EP0000317B1 - Procédé de fabrication d'une électrode en siliciure sur un substrat notamment semi-conducteur - Google Patents

Procédé de fabrication d'une électrode en siliciure sur un substrat notamment semi-conducteur Download PDF

Info

Publication number
EP0000317B1
EP0000317B1 EP78430003A EP78430003A EP0000317B1 EP 0000317 B1 EP0000317 B1 EP 0000317B1 EP 78430003 A EP78430003 A EP 78430003A EP 78430003 A EP78430003 A EP 78430003A EP 0000317 B1 EP0000317 B1 EP 0000317B1
Authority
EP
European Patent Office
Prior art keywords
silicon
silicide
substrate
metal
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78430003A
Other languages
German (de)
English (en)
Other versions
EP0000317A1 (fr
Inventor
Billy Lee Crowder
Stanley Zirinsky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of EP0000317A1 publication Critical patent/EP0000317A1/fr
Application granted granted Critical
Publication of EP0000317B1 publication Critical patent/EP0000317B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • H01L29/4933Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a silicide layer contacting the silicon layer, e.g. Polycide gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28061Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a metal or metal silicide formed by deposition, e.g. sputter deposition, i.e. without a silicidation reaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System the conductive layers comprising silicides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/14Schottky barrier contacts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/147Silicides

Definitions

  • the present invention relates to a method for manufacturing a silicide electrode on a substrate making it possible to deposit a silicide such as a molybdenum, tantalum, rhodium or tungsten silicide on the substrate, and in particular on a semiconductor substrate constituted by doped silicon or by doped polycrystalline silicon.
  • a silicide such as a molybdenum, tantalum, rhodium or tungsten silicide
  • Polycrystalline silicon has been widely used for several years as an interconnection material in integrated circuits. The use of this type of silicon is desirable because it is very stable at high temperature and lends itself to chemical vapor deposition of silicon dioxide, or to its thermal growth. Polycrystalline silicon interconnections have been used in various types of integrated circuits, notably in sets of charge coupled devices, in logic sets and in sets of memory cells with a single field effect device.
  • polycrystalline silicon has the drawback of offering a relatively high electrical resistance.
  • the attempts which have been made so far to improve the performance of certain integrated circuits by reducing the dimensions of the devices have not been successful since the voltage drops which produce in the interconnections do not decrease when one decreases the voltage levels required for the operation of the circuits. It would therefore be desirable to reduce the layer (or sheet) resistance of the polycrystalline silicon interconnections in order to increase the speed of the circuit.
  • hafnium silicide obtained by depositing hafnium on polycrystalline silicon, then by heating the assembly to react the hafnium and the polycrystalline silicon.
  • the same article also suggests the use for this purpose of tantalum, tungsten or molybdenum silicides; the strips can then be covered with chemically deposited oxide in the vapor phase.
  • the spraying techniques proposed have a certain number of drawbacks. In particular, it is difficult to vary the composition of silicide precisely. On the other hand, when using spraying techniques, it is necessary to carry out a pickling to remove the metal from certain regions where no silicide should be formed.
  • One of the objects of the present invention is therefore to provide a process making it possible to produce silicides of certain refractory metals which makes it possible to control and vary precisely the composition of the silicide thus produced.
  • Another object of the invention is to provide a method making it possible to remove the silicide from certain desired parts of the substrate using simple pickling techniques using the use of a solvent, without there being any need to use more complex pickling techniques that require masking.
  • the present invention makes it possible to form a layer of a silicide on a substrate, the metal used being able to be molybdenum, tantalum, tungsten, rhodium or combinations of these materials.
  • the metal silicide is obtained by depositing, by simultaneous evaporation, the silicon and one of said metals on the desired substrate, then subjecting the assembly to a heat treatment.
  • silicon dioxide can be obtained from the silicide layer by thermal oxidation of the latter at high temperature.
  • silicides in the mass that is to say in the volume, does not allow us to assume that it would be possible by thermal oxidation of the oxide layers of sufficient thickness to be able be used in integrated circuits.
  • molybdenum silicide and tungsten silicide when they constitute a mass or a volume are known for their excellent resistance to oxidation.
  • the process of the present invention can be used to form films of the desired silicide on any substrate capable of withstanding the high temperatures used during the deposition process by simultaneous evaporation and sufficiently adherent to said silicide.
  • the present method can be advantageously used for the purposes of producing integrated circuits and, therefore, is of particular interest when the substrate is made of silicon or of polycrystalline silicon.
  • the present process lends itself particularly well to the production of layers intended to cover door electrodes made of doped polycrystalline silicon, to the replacement of polycrystalline silicon as the material constituting such electrodes, and finally to the formation of covering layers. directly broadcast bands in doped silicon.
  • the metal silicides to which the present invention is addressed are molybdenum silicide and / or tantalum silicide and / or tungsten silicide and / or rhodium silicide.
  • the preferred metals for constituting these silicides include molybdenum, tantalum and tungsten, and more particularly the latter.
  • metallic silicides comprise approximately 60 to 25% by atomic weight of the metal.
  • the metal and the silicon are vaporized under a high vacuum and deposited simultaneously on the substrate.
  • the vacuum employed is of the order of 10- 5 to 10- 7 torr.
  • the metal and the silicon are heated under a high vacuum and brought to a temperature sufficient to cause them to evaporate.
  • An electron beam evaporator is preferably used for this purpose and an electron beam gun is preferably used for silicon and another gun for metal due to the fact that the evaporation of these materials occurs at speeds different.
  • the use of said evaporator requires the use, as a heat source, of heat which is dissipated when a highly collimated electron beam strikes the material.
  • the evaporation of the metal and of the silicon should take place at the rate of approximately 25 to 50 Angstroms per second.
  • the substrate which it is desired to cover is generally maintained at a temperature of between ambient temperature and approximately 400 ° C., and preferably between 150 ° C. and approximately 250 ° C. during the deposition of the metal and the silicon.
  • the latter is removed from the apparatus used for the purposes of evaporation under vacuum, then heated in an inert atmosphere at temperatures varying between 700 ° C. and about 1100 ° C and preferably between 900 ° C and 1100 ° C.
  • the maximum suitable temperature is mainly a function of practical considerations and, in particular, is chosen so as to avoid excessive formation of grains in the silicide layer.
  • Suitable inert atmospheres in which the heat treatment can be carried out include argon, helium and hydrogen.
  • the inert atmosphere must not contain water vapor, oxygen, carbon compounds, nitrogen or other substances which could cause the formation of carbide, oxide or nitride during treatment thermal.
  • the substrate is heated to the above temperatures for a period of time sufficient to cause a reaction of the metal and the silicon deposited thereon so as to form the desired silicide.
  • This time interval generally varies between 15 minutes and 2 hours approximately, and it is inversely dependent on the temperature used.
  • the substrate covered with the silicide layer may optionally be subject to oxidation so as to cover said layer of self-passivation oxide. It was found that the decrease in the conductivity of the silicide layer which resulted from the oxidation was much less than that which theoretically should have resulted from the oxidation of a determined part of the layer. For example, an oxidation of 50% of the layer does not cause a corresponding reduction of 50% in its conductivity. This result would be due to a preferential oxidation of the silicon contained in the silicide layer and to a backscattering of the metal, thereby causing the formation of a metal-enriched silicide layer below the oxidized layer.
  • FIGS. 3B and 4B show the variations in the resistivity of certain oxidized silicides according to the temperatures.
  • the overall results indicate that an improvement of about 30% in the conductivity is obtained compared to the theoretical conductivity corresponding to the oxidized percentage of the layer.
  • the oxidation of molybdenum silicide at 1000 ° C for more than 15 minutes had a detrimental effect on the layer and modified its properties. Such conditions should therefore be avoided in the case of molybdenum silicide so that its conductivity remains high.
  • the oxidation was carried out in the vapor phase under the conditions specified.
  • the preferred oxidation process is wet oxidation (water vapor) or dry-wet-dry oxidation. This process makes it possible to obtain better results in terms of breakdown than the other techniques. Oxidation in the vapor phase should preferably be carried out at temperatures varying between 800 ° C and 1100 ° C approximately at a pressure corresponding soon after to atmospheric pressure. The duration of the oxidation depends on the thickness of the oxide layer which it is desired to obtain and generally varies between 15 minutes and 2 hours approximately. For example, obtaining a thickness close to or greater than 1000 Angstroms requires more than 2 hours at approximately 800 ° C. and approximately 30 minutes at approximately 950 ° C.
  • Figures 3A and 4A show the growth of the insulating oxide on the silicide during exposure to steam at temperatures and during the indicated time intervals.
  • Table 1 in the appendix indicates the measured values of the resistance of silicide film produced in accordance with the present invention by evaporation by means of an electron beam.
  • the films deposited on the silicon substrate were about 0.5 micron thick.
  • Table II in the appendix shows the improved conductivity of the silicide produced in accordance with the method of the present invention compared to that of doped silicon. This improved conductivity plays an important role in increasing the speed of transmission of signals on a transmission line.
  • Table 111 in the appendix shows that the use of metallic silicide produced in accordance with the present invention gives results at least as satisfactory as those obtained with polycrystalline silicon, taking into account the flat strip tension and the electrical breakdown voltage in the case where the oxide covers the silicide.
  • Flat band voltage is one of the parameters that are directly related to the gate control voltage needed to drive the field effect transistor (FET) and its specification limited to a narrow range is an important factor in operation FET transistors used in integrated circuits.
  • the average breakdown field in the case of an auto-oxidized silicide with a thickness of approximately 3000 Angstroms disposed between an aluminum conductor and the layer of silicide was greater than 2 to 3 mV / cm.
  • FIGS. 1A and 1B show one of the ways in which the present invention can be used in integrated circuits (for example for the purposes of forming a composite door made of polycrystalline silicon and of metal silicide).
  • the substrate is p-type silicon and that the diffused or implanted impurities are of n-type, which leads to obtaining an FET (Transistor with effect of field) to channel n.
  • FET Transistor with effect of field
  • the present invention can also be applied to a substrate made of a material other than silicon.
  • the expressions “metallic type interconnection strip and” high conductivity interconnection strip used below relate to strips of a metal such as aluminum as well as to non-metallic materials which may nevertheless have a comparable conductivity.
  • references made below to impurities of a "first type and a" second type mean, for example, that if the "first type is p, the second" second type is n, and vice versa.
  • FIGS. 1A and 1B show part of a p-type silicon substrate 1 having a desired crystal orientation (for example ⁇ 100 "and produced by cutting and polishing a p-type silicon ball or bar (that is to say in the presence of a p-type dopant such as boron) according to conventional techniques
  • a desired crystal orientation for example ⁇ 100 "and produced by cutting and polishing a p-type silicon ball or bar (that is to say in the presence of a p-type dopant such as boron
  • Other p-type dopants which can be used with silicon are aluminum, gallium and indium.
  • a door insulator consisting of a thin layer of silicon dioxide 2 is then grown or deposited. This layer, the thickness of which is generally between 200 and 1000 Angstroms, is preferably formed by thermal oxidation of the surface. silicon at 1000 ° C in the presence of dry oxygen.
  • a layer of polycrystalline silicon 3 is deposited.
  • This layer generally has a thickness varying between approximately 500 and 2,000 Angstroms and can be produced by chemical vapor deposition. It is then doped by chemical vapor deposition.
  • This layer is then doped with. using an n-type dopant such as arsenic, phosphorus or antimony, using a conventional technique.
  • this layer can be doped with phosphorus using the technique which consists of depositing a layer of POCl 3 and heating it to approximately 1000 ° C. so as to introduce the phosphorus into layer 3, which then becomes of the type not.
  • the residue is then removed from the layer of PQCI 3 by pickling the pellet in buffered hydrofluoric acid.
  • a silicide layer 4 with a thickness of about 2,000 to 4,000 Angstroms is then formed on the layer 3 using the method of the present invention and described above.
  • a door configuration can be carried out using any known technique for lithography, for example chemical pickling, pickling in a plasma, pickling with reactive ions, etc.
  • the techniques which can be used for this purpose vary in their details, but all make it possible to obtain a composite layer, silicide / polycrystalline silicon, having a determined configuration.
  • chemical pickling it has been found that hot H 3 P0 4 made it possible to selectively pickle silicides with respect to polycrystalline silicon or to Si0 2 .
  • the silicides should preferably be pickled using a so-called “dry technique such as the pickling technique using reactive ions using a material such as CF 4 .
  • n-type source and drain regions are then formed using well-known ion implantation or diffusion techniques.
  • source and drain regions 7 and 8 of type n, respectively, of a depth of 2000 Angstroms can be produced by implantation of As 75 using an energy of approximately 100 KeV and a dose of 4 x 10 15 atoms / cm 2 .
  • the polycrystalline silicon layer 3 and the silicide layer 4 act as a mask and prevent n-type impurities from entering the region of the FET channel which is below layer 3.
  • the boundaries between the n-type source and drain regions and therefore the FET channel are determined by the dimensions of the polycrystalline silicon gate. This technique is generally called “self-aligned door” technique.
  • a self-formed passivation silicon dioxide layer 5 is then formed in situ on the door regions using the oxidation techniques previously described.
  • the assembly is subjected to a vapor phase oxidation at approximately 950 ° C. for approximately 30 minutes to obtain an oxide thickness also greater than 1,000 and 3,000 Angstroms, which depends well on the metal chosen as we saw it above.
  • a layer of silicon dioxide 6 with a thickness of approximately 1000 to 1500 Angstroms to prevent any interaction between the layer of silicide and a metallic interconnection, for example, aluminum, which would later be applied.
  • the oxide layers and the metallic layers are defined using conventional masking and pickling techniques.
  • silicon dioxide can be removed using buffered hydrofluoric acid and aluminum can be stripped using a mixture of phosphoric acid and nitric acid.
  • Aluminum can be deposited by spraying or by evaporation. The structure finally obtained is shown in Figure 1 B.
  • FIGS. 2A to 2C illustrate another use of the present invention for the purpose of manufacturing integrated circuits.
  • the following technique is particularly advantageous because it offers the possibility of removing the deposited silicide from predetermined regions of the substrate, using lift-off techniques.
  • the substrate 11 is covered with a layer of a material 13 which makes it possible to obtain a suitable configuration for the separation step.
  • the material constituting the layer 13 is a resistant material sensitive to radiation in which the desired configuration is generated by conventional techniques (for example by means of a PMMA type resist electron with a masking device. electron beam).
  • the layer 13 could consist of several layers of sensitive materials, so as to obtain the desired separation geometry in the case of materials only capable of withstanding moderately high treatment temperatures.
  • the substrate is doped in the regions which are not protected by the mask so as to form n-type regions 12, for example source and drain regions of a FET.
  • Techniques such as ion implantation of As, P or Sb can be used for the purpose of doping this region.
  • a layer 14 of metal and silicon is deposited on the substrate by means of the simultaneous evaporation step previously described.
  • the layer 14 is not continuous, that is to say that there are no connections between the regions which are above the mask and those which are not, as would occur in the case of the use of a spraying technique, because the latter would cause an overlap of the edges which could cause such a connection or interconnection.
  • the material constituting the mask and that which covers it can therefore be easily removed by means of a simple release technique using a solvent such as acetone which removes the resistant material which remained to form said mask.
  • the assembly is then subjected to a heat treatment at temperatures varying between 700 and 1100 ° C. in an inert atmosphere such as argon, hydrogen or helium, as required by the present invention , to form the silicide.
  • the silicide layer 14 can then be oxidized so as to be covered with a passivation oxide layer.
  • a composite mask 15 such as a layer of silicon nitride deposited on top of a layer of silicon dioxide, is disposed above the channel region of the FET device, in order to serve as a mask preventing or blocking any oxidation substrate at this location.
  • Doping impurities 16 such as boron atoms can be introduced using ion implantation techniques into the field regions.
  • a layer 17 of silicon dioxide is then grown, for example, by chemical vapor deposition, on the parts of the substrate which are not protected by the mask 15.
  • the composite oxidation blocking mask is then removed using an appropriate solvent. If, for example, silicon nitride is used, it can be pickled in a phosphoric acid solution at 180 ° C. The silicon dioxide can be pickled in a buffered hydrofluoric acid solution.
  • a silicon dioxide door insulator 18 is then grown on the substrate.
  • the doping of the channel region, if necessary, is carried out by ion implantation.
  • the material constituting the door is deposited, then its delimitation according to a desired configuration by means of known techniques of masking and pickling. This material can be obtained by simultaneous evaporation and heating of silicon and metal, by deposition of polycrystalline silicon alone, or by deposition of polycrystalline silicon and a layer formed by simultaneous evaporation and heating of silicon and metal in accordance with the techniques of present invention.

Description

    Domaine de l'invention
  • La présente invention concerne un procédé de fabrication d'une électode en siliciure sur un substrat permettant de déposer un siliciure tel qu'un siliciure de molybdène, de tantale, de rhodium ou de tungstène sur le substrat, et notamment sur un substrat semi-conducteur constitué par du silicium dopé ou par du silicium polycristallin dopé.
  • Etat de la technique antérieure
  • Le silicium polycristallin est très utilisé depuis quelques années comme matériau d'interconnexion dans les circuits intégrés. L'emploi de ce type de silicium est souhaitable car il est très stable à température élevée et se prête au dépôt chimique en phase vapeur du dioxyde de silicium, ou à sa croissance thermique. Des interconnexions en silicium polycristallin ont été utilisées dans divers types de circuits intégrés, notamment dans des ensembles de dispositifs à couplage de charges, dans des ensembles logiques et dans des ensembles de cellules de mémoire à un seul dispositif à effet de champ.
  • En revanche, le silicium polycristallin présente l'inconvénient d'offrir une résistance électrique relativement élevée. Les tentatives qui ont été faites jusqu'à présent pour améliorer la performance de certains circuits intégrés en réduisant les dimensions des dispositifs, n'ont pas été couronnées de succès car les chutes de tension qui produisent dans les interconnexions ne diminuent pas lorsqu'on diminue les niveaux de tension requis aux fins du fonctionnement des circuits. Il serait donc souhaitable de réduire la résistance de couche (ou de feuille) des interconnexions en silicium polycristallin afin d'augmenter la vitesse du circuit.
  • On a proposé de remplacer le silicium polycristallin par divers métaux réfractaires tels que le molybdène et le tungstène. Toutefois, ces métaux s'oxydent lors du dépôt chimique en phase vapeur du dioxyde de silicium, et comme ces oxydes sont beaucoup moins stables que le dioxyde de silicium, ils posent un problème de fiabilité du circuit intégré finalement. Afin de résoudre le problème que pose l'utilisation de tels métaux réfractaires utilisés seuls, on a proposé de remplacer une partie de la couche de silicium polycristallin par une couche d'un siliciure de certains métaux. Par exemple, l'article de Rideout intitulé « Reducing the Sheet Resistance of Polysilicon Lines in Integrated Circuits paru dans la publication «IBM Technical Disclosure Bulletin •, Volume 17, n° 6, Novembre 1974, pages 18 ß11 833, suggère l'emploi d'un siliciure de hafnium obtenu en déposant du hafnium sur du silicium polycristallin, puis en chauffant l'ensemble pour faire réagir le hafnium et le silicium polycristallin. Le même article suggère également l'emploi à cette fin des siliciures de tantale, de tungstène ou de molybdène ; les bandes pouvant ensuite être recouvertes d'oxyde déposé chimiquement en phase vapeur.
  • Par ailleurs. un procédé connu (brevet des E.U.A. N° 3 381 182 et analogue à celui qui vient d'être mentionné permet de procéder au dépôt chimique en phase vapeur d'un siliciure de molybdène sur du silicium polycristallin par la réduction, d'un mélange de chlorure de molybdène et de silane, par de l'hydrogène. D'autres procédés permettant de réaliser divers siliciures et notamment un siliciure de tungstène en pulvérisant du tungstène sur un substrat contenant du silicium, puis en chauffant l'ensemble pour provoquer la formation du siliciure, sont décrits dans le brevet français N° 2 250 198 et dans l'article de V. Kumar intitulé « Fabrication and Thermal Stability de W-Si Ohmic Contacts paru dans la publication « Journal of the Electrochemical Society, Solid-State Science and Technology », Février 1975, pages 262 à 269.
  • Toutefois, les techniques de pulvérisation proposées présentent un certain nombre d'inconvénients. En particulier, il est difficile de faire varier avec précision la composition de siliciure. D'autre part, lors de l'emploi de techniques de pulvérisation, il est nécessaire de procéder à un décapage pour retirer le métal de certaines régions où on ne doit pas former de siliciure.
  • Exposé de la présente invention
  • L'un des objets de la présente invention est donc de fournir un procédé permettant de réaliser des siliciures de certains métaux réfractaires qui permette de commander et de faire varier avec précision la composition du siliciure ainsi réalisé.
  • Un autre objet de l'invention est de fournir un procédé permettant de retirer le siliciure de certaines parties désirées du substrat en utilisant de simples techniques de décapage faisant appel à l'emploi d'un solvant, sans qu'il y ait lieu d'avoir recours à des techniques de décapage plus complexes qui nécessitent un masquage.
  • La présente invention permet'de former une couche d'un siliciure sur un substrat, le métal employé pouvant être du molybdène, du tantale, du tungstène, du rhodium ou des combinaisons de ces matériaux. Le siliciure métallique est obtenu en procédant au dépôt par évaporation simultanée du silicium et de l'un desdits métaux sur le substrat désiré, puis en soumettant l'ensemble à un traitement thermique.
  • Par ailleurs, du dioxyde de silicium peut être obtenu à partir de la couche de siliciure par oxydation thermique de celle-ci à température élevée. Ce que l'on sait des propriétés des siliciures dans la masse, c'est-à-dire dans le volume ne permet pas de supposer que l'on pourrait obtenir par oxydation thermique des couches d'oxyde d'une épaisseur suffisante pour pouvoir être employées dans des circuits intégrés. Par exemple, le siliciure de molybdène et le siliciure de tungstène quand ils constituent une masse ou un volume sont connus pour leur excellente résistance à l'oxydation. A cet égard, on se reportera utilement aux comptes-rendus de la « Fourth International Chemical Vapor Deposition Conference », publiés par 1'« Electrochemical Society », Princeton N.J. (U.S.A.) 1974 pour l'article de Lo et al. intitulé « A CVD Study of the Tungsten-Silicon System •. On pourra également se reporter à l'ouvrage « Engineering Properties of Selected Ceramic Materials », paru dans la publication « The American Ceramic Society, Inc... », Colombus Ohio (U.S.A.) 1966. En ce qui concerne notamment le di-siliciure de molybdène, on a pu déterminer qu'une couche d'oxyde d'une épaisseur de 10 microns pourrait être obtenues en 60 minutes à 1 050 °C en fonction de la quantité d'oxygène utilisée pour la formation du film. Une telle épaisseur conviendrait plus à des applications aérospatiales qu'à des applications aux circuits intégrés.
  • D'autres objets, caractéristiques et avantages de la présente invention ressortiront mieux de l'exposé qui suit, fait en référence aux dessins annexés à ce texte, qui représentent un mode de réalisation préféré de celle-ci.
  • Brève description des dessins
    • Les figures 1A et 1 B représentent schématiquement différentes étapes de la réalisation de circuits intégrés au moyen du procédé de la présente invention.
    • Les figures 2A à 2C représentent schématiquement les étapes d'une autre réalisation d'un circuit intégré au moyen du procédé de la présente invention.
    • Les figures 3A et 4A illustrent la relation qui existe entre la température et le temps d'oxydation, d'une part, et l'épaisseur d'une couche d'oxyde obtenue dans les cas du WSi2 et MoSi2 respectivement, d'autre part.
    • Les figures 3B et 4B illustrent la relation qui existe entre le temps d'oxydation et la température, d'une part, et la résistance de couche dans les cas du WSi2 et du MoSi2 respectivement, d'autre part.
    Description des modes préférés de réalisation de la présente invention
  • Le procédé de la présente invention peut être utilisé pour former des films du siliciure désiré sur n'importe quel substrat capable de résister aux températures élevées mises en oeuvre durant le procédé de dépôt par évaporation simultanée et suffisamment adhérent audit siliciure. Le présent procédé peut être avantageusement employé aux fins de la réalisation de circuits intégrés et, de ce fait, présente un intérêt particulier lorsque le substrat est en silicium ou en silicium polycristallin. Par exemple, le présent procédé se prête particulièrement bien, à la réalisation de couches destinées à recouvrir des électrodes de porte en silicium polycristallin dopé, au remplacement du silicium polycristallin en tant que matériau constituant de telles électrodes, et enfin à la formation de couches recouvrant directement des bandes diffusées en silicium dopé.
  • Les siliciures métalliques auxquels s'adresse la présente invention sont le siliqiure de molybdène et/ou le siliciure de tantale et/ou le siliciure de tungstène et/ou le siliciure de rhodium. Les métaux préférés pour constituer ces siliciures comprennent le molybdène, le tantale et le tungstène, et plus particulièrement encore ce dernier. En général, les siliciures métalliques comportent approximativement de 60 à 25 % en poids atomique du métal.
  • Selon la présente invention, le métal et le silicium sont vaporisés sous un vide poussé et déposés simultanément sur le substrat. Le vide employé est de l'ordre de 10-5 à 10-7 torr. Dans le procédé d'évaporation sous vide, le métal et le silicium sont chauffés sous un vide poussé et portés à une température suffisante pour provoquer leur évaporation. On utilise de préférence à cette fin un évaporateur à faisceau électronique et l'on utilise de préférence un canon à faisceau électronique pour le silicium et un autre canon pour le métal en raison du fait que l'évaporation de ces matériaux se produit à des vitesses différentes. L'emploi dudit évaporateur nécessite l'utilisation, comme source de chaleur, de la chaleur qui est dissipée lorsqu'un faisceau d'électrons fortement collimaté frappe le matériau. Les dispositifs et les techniques utilisés aux fins de l'évaporation du silicium et du métal sont bien connus et n'ont donc pas à être décrits ici de façon détaillée. De préférence, l'évaporation du métal et du silicium doit avoir lieu à raison de 25 à 50 Angstroms environ par seconde. Le substrat que l'on désire recouvrir est en général maintenu à une température comprise entre la température ambiante et 400 °C environ, et de préférence entre 150 °C et 250 °C environ lors du dépôt du métal et du silicium.
  • Une fois que la quantité désirée de métal et de silicium a été déposée sur le substrat, ce dernier est retiré de l'appareil utilisé aux fins de l'évaporation sous vide, puis chauffé dans une atmosphère inerte à des températures variant entre 700 °C et 1 100°C environ et de préférence entre 900 °C et 1 100 °C. La température maximum convenable est essentiellement fonction de considérations pratiques et, en particulier, est choisie de manière à éviter une formation excessive de grains dans la couche de siliciure. Les atmosphères inertes convenables dans lesquelles le traitement thermique peut être effectué comprennent l'argon, l'hélium et l'hydrogène.
  • L'atmosphère inerte ne doit pas comporter la vapeur d'eau, d'oxygène, de composés à base de carbone, d'azote ou d'autres substances qui pourraient provoquer la formation de carbure, d'oxyde ou de nitrure pendant le traitement thermique.
  • Le substrat est chauffé aux températures ci-dessus pendant un intervalle de temps suffisant pour provoquer une réaction du métal et du silicium déposé sur celui-ci de manière à former le siliciure désiré. Cet intervalle de temps varie généralement entre 15 minutes et 2 heures environ, et il est inversement fonction de la température utilisée.
  • Après le traitement thermique, le substrat recouvert de la couche de siliciure peut éventuellement faire l'objet d'une oxydation de manière à recouvrir ladite couche d'oxyde d'auto-passivation. On a constaté que la diminution de la conductivité de la couche de siliciure qui résultait de l'oxydation était très inférieure à celle qui aurait dû théoriquement résulter de l'oxydation d'une partie déterminée de la couche. Par exemple, une oxydation de 50 % de la couche n'entraîne pas une diminution correspondante de 50 % de sa conductivité. Ce résultat serait dû à une oxydation préférentielle du silicium contenu dans la couche de siliciure et à une rétrodiffusion du métal, provoquant ainsi la formation d'une couche de siliciure enrichie en métal au-dessous de la couche oxydée. A cet égard, on se reportera utilement à l'article de J. Bérkowitz-Matluck et al, intitulé « High Temperature Oxidation I1. Molybdenum Silicide paru dans la publication « J. Electrochemical Soc. » Vol. 112, N° 6, page 583, Juin 1965.
  • Les figures 3B et 4B montrent les variations de la résistivité de certains siliciures oxydés selon les températures. Les résultats d'ensemble indiquent qu'une amélioration de 30 % environ de la conductivité est obtenue par rapport à la conductivité théorique correspondant au pourcentage oxydé de la couche. L'oxydation du siliciure de molybdène à 1 000 °C pendant plus de 15 minutes a eu un effet nuisible sur la couche et modifié les propriétés de celle-ci. Il conviendrait donc d'éviter de telles conditions dans le cas du siliciure de molybdène afin que sa conductivité reste élevée. L'oxydation a été effectuée en phase vapeur dans les conditions spécifiées.
  • Le procédé préféré d'oxydation est une oxydation humide (vapeur d'eau) ou une oxydation sèche-humide-sèche. Ce procédé permet en effet d'obtenir des meilleurs résultats en termes de claquage que les autres techniques. L'oxydation en phase vapeur doit de préférence être effectuée à des températures variant entre 800 °C et 1 100 °C environ à une pression correspondant à peu après à la pression atmosphérique. La durée de l'oxydation est fonction de l'épaisseur de la couche d'oxyde que l'on désire obtenir et varie généralement entre 15 minutes et 2 heures environ. Par exemple, l'obtention d'une épaisseur voisine ou supérieure à 1 000 Angstroms nécessite plus de 2 heures à environ 800 °C et 30 minutes environ à 950 °C environ.
  • Les figures 3A et 4A montrent la croissance de l'oxyde isolant sur le siliciure pendant l'exposition à la vapeur aux températures et pendant les intervalles de temps indiqués.
  • Le tableau 1 en annexe indique les valeurs mesurées de la résistance de film de siliciure réalisé conformément à la présente invention par évaporation au moyen d'un faisceau électronique. Les films déposés sur le substrat de silicium avaient une épaisseur d'environ 0,5 micron.
  • Le tableau Il en annexe permet de constater la conductivité améliorée du siliciure réalisé conformément au moyen du procédé de la présente invention comparée à celle du silicium dopé. Cette meilleure conductivité joue un rôle important en ce qui concerne l'augmentation de la vitesse de transmission des signaux sur une ligne de transmission.
  • Le tableau 111 en annexe montre que l'emploi du siliciure métallique réalisé conformément à la présente invention donne des résultats au moins aussi satisfaisants que ceux obtenus avec le silicium polycristallin, compte tenu de la tension de bande plate et de la tension de claquage électrique dans le cas où l'oxyde recouvre le siliciure. La tension de bande plate est l'un parmi les paramètres qui sont directement reliés à la tension de commande de porte nécessaire pour faire conduire le transistor à effet de champ (FET) et sa spécification limitée à une plage étroite est un facteur important du fonctionnement des transistors FET utilisés dans les circuits intégrés.
  • Par ailleurs, on a constaté que le champ de claquage moyen dans le cas d'un siliciure auto-oxydé d'une épaisseur d'environ 3 000 Angstroms disposé entre un conducteur d'aluminium et la couche de siliciure était supérieure à 2 à 3 mV/cm.
  • Les figures 1A et 1B montrent l'une des façons dont la présente invention peut être utilisée dans des circuits intégrés (par exemple aux fins de la formation d'une porte composite en silicium polycristallin et en siliciure métallique).
  • Pour faciliter la description des étapes du procédé de fabrication, on supposera que le substrat est du silicium de type p et que les impuretés diffusées ou implantées sont du type n, ce qui conduit à l'obtention d'un FET (Transistor à effet de champ) à canal n. En utilisant un substrat de type n et des impuretés de type p, on obtiendrait évidemment un FET à canal p.
  • D'autre part, la présente invention peut s'appliquer également à un substrat constitué par un matériau autre que le silicium. Les expressions « bande d'interconnexion de type métallique et « bande d'interconnexion de conductivité élevée employées ci-après se rapportent à des bandes d'un métal tel que l'aluminium ainsi qu'à des matériaux non métalliques qui peuvent néanmoins présenter une conductivité comparable.
  • Les références faites ci-après à des impuretés d'un « premier type et d'un « second type signifient par exemple que, si le « premier type est p, le second « second type est n, et inversement.
  • On a représenté sur les figures 1A et 1B une partie d'un substrat en silicium 1 de type p présentant une orientation cristalline désirée (par exemple < 100 » et réalisé en découpant et en polissant une boule ou un barreau de silicium de type p (c'est-à-dire en présence d'un dopant du type p tel que le bore) conformément à des techniques classiques. D'autres dopants de type p utilisables avec le silicium sont l'aluminium, le gallium et l'indium.
  • On fait ensuite croître ou l'on dépose un isolant de porte constitué par une mince couche de dioxyde de silicium 2. Cette couche, dont l'épaisseur est généralement comprise entre 200 et 1 000 Angstroms est de préférence formée par oxydation thermique de la surface de silicium à 1 000 °C en présence d'oxygène sec.
  • On procède ensuite au dépôt d'une couche de silicium polycristallin 3. Cette couche a généralement une épaisseur variant entre 500 et 2 000 Angstroms environ et peut être réalisée par dépôt chimique en phase vapeur. On dope ensuite par dépôt chimique en phase vapeur. On dope ensuite cette couche au . moyen d'un dopant de type n tel que l'arsenic, le phosphore ou l'antimoine, en utilisant une technique classique. Par exemple, on peut doper cette couche avec du phosphore en utilisant la technique qui consiste à déposer une couche de POCl3 et en la chauffant à 1 000 °C environ de manière à introduire le phosphore dans la couche 3, qui devient alors de type n. On retire ensuite le résidu de la couche de PQCI3 en décapant la pastille dans de l'acide fluorhydrique tamponné. Une couche de siliciure 4 d'une épaisseur d'environ 2 000 à 4 000 Angstroms est ensuite formée sur la couche 3 en utilisant le procédé de la présente invention et décrit ci-dessus.
  • Une configuration de porte peut être réalisée en utilisant pour la lithographie une technique connue quelconque, par exemple le décapage chimique, le décapage dans un plasma, le décapage par ions réactifs, etc... Les techniques susceptibles d'être utilisées à cette fin varient dans leurs détails, mais permettent toutes d'obtenir une couche composite, siliciure/silicium polycristallin, présentant une configuration déterminée. Dans le cas d'un décapage chimique, on a constaté que du H3P04 chaud permettait de décaper de façon sélective les siliciures par rapport au silicium polycristallin ou au Si02. Les siliciures doivent de préférence être décapés au moyen d'une technique dite « sèche telle que la technique de décapage par ions réactifs faisant appel à l'emploi d'un matériau tel que le CF4.
  • Les régions de source et de drain de type n sont ensuite formées au moyen des techniques bien connues d'implantation ou de diffusion ionique. Par exemple, des régions de source et de drain 7 et 8 de type n, respectivement, d'une profondeur de 2 000 Angstroms peuvent être réalisées par implantation d'As75 en utilisant une énergie d'environ 100 KeV et une dose de 4 x 1015 atomes/cm2. Pendant l'implantation, la couche en silicium polycristallin 3 et la couche de siliciure 4 font fonction de masque et empêchent les impuretés de type n de pénétrer dans la région du canal du FET qui se trouve au-dessous de la couche 3.
  • Les limites entre les régions de source et de drain de type n et donc le canal du FET sont déterminées par les dimensions de la porte en silicium polycristallin. Cette technique est généralement dite technique de « porte auto-alignée •.
  • Une couche de dioxyde de silicium de passivation autoformée 5 est ensuite formée in situ sur les régions de porte au moyen des techniques d'oxydation précédemment décrites. Par exemple, l'ensemble fait l'objet d'une oxydation en phase vapeur à 950 °C environ pendant 30 minutes environ pour obtenir une épaisseur d'oxyde également supérieure à 1 000 et 3 000 Angstroms qui dépend bien sur du métal choisi comme on l'a vu ci-dessus.
  • On procède ensuite au dépôt chimique en phase vapeur d'une couche de dioxyde de silicium 6 d'une épaisseur d'environ 1 000 à 1 500 Angstroms pour prévenir toute inter-action entre la couche de siliciure et une interconnexion métallique, par exemple, en aluminium, qui serait ultérieurement appliquée. Les couches d'oxyde et les couches métalliques sont définies au moyen de techniques classiques de masquage et de décapage. Par exemple, le dioxyde de silicium peut être retiré en utilisant de l'acide fluorhydrique tamponné et l'aluminium peut être décapé au moyen d'un mélange d'acide phosphorique et d'acide nitrique. L'aluminium peut être déposé par pulvérisation ou par évaporation. La structure obtenue finalement est représentée sur la figure 1 B.
  • Les figures 2A à 2C illustrent une autre utilisation de la présente invention aux fins de la fabrication de circuits intégrés. La technique ci-après est particulièrement avantageuse parce qu'elle offre la possibilité de retirer le siliciure déposé de régions prédéterminées du substrat, en utilisant des techniques d'élimination par décollement (lift off).
  • Le substrat 11 est recouvert d'une couche d'un matériau 13 qui permet d'obtenir une configuration convenable en vue de l'étape de décollement. Dans le cas le plus simple, le matériau constituant la couche 13 est un matériau résistant sensible au rayonnement dans lequel la configuration désirée est engendrée au moyen de techniques classiques (par exemple au moyen d'un électron résist du type PMMA avec un appareil de masquage à faisceau électronique). On notera que la couche 13 pourrait être constitué par plusieurs couches de matériaux sensibles, de façon à obtenir la géométrie de décollement désirée dans le cas de matériaux seulement capables de résister à des températures de traitements modérément élevées.
  • Une fois que la configuration désirée de la couche 13 a été obtenue, le substrat est dopé dans les régions qui ne sont pas protégées par le masque de manière à former régions 12 de type n par exemple des régions de source et de drain d'un FET. Des techniques telles que l'implantation ionique d'As, de P ou de Sb peuvent être employées aux fins du dopage de cette région.
  • Une couche 14 de métal et de silicium est déposée sur le substrat au moyen de l'étape d'évaporation simultanée précédemment décrite. La couche 14 n'est pas continue, c'est-à-dire qu'il n'y a pas de liaisons entre les régions qui se trouvent au-dessus du masque et celles qui ne le sont pas, comme cela se produirait dans le cas de l'emploi d'une technique de pulvérisation, car cette dernière provoquerait un recouvrement des bords qui pourrait entraîner une telle liaison ou interconnexion. Le matériau constituant le masque et celui qui le recouvre peuvent donc être aisément retirés au moyen d'une simple technique de décollement en utilisant un solvant tel que l'acétone qui élimine le matériau résistant qui subsistait pour former ledit masque.
  • L'ensemble est ensuite soumis à un traitement thermique à des températures variant entre 700 et 1 100 °C environ dans une atmosphère inerte telle que de l'argon, de l'hydrogène ou de l'hélium, comme l'exige la présente invention, pour former le siliciure. La couche de siliciure 14 pourra ensuite être oxydée de manière à être recouverte d'une couche d'oxyde de passivation.
  • Un masque composite 15 tel qu'une couche de nitrure de silicium déposée au-dessus d'une couche de dioxyde de silicium, est disposé au-dessus de la région de canal du dispositif FET, afin de servir comme masque empêchant ou bloquant toute oxydation du substrat à cet emplacement.
  • Des impuretés de dopage 16 telles que des atomes de bore peuvent être introduites au moyen de techniques d'implantation ionique, dans les régions de champ. On fait croître ensuite une couche 17 de dioxyde de silicium, par exemple, par dépôt chimique en phase vapeur, sur les parties du substrat qui ne sont pas protégées par le masque 15.
  • Le masque composite de blocage d'oxydation est ensuite retiré au moyen d'un solvant approprié. Si, par exemple, on utilise du nitrure de silicium, celui-ci peut être décapé dans une solution d'acide phosphorique à 180 °C. Le dioxide de silicium peut être décapé dans une solution d'acide fluorhydrique tamponné.
  • On fait ensuite croître sur le substrat un isolant de porte en dioxyde de silicium 18. Le dopage de la région du canal, si nécessaire, est effectué par une implantation ionique. On procède ensuite au dépôt du matériau constituant la porte, puis à sa délimitation selon une configuration désirée au moyen des techniques connues de masquage et de décapage. Ce matériau peut être obtenu par évaporation simultanée et chauffage du silicium et du métal, par dépôt de silicium polycristallin seul, ou par dépôt du silicium polycristallin et d'une couche formée par évaporation simultanée et chauffage du silicium et du métal conformément aux techniques de la présente invention.
  • Bien que l'on ait décrit dans ce qui précède et représenté sur les dessins les caractéristiques essentielles de la présente invention appliquées à un mode de réalisation préféré de celle-ci, il est évident que l'homme de l'art peut y apporter toutes modifications de forme ou de détail qu'il juge utiles, sans pour autant sortir du cadre de ladite invention.
    Figure imgb0001
    Figure imgb0002
    Figure imgb0003
    Figure imgb0004
    * Valeur prévue pour une porte de commande FET en silicium polycristallin,
    • Vfb = tension de bande plate,
    • Navg = dopage moyen de surface,
    • tox = épaisseur de l'oxyde de la porte,
    • Vbd = tension de claquage pour l'oxyde de porte (valeur moyenne pour 100 condensateurs dans les conditions opératoires déterminées),
    • Ebf = champ électrique de claquage,
    • Vfb et Navg ont été déterminés à partir de mesures sur les caractéristiques C (V),
    • M volts = volts x 106.
  • Les résultats indiqués (à l'exception de ceux relatifs à Vbd) ont été obtenus au moyen de 20 à 90 emplacements de test par pastille.

Claims (7)

1. Procédé de fabrication d'une électrode en siliciure sur un substrat, consistant à déposer un métal réfractaire et du silicium sur le substrat, caractérisé en ce qu'il comporte les étapes suivantes :
vaporisation simultanée du métal et du silicium à partir d'une source de métal et d'une source de silicium distinctes, sous un vide poussé, en les portant à une température suffisante pour provoquer leur évaporation et
traitement thermique approprié pour obtenir ledit siliciure.
2. Procédé selon la revendication 1 caractérisé en ce que ladite vaporisation simultanée est effectuée en utilisant comme source de chaleur un faisceau électronique pour évaporer le silicium et un autre faisceau électronique pour évaporer le métal.
3. Procédé selon la revendication 1 ou 2 caractérisé en ce que le traitement thermique du substrat implique de porter ce dernier à une température comprise approximativement entre 700 °C et 1 100 °C, dans une atmosphère inerte choisie dans le groupe comprenant : l'hydrogène, l'argon, l'hélium et les mélanges de ces gaz.
4. Procédé selon l'une des revendications ci-dessus, caractérisé en ce que le substrat est choisi dans le groupe comprenant : le silicium polycristallin, et le silicium monocristallin.
5. Procédé selon l'une des revendications ci-dessus, caractérisé en ce que le métal réfractaire est choisi dans le groupe comportant le molybdène, le tantale, le tungstène, le rhodium, et les mélanges de ces métaux.
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le siliciure comprend de 60 à 25 % environ en poids atomique dudit métal et de 40 à 75 % environ en poids atomique de silicium respectivement.
7. Procédé selon la revendication 6, caractérisé en ce qu'il comporte en outre l'étape d'oxydation d'une partie de la couche de siliciure, selon la technique sèche-humide-sèche effectuée à une température variant entre approximativement 800 °C et 1 100 °C pendant un intervalle de temps variant approximativement entre 15 minutes et 1 heure.
EP78430003A 1977-06-30 1978-06-22 Procédé de fabrication d'une électrode en siliciure sur un substrat notamment semi-conducteur Expired EP0000317B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US05/811,914 US4180596A (en) 1977-06-30 1977-06-30 Method for providing a metal silicide layer on a substrate
US811914 1977-06-30

Publications (2)

Publication Number Publication Date
EP0000317A1 EP0000317A1 (fr) 1979-01-10
EP0000317B1 true EP0000317B1 (fr) 1982-05-19

Family

ID=25207936

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78430003A Expired EP0000317B1 (fr) 1977-06-30 1978-06-22 Procédé de fabrication d'une électrode en siliciure sur un substrat notamment semi-conducteur

Country Status (6)

Country Link
US (1) US4180596A (fr)
EP (1) EP0000317B1 (fr)
JP (1) JPS5852342B2 (fr)
CA (1) CA1100648A (fr)
DE (1) DE2861841D1 (fr)
IT (1) IT1112638B (fr)

Families Citing this family (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4276557A (en) * 1978-12-29 1981-06-30 Bell Telephone Laboratories, Incorporated Integrated semiconductor circuit structure and method for making it
USRE32207E (en) * 1978-12-29 1986-07-15 At&T Bell Laboratories Method for making integrated semiconductor circuit structure with formation of Ti or Ta silicide
US4332839A (en) * 1978-12-29 1982-06-01 Bell Telephone Laboratories, Incorporated Method for making integrated semiconductor circuit structure with formation of Ti or Ta silicide
US4364166A (en) * 1979-03-01 1982-12-21 International Business Machines Corporation Semiconductor integrated circuit interconnections
US4329706A (en) * 1979-03-01 1982-05-11 International Business Machines Corporation Doped polysilicon silicide semiconductor integrated circuit interconnections
NL8002609A (nl) * 1979-06-11 1980-12-15 Gen Electric Samengestelde geleidende structuur en werkwijze voor het vervaardigen daarvan.
FR2459551A1 (fr) * 1979-06-19 1981-01-09 Thomson Csf Procede et structure de passivation a autoalignement sur l'emplacement d'un masque
DE2926874A1 (de) * 1979-07-03 1981-01-22 Siemens Ag Verfahren zum herstellen von niederohmigen, diffundierten bereichen bei der silizium-gate-technologie
EP0024905B1 (fr) * 1979-08-25 1985-01-16 Zaidan Hojin Handotai Kenkyu Shinkokai Transistor à effet de champ à porte isolée
JPS5662339A (en) * 1979-10-26 1981-05-28 Chiyou Lsi Gijutsu Kenkyu Kumiai Production of semiconductor device
US4441941A (en) * 1980-03-06 1984-04-10 Tokyo Shibaura Denki Kabushiki Kaisha Method for manufacturing a semiconductor device employing element isolation using insulating materials
USRE32613E (en) * 1980-04-17 1988-02-23 American Telephone And Telegraph Company, At&T Bell Laboratories Method of making contact electrodes to silicon gate, and source and drain regions, of a semiconductor device
US4343082A (en) * 1980-04-17 1982-08-10 Bell Telephone Laboratories, Incorporated Method of making contact electrodes to silicon gate, and source and drain regions, of a semiconductor device
US4554045A (en) * 1980-06-05 1985-11-19 At&T Bell Laboratories Method for producing metal silicide-silicon heterostructures
JPS5713769A (en) * 1980-06-30 1982-01-23 Fujitsu Ltd Semiconductor device and manufacture thereof
US4285761A (en) * 1980-06-30 1981-08-25 International Business Machines Corporation Process for selectively forming refractory metal silicide layers on semiconductor devices
US4337476A (en) * 1980-08-18 1982-06-29 Bell Telephone Laboratories, Incorporated Silicon rich refractory silicides as gate metal
DE3131875A1 (de) * 1980-08-18 1982-03-25 Fairchild Camera and Instrument Corp., 94042 Mountain View, Calif. "verfahren zum herstellen einer halbleiterstruktur und halbleiterstruktur"
NL186352C (nl) * 1980-08-27 1990-11-01 Philips Nv Werkwijze ter vervaardiging van een halfgeleiderinrichting.
US4322453A (en) * 1980-12-08 1982-03-30 International Business Machines Corporation Conductivity WSi2 (tungsten silicide) films by Pt preanneal layering
JPS5796546A (en) * 1980-12-09 1982-06-15 Toshiba Corp Semiconductor device
US5536967A (en) * 1980-12-30 1996-07-16 Fujitsu Limited Semiconductor device including Schottky gate of silicide and method for the manufacture of the same
US5200349A (en) * 1980-12-30 1993-04-06 Fujitsu Limited Semiconductor device including schotky gate of silicide and method for the manufacture of the same
WO1982003948A1 (fr) * 1981-05-04 1982-11-11 Inc Motorola Metallisation composite de faible resistivite pour des dispositifs semiconducteurs et procede
JPS57194567A (en) * 1981-05-27 1982-11-30 Hitachi Ltd Semiconductor memory device
JPS582276A (ja) * 1981-06-24 1983-01-07 株式会社日立製作所 金属−セラミツクス接合体及びその製造法
US4359490A (en) * 1981-07-13 1982-11-16 Fairchild Camera & Instrument Corp. Method for LPCVD co-deposition of metal and silicon to form metal silicide
US4389257A (en) * 1981-07-30 1983-06-21 International Business Machines Corporation Fabrication method for high conductivity, void-free polysilicon-silicide integrated circuit electrodes
US4378628A (en) * 1981-08-27 1983-04-05 Bell Telephone Laboratories, Incorporated Cobalt silicide metallization for semiconductor integrated circuits
US4398341A (en) * 1981-09-21 1983-08-16 International Business Machines Corp. Method of fabricating a highly conductive structure
US4399605A (en) * 1982-02-26 1983-08-23 International Business Machines Corporation Method of making dense complementary transistors
JPS58154228A (ja) * 1982-03-09 1983-09-13 Fujitsu Ltd 半導体装置の製造方法
DE3211752C2 (de) * 1982-03-30 1985-09-26 Siemens AG, 1000 Berlin und 8000 München Verfahren zum selektiven Abscheiden von aus Siliziden hochschmelzender Metalle bestehenden Schichtstrukturen auf im wesentlichen aus Silizium bestehenden Substraten und deren Verwendung
DE3211761A1 (de) * 1982-03-30 1983-10-06 Siemens Ag Verfahren zum herstellen von integrierten mos-feldeffekttransistorschaltungen in siliziumgate-technologie mit silizid beschichteten diffusionsgebieten als niederohmige leiterbahnen
US4400867A (en) * 1982-04-26 1983-08-30 Bell Telephone Laboratories, Incorporated High conductivity metallization for semiconductor integrated circuits
JPS58202553A (ja) * 1982-05-21 1983-11-25 Toshiba Corp 半導体装置
US4432035A (en) * 1982-06-11 1984-02-14 International Business Machines Corp. Method of making high dielectric constant insulators and capacitors using same
JPS596577A (ja) * 1982-07-05 1984-01-13 Toshiba Corp 半導体装置とその製造方法
JPS599887A (ja) * 1982-07-07 1984-01-19 日本特殊陶業株式会社 セラミツク発熱体
JPH0658899B2 (ja) * 1982-07-29 1994-08-03 株式会社東芝 半導体装置の製造方法
DE3230077A1 (de) * 1982-08-12 1984-02-16 Siemens AG, 1000 Berlin und 8000 München Integrierte bipolar- und mos-transistoren enthaltende halbleiterschaltung auf einem chip und verfahren zu ihrer herstellung
US5136361A (en) * 1982-09-30 1992-08-04 Advanced Micro Devices, Inc. Stratified interconnect structure for integrated circuits
WO1984001471A1 (fr) * 1982-09-30 1984-04-12 Advanced Micro Devices Inc Structure d'interconnexion en siliciure metallique-aluminium pour circuits integres et son procede de fabrication
US4443930A (en) * 1982-11-30 1984-04-24 Ncr Corporation Manufacturing method of silicide gates and interconnects for integrated circuits
JPS59100520A (ja) * 1982-11-30 1984-06-09 Fujitsu Ltd 半導体装置の製造方法
US4450620A (en) * 1983-02-18 1984-05-29 Bell Telephone Laboratories, Incorporated Fabrication of MOS integrated circuit devices
US4470189A (en) * 1983-05-23 1984-09-11 International Business Machines Corporation Process for making polycide structures
JPS609160A (ja) * 1983-06-28 1985-01-18 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
DE3326142A1 (de) * 1983-07-20 1985-01-31 Siemens AG, 1000 Berlin und 8000 München Integrierte halbleiterschaltung mit einer aus aluminium oder aus einer aluminiumlegierung bestehenden aeusseren kontaktleiterbahnebene
JPS6042823A (ja) * 1983-08-19 1985-03-07 Toshiba Corp 薄膜形成方法
US4481046A (en) * 1983-09-29 1984-11-06 International Business Machines Corporation Method for making diffusions into a substrate and electrical connections thereto using silicon containing rare earth hexaboride materials
US4490193A (en) * 1983-09-29 1984-12-25 International Business Machines Corporation Method for making diffusions into a substrate and electrical connections thereto using rare earth boride materials
US4557943A (en) * 1983-10-31 1985-12-10 Advanced Semiconductor Materials America, Inc. Metal-silicide deposition using plasma-enhanced chemical vapor deposition
FR2555364B1 (fr) * 1983-11-18 1990-02-02 Hitachi Ltd Procede de fabrication de connexions d'un dispositif a circuits integres a semi-conducteurs comportant en particulier un mitset
US4716131A (en) * 1983-11-28 1987-12-29 Nec Corporation Method of manufacturing semiconductor device having polycrystalline silicon layer with metal silicide film
JPS60140736A (ja) * 1983-12-27 1985-07-25 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
GB2156579B (en) * 1984-03-15 1987-05-07 Standard Telephones Cables Ltd Field effect transistors
US4629635A (en) * 1984-03-16 1986-12-16 Genus, Inc. Process for depositing a low resistivity tungsten silicon composite film on a substrate
US4851295A (en) * 1984-03-16 1989-07-25 Genus, Inc. Low resistivity tungsten silicon composite film
US4829363A (en) * 1984-04-13 1989-05-09 Fairchild Camera And Instrument Corp. Structure for inhibiting dopant out-diffusion
US4640004A (en) * 1984-04-13 1987-02-03 Fairchild Camera & Instrument Corp. Method and structure for inhibiting dopant out-diffusion
US5121186A (en) * 1984-06-15 1992-06-09 Hewlett-Packard Company Integrated circuit device having improved junction connections
AU576594B2 (en) * 1984-06-15 1988-09-01 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Heat-resistant thin film photoelectric converter
US4529619A (en) * 1984-07-16 1985-07-16 Xerox Corporation Ohmic contacts for hydrogenated amorphous silicon
JPH0647291B2 (ja) * 1984-08-17 1994-06-22 京セラ株式会社 サ−マルヘツド
US4587718A (en) * 1984-11-30 1986-05-13 Texas Instruments Incorporated Process for forming TiSi2 layers of differing thicknesses in a single integrated circuit
US4612258A (en) * 1984-12-21 1986-09-16 Zilog, Inc. Method for thermally oxidizing polycide substrates in a dry oxygen environment and semiconductor circuit structures produced thereby
US4597163A (en) * 1984-12-21 1986-07-01 Zilog, Inc. Method of improving film adhesion between metallic silicide and polysilicon in thin film integrated circuit structures
US4803539A (en) * 1985-03-29 1989-02-07 International Business Machines Corporation Dopant control of metal silicide formation
US4673968A (en) * 1985-07-02 1987-06-16 Siemens Aktiengesellschaft Integrated MOS transistors having a gate metallization composed of tantalum or niobium or their silicides
US4604304A (en) * 1985-07-03 1986-08-05 Rca Corporation Process of producing thick layers of silicon dioxide
US4668530A (en) * 1985-07-23 1987-05-26 Massachusetts Institute Of Technology Low pressure chemical vapor deposition of refractory metal silicides
JPH0817159B2 (ja) * 1985-08-15 1996-02-21 キヤノン株式会社 堆積膜の形成方法
JPS6252551A (ja) * 1985-08-30 1987-03-07 Mitsubishi Electric Corp フオトマスク材料
US4751198A (en) * 1985-09-11 1988-06-14 Texas Instruments Incorporated Process for making contacts and interconnections using direct-reacted silicide
EP0219641B1 (fr) * 1985-09-13 1991-01-09 Siemens Aktiengesellschaft Circuit intégré comprenant des transistors bipolaires et MOS complémentaires sur un substrat commun et méthode pour sa fabrication
US4837048A (en) * 1985-10-24 1989-06-06 Canon Kabushiki Kaisha Method for forming a deposited film
US4663191A (en) * 1985-10-25 1987-05-05 International Business Machines Corporation Salicide process for forming low sheet resistance doped silicon junctions
US4782033A (en) * 1985-11-27 1988-11-01 Siemens Aktiengesellschaft Process for producing CMOS having doped polysilicon gate by outdiffusion of boron from implanted silicide gate
US4709655A (en) * 1985-12-03 1987-12-01 Varian Associates, Inc. Chemical vapor deposition apparatus
US4796562A (en) * 1985-12-03 1989-01-10 Varian Associates, Inc. Rapid thermal cvd apparatus
JPH0645885B2 (ja) * 1985-12-16 1994-06-15 キヤノン株式会社 堆積膜形成法
JPH0645888B2 (ja) * 1985-12-17 1994-06-15 キヤノン株式会社 堆積膜形成法
JPH0645890B2 (ja) * 1985-12-18 1994-06-15 キヤノン株式会社 堆積膜形成法
JPS62142778A (ja) * 1985-12-18 1987-06-26 Canon Inc 堆積膜形成法
US5160543A (en) * 1985-12-20 1992-11-03 Canon Kabushiki Kaisha Device for forming a deposited film
JPH0651906B2 (ja) * 1985-12-25 1994-07-06 キヤノン株式会社 堆積膜形成法
JPH0746729B2 (ja) * 1985-12-26 1995-05-17 キヤノン株式会社 薄膜トランジスタの製造方法
US4816895A (en) * 1986-03-06 1989-03-28 Nec Corporation Integrated circuit device with an improved interconnection line
US4681818A (en) * 1986-03-18 1987-07-21 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Oxygen diffusion barrier coating
JPH0783034B2 (ja) * 1986-03-29 1995-09-06 株式会社東芝 半導体装置
US4732801A (en) * 1986-04-30 1988-03-22 International Business Machines Corporation Graded oxide/nitride via structure and method of fabrication therefor
US4800105A (en) * 1986-07-22 1989-01-24 Nihon Shinku Gijutsu Kabushiki Kaisha Method of forming a thin film by chemical vapor deposition
US4914042A (en) * 1986-09-30 1990-04-03 Colorado State University Research Foundation Forming a transition metal silicide radiation detector and source
US4983544A (en) * 1986-10-20 1991-01-08 International Business Machines Corporation Silicide bridge contact process
US4834023A (en) * 1986-12-19 1989-05-30 Canon Kabushiki Kaisha Apparatus for forming deposited film
US4783379A (en) * 1987-04-17 1988-11-08 Tosoh Smd, Inc. Explosive crystallization in metal/silicon multilayer film
JP2582776B2 (ja) * 1987-05-12 1997-02-19 株式会社東芝 半導体装置及びその製造方法
US4902379A (en) * 1988-02-08 1990-02-20 Eastman Kodak Company UHV compatible lift-off method for patterning nobel metal silicide
JPH0198255A (ja) * 1988-05-27 1989-04-17 Hitachi Ltd 半導体記憶装置
JPH0636426B2 (ja) * 1988-05-27 1994-05-11 株式会社日立製作所 半導体記憶装置の製造方法
JPS6486551A (en) * 1988-05-27 1989-03-31 Hitachi Ltd Semiconductor storage device
US5027185A (en) * 1988-06-06 1991-06-25 Industrial Technology Research Institute Polycide gate FET with salicide
US4985740A (en) * 1989-06-01 1991-01-15 General Electric Company Power field effect devices having low gate sheet resistance and low ohmic contact resistance
JPH0687493B2 (ja) * 1990-03-07 1994-11-02 日本電気株式会社 薄膜コンデンサ
US5180432A (en) * 1990-01-08 1993-01-19 Lsi Logic Corporation Apparatus for conducting a refractory metal deposition process
JP3194971B2 (ja) * 1990-01-08 2001-08-06 エルエスアイ ロジック コーポレーション Cvdチャンバに導入されるプロセスガスをcvdチャンバへの導入前に濾過するための装置
KR930002673B1 (ko) * 1990-07-05 1993-04-07 삼성전자 주식회사 고융점금속 성장방법
JP2558931B2 (ja) * 1990-07-13 1996-11-27 株式会社東芝 半導体装置およびその製造方法
DE4113143C2 (de) * 1991-04-23 1994-08-04 Forschungszentrum Juelich Gmbh Verfahren zur Herstellung eines Schichtsystems und Schichtsystem
US5300322A (en) * 1992-03-10 1994-04-05 Martin Marietta Energy Systems, Inc. Molybdenum enhanced low-temperature deposition of crystalline silicon nitride
KR950003233B1 (ko) * 1992-05-30 1995-04-06 삼성전자 주식회사 이중층 실리사이드 구조를 갖는 반도체 장치 및 그 제조방법
US5643633A (en) * 1992-12-22 1997-07-01 Applied Materials, Inc. Uniform tungsten silicide films produced by chemical vapor depostiton
US5997950A (en) * 1992-12-22 1999-12-07 Applied Materials, Inc. Substrate having uniform tungsten silicide film and method of manufacture
JP2891092B2 (ja) * 1994-03-07 1999-05-17 日本電気株式会社 半導体装置の製造方法
JP3045946B2 (ja) * 1994-05-09 2000-05-29 インターナショナル・ビジネス・マシーンズ・コーポレイション 半導体デバイスの製造方法
US5518958A (en) 1994-07-29 1996-05-21 International Business Machines Corporation Prevention of agglomeration and inversion in a semiconductor polycide process
US5449631A (en) * 1994-07-29 1995-09-12 International Business Machines Corporation Prevention of agglomeration and inversion in a semiconductor salicide process
JP2754176B2 (ja) * 1995-03-13 1998-05-20 エルジイ・セミコン・カンパニイ・リミテッド 緻密なチタン窒化膜及び緻密なチタン窒化膜/薄膜のチタンシリサイドの形成方法及びこれを用いた半導体素子の製造方法
US5858844A (en) * 1995-06-07 1999-01-12 Advanced Micro Devices, Inc. Method for construction and fabrication of submicron field-effect transistors by optimization of poly oxide process
JP4225081B2 (ja) * 2002-04-09 2009-02-18 株式会社村田製作所 電子部品の製造方法、電子部品及び弾性表面波フィルタ
US7384727B2 (en) * 2003-06-26 2008-06-10 Micron Technology, Inc. Semiconductor processing patterning methods
US7026243B2 (en) * 2003-10-20 2006-04-11 Micron Technology, Inc. Methods of forming conductive material silicides by reaction of metal with silicon
US6969677B2 (en) * 2003-10-20 2005-11-29 Micron Technology, Inc. Methods of forming conductive metal silicides by reaction of metal with silicon
US20050127475A1 (en) * 2003-12-03 2005-06-16 International Business Machines Corporation Apparatus and method for electronic fuse with improved esd tolerance
US20050196632A1 (en) * 2003-12-18 2005-09-08 Afg Industries, Inc. Protective layer for optical coatings with enhanced corrosion and scratch resistance
US7153769B2 (en) * 2004-04-08 2006-12-26 Micron Technology, Inc. Methods of forming a reaction product and methods of forming a conductive metal silicide by reaction of metal with silicon
US7241705B2 (en) * 2004-09-01 2007-07-10 Micron Technology, Inc. Methods of forming conductive contacts to source/drain regions and methods of forming local interconnects
JP2006319294A (ja) * 2005-05-11 2006-11-24 Hynix Semiconductor Inc 半導体素子の高電圧用ゲート酸化膜形成方法及び半導体素子の高電圧用トランジスタ
KR102015866B1 (ko) * 2012-06-29 2019-08-30 에스케이하이닉스 주식회사 리세스게이트를 구비한 트랜지스터 및 그 제조 방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3000071A (en) * 1953-04-23 1961-09-19 Fansteel Metallurgical Corp Method of sintering intermetallic materials
US2982619A (en) * 1957-04-12 1961-05-02 Roger A Long Metallic compounds for use in hightemperature applications
US3381182A (en) * 1964-10-19 1968-04-30 Philco Ford Corp Microcircuits having buried conductive layers
US3549416A (en) * 1965-06-01 1970-12-22 Gulf Energy & Environ Systems Process for forming superconductive materials
US3540920A (en) * 1967-08-24 1970-11-17 Texas Instruments Inc Process of simultaneously vapor depositing silicides of chromium and titanium
US3576670A (en) * 1969-02-19 1971-04-27 Gulf Energy & Environ Systems Method for making a superconducting material
US3927225A (en) * 1972-12-26 1975-12-16 Gen Electric Schottky barrier contacts and methods of making same
US3979500A (en) * 1973-05-02 1976-09-07 Ppg Industries, Inc. Preparation of finely-divided refractory powders of groups III-V metal borides, carbides, nitrides, silicides and sulfides
IN140056B (fr) * 1973-11-01 1976-09-04 Rca Corp
US3968272A (en) * 1974-01-25 1976-07-06 Microwave Associates, Inc. Zero-bias Schottky barrier detector diodes
NL7510903A (nl) * 1975-09-17 1977-03-21 Philips Nv Werkwijze voor het vervaardigen van een halfgelei- derinrichting, en inrichting vervaardigd volgens de werkwijze.
JPS5380985A (en) * 1976-12-25 1978-07-17 Toshiba Corp Semiconductor device

Also Published As

Publication number Publication date
IT7824502A0 (it) 1978-06-13
JPS5413283A (en) 1979-01-31
IT1112638B (it) 1986-01-20
EP0000317A1 (fr) 1979-01-10
DE2861841D1 (en) 1982-07-08
US4180596A (en) 1979-12-25
CA1100648A (fr) 1981-05-05
JPS5852342B2 (ja) 1983-11-22

Similar Documents

Publication Publication Date Title
EP0000317B1 (fr) Procédé de fabrication d&#39;une électrode en siliciure sur un substrat notamment semi-conducteur
EP0195700B1 (fr) Procédé de formation sur un substrat d&#39;une couche de siliciure de métal réfractaire éventuellement recouverte d&#39;isolant, utilisable notamment pour la réalisation de couches d&#39;interconnexion des circuits intégrés
FR2512274A1 (fr) Procede de fabrication d&#39;une metallisation en siliciure de cobalt pour un transistor
FR2477771A1 (fr) Procede pour la realisation d&#39;un dispositif semiconducteur a haute tension de blocage et dispositif semiconducteur ainsi realise
EP0017697A1 (fr) Dispositif d&#39;interconnexions de circuits intégrés semi-conducteurs et son procédé de fabrication
FR2463507A1 (fr) Procede de fabrication d&#39;une couche de silicium polycristallin a basse resistivite
FR2522444A1 (fr) Cellule solaire a deux couleurs et trois bornes et son procede de fabrication
FR2682534A1 (fr) Dispositif a semiconducteurs comportant un empilement de sections d&#39;electrode de grille, et procede de fabrication de ce dispositif.
EP2989656B1 (fr) Procédé de fabrication d&#39;une diode schottky sur un substrat en diamant
WO2006040499A1 (fr) Revetement a base de mgo pour l&#39;isolation electrique de substrats semi-conducteurs et procede de fabrication
FR2881575A1 (fr) Transistor mos a grille totalement siliciuree
EP0262030B1 (fr) Procédé de réalisation d&#39;une prise de contact électrique sur un substrat en HgCdTe de conductivité P et application à la fabrication d&#39;une diode N/P
WO2012059426A1 (fr) Procede de fabrication de cellules solaires, attenuant les phenomenes de lid
EP2184769B1 (fr) Procédé de préparation d&#39;une couche comprenant du monosiliciure de nickel NiSi sur un substrat comprenant du silicium
JP2565655B2 (ja) 低抵抗化合物
WO2013093360A1 (fr) Procede de fabrication d&#39;un empilement mos sur un substrat en diamant
WO2007003639A2 (fr) Substrat, notamment en carbure de silicium, recouvert par une couche mince de nitrure de silicium stoechiometrique, pour la fabrication de composants electroniques, et procede d&#39;obtention d&#39;une telle couche
FR2996679A1 (fr) Procede de depot d&#39;une couche de tialn peu diffusive et grille isolee comprenant une telle couche
FR2545986A1 (fr) Procede pour former des contacts ohmiques d&#39;argent pur sur des materiaux d&#39;arseniure de gallium de type n et de type p
EP4142458A1 (fr) Procédé de réalisation d&#39;un siliciure de vanadium supraconducteur sur une couche de silicium
FR2581794A1 (fr) Procede de fabrication de dispositif electroniques a l&#39;etat solide, notamment de cellules solaires au silicium polycristallin
WO2017064383A1 (fr) Procédé de fabrication d&#39;une heterojontion pour cellule photovoltaïque
EP3136429B1 (fr) Formation de contacts ohmiques pour un dispositif dote d&#39;une region en materiau iii-v et d&#39;une region en un autre materiau semi-conducteur
Lue Formation of nickel and palladium silicides by a short-pulse light-flash and its application in the metallization of solar cells
Steffen et al. Comparison of TiSi2 films prepared by diffusion and by co-evaporation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 2861841

Country of ref document: DE

Date of ref document: 19820708

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920619

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930601

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940511

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950622

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950622

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT