse sowie der Zugfestigkeit der Profile wurden einmal an ca. 15 mm langen Profilabschnitten Kerbversuche mit dem Stempel einer üblichen Biegeprüfmaschine (Spitzenradius 1 mm) und Druckversuche zwischen ebenen Platten durchgeführt, wobei die Profilachse senkrecht zur Kraftrichtung angeordnet war. Gegenüber dem nicht umwickelten Vergleichstab ergaben sich bei den Kerbversuchen um ca. 35 % höhere Bruchlasten. Beim Druckversuch zwischen ebenen Platten wurden gegenüber dem Vergleichsstab im Durchschnitt 15 % höhere Werte erreicht. Zugversuche in Anlehnung an DIN 53455 zeigten gegenüber einem Vergleichsstab mit ca. 1350 MPas ca. 10 % höhere Festigkeiten bei gleichem Querschnitt aufgrund der fehlstellenfreien Oberfläche und der gleichmäßigen Faserverteilung über dem Stabquerschnitt bei dem umwickelten Rundprofil. Die bekanntermaßen schwierige Einspannung bei der Prüfung von Faser-Verbundwerkstoffen mit derartig hohen Festigkeiten wurde hier dadurch umgangen, daß die Rundstäbe in Vorrichtungen aus einem Kunstharzmörtel eingegossen wurden. Dabei stellte sich heraus, daß für die nichtumwickelten Stäbe wesentlich höhere Vergußlängen gewählt werden mußten, um einen Trennbruch der Glasfasern zu erreichen.
  • Beispiel 4
  • In der Art von Beispiel 1 wurden Kohlenstoff-Faserstränge in einem Harzbad getränkt und der Fasergehalt in einer Rechteckdüse mit einem Querschnitt von 20 x 2 mm eingestellt. Nach dem Austritt des Faserbündels aus der Düse wurde Faserstrang mit einer Kreuzwicklung unter ± 75° zur Stablängsachse mit Perlongarn bestehend aus 18 Einzelfilamenten und einem Gesamttiter vgn 67 dtex Streckverhältnis 1:2,8 mit einer überdeckung von etwa 30 % umwickelt und nach einer Vorhärtungsstrecke durch drei Rollenpaare kalibriert, wobei das Profil beidseitig mit silikonisiertem Papier abgedeckt war, und anschließend gehärtet. Dabei wurde ein Profil mit glatter Oberfläche und abgerundeten Kanten erhalten. Es wies über der Länge Dickenschwankungen von 2 % auf, die Profiloberflächen waren parallel zueinander. Das Profil war vollständig frei von Längsrissen.
  • Beispiel 5
  • In ähnlicher Weise wie im ersten Beispiel wurden Glasrovings in einem Tränkbad getränkt und die getränkten Rovings in einer Mehrfachdüse bei ringförmiger Anordnung auf den gewünschten Harzgehalt eingestellt. Nach dem Verlassen der Ausgangsdüse wurden die Faserstränge über einen zylindrischen Schleppkern als Innenform gefuhrt und im Bereich einer Vorhärtungsstrecke noch auf dem Schleppkern mit Perlon-Monofilen 0,20 mm 0 (≐ 400 dtex) bei einem Streckverhältnis von 1:4 durch Schraubenwicklungen bei einer Überdeckung von etwa 40 % umwickelt. In der nachfolgenden Härtungsstrecke (Rohrofen) wurden die Profile bei Temperaturen zwischen 140 und 160°C ausgehärtet. Durch dieses Verfahren erhält man ohne weitere Außenform nur mit dem Schleppkern Hohlprofile, die einen geometrisch einwandfreien Innendurchmesser mit Wand- stärkeschwankungen von ±0,1 mm bei einer Wandstärke von 2 mm aufweisen. Die Ober- .fläche der Profile war in Längsrichtung wellig.

Claims (2)

1. Verfahren zur Herstellung von Profilen aus Faserverbundwerkstoffen, wobei kontinuierlich mit flüssigen Reaktionsharzen imprägnierte Stränge aus Faserwerkstoffen unmittelbar nach der Imprägnierung oder im Bereich einer Vorhärtungsstrecke mit verstreckten und/oder vororientierten und/oder texturierten Fasern oder Monofilen umwickelt oder umflochten und in einer nachfolgenden Härtungsstrecke ausgehärtet werden, dadurch gekennzeichnet, daß die Fasern oder Monofile aus polyamiden, thermoplastischen Polyestern, Polycarbonaten, Polyacrylnitril, Modacryl, Polyolefinen, Polyvinylchlorid, Polytetrafluorethylen, Cellulose, regenerierter Cellulose, Celluloseester, Polyvinylalkohol oder Polyurethan bestehen.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die imprägnierten Stränge auf einer Innenform mit den Fasern oder Monofilen umwickelt und ohne weitere Außenform zu geschlossenen Hohlprofilen gehärtet werden.
EP78100512A 1977-08-06 1978-07-26 Verfahren zur Herstellung von Stäben oder Rohren konstanten Profils aus Faserverbundwerkstoffen Expired EP0000734B2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2735538 1977-08-06
DE19772735538 DE2735538A1 (de) 1977-08-06 1977-08-06 Profile aus faser-verbundwerkstoffen

Publications (3)

Publication Number Publication Date
EP0000734A1 EP0000734A1 (de) 1979-02-21
EP0000734B1 true EP0000734B1 (de) 1980-07-23
EP0000734B2 EP0000734B2 (de) 1985-04-17

Family

ID=6015811

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100512A Expired EP0000734B2 (de) 1977-08-06 1978-07-26 Verfahren zur Herstellung von Stäben oder Rohren konstanten Profils aus Faserverbundwerkstoffen

Country Status (5)

Country Link
US (1) US5047104A (de)
EP (1) EP0000734B2 (de)
JP (1) JPS5429376A (de)
DE (2) DE2735538A1 (de)
IT (1) IT1105395B (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3407017A1 (de) * 1984-02-27 1985-08-29 Bayer Ag, 5090 Leverkusen Geschuetzte spannglieder in beton
JPS6128092A (ja) * 1984-07-11 1986-02-07 東京製綱繊維ロ−プ株式会社 複合線条体およびその製造方法
DE3616445C1 (en) * 1986-05-15 1987-08-20 Dyckerhoff & Widmann Ag Corrosion-resistant pipe consisting of concrete/polymer composite
GB9015149D0 (en) * 1990-07-10 1990-08-29 Shaw John Ltd Fibre reinforced plastic composites
US5749211A (en) * 1992-11-06 1998-05-12 Nippon Steel Corporation Fiber-reinforced plastic bar and production method thereof
US5628473A (en) * 1993-12-03 1997-05-13 Emhart Inc. Methods of and apparatus for applying strands to a support
WO1995023623A1 (en) * 1994-03-04 1995-09-08 Mentor Corporation Self-sealing injection sites and method of manufacture
BR9508169A (pt) * 1994-06-28 1997-12-23 Marshall Ind Composites Aparelho para formar rebarra estrutural de reforço
US5763042A (en) * 1994-06-28 1998-06-09 Reichhold Chemicals, Inc. Reinforcing structural rebar and method of making the same
US5876553A (en) * 1994-06-28 1999-03-02 Marshall Industries Composites, Inc. Apparatus for forming reinforcing structural rebar
DE19512521A1 (de) * 1995-04-04 1996-10-10 Coia Gmbh Verfahren für die kontinuierliche Herstellung von verstärkten nichtmetallischen Stützelementen
EP0929394B1 (de) 1996-10-07 2002-01-30 Marshall Industries Composites Verstärkter verbundgegenstand und vorrichtung und verfahren zu seiner herstellung
US6048598A (en) * 1997-12-17 2000-04-11 Balaba Concrete Supply, Inc. Composite reinforcing member
US6494922B1 (en) * 1998-11-23 2002-12-17 Belmont Textile Machinery Co., Inc. Apparatus and method for wrapping of fine denier yarns space dyeing and subsequently unwrapping the fine denier yarns for further processing, intermediate yarn product and space-dyed fine denier yarn
DE10025628A1 (de) 2000-05-24 2001-11-29 Sgl Carbon Ag Abwickelbare Bauteile aus Faserverbundwerkstoffen, Verfahren zu deren Herstellung und deren Verwendung
US6686522B2 (en) 2000-06-22 2004-02-03 Shinko Corporation Musical instrument with a body made of polyurethane foam
DE102007038932A1 (de) * 2007-08-13 2009-02-26 Technische Universität Dresden Textil-Matrix-Verbund
DE102011015160A1 (de) * 2011-03-26 2012-09-27 Daimler Ag Faserverbundkunststoffteil und Herstellungsverfahren
CN116411676A (zh) 2018-11-19 2023-07-11 欧文斯科宁知识产权资产有限公司 复合钢筋
MX2021006358A (es) * 2019-02-20 2021-10-22 Tamko Building Products Llc Estera hibrida de fibra de poliester no tejida continua y hebra de fibra de vidrio.
CN113861376A (zh) 2020-06-30 2021-12-31 科思创德国股份有限公司 用于制备复合材料的聚氨酯组合物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2652093A (en) * 1949-03-02 1953-09-15 Gates Rubber Co Method of making reinforced rubber hose
US2751237A (en) * 1952-11-10 1956-06-19 Edwin E Conley Hollow fiber reinforced resin products such as pipe fittings with molded internal threads and method of making same
FR1124516A (fr) * 1955-04-04 1956-10-12 Structures en matières plastiques et leur procédé de fabrication
US3223565A (en) * 1955-08-30 1965-12-14 Porter Co Inc H K Method of making heat resistant flexible hose
US3033729A (en) * 1957-08-05 1962-05-08 Samuel M Shobert Method of continuously making glassreinforced plastic tubing
US2953418A (en) * 1958-05-01 1960-09-20 Russell Mfg Co Molded resin bearings
US3296047A (en) * 1962-05-25 1967-01-03 Carlisle Tire And Rubber Divis Method of producing reinforced flexible hose
CH415030A (it) * 1962-10-18 1966-06-15 C I M E M Do F Lli Gadani Procedimento ed impianto per la fabbricazione in continuo di tubi di materia plastica rinforzata
DE1504197A1 (de) * 1965-12-21 1969-09-25 Akad Wissenschaften Ddr Verfahren und Vorrichtung zur Herstellung von Staeben,Profilen und Rohren aus faserverstaerkten Plasten in vertikaler Laufrichtung
US3560065A (en) * 1968-02-05 1971-02-02 Plas Steel Products Inc Reinforced plastic bearing
DE1928269A1 (de) * 1969-06-03 1970-12-10 Puetzer Kunststofftechnik Gmbh Verfahren zur Herstellung von Stuetzelementen aus verstaerktem chemischen Werkstoff und nach dem Verfahren hergestelltes Stuetzelement
US3650864A (en) * 1969-07-23 1972-03-21 Goldsworthy Eng Inc Method for making filament reinforced a-stage profiles
GB1423728A (en) * 1973-04-09 1976-02-04 Shell Int Research Method of producing a fibre reinforced resin pipe

Also Published As

Publication number Publication date
EP0000734B2 (de) 1985-04-17
DE2735538A1 (de) 1979-02-15
JPS61178B2 (de) 1986-01-07
US5047104A (en) 1991-09-10
IT7850602A0 (it) 1978-08-04
DE2860070D1 (en) 1980-11-13
IT1105395B (it) 1985-10-28
EP0000734A1 (de) 1979-02-21
DE2735538C2 (de) 1989-04-27
JPS5429376A (en) 1979-03-05

Similar Documents

Publication Publication Date Title
EP0000734B1 (de) Verfahren zur Herstellung von Stäben oder Rohren konstanten Profils aus Faserverbundwerkstoffen
DE3137098C2 (de)
DE3715681C2 (de) Verfahren und Vorrichtung zur Herstellung eines kabelförmigen Kunststoff-Verbundkörpers
EP0158623B1 (de) Verfahren zum Herstellen einer Blattfeder aus faserverstärktem Kunststoff
US20190232579A1 (en) Composite Fibers and Method of Producing Fibers
DE2607449A1 (de) Seil und verfahren zu dessen herstellung
KR900006608A (ko) 복합연합형 항장력체 및 그의 제조방법
DE10025628A1 (de) Abwickelbare Bauteile aus Faserverbundwerkstoffen, Verfahren zu deren Herstellung und deren Verwendung
EP0808943A1 (de) Seil für die Mitnahme und Weitergabe von Papierbahnen bei der Herstellung von Papier und Kartonagen auf Papiermaschinen
WO2017211904A1 (de) Verfahren zum herstellen eines zumindest bereichsweise profilierten, faserverstärkten kunststoffprofils, ein profiliertes, faserverstärktes kunststoffprofil und seine verwendung
KR20110046449A (ko) 섬유 강화 복합재의 제조를 위한 인발 방법
EP3738753B1 (de) Verfahren und vorrichtung zur herstellung eines hybridfaserbündels
DE19914709B4 (de) Walze, insbesondere zum Glätten von Papierbahnen, sowie Verfahren zur Herstellung einer solchen Walze
DE19625426A1 (de) Verbindungsvorrichtung, Verfahren zur Herstellung derselben, Vorrichtung zur Durchführung des Verfahrens und Verwendung der Verbindungsvorrichtung
EP3258029B1 (de) Textiles betonbewehrungsgitterelement und ein verfahren zur herstellung des betonbewehrungsgitterelements
DE3635591A1 (de) Verfahren zur herstellung ringfoermiger baender und vorgeformtes ringfoermiges band
DE3214603A1 (de) Optisches faser-uebertragungskabel und verfahren zu dessen herstellung
DE2729172A1 (de) Kabel und verfahren zu seiner herstellung
EP1096068B1 (de) Elastische Walze sowie Verfahren zur Herstellung einer solchen Walze
JPH0489346A (ja) コンクリート補強部材及びその製造法
CH386686A (de) Verfahren zur Herstellung eines mit einem Gewinde versehenen Bolzens aus glasfaserverstärktem Kunststoff
DE2449549A1 (de) Verfahren zum herstellen eines faserverstaerkten verbundwerkstoffes
DE3401195A1 (de) Verbundwerkstoffe aus polyetherimid und verstaerkungsfasern
DE102008049820A1 (de) Linienförmiges Kunststoffprofil mit strukturierter Oberfläche und Verfahren zur Herstellung desselben
JPH0839680A (ja) 線状繊維強化プラスチックの製造方法および繊維強化プラスチックケーブルの製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed
AK Designated contracting states

Designated state(s): CH DE FR GB

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB

REF Corresponds to:

Ref document number: 2860070

Country of ref document: DE

Date of ref document: 19801113

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SPORTEX GMBH U. CO.

Effective date: 19810326

RTI2 Title (correction)

Free format text: METHOD FOR MAKING RODS OR TUBES HAVING A CONSTANT PROFILE OF FIBRE REINFORCED MATERIAL.

RHK2 Main classification (correction)

Ipc: B29C 67/14

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form
AK Designated contracting states

Kind code of ref document: B2

Designated state(s): CH DE FR GB

ET2 Fr: translation filed ** revision of the translation of the modified patent after opposition
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: POLYSTAL COMPOSITE GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950710

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950717

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950719

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950817

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19960731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970402

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST