DE69629948T2 - Vorrichtung zur ablation von gewebemassen - Google Patents

Vorrichtung zur ablation von gewebemassen Download PDF

Info

Publication number
DE69629948T2
DE69629948T2 DE69629948T DE69629948T DE69629948T2 DE 69629948 T2 DE69629948 T2 DE 69629948T2 DE 69629948 T DE69629948 T DE 69629948T DE 69629948 T DE69629948 T DE 69629948T DE 69629948 T2 DE69629948 T2 DE 69629948T2
Authority
DE
Germany
Prior art keywords
probe system
tissue
electrodes
distal
electrode elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE69629948T
Other languages
English (en)
Other versions
DE69629948D1 (de
Inventor
F. Robert LeVEEN
Randy Fox
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Nebraska
Original Assignee
University of Nebraska
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23624311&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE69629948(T2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by University of Nebraska filed Critical University of Nebraska
Publication of DE69629948D1 publication Critical patent/DE69629948D1/de
Application granted granted Critical
Publication of DE69629948T2 publication Critical patent/DE69629948T2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/02Radiation therapy using microwaves
    • A61N5/04Radiators for near-field treatment
    • A61N5/045Radiators for near-field treatment specially adapted for treatment inside the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1477Needle-like probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1485Probes or electrodes therefor having a short rigid shaft for accessing the inner body through natural openings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1402Probes for open surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1425Needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1425Needle
    • A61B2018/143Needle multiple needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1425Needle
    • A61B2018/1432Needle curved
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1475Electrodes retractable in or deployable from a housing

Description

  • Die vorliegende Erfindung betrifft im Allgemeinen Hochfrequenzelektroden zur Gewebeablation, und spezieller eine verbesserte HF-Elektrode mit einer sich ausbreitenden Anordnung von Drähten zur Ablation großer Gewebevolumen.
  • Die Leber ist gemeinhin ein Depot für Metastasen aus vielen Krebsen, einschließlich derjenigen des Magens, des Darms, der Pankreas, der Niere und der Lunge. Beim Colorektal-Krebs ist die Leber der Ausgangspunkt der Ausbreitung bei mehr als einem Drittel der Patienten, und sie ist bei mehr als zwei Dritteln zum Zeitpunkt des Todes beteiligt. Während Patienten mit unbehandelten Colorektal-Metastasen zur Leber keine fünf Jahre überleben, überleben Patienten, die einer chirurgischen Resektion unterzogen werden, ungefähr zu 25 bis 30% fünf Jahre. Unglücklicherweise sind nur eine begrenzte Anzahl von Patienten Kandidaten für eine chirurgische Resektion.
  • Die Kryochirurgie wird ebenfalls zur Behandlung von hepatischen Metastasen verwendet. Die Kryochirurgie, welche auf einem Einfrier-Auftau-Prozess beruht, um Zellen nicht-selektiv zu töten, ist als ebenso effektiv befunden worden, wie die chirurgische Resektion, aber sie ist gewebeschonender. Während sie eine Verbesserung gegenüber offener chirurgischer Geweberesektion darstellt, leidet die Kryochirurgie noch unter Nachteilen. Sie ist eine offene chirurgische Prozedur, erfordert die Anordnung von bis zu fünf relativ großen Sonden und kann nur bei einer begrenzten Anzahl von Läsionen angewendet werden. Während perkutane Sonden entwickelt werden, können sie derzeit nur kleinere Läsionen behandeln. Typische Läsionen, wie sie bei colorektaler Metastasierung üblich sind, sind jedoch relativ groß. Deshalb sind die Aussichten für perkutane Kryotherapie eingeschränkt.
  • Eine Anzahl von Forschern haben Hochfrequenz-Hyperthermie mit der Anordnung externer Elektroden für die Behandlung von Leberkrebs verwendet. Es ist bekannt, dass die Tumorzellen sensibler für Wärme sind als normale Zellen, und äußerlich aufgebrachte, regionale Hypothermie, zugeführt mit Hochfrequenz, trägt eher den Tumor ab, während das normale Gewebe von wesentlichen Schädigungen verschont wird. Wenn diese Therapie die Reaktion auf eine systemische Chemotherapie verbessert, hat sie einen ungewissen Vorteil bezüglich der langen Überlebensfähigkeit. Eine Einschränkung der Hypothermie liegt darin, dass es schwierig ist, die Tumore auf eine letal hohe Temperatur zu erwärmen. Darüber hinaus neigen Tumorzellen dazu, wärmeresistent zu werden, wenn sie vorherige Behandlungen überleben.
  • Auch perkutane Laser-Hyperthermie ist für primären und metastatischen Leberkrebs verwendet worden. Laserfasern werden durch Nadeln unter Ultraschallführung eingebracht. Die Läsionen, die durch den Laser erzeugt werden, werden durch Hyperecho-Fokusse auf Echtzeit-Ultraschallbildern dargestellt, welche verwendet werden können, um die Größe der Läsion zu beobachten. Niederenergie-Einzelfasersysteme, die kein Kühlsystem entlang der Faser benötigen, können Nekrosebereiche erzeugen, die auf ungefähr 15 mm Durchmesser begrenzt sind. Solche kleinen Durchmesser sind für den überwiegendsten Anteil von Läsionen, die klinisch auftreten, nicht ausreichend, was eine mehrfache Faseranordnung und verlängerte Verfahrenszeiten notwendig macht.
  • Hochfrequenz (HF)-Hyperthermie, die einen elektrochirurgischen Standardgenerator und eine feine Nadel verwendet, die teilweise in Kunststoff umhüllt ist, ist ebenfalls für die Behandlung von Leber- und anderen festen Tumoren vorgeschlagen worden. Bei einem System war die Einrichtung dazu in der Lage, Läsionen von ungefähr 1 × 2 cm in einer Schweineleber zu erzeugen. Um größere Behandlungsvolumen mit einer einzigen Nadel herzustellen, sind hohe Ströme und Temperaturen verwendet worden, aber diese produzieren verbranntes und verkohltes Gewebe, ohne dass das behandelte Gewebevolumen vergrößert wird. Um eine größere Läsion zu behandeln, würden mehrere Nadeleinführungen an verschiedenen Stellen benötigt. In Vorab-Tests erbrachte dieses System ein 75%-iges Überleben bei 40 Monaten.
  • Es ist deshalb ersichtlich, dass die Behandlung von primären und metastatischen Lebertumoren und anderen festen Tumoren woanders im Körper problematisch bleibt. Die Chirurgie ist effektiv, aber nur ein geringer Prozentsatz der betroffenen Patienten sind Kandidaten hierfür. Die Kryotherapie hat verbesserte Resultate gezeigt, aber die Patienten, bei denen sie anwendbar ist, sind im Wesentlichen dieselben wie bei der Chirurgie. Die perkutanen Verfahren haben den Vorteil, weniger invasiv zu sein, so dass in geeigneter Weise für ein größeres Patientenspektrum verwendet werden können, aber derzeitige perkutane Verfahren leiden insgesamt an einer begrenzten Möglichkeit, eine Ablation eines größeren Gewebevolumens bei einer einzigen Prozedur mit einer einzigen Sondeneinführung durchzuführen.
  • Die DE-A-21 24 684 schlägt eine Vielzahl von Sonden vor, die mehrere leitende Elektroden aufweisen, welche Drähte oder leitende Flüssigkeiten oder Gase umfassen können. Vorgeschlagene Ausgestaltungen umfassen eine Sonde mit Elektroden, die im rechten Winkel aus der Sonde von einem Punkt austreten, der von der distalen Spitze zurückversetzt ist. Auch ist eine seitliche Fächerstruktur offensichtlich vorgeschlagen.
  • Es ist eine allgemeine Aufgabe, zumindest von Ausführungsformen der vorliegenden Erfindung, ein verbessertes elektrochirurgisches System und eine Sonde bereitzustellen, die bei einer perkutanen Prozedur eingesetzt werden kann, welche bei einem einzigen Einsatz ein großes Volumen thermisch abgetragenen Gewebes produzieren.
  • Eine weitere Aufgabe liegt darin, dass solche Sonden in offener Chirurgie sowie bei perkutanen Prozeduren nutzbar sein sollen.
  • Ein weitere Aufgabe liegt darin, eine elektrochirurgische Sonde bereitzustellen, welche ein einheitlich behandeltes Gewebe in einer Läsion mit großem Volumen bereitstellt.
  • Noch eine weitere Aufgabe, zumindest von Ausführungsformen der vorliegenden Erfindung, ist es, eine perkutane elektrochirurgische Sonde bereitzustellen, welche nur ein kleines Zugangsloch benötigt, aber eine große volumetrische Gewebeablation bereitstellt.
  • Noch eine weitere Aufgabe ist es, eine elektrochirurgische Sonde bereitzustellen, welche die Probleme des Verbrennens und Verkohlens löst, die Einzelnadelsonden innewohnen.
  • Diese und andere Aufgaben werden für Fachleute ersichtlich sein.
  • Die vorliegende Erfindung stellt ein Sondensystem für die Hochfrequenz (HF)-Behandlung an spezifischen Regionen in festem Gewebe zur Verfügung, die im Weiteren als „Behandlungsregion" bezeichnet wird. Bei einem Verfahren, das die Sonde verwendet, werden, nachdem der Zielpunkt erreicht ist, die Vielzahl der Elektroden in das feste Gewebe eingesetzt, in einer dreidimensionalen Anordnung und vorzugsweise in einer Konfiguration, welche das Gesamtvolumen der Behandlungsregion umgibt, oder einen so großen Abschnitt des Volumens der Behandlungsregion wie möglich. Bevorzugter sind die aneinanderliegenden Elektroden gleichmäßig voneinander beabstandet (d. h. Paare aneinanderliegender Elektroden werden in sich wiederholendem Muster beabstandet sein), so dass die Aufbringung eines Hochfrequenzstromes durch die Elektroden in einer im Allgemeinen einheitlichen Erwärmung und Nekrose des gesamten behandelten Gewebevolumens resultiert. Vorteilhafterweise gestattet es die Verwendung von mehreren Elektroden zur Behandlung eines relativ großen Gewebevolumens, die HF-Energie mit einer geringeren Stromdichte aufzubringen (d. h. von einer größeren Gesamt-Elektrodenfläche), und deshalb bei einer niedrigeren Temperatur im Gewebe, das die Elektrode unmittelbar umgibt. Somit wird ein Verbrennen und Verkohlen von Gewebe (welches bisher mit der Verwendung von Einzelelektrodensystemen im Zusammenhang stand) reduziert. Die einheitliche Behandlung großer Gewebevolumen reduziert die Anzahl der Elektroden-Einbringungen, die notwendig ist, um eine Geweberegion jedweder vorgegebenen Größe zu behandeln.
  • Die Erfindung ist im Anspruch 1 aufgeführt. Bevorzugte Merkmale sind in den abhängigen Ansprüchen und unten aufgeführt. Die vorliegende Beschreibung von Verfahren, welche die Sonde einsetzen, soll dazu dienen, das Verständnis der Funktion der Sonde gemäß der Erfindung zu erleichtern.
  • Ein Verfahren zum Verwenden der Sonde kann das Einbringen der Elektroden durch festes Gewebe zu einem Zielpunkt innerhalb einer Behandlungsregion umfassen. Die Elektroden werden in einer radial eingegrenzten oder zusammengeschobenen Konfiguration gehalten, während sie durch das Gewebe zum Zielpunkt vorgebracht werden, und werden dann vom Zielort weiter in die Behandlungsregion hinein in einen gewünschten auseinandergehenden Muster gebracht. Ein HF-Stromfluss wird dann zwischen den Elektroden aufgebaut (d. h. bipolar) oder zwischen Elektroden und einer separaten Rückführungselektrode (d. h. monopolar). Die monopolare Rückführungselektrode wird eine Oberfläche aufweisen, die ausreichend groß ist, um jedweden elektrochirurgischen Effekt zu dissipieren. Die Elektroden können durch eine Vielzahl spezieller Techniken eingesetzt werden. Beispielsweise kann anfänglich eine Hülle unter Verwendung eines Obturators oder Stilets an dem Zielort in herkömmlicher Weise angeordnet werden. Nach dem Entfernen des Obturators oder des Stilets können die Elektroden durch die Hülle eingebracht und vom distalen Ende der Hülle in das feste Gewebe vorgebracht werden. Die Elektroden sind in oder an einem Längsbauteil angeordnet, wie zum Beispiel einer Röhre, welche die Elektroden hin- und herbewegbar aufnimmt. Die Elektroden werden dann aus der Röhre nach vorne gebracht, oder alternativ kann die Röhre proximal von oberhalb der Elektroden abgezogen werden, vor dem Vorwärtsbringen der Elektroden aus der Hülle in das Gewebe hinein.
  • In gleicher Weise kann ein Verfahren, welches die Sonde verwendet, das Vorbringen von mindestens drei Elektroden von einem Zielort innerhalb der Behandlungsregion umfassen. Die Elektroden gehen in einem dreidimensionalen Muster auseinander, wobei vorzugsweise einzelne Elektroden gleichmäßig beabstandet sind, um eine einheitliche Volumenbehandlung bereitzustellen, wie unten erörtert wird. Die Behandlung wird dann dadurch durchgeführt, dass ein HF-Strom zwischen den mindesten drei Elektroden oder zwischen den drei Elektroden und einer Führungselektrode geführt wird. Vorzugsweise wird das Verfahren mehr als drei Elektroden verwenden, oftmals mindestens fünf Elektroden einsetzen, vorzugsweise mindestens sechs Elektroden verwenden, oft mindestens acht Elektroden verwenden, und oft mindestens zehn Elektroden oder mehr verwenden. Es versteht sich, dass eine größere Anzahl einzelner Elektroden die Einheitlichkeit der Behandlung verbessern kann, während die Energiemenge (Stromdichte), die von jeder einzelnen Elektrode imitiert wird, begrenzt wird, wodurch die Temperatur in der unmittelbaren Umgebung der Elektrode(n) verringert wird. Optional können die mindestens drei Elektroden nach außen gekehrt sein, d. h. zuerst in einer radial nach außen laufenden Richtung gebogen und dann in eine im Allgemeinen proximalen Richtung, während sie vor dem Zielort aus nach vorne gebracht werden. Die Verwendung solcher mehrfachen, nach außen gekehrte Elektroden stellt eine bevorzugte Anordnung zur Behandlung relativ großer Gewebevolumen zur Verfügung. Speziell werden Anordnungen nach außen gekehrter Elektroden einen Strom und eine Erwärmung in im Allgemeinen kugelförmigen Volumen bereitstellen, was den kugelförmigen oder ellipsoiden Geometrien des typischen Tumors oder einer anderen zu behandelnden Läsion sehr nahe kommt. Im Gegensatz hierzu werden nicht nach außen gekehrte Elektrodenanordnungen oftmals ein kegelförmiges oder nicht reguläres Behandlungsvolumen bewirken, das eine weniger breite Anwendungsfähigkeit haben kann.
  • Was wieder die Vorrichtung betrifft, werden bestimmte bevorzugte oder optionale Merkmale beschrieben.
  • Eine Einrichtung zum Einbringen des länglichen Bauteils durch Gewebe zum Zielort kann ebenfalls bereitgestellt werden. Diese Einrichtung kann eine Vielzahl von Formen annehmen, einschließlich einer Hüllen- und Obturator (Stilet)-Anordnung, welche verwendet werden kann, um die anfängliche Penetration bereitzustellen. Alternativ kann ein selbst penetrierendes Element direkt am länglichen Bauteil bereitgestellt werden. Andere herkömmliche Vorrichtungen und Techniken des Typs, der verwendet wird, um Schäfte und andere längliche Bauteile in festes Gewebe einzubringen, können ebenfalls verwendet werden.
  • Die das Gewebe penetrierenden Elektrodenelemente können Drähte umfassen, welche in einem axialen Lumen des länglichen Bauteils aufgenommen werden. Beispielsweise können die Drähte über einen proximalen Abschnitt gebündelt sein, aber über ihren distalen Abschnitt separat und geformt bleiben, so dass sie in einem gewählten Muster auseinandergehen, wenn sie in Gewebe hinein vorgebracht werden. Gewöhnlich werden die Drähte direkt vom länglichen Bauteil nach vorne gebracht (wenn das längliche Bauteil innerhalb der Hülle bzw. Hülse gelassen wird oder die Hülse abgezogen wird), aber sie können alternativ von der Hülse nach vorne gebracht werden, wenn das längliche Bauteil proximal von oberhalb der Elektroden abgezogen wird, bevor die Elektroden in das Gewebe hinein vordringen.
  • Gewöhnlich ist das längliche Bauteil ein Rohr, das ein Axiallumen aufweist, welches das in das Gewebe eindringende Elektrodenelement hin- und herbeweglich aufnimmt, und die Elektrodenelemente umfassen einzelne Drähte, welche wie oben beschrieben, gebündelt sein können.
  • Die distalen Enden der Drähte oder andere Elektrodenelemente sind vorzugsweise so geformt, dass sie eine axial eingegrenzte Konfiguration annehmen, während sie im Axiallumen des Rohrs liegen und eine radial auseinandergehende Konfiguration einnehmen, wenn sie von dem Rohr axial ausgebracht werden. Bei einer bevorzugten Konfiguration sind die distalen Enden zumindest einiger der Drähte so geformt, dass sie eine nach außen gekehrte Konfiguration einnehmen, während sie axial aus dem Rohr oder einem anderen länglichen Bauteil vorgebracht werden. Das Sondensystem kann eine, zwei oder mehrere Gruppen von mindestens drei Elektroden umfassen, welche axial voneinander beabstandet sind. Speziell können solche axial beabstandeten Elektrodengruppen sich von dem distalen Ende des länglichen Bauteils erstrecken oder entlang des länglichen Bauteils verteilt sein, sowie individuell ausbringbar, um die gewünschte dreidimensionele Konfiguration einzunehmen. Vorzugsweise wird jede Gruppe der in das Gewebe eindringenden Drähte oder anderen Elektrodenelemente mehr als drei Elektroden umfassen, wie im Allgemeinen oben beschrieben wurde.
  • Kurzbeschreibung der Zeichnungen
  • 1 ist ein Seitenaufriss der Gewebeablationsvorrichtung der vorliegenden Erfindung;
  • 2 ist eine Stirnansicht der Vorrichtung nach 1;
  • 3 ist eine Schnittansicht durch Gewebe, welche die Nachteile einer einzigen Nadelsonde gemäß dem Stand der Technik zeigt;
  • 4 ist eine Schnittansicht durch Gewebe, welche die Resultate der Sonde der vorliegenden Erfindung zeigt;
  • 5 ist eine seitliche Perspektivansicht einer bevorzugten Ausführungsform der Sonde gemäß der Erfindung;
  • 6 ist eine seitliche perspektivische Ansicht einer bipolaren Sonde;
  • 7 ist eine seitliche perspektivische Ansicht einer zweiten bipolaren Sonde; und
  • 8 ist eine seitliche perspektivische Ansicht einer dritten bipolaren Sonde.
  • 9-14 zeigen die Verwendung eines Beispiel-Sondensystems gemäß der vorliegenden Erfindung bei der HF-Behandlung einer Zielregion aus festem Gewebe.
  • Allgemeine Beschreibung eines Systems der vorliegenden Erfindung
  • Das System gemäß der vorliegenden Erfindung wird ausgestaltet, um eine Vielzahl von Elektrodenelementen zu einer Behandlungsregion in festem Patientengewebe einzubringen. Die Behandlungsregion kann irgendwo im Körper angeordnet sein, wo hypothermische Exposition von Nutzen sein kann. In den meisten Fällen wird die Behandlungsregion einen festen Tumor in einem Organ des Körpers umfassen, wie zum Beispiel in der Leber, der Niere, der Pankreas, der Brust, der Prostata (nicht zugänglich über die Harnröhre) oder ähnliches. Das zu behandelnde Volumen wird von der Größe des Tumors oder einer anderen Läsion abhängen, typischerweise mit einem Gesamtvolumen von 1 cm3 bis 150 cm3, gewöhnlich von 1 cm3 bis 50 cm3 und oftmals von 2 cm2 bis 35 cm2. Die Umfangsabmessungen der Behandlungsregion können regelmäßig sein, zum Beispiel kugelförmig oder ellipsoid, aber sie werden gewöhnlicher unregelmäßig sein. Die Behandlungsregion kann unter Verwendung herkömmlicher Bilderfassungstechniken identifiziert werden, die dazu in der Lage sind, das Zielgewebe aufzuklären, zum Beispiel das Tumorgewebe, wie zum Beispiel Ultraschall-Scanning, Magnetresonanz-Bilderfassung (MRI), Computer-unterstützte Tomographie (CAT), Fluoreskopie, Nuklear-Bilderfassung (unter Verwendung von Radio-gekennzeichneten, tumorspezifischen Sonden) und ähnliches. Bevorzugt ist die Verwendung hochauflösenden Ultraschalls, welche verwendet werden kann, um die Größe und Anordnung des Tumors oder einer anderen Läsion, die behandelt werden, entweder intraoperativ oder extern zu überwachen.
  • Das System gemäß der vorliegenden Erfindung wird eine Vielzahl von in das Gewebe eindringenden Elektroden verwenden, typischerweise in Form von geschärften Metalldrähten mit kleinem Durchmesser, welche in das Gewebe eindringen können, während sie von einem Zielort in der Behandlungregion nach vorne gebracht werden, wie im Weiteren detaillierter beschrieben wird. Die Elektrodenelemente können jedoch ebenfalls in anderer Weise ausgebildet sein, wie zum Beispiel als Klingen, Spiralen, Schrauben und ähnliches. Die Primäranforderung an solche Elektrodenelemente ist, dass sie in einer dreidimensionalen Anordnung eingesetzt werden können, wobei sie generell von einem Zielort in der Behandlungsregion des Gewebes ausgehen. Im Allgemeinen werden die Elektrodenelemente zuerst in einer radial zusammenliegenden oder einer anderen eingegrenzten Konfiguration zum Zielort eingebracht, und danach von einem Zubringelement in einem auseinanderlaufenden Muster in das Gewebe hinein vorgebracht, um die gewünschte dreidimensionale Anordnung zu erzielen. Vorzugsweise werden die Elektrodenelemente radial nach außen vom Zubringelement (angeordnet am Zielort) in einem einheitlichen Muster auseinanderlaufen, d. h. der Abstand zwischen benachbarten Elektroden läuft in einem im Wesentlichen gleichförmigen und/oder symmetrischen Muster auseinander. Bei den Beispiels-Ausführungsformen werden Paare benachbarter Elektroden in gleichen oder identischen, wiederholten Mustern voneinander beabstandet sein, und sie werden gewöhnlich symmetrisch um eine Achse des Zubringelements positioniert sein. Die Elektrodenelemente sind so geformt, dass sie sich radial nach außen krümmen und optional proximal umgekehrt werden, so dass sie teilweise oder vollständig in die Proximalrichtung zeigen, wenn sie vollständig ausgebracht sind. Es versteht sich, dass eine breite Vielfalt an speziellen Mustern bereitgestellt werden kann, um die zu behandelnde Region einheitlich abzudecken.
  • Eine bevorzugte Form des einzelnen Elektrodenelements der Elektrodenanordnung ist ein einzelner Draht mit einem geformten distalen Abschnitt, welcher aus dem Zubringelement am Zielort im Gewebe ausgefahren werden kann, um sich in einem gewünschten Muster auszubreiten. Solche Drähte können aus leitenden Metallen ausgebildet sein, die ein geeignetes Formgedächtnis aufweisen, wie zum Beispiel aus Edelstahl-, Nickel-, Titan-Legierungen, Federstahl-Legierungen und ähnlichem. Die Drähte können kreisförmige oder nicht kreisförmige Querschnitte aufweisen, wobei kreisförmige Drähte typischerweise einen Durchmesser im Bereich von ungefähr 0,1 mm bis 2 mm, vorzugsweise von 0,2 mm bis 0,5 mm, oftmals von 0,2 mm bis 0,3 mm aufweisen. Die nicht kreisförmigen Drähte werden gewöhnlich äquivalente Querschnitte aufweisen. Optional können die distalen Enden der Drähte geschliffen oder geschärft sein, um das Durchdringen von Gewebe zu erleichtern. Die distalen Enden solcher Drähte können unter Verwendung herkömmlicher Wärmebehandlungen oder anderer metallurgischer Verfahren gehärtet sein. Solche Drähte können teilweise mit einer Isolierung bedeckt sein, obwohl sie über ihren distalen Abschnitten, welche in das zu behandelnde Gewebe eindringen, zumindest teilweise von einer Isolierung frei sein werden. Im Falle von bipolaren Elektrodenanordnungen wird es notwendig, die positiven und negativen Elektrodendrähte in jedweden Bereichen zu isolieren, wo sie während der Energiezuführungsphase in Kontakt kommen würden. Im Falle von monopolaren Anordnungen kann es möglich sein, die Drähte so zusammen zu bündeln, dass ihre proximalen Abschnitte nur eine einzige Isolierungsschicht über das gesamte Bündel aufweisen. Solche gebündelten Drähte können direkt an eine geeignete HF-Energiequelle gebracht werden, oder sie können alternativ über andere (zwischenliegende) elektrische Verbindungselemente verbunden werden, wie zum Beispiel Koaxialkabel oder ähnliches.
  • Die oben beschriebenen Elektrodeneigenschaften treffen nur auf aktive Elektroden zu, die den gewünschten chirurgischen Effekt haben sollen, d. h. das Erwärmen von umgebendem Gewebe. Es versteht sich, dass bei monopolarer Funktion eine passive oder dispersive „Elektrode" ebenfalls vorgesehen werden muss, um die Rückführungsbahn für den erzeugten Stromkreis zu vervollständigen. Solche Elektroden, die gewöhnlich außerhalb der Patientenhaut angebracht werden, werden eine sehr viel größere Fläche haben, typischerweise ungefähr 130 cm2 für einen Erwachsenen, so dass der Stromfluss ausreichend gering ist, um eine merkliche Erwärmung oder andere chirurgische Effekte zu vermeiden. Es könnte ebenfalls möglich sein, eine solche dispersive Rückführungselektrode direkt an einem Abschnitt einer Hülse oder eines länglichen Bauteils des Systems gemäß der Erfindung vorzusehen, wie unten detaillierter beschrieben wird (allgemein wird die Vorrichtung noch immer als „bipolar" benannt, wenn die Rückführungselektrode sich an der Hülse befindet).
  • Die HF-Energieversorgung kann eine herkömmliche elektrische chirurgische Energieversorgung für allgemeine Zwecke sein, die bei einer Frequenz im Bereich von 400 kHz bis 1,2 MHz arbeitet, mit einer herkömmlichen sinusförmigen oder nicht sinusförmigen Wellenform. Solche Energieversorgungen sind von vielen Anbietern im Handel erhältlich, wie zum Beispiel Valleylabs, Aspen, Bovie und Birtcher.
  • Die Vielzahl der Elektrodenelemente werden gewöhnlich in einem länglichen Bauteil vorliegen oder darin untergebracht sein, welche das Zubringelement umfasst, typischerweise eine starre Kanüle aus Metall oder Kunststoff. Das längliche Bauteil dient dazu, die einzelnen Elektrodenelemente in einer radial zusammengefalteten Konfiguration zusammen zu halten, um ihre Einbringung zum Gewebe-Zielort zu erleichtern. Die Elektrodenelemente können sich dann zu ihrer gewünschten, dreidimensionalen Konfiguration entfalten, indem die distalen Enden der Elektrodenelemente vom länglichen Bauteil in das Gewebe hinein ausgefahren werden. In dem Fall der röhrenförmigen Kanüle kann dies einfach durch das Vorbringen der distalen Enden der Elektrodenelemente in distaler Richtung nach vorne aus dem Rohr erzielt werden, so dass sie austreten und als ein Resultat ihres eigenen Federgedächtnissen in einem radial nach außen verlaufenden Muster abgelenkt werden.
  • Ein Bestandteil oder Element kann zum Einbringen des länglichen Bauteils zum Zielort innerhalb der zu behandelnden Behandlungsregion vorgesehen werden. Beispielsweise kann eine herkömmliche Anordnung auf Hülse und geschärftem Obturator (Stilet) verwendet werden, um anfänglich zum Zielort vorzudringen. Die Anordnung kann unter Ultraschall- oder einer anderen herkömmlichen Bildgebung positioniert werden, wobei der Obturator/das Stilet dann entfernt wird, um ein Zugangslumen durch die Hülse zu hinterlassen. Die Elektrodenelemente können dann durch das Hülsenlumen eingebracht werden, typischerweise während sie im länglichen Bauteil zusammengedrängt sind. Die Elektrodenelemente werden dann distal über das distale Ende der Hülse hinaus in die Behandlungsregion des Gewebes ausgefahren und das längliche Bauteil kann in der Folge entfernt oder an seinen Platz belassen werden. Dann kann ein HF-Strom durch die Elektroden in entweder monopolarer oder bipolarer Weise angelegt werden. Bei monopolarer Behandlung wird eine dispersive Platte, die extern am Patienten befestigt ist, mit dem anderen Anschluss der HF-Energieversorgung verbunden. Alternativ kann eine Rückführungselektrode mit einer relativ großen Oberfläche an dem länglichen Bauteil oder der Hülse vorgesehen sein. Bei bipolarer Funktion können die einzelnen Elektrodenelemente alternativ mit den beiden Polen der HF-Energieversorgung verbunden werden. Alternativ können ein oder mehrere zusätzliche Elektrodenelemente in das Gewebe eingebracht werden und als gemeinsame Elektrode, verbunden mit dem zweiten Pol, dienen.
  • Beschreibung der bevorzugten Ausführungsform
  • Unter Bezugnahme auf die Zeichnungen, in denen gleiche oder entsprechende Teile durch dieselben Bezugszeichen identifiziert werden, und speziell wie in 1 zu sehen, ist die volumetrische Gewebeablationsvorrichtung allgemein mit dem Bezugszeichen 10 versehen und umfasst eine Sonde 12, die elektrisch mit einem Generator 14 verbunden ist.
  • Bei Experimenten mit einem Prototyp der vorliegenden Erfindung verwendete der Erfinder eine Bovie® X-10-Elektrochirurgieeinheit als Generator 14, um Hochfrequenzstrom bei spezifischen Energien zu erzeugen, unter Verwendung der Probe 12 als aktive Elektrode, wobei die Gewebeprobe auf einer dispersiven oder Erdungsplatte angeordnet wurde. Somit umfasst der Generator mindestens einen aktiven Anschluss 16 und einen Rückführungsanschluss 18, wobei eine dispersive oder Erdungsplatte 20 elektrisch durch den Leiter 22 mit dem Anschluss 18 versehen ist.
  • Die Sonde 12 umfasst eine Vielzahl elektrisch leitender Drähte 24, welche an einem proximalen Ende gebündelt und mit dem Anschluss 16 verbunden sind, um von diesem Hochfrequenz-Strom herzuleiten. Die Drähte 24 sind durch ein elektrisch isoliertes oder nicht leitendes Rohr bzw. einen Katheter 26 gefädelt.
  • Die Drähte 24 sind vorzugsweise aus Federdraht oder einem anderen Material ausgebildet, welches ein Gedächtnis aufrechterhält. Wie in 1 gezeigt ist, ist eine Anordnung 28 aus 10 Drähten so ausgebildet, dass jeder Draht 24 sich bogenförmig vom Katheter 26 im Wesentlichen in einer „U"-Form erstreckt, wobei jeder Draht im Wesentlichen einheitlich abgetrennt ist, wie in 2 zu sehen ist. Somit wird die Anordnung 28 aus einer Vielzahl von Drähten 24 gebildet, die sich radial nach außen von der Achse des distalen Endes 26a des Katheters 26 krümmen. Die Drähte 24 erstrecken sich alle entlang einer Länge in einer solchen Weise, dass ein Abschnitt jedes Drahtes 24 senkrecht zur Achse des Rohrs 26 liegt, und sie biegen sich vorzugsweise weiter nach hinten zurück auf sich selbst, so dass die distalen Enden 24a der Drähte im Allgemeinen parallel zur Achse des distalen Endes 26a des Rohrs ausgerichtet sind. Wie in 1 gezeigt ist, liegen die distalen Enden 24a im Allgemeinen in einer Ebene senkrecht zum distalen Rohrende 26a, und sie sind einheitlich voneinander beabstandet.
  • Weil die Drähte 24 aus Federstahl ausgebildet sind, können sie zum perkutanen Einsetzen in den Katheter 26 eingezogen sein. Wenn das distale Ende 26a des Katheters 26 in Position liegt, wird ein Gleiten der Drähte 24 durch den Katheter 26 es dem Gedächtniseffekt der Drähte gestatten, die radial versetzte Form der Anordnung 28 einzunehmen, die in den 1 und 2 gezeigt ist.
  • Die 3 ist eine Querschnittsansicht durch eine Leberprobe 30, welche die Resultate einer geraden Nadel 31 gemäß dem Stand der Technik mit einer Feinheit von 18 mit 1,2 cm freiliegendem Metall zeigt, wenn sie in die Leber 30 eingesetzt und mit 20 Watt Energie betrieben wird, mit einem 100% Koagulations-Strom über 5 min. Wie in 3 zu sehen ist, hat die Läsion 32, die durch die Einzelnadel erzeugt worden ist, eine enge elliptische (fast zylindrische) Form mit einem Durchmesser von ungefähr 1,2 cm und einer Länge von ungefähr 2 cm. Die 3 zeigt ebenfalls die Wirkungen sehr hoher Temperaturen nahe der Probenspitze mit der Gasbildung, die bei elektrochirurgischen Einzelnadel-Quellen üblich ist, was in verbranntem und verkohltem Gewebe 34 unmittelbar um die Nadel herum resultiert. Das Verbrennen und die dabei entstehende Gasbildung an der Stelle der Einzelnadelsonden schränken die Energie, die aufgebracht werden kann, wesentlich ein.
  • Die 4 ist eine Schnittansicht durch eine Leberprobe 30', welche die nekrotische Läsion 32' zeigt, die durch die Anordnung 28 der Probe 12 aus zehn Drähten gemäß der vorliegenden Erfindung erzeugt wurde. Die Sonde 12 ist in der Gewebeprobe 30' so angeordnet, dass das distale Ende 26a des Rohrs im Allgemeinen zentral an dem Ort angeordnet ist, an welchem die Läsion erwünscht ist. Verschiedene Verfahren, die in der Technik bekannt sind, können verwendet werden, um die Sonde 12 vor dem Ausbringen der Drähte 24 (ausgebracht in gestrichelten Linien gezeigt) zu positionieren. Vorzugsweise wird die Positionierung des distalen Endes 26 des Rohrs durch Ultraschall oder andere Bildgebungstechniken bestätigt. Wenn das Rohr 26 einmal geeignet positioniert ist, werden die Drähte 24 in das Gewebe 30' eingebracht, wobei der Gedächtniseffekt des Drahtmaterials bewirkt, dass die Drähte bei der Einbringung eine vorbestimmte Anordnungsform einnehmen.
  • Die Anmelder haben denselben Generator 14 bei einer Leistung von 60 W, mit 100 Koagulationsstrom über 5 min verwendet. Es ist zu sehen, dass die nekrotische Läsion, die durch die Sonde 12 erzeugt wird, grob kugelförmig ist und einen Durchmesser von ungefähr 3,5 cm hat. Ferner zeigt sich keine Verbrennung, was keine Funkenbildung andeutet sowie eine einheitlichere Temperaturverteilung in dem zu behandelnden Gewebevolumen. Während des Testen stellte sich heraus, dass die Temperatur des Gewebes 2 cm entfernt von dem Zugang der Sonde 12 am Ende der 5 min 51,4°C war. Dieselbe Probe 12 mit zehn Drähten wurde wiederholt mit denselben Einstellungen verwendet und erzeugte im Wesentlichen identische Läsionen. Es stellte sich ebenfalls heraus, dass der Bereich des letalen Erwärmens sich um mindestens einen weiteren Zentimeter über die in 4 gezeigte, sichtbare Läsion hinaus erstrecken kann, nachdem Thermistor-Messungen während wiederholter Experimente mit der Sonde 12 gemacht wurden.
  • Während die 1 und 2 eine im Allgemeinen „Springbrunnen"-förmige Anordnung 28 mit zehn Drähten 24 zeigen, sind verschiedene andere Ausgestaltungen ebenso geeignet, die eine einheitliche Beabstandung der distalen Enden der Drähte 24a vom distalen Katheterende 26a verwenden, um eine symmetrische Läsion zu erzeugen, oder mit nicht einheitlicher Beabstandung, um eine asymmetrische Läsion zu erzeugen. Beispielsweise können, wie in 5 gezeigt ist, mehrfache Anordnungen 28' ausgebildet werden, die längs voneinander beabstandet sind. Diese Ausführungsform der monopolaren Gewebeablationsvorrichtung ist im Ganzen mit 110 bezeichnet und umfasst eine Sonde 112, die elektrisch mit dem Generator 14 verbunden ist. Die Sonde 12 umfasst ein erstes Drahtbündel 124, das durch ein Rohr 126 hindurchgelagert ist, wobei die distalen Enden 124a der Drähte ausbringbar sind, um eine erste Anordnung 28'a auszubilden, die sich vom distalen Ende 126a des Rohrs erstreckt. Ein zweites Drahtbündel 125 umgibt das Rohr 126 in einem äußeren Rohr 127, wobei die distalen Enden 125a der Drähte ausbringbar sind, um eine zweite Anordnung 28'b auszubilden, die von dem distalen Ende 127a des äußeren Rohrs vorsteht. Die proximalen Enden 124b und 125b der Drahtbündel 124 und 125 sind elektrisch gemeinsam mit dem aktiven Anschluss 16 verbunden.
  • Beim Betrieb wird das äußere Rohr 127 so positioniert, dass das distale Ende 127a an der vorbestimmten Stelle für die Läsion angeordnet ist. Die zweite Anordnung 28'b wird dann durch das Ausbringen der Drahtenden 125a des zweiten Drahtbündels 125 ausgebildet. Das innere Rohr 126 wird dann axial bewegt, so dass das distale Ende 126 des Rohrs längs von dem distalen Rohrende 127a beabstandet ist. Zunächst wird dann das Drahtbündel 124 so ausgebracht, dass die Drahtenden 124 die Anordnung 28a ausbilden, die längs von der Anordnung 28'b beabstandet ist.
  • In 6 ist eine bipolare Gewebeablationsvorrichtung im Ganzen mit 210 bezeichnet, und sie umfasst eine Sonde 212, die elektrisch mit einem Generator 14 verbunden ist. Die Drähte 224 sind elektrisch mit dem Anschluss 16 am Generator 14 verbunden und enden distal in einer Anordnung 228 in derselben Weise wie die Anordnung 28 der ersten Ausführungsform. Jedoch umfasst die Vorrichtung 210 eine integrale Rückführung, die aus einem Rückführungsdraht 238 besteht, welcher mit einem elektrisch nicht leitenden Material 236 beschichtet ist und welcher sich durch den Katheter 226 in dem Drahtbündel 224 erstreckt und ein distales Ende 238a hat, das im Wesentlichen zentral in der Anordnung 228 vorsteht. Das proximale Ende 238b des Drahtes 238 ist mit dem Rückführungsanschluss 18 verbunden, um einen elektrischen Stromkreis bereitzustellen, wenn die Sonde 212 im Gewebe eingebracht ist. Somit wird eine dispersive Platte unnötig.
  • In 7 ist eine zweite bipolare Gewebeablationsvorrichtung im Ganzen mit 310 bezeichnet und sie umfasst eine Sonde 312 mit Drähten 324, die mit einem tiefen Anschluss 16 des Generators 14 verbunden sind. Die Drähte 324 erstrecken sich vom distalen Ende 326a des Rohrs 326, um eine Anordnung 328 auszubilden.
  • Bipolare Vorrichtung 310 unterscheidet sich von der bipolaren Vorrichtung 210 der 6 auf zwei Arten. Erstens ist ein Kragen 340 an dem äußeren des distalen Rohrendes 326a angebracht und elektrisch mit einem Rückführungsanschluss 18 durch einen Leiter 342 verbunden, um eine elektrische Rückführung für Strom auszubilden, der durch die Drähte 324 zugeführt wird. Der Leiter 342 kann an der Außenseite des Rohrs 326 fixiert sein, oder durch das Rohr 326 gefädelt, während er elektrisch von den Drähten 324 isoliert ist.
  • Zweitens haben die Drähte 324 Abschnitte 344, welche mit einem elektrisch isolierenden Material beschichtet sind. Die Abschnitte 344 sind entlang einer Vielzahl von Drähten 324 beabstandet, um den Stromfluss von ausgewählten Abschnitten der Drähte 324 zu begrenzen, um eine einheitlicher Verteilung der Wärme von den restlichen freiliegenden Abschnitten der Drähte 324 zu erzeugen.
  • Eine dritte bipolare Gewebeablationsvorrichtung ist in 8 im Ganzen mit 410 bezeichnet. Die bipolare Vorrichtung 410 umfasst eine Sonde 412 mit einem Satz Drähten 424, der mit einem Anschluss 16' eines Stromgenerators 14' verbunden ist, und einen zweiten Satz Drähte 425, die mit dem entgegengesetzten Anschluss 18' verbunden sind. Die einzelnen Drähte der Drahtbündel 424 und 425 haben eine elektrisch isolierende Beschichtung durch das Rohr 426 hindurch, um einen elektrischen Kontakt miteinander zu vermeiden. Die Drähte 424 und 425 wechseln sich vorzugsweise durch die Anordnung 428 hindurch ab, so dass der Strom zwischen den Drähten 424 und den Drähten 425 fließt.
  • Beschreibung des Verfahrens der vorliegenden Erfindung
  • In den 914 ist eine Behandlungsregion TR in dem Gewebe T unterhalb der Haut S eines Patienten angeordnet. Die Behandlungsregion kann ein fester Tumor oder eine andere Läsion sein, wobei es gewünscht wird, die Region durch HF-Hyperthermie zu behandeln. Die Behandlungsregion TR vor der Behandlung ist in 9 gezeigt.
  • Um eine Elektrodenanordnung gemäß der vorliegenden Erfindung einzubringen, wird eine herkömmliche Anordnung 500 aus Hülse und Obturator/Stilet perkutan (durch die Haut) so eingebracht, dass ein distales Ende der Hülse bei oder innerhalb des Zielortes TS liegt, wie in 10 gezeigt ist. Obturator/Stilet 504 werden dann von der Hülle 502 abgezogen, weil ein Zugangslumen für den Zielort verbleibt, wie in 11 gezeigt ist. Eine Zubringsonde 510, welche die Merkmale der vorliegenden Erfindung umfasst, wird dann durch das Zugangslumen der Hülse 502 eingebracht, so dass ein distales Ende 512 einer äußeren Kanüle 515 der Sonde nahe dem distalen Ende 514 der Hülse 502 liegt, wie in 12 gezeigt ist. Individuelle Elektroden 520 werden dann distal vom distalen Ende 512 der Sonde 510 ausgefahren, in dem das Kabel 516 in Richtung des Pfeils 519 vorgebracht wird, wie in 13 gezeigt ist. Die Elektroden 520 werden so vorgebracht, dass sie zunächst radial nach außen voneinander weglaufen (13) und sich irgendwann zurück in die proximale Richtung umbiegen, wie in 14 gezeigt ist. Wenn gewünscht, wird die Kanüle 515 der Sonde 510 dann proximal über das Elektrodenkabel 516 abgezogen, und das Elektrodenkabel wird dann an eine HF-Energieversorgung 518 in monopolarer Weise angeschlossen, wie ebenfalls in 14 zu sehen ist. Hochfrequenz-Strom kann dann von der Energiequelle 518 bei einem Pegel und für eine ausreichende Dauer angelegt werden, um die Temperatur der Behandlungsregion TR um einen gewünschten Betrag anzuheben, typischerweise auf eine Temperatur von mindestens 42°C, gewöhnlich auf mindestens 50 °C, für 10 min oder länger. Hohe Temperaturen werden im Allgemeinen sehr viel kürzere Behandlungszeiten erfordern.
  • Während das gerade beschriebene Verfahren und System eine separate Hülsen- und Obturator/Stilet-Anordnung 500 verwenden, um die Behandlungselektroden einzubringen, wird es sich verstehen, dass die Verwendung einer solchen separaten Einbringvorrichtung nicht notwendig ist. Alternativ können die Elektroden durch das längliche Bauteil eingebracht werden, wobei das längliche Bauteil mit einem selbst eindringenden Element versehen ist, wie zum Beispiel mit einer scharfen Spitze oder einer elektrochirurgischen Spitze, um die Gewebedurchdringung zu verbessern. Als eine weitere Alternative könnte ein Elektrodenbündel in jedweder eingegrenzten bzw. zusammengelegten Weise (zum Beispiel entfernbarer Ring, auflösbare Hülse, etc.) eingebracht werden, wobei das Zusammenhaltemittel selektiv gelöst wird, nachdem sie den Zielort in der Behandlungsregion erreicht haben. Die vorliegende Erfindung wird somit die Verwendung einer Vielzahl spezieller Systeme zum Einbringen einer Vielzahl von Elektroden zum Zielort in festem Gewebe umfassen, und danach das Lösen und Aufspreizen der einzelnen Elektrodenelemente in eine Behandlungsregion hinein, wobei der Zielort in einer gewünschten dreidimensionalen Anordnung oder in einer anderen Konfiguration oder Geometrie umgeben wird.
  • Es ist deshalb ersichtlich, dass die volumetrische Gewebeablationsvorrichtung der vorliegenden Erfindung ein wirksames und wünschenswertes elektrochirurgisches Ablationssystem bereitstellt, welches für perkutane und offene chirurgische Einbringung geeignet ist, einheitliche Läsionen erzeugt und Läsionen erzeugt, die groß genug sind, um ein großes Patientenspektrum zu behandeln.

Claims (28)

  1. Sondensystem zum Einbringen mehrerer Elektroden in festes Gewebe, wobei das Sondensystem umfasst: ein längliches Bauteil (12) mit einem proximalen Ende und einem distalen Ende; und mindestens drei Elektrodenelemente (24) zum Einbringen in festes Gewebe, die hin- und herbeweglich mit dem länglichen Bauteil gekoppelt sind, so dass die Elektrodenelemente in das feste Gewebe hinein vorgebracht werden können, nachdem das längliche Bauteil durch das feste Gewebe zu einem Zielort in dem festen Gewebe hin eingesetzt worden ist, wobei die Elektroden so ausgestaltet sind, dass sie sich distal vom distalen Ende des länglichen Bauteils erstrecken und dadurch weiter in die Zielstelle hinein vordringen, wobei die mindestens drei Elektroden in einem divergenten dreidimensionalen Muster in dem festen Gewebe radial nach außen gebogen sind, als Resultat ihres eigenen Feder-Gedächtnis-Effekts, wenn sie in dem festen Gewebe in einer distalen Richtung vom länglichen Bauteil vorgebracht werden, um ein dreidimensionales Behandlungsvolumen zu definieren.
  2. Sondensystem nach Anspruch 1, bei dem das längliche Bauteil ein Rohr ist, das ein Axiallumen aufweist, welches die in das Gewebe eindringende Elektrodenelemente hin- und herbeweglich aufnimmt.
  3. Sondensystem nach Anspruch 1 oder Anspruch 2, das ferner eine Einrichtung zum Einbringen des länglichen Bauteils durch festes Gewebe zum Zielort hin umfasst.
  4. Sondensystem nach Anspruch 3, bei dem die Einbringungseinrichtung eine Obturator- und Hülsen-Anordnung (500) umfasst, wobei der Obturator (504) eine geschärfte distale Spitze hat und aus der Hülse (502) entnommen werden kann, um ein Zugangslumen zum Zielort in der Hülse zu hinterlassen, zur Aufnahme des länglichen Bauteils, so dass die Elektroden sich distal aus dem distalen Ende (514) der Hülse erstrecken können.
  5. Sondensystem nach Anspruch 3, bei dem die Einbringungsvorrichtung ein selbsteindringendes Element umfasst, das an der distalen Spitze des länglichen Bauteils angeordnet ist.
  6. Sondensystem nach einem der obigen Ansprüche, bei dem das in das Gewebe eindringende Elektrodenelement Drähte umfasst, welche sich durch das Axiallumen des länglichen Bauteils erstrecken und welche geformte distale Enden aufweisen, wobei die geformten distalen Enden eine radial eingegrenzte Konfiguration annehmen, wenn die Drähte axial in dem Lumen zurückgezogen werden, und eine radial divergente Konfiguration einnehmen, wenn die Drähte axial über das distale Ende des länglichen Bauteils hinaus erstreckt werden.
  7. Sondensystem nach Anspruch 6, bei dem die distalen Enden mindestens einiger der Drähte so geformt sind, dass sie eine nach außen gestülpte Konfiguration annehmen, wenn sie axial über das distale Ende des länglichen Bauteils hinaus erstreckt werden.
  8. Vorrichtung nach den Ansprüchen 6 und 7, bei der die distalen Drahtenden im Wesentlichen einheitlich voneinander beabstandet sind.
  9. Vorrichtung nach Anspruch 6, 7 oder 8, bei dem die distalen Sondenenden sich in Bögen biegen, die im Wesentlichen denselben Radius haben.
  10. Vorrichtung nach Anspruch 6, 7, 8 oder 9, bei der die Längen der distalen Sondendrahtenden vom distalen Röhrenende im Wesentlichen gleich sind.
  11. Sondensystem nach einem der vorhergehenden Ansprüche, bei dem das längliche Bauteil eine röhrenförmige Kanüle umfasst und die Elektroden so angeordnet sind, dass die distalen Enden der Elektroden austreten und abgelenkt werden als Resultat ihres eigenen Feder-Gedächtnis-Effekts, wenn sie distal nach vorne aus dem Rohr vorgebracht werden.
  12. Sondensystem nach einem der vorhergehenden Ansprüche, bei dem die Elektrodenelemente Drähte umfassen, die einen Durchmessen von 0,2 mm bis 0,5 mm haben.
  13. Sondensystem nach einem der vorhergehenden Ansprüche, bei dem die Elektrodenelemente so angeordnet sind, dass sie sich proximal umstülpen, um teilweise oder vollständig in die proximale Richtung zu zeigen, wenn sie vollständig entfaltet sind.
  14. Sondensystem nach einem der vorhergehenden Ansprüche, bei dem das Behandlungsvolumen von 1 cm3 bis 150 cm3 geht.
  15. Sondensystem nach einem der vorhergehenden Ansprüche, angepasst zur Einbringung durch Lebergewebe zur Behandlung einer Läsion darin.
  16. Sondensystem nach einem der vorhergehenden Ansprüche, bei dem die Elektrodenelemente geschärfte distale Spitze haben, um das Eindringen durch das feste Gewebe zu vereinfachen.
  17. Sondensystem nach einem der vorhergehenden Ansprüche, bei dem die Elektrodenelemente so angeordnet sind, dass sie durch das Lumen einer Hülse eingebracht und dann distal über das distale Ende der Hülse hinaus in die Behandlungsregion des Gewebes erstreckt werden.
  18. Sondensystem nach einem der vorhergehenden Ansprüche, bei dem die Elektroden einen nicht kreisförmigen Querschnitt haben.
  19. Sondensystem nach Anspruch 1, angepasst zur Behandlung einer Läsion in Lebergewebe, wobei das längliche Bauteil eine röhrenförmige Kanüle umfasst, die ein selbsteindringendes Element aufweist, welches an ihrer distalen Spitze angeordnet ist, angepasst zum Eindringen in Lebergewebe zu einer Behandlungsstelle darin, wobei die Elektrodenelemente Drähte mit einem Durchmesser von 0,2 mm bis 0,5 mm umfassen und geschärfte distale Spitzen haben, um das Eindringen durch das Lebergewebe von der Behandlungsstelle zu vereinfachen, wobei die Elektrodenelemente so angeordnet sind, dass ihre distalen Enden als ein Resultat ihres eigenen Feder-Gedächtnis-Effekts hervortreten und abgelenkt werden, wenn sie distal nach vorne aus der Röhre vorgebracht werden, um ein Behandlungsvolumen im Bereich von 1 bis 150 cm3 zu definieren.
  20. Sondensystem nach einem der vorhergehenden Ansprüche, bei dem die Elektrodenelemente sich in Bögen biegen.
  21. Sondensystem nach einem der vorhergehenden Ansprüche, bei dem die Elektrodenelemente sich über eine Länge so erstrecken, dass ein Abschnitt jedes Elements rechtwinklig zur Achse des länglichen Bauteils liegt.
  22. Sondensystem nach Anspruch 21, bei dem der Abschnitt, der rechtwinklig zur Achse des länglichen Bauteils liegt, distal vom distalen Ende des länglichen Bauteils positioniert ist.
  23. Sondensystem nach Anspruch 21 oder 22, bei dem die Elektrodenelemente damit fortfahren, sich nach rückwärts zurück auf sich selbst zu biegen.
  24. Sondensystem nach einem der vorhergehenden Ansprüche, bei dem die Elektrodenelemente im Allgemeinen U-förmig sind.
  25. Sondensystem nach einem der vorhergehenden Ansprüche, das mindestens fünf Elektroden aufweist.
  26. Sondensystem nach Anspruch 25 mit mindestens acht Elektroden.
  27. Sondensystem nach einem der vorhergehenden Ansprüche, bei dem die einzelnen Elektroden gleichmäßig beabstandet sind.
  28. Gewebeablationssystem mit einem Sondensystem nach einem der vorhergehenden Ansprüche in Kombination mit einer Hochfrequenz-Energieversorgung (14), die aktive und Rückführungsanschlüsse hat, von denen mindestens einer mit den Elektroden verbindbar ist.
DE69629948T 1995-03-24 1996-03-20 Vorrichtung zur ablation von gewebemassen Expired - Lifetime DE69629948T2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/410,344 US5868740A (en) 1995-03-24 1995-03-24 Method for volumetric tissue ablation
PCT/US1996/003817 WO1996029946A1 (en) 1995-03-24 1996-03-20 Apparatus for ablation of tissue masses
US410344 1999-09-30

Publications (2)

Publication Number Publication Date
DE69629948D1 DE69629948D1 (de) 2003-10-16
DE69629948T2 true DE69629948T2 (de) 2004-07-15

Family

ID=23624311

Family Applications (3)

Application Number Title Priority Date Filing Date
DE69636694T Expired - Lifetime DE69636694T2 (de) 1995-03-24 1996-03-20 Vorrichtung zur Ablation von Gewebemassen
DE69629948T Expired - Lifetime DE69629948T2 (de) 1995-03-24 1996-03-20 Vorrichtung zur ablation von gewebemassen
DE69634786T Expired - Lifetime DE69634786T2 (de) 1995-03-24 1996-03-20 Radiofrequenzvorrichtung zur Ablation von Gewebemassen

Family Applications Before (1)

Application Number Title Priority Date Filing Date
DE69636694T Expired - Lifetime DE69636694T2 (de) 1995-03-24 1996-03-20 Vorrichtung zur Ablation von Gewebemassen

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE69634786T Expired - Lifetime DE69634786T2 (de) 1995-03-24 1996-03-20 Radiofrequenzvorrichtung zur Ablation von Gewebemassen

Country Status (9)

Country Link
US (5) US5868740A (de)
EP (3) EP1576932B1 (de)
JP (2) JPH11509431A (de)
KR (1) KR100473041B1 (de)
AU (1) AU702531B2 (de)
CA (1) CA2215698C (de)
DE (3) DE69636694T2 (de)
ES (2) ES2206566T3 (de)
WO (1) WO1996029946A1 (de)

Families Citing this family (650)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514131A (en) * 1992-08-12 1996-05-07 Stuart D. Edwards Method for the ablation treatment of the uvula
US5728143A (en) * 1995-08-15 1998-03-17 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US6632221B1 (en) 1993-11-08 2003-10-14 Rita Medical Systems, Inc. Method of creating a lesion in tissue with infusion
US5536267A (en) 1993-11-08 1996-07-16 Zomed International Multiple electrode ablation apparatus
US5928229A (en) 1993-11-08 1999-07-27 Rita Medical Systems, Inc. Tumor ablation apparatus
US6641580B1 (en) * 1993-11-08 2003-11-04 Rita Medical Systems, Inc. Infusion array ablation apparatus
US5599345A (en) * 1993-11-08 1997-02-04 Zomed International, Inc. RF treatment apparatus
US6958062B1 (en) * 1993-11-08 2005-10-25 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US6569159B1 (en) 1993-11-08 2003-05-27 Rita Medical Systems, Inc. Cell necrosis apparatus
US6530922B2 (en) * 1993-12-15 2003-03-11 Sherwood Services Ag Cluster ablation electrode system
US7077822B1 (en) 1994-02-09 2006-07-18 The University Of Iowa Research Foundation Stereotactic hypothalamic obesity probe
US6129685A (en) * 1994-02-09 2000-10-10 The University Of Iowa Research Foundation Stereotactic hypothalamic obesity probe
US5730719A (en) * 1994-05-09 1998-03-24 Somnus Medical Technologies, Inc. Method and apparatus for cosmetically remodeling a body structure
US5743870A (en) * 1994-05-09 1998-04-28 Somnus Medical Technologies, Inc. Ablation apparatus and system for removal of soft palate tissue
US5817049A (en) * 1994-05-09 1998-10-06 Somnus Medical Technologies, Inc. Method for treatment of airway obstructions
US5807308A (en) * 1996-02-23 1998-09-15 Somnus Medical Technologies, Inc. Method and apparatus for treatment of air way obstructions
US5707349A (en) * 1994-05-09 1998-01-13 Somnus Medical Technologies, Inc. Method for treatment of air way obstructions
US5843021A (en) * 1994-05-09 1998-12-01 Somnus Medical Technologies, Inc. Cell necrosis apparatus
US6092528A (en) * 1994-06-24 2000-07-25 Edwards; Stuart D. Method to treat esophageal sphincters
US5827277A (en) * 1994-06-24 1998-10-27 Somnus Medical Technologies, Inc. Minimally invasive apparatus for internal ablation of turbinates
US6733495B1 (en) 1999-09-08 2004-05-11 Curon Medical, Inc. Systems and methods for monitoring and controlling use of medical devices
US5823197A (en) * 1994-06-24 1998-10-20 Somnus Medical Technologies, Inc. Method for internal ablation of turbinates
US5843077A (en) * 1994-06-24 1998-12-01 Somnus Medical Technologies, Inc. Minimally invasive apparatus for internal ablation of turbinates with surface cooling
US5746224A (en) * 1994-06-24 1998-05-05 Somnus Medical Technologies, Inc. Method for ablating turbinates
US6575967B1 (en) * 1995-03-24 2003-06-10 The Board Of Regents Of The University Of Nebraska Method and systems for volumetric tissue ablation
US6575969B1 (en) 1995-05-04 2003-06-10 Sherwood Services Ag Cool-tip radiofrequency thermosurgery electrode system for tumor ablation
WO1996034571A1 (en) 1995-05-04 1996-11-07 Cosman Eric R Cool-tip electrode thermosurgery system
US6689127B1 (en) * 1995-08-15 2004-02-10 Rita Medical Systems Multiple antenna ablation apparatus and method with multiple sensor feedback
US6059780A (en) 1995-08-15 2000-05-09 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method with cooling element
US6235023B1 (en) * 1995-08-15 2001-05-22 Rita Medical Systems, Inc. Cell necrosis apparatus
US6090105A (en) 1995-08-15 2000-07-18 Rita Medical Systems, Inc. Multiple electrode ablation apparatus and method
US5980517A (en) 1995-08-15 1999-11-09 Rita Medical Systems, Inc. Cell necrosis apparatus
US20050101950A1 (en) * 1995-08-15 2005-05-12 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US6330478B1 (en) 1995-08-15 2001-12-11 Rita Medical Systems, Inc. Cell necrosis apparatus
US6132425A (en) 1995-08-15 2000-10-17 Gough; Edward J. Cell necrosis apparatus
US5951547A (en) 1995-08-15 1999-09-14 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US6080150A (en) 1995-08-15 2000-06-27 Rita Medical Systems, Inc. Cell necrosis apparatus
US5925042A (en) 1995-08-15 1999-07-20 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US5913855A (en) 1995-08-15 1999-06-22 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US5824005A (en) * 1995-08-22 1998-10-20 Board Of Regents, The University Of Texas System Maneuverable electrophysiology catheter for percutaneous or intraoperative ablation of cardiac arrhythmias
US5738114A (en) * 1996-02-23 1998-04-14 Somnus Medical Technologies, Inc. Method and apparatus for treatment of air way obstructions
US5879349A (en) * 1996-02-23 1999-03-09 Somnus Medical Technologies, Inc. Apparatus for treatment of air way obstructions
US6682501B1 (en) 1996-02-23 2004-01-27 Gyrus Ent, L.L.C. Submucosal tonsillectomy apparatus and method
US5800379A (en) * 1996-02-23 1998-09-01 Sommus Medical Technologies, Inc. Method for ablating interior sections of the tongue
US5820580A (en) * 1996-02-23 1998-10-13 Somnus Medical Technologies, Inc. Method for ablating interior sections of the tongue
US6152899A (en) 1996-03-05 2000-11-28 Vnus Medical Technologies, Inc. Expandable catheter having improved electrode design, and method for applying energy
US6036687A (en) * 1996-03-05 2000-03-14 Vnus Medical Technologies, Inc. Method and apparatus for treating venous insufficiency
US6139527A (en) * 1996-03-05 2000-10-31 Vnus Medical Technologies, Inc. Method and apparatus for treating hemorrhoids
US6033397A (en) * 1996-03-05 2000-03-07 Vnus Medical Technologies, Inc. Method and apparatus for treating esophageal varices
EP0921765B1 (de) * 1996-03-05 2007-05-02 Vnus Medical Technologies, Inc. Vaskulares kathetersystem zum erwärmen von geweben
US6016452A (en) * 1996-03-19 2000-01-18 Kasevich; Raymond S. Dynamic heating method and radio frequency thermal treatment
AU711612B2 (en) * 1996-04-30 1999-10-14 Cathrx Ltd A system for simultaneous unipolar multi-electrode ablation
AUPN957296A0 (en) 1996-04-30 1996-05-23 Cardiac Crc Nominees Pty Limited A system for simultaneous unipolar multi-electrode ablation
US5743904A (en) * 1996-05-06 1998-04-28 Somnus Medical Technologies, Inc. Precision placement of ablation apparatus
US8353908B2 (en) 1996-09-20 2013-01-15 Novasys Medical, Inc. Treatment of tissue in sphincters, sinuses, and orifices
US6464697B1 (en) 1998-02-19 2002-10-15 Curon Medical, Inc. Stomach and adjoining tissue regions in the esophagus
WO1998038936A1 (en) * 1997-03-04 1998-09-11 Vnus Medical Technologies, Inc. Method and apparatus for treating venous insufficiency using directionally applied energy
US6411852B1 (en) 1997-04-07 2002-06-25 Broncus Technologies, Inc. Modification of airways by application of energy
US7027869B2 (en) 1998-01-07 2006-04-11 Asthmatx, Inc. Method for treating an asthma attack
US6488673B1 (en) * 1997-04-07 2002-12-03 Broncus Technologies, Inc. Method of increasing gas exchange of a lung
US6634363B1 (en) * 1997-04-07 2003-10-21 Broncus Technologies, Inc. Methods of treating lungs having reversible obstructive pulmonary disease
US7992572B2 (en) 1998-06-10 2011-08-09 Asthmatx, Inc. Methods of evaluating individuals having reversible obstructive pulmonary disease
US6050992A (en) 1997-05-19 2000-04-18 Radiotherapeutics Corporation Apparatus and method for treating tissue with multiple electrodes
US6312426B1 (en) * 1997-05-30 2001-11-06 Sherwood Services Ag Method and system for performing plate type radiofrequency ablation
ES2234136T3 (es) 1997-07-25 2005-06-16 Sherwood Services Ag Sistema de electrodos de ablacion en grupos.
US6241701B1 (en) 1997-08-01 2001-06-05 Genetronics, Inc. Apparatus for electroporation mediated delivery of drugs and genes
US6216034B1 (en) 1997-08-01 2001-04-10 Genetronics, Inc. Method of programming an array of needle electrodes for electroporation therapy of tissue
US6055453A (en) 1997-08-01 2000-04-25 Genetronics, Inc. Apparatus for addressing needle array electrodes for electroporation therapy
US9023031B2 (en) 1997-08-13 2015-05-05 Verathon Inc. Noninvasive devices, methods, and systems for modifying tissues
US6401719B1 (en) 1997-09-11 2002-06-11 Vnus Medical Technologies, Inc. Method of ligating hollow anatomical structures
US6200312B1 (en) 1997-09-11 2001-03-13 Vnus Medical Technologies, Inc. Expandable vein ligator catheter having multiple electrode leads
US6258084B1 (en) 1997-09-11 2001-07-10 Vnus Medical Technologies, Inc. Method for applying energy to biological tissue including the use of tumescent tissue compression
US6179832B1 (en) 1997-09-11 2001-01-30 Vnus Medical Technologies, Inc. Expandable catheter having two sets of electrodes
US6358246B1 (en) 1999-06-25 2002-03-19 Radiotherapeutics Corporation Method and system for heating solid tissue
US5954717A (en) * 1997-09-25 1999-09-21 Radiotherapeutics Corporation Method and system for heating solid tissue
US6063082A (en) * 1997-11-04 2000-05-16 Scimed Life Systems, Inc. Percutaneous myocardial revascularization basket delivery system and radiofrequency therapeutic device
US6014589A (en) 1997-11-12 2000-01-11 Vnus Medical Technologies, Inc. Catheter having expandable electrodes and adjustable stent
US7921855B2 (en) * 1998-01-07 2011-04-12 Asthmatx, Inc. Method for treating an asthma attack
US6080149A (en) * 1998-01-09 2000-06-27 Radiotherapeutics, Corporation Method and apparatus for monitoring solid tissue heating
US6231595B1 (en) 1998-03-31 2001-05-15 Innercool Therapies, Inc. Circulating fluid hypothermia method and apparatus
CA2319517A1 (en) 1998-02-19 1999-08-26 Curon Medical, Inc. Electrosurgical sphincter treatment apparatus
US6358245B1 (en) 1998-02-19 2002-03-19 Curon Medical, Inc. Graphical user interface for association with an electrode structure deployed in contact with a tissue region
US7329254B2 (en) * 1998-02-19 2008-02-12 Curon Medical, Inc. Systems and methods for treating dysfunctions in the intestines and rectum that adapt to the anatomic form and structure of different individuals
US8906010B2 (en) 1998-02-19 2014-12-09 Mederi Therapeutics, Inc. Graphical user interface for association with an electrode structure deployed in contact with a tissue region
US6402744B2 (en) * 1998-02-19 2002-06-11 Curon Medical, Inc. Systems and methods for forming composite lesions to treat dysfunction in sphincters and adjoining tissue regions
US6645201B1 (en) * 1998-02-19 2003-11-11 Curon Medical, Inc. Systems and methods for treating dysfunctions in the intestines and rectum
US6355031B1 (en) * 1998-02-19 2002-03-12 Curon Medical, Inc. Control systems for multiple electrode arrays to create lesions in tissue regions at or near a sphincter
US6331166B1 (en) * 1998-03-03 2001-12-18 Senorx, Inc. Breast biopsy system and method
US6659105B2 (en) 1998-02-26 2003-12-09 Senorx, Inc. Tissue specimen isolating and damaging device and method
US6540693B2 (en) * 1998-03-03 2003-04-01 Senorx, Inc. Methods and apparatus for securing medical instruments to desired locations in a patients body
US6638234B2 (en) 1998-03-03 2003-10-28 Senorx, Inc. Sentinel node location and biopsy
US6312429B1 (en) 1998-09-01 2001-11-06 Senorx, Inc. Electrosurgical lesion location device
US6540695B1 (en) 1998-04-08 2003-04-01 Senorx, Inc. Biopsy anchor device with cutter
US6997885B2 (en) * 1998-04-08 2006-02-14 Senorx, Inc. Dilation devices and methods for removing tissue specimens
WO1999055245A1 (en) 1998-04-30 1999-11-04 Edwards Stuart D Electrosurgical sphincter treatment apparatus
US7198635B2 (en) * 2000-10-17 2007-04-03 Asthmatx, Inc. Modification of airways by application of energy
US20070123958A1 (en) * 1998-06-10 2007-05-31 Asthmatx, Inc. Apparatus for treating airways in the lung
US8181656B2 (en) 1998-06-10 2012-05-22 Asthmatx, Inc. Methods for treating airways
DE69936866T2 (de) * 1998-06-26 2008-04-30 Genetronics, Inc., San Diego Synergismus von photodynamischen und elektropermeationseffekten auf die zellvitalität als ein neues cytotoxisches mittel
US6678556B1 (en) 1998-07-13 2004-01-13 Genetronics, Inc. Electrical field therapy with reduced histopathological change in muscle
CA2337652C (en) 1998-07-13 2013-03-26 Genetronics, Inc. Skin and muscle-targeted gene therapy by pulsed electrical field
US6302874B1 (en) 1998-07-13 2001-10-16 Genetronics, Inc. Method and apparatus for electrically assisted topical delivery of agents for cosmetic applications
US7922709B2 (en) 1998-07-13 2011-04-12 Genetronics, Inc. Enhanced delivery of naked DNA to skin by non-invasive in vivo electroporation
US6296639B1 (en) * 1999-02-12 2001-10-02 Novacept Apparatuses and methods for interstitial tissue removal
US6889089B2 (en) 1998-07-28 2005-05-03 Scimed Life Systems, Inc. Apparatus and method for treating tumors near the surface of an organ
US6212433B1 (en) * 1998-07-28 2001-04-03 Radiotherapeutics Corporation Method for treating tumors near the surface of an organ
IL125990A (en) * 1998-08-30 2004-12-15 Moshe Ein-Gal Electrocoagulation apparatus
US6679851B2 (en) 1998-09-01 2004-01-20 Senorx, Inc. Tissue accessing and anchoring device and method
US6022362A (en) 1998-09-03 2000-02-08 Rubicor Medical, Inc. Excisional biopsy devices and methods
US6936014B2 (en) 2002-10-16 2005-08-30 Rubicor Medical, Inc. Devices and methods for performing procedures on a breast
US6440147B1 (en) 1998-09-03 2002-08-27 Rubicor Medical, Inc. Excisional biopsy devices and methods
US20040167508A1 (en) * 2002-02-11 2004-08-26 Robert Wham Vessel sealing system
US7901400B2 (en) 1998-10-23 2011-03-08 Covidien Ag Method and system for controlling output of RF medical generator
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
US7137980B2 (en) * 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
US20100042093A9 (en) * 1998-10-23 2010-02-18 Wham Robert H System and method for terminating treatment in impedance feedback algorithm
US6036698A (en) 1998-10-30 2000-03-14 Vivant Medical, Inc. Expandable ring percutaneous tissue removal device
US6592559B1 (en) * 1998-12-09 2003-07-15 Cook Incorporated Hollow, curved, superlastic medical needle
CA2337132C (en) * 1999-01-06 2008-08-19 Eric C. Miller Tissue mapping injection device
US6964668B2 (en) * 1999-03-04 2005-11-15 Abbott Laboratories Articulating suturing device and method
US8137364B2 (en) * 2003-09-11 2012-03-20 Abbott Laboratories Articulating suturing device and method
AU4696100A (en) 1999-05-04 2000-11-17 Curon Medical, Inc. Electrodes for creating lesions in tissue regions at or near a sphincter
US6221071B1 (en) * 1999-06-04 2001-04-24 Scimed Life Systems, Inc. Rapid electrode deployment
US6478793B1 (en) 1999-06-11 2002-11-12 Sherwood Services Ag Ablation treatment of bone metastases
US6306132B1 (en) * 1999-06-17 2001-10-23 Vivant Medical Modular biopsy and microwave ablation needle delivery apparatus adapted to in situ assembly and method of use
US8597290B2 (en) 1999-07-14 2013-12-03 Mederi Therapeutics Method for treating fecal incontinence
DE19942668C2 (de) * 1999-09-07 2003-04-24 Harald G W Kuebler Chirurgische Sonde
AU7352500A (en) 1999-09-08 2001-04-10 Curon Medical, Inc. Systems and methods for monitoring and controlling use of medical devices
CA2384025A1 (en) 1999-09-08 2001-03-15 Curon Medical, Inc. System for controlling a family of treatment devices
US6514248B1 (en) * 1999-10-15 2003-02-04 Neothermia Corporation Accurate cutting about and into tissue volumes with electrosurgically deployed electrodes
US6287304B1 (en) * 1999-10-15 2001-09-11 Neothermia Corporation Interstitial cauterization of tissue volumes with electrosurgically deployed electrodes
US20060095032A1 (en) 1999-11-16 2006-05-04 Jerome Jackson Methods and systems for determining physiologic characteristics for treatment of the esophagus
US20040215235A1 (en) 1999-11-16 2004-10-28 Barrx, Inc. Methods and systems for determining physiologic characteristics for treatment of the esophagus
US6347251B1 (en) 1999-12-23 2002-02-12 Tianquan Deng Apparatus and method for microwave hyperthermia and acupuncture
US6461364B1 (en) * 2000-01-05 2002-10-08 Integrated Vascular Systems, Inc. Vascular sheath with bioabsorbable puncture site closure apparatus and methods of use
US7842068B2 (en) * 2000-12-07 2010-11-30 Integrated Vascular Systems, Inc. Apparatus and methods for providing tactile feedback while delivering a closure device
US6391048B1 (en) 2000-01-05 2002-05-21 Integrated Vascular Systems, Inc. Integrated vascular device with puncture site closure component and sealant and methods of use
US6564806B1 (en) 2000-02-18 2003-05-20 Thomas J. Fogarty Device for accurately marking tissue
US6722371B1 (en) 2000-02-18 2004-04-20 Thomas J. Fogarty Device for accurately marking tissue
WO2001060235A2 (en) * 2000-02-18 2001-08-23 Fogarty Thomas J M D Improved device for accurately marking tissue
US6770070B1 (en) 2000-03-17 2004-08-03 Rita Medical Systems, Inc. Lung treatment apparatus and method
US8251070B2 (en) 2000-03-27 2012-08-28 Asthmatx, Inc. Methods for treating airways
US8845632B2 (en) 2000-05-18 2014-09-30 Mederi Therapeutics, Inc. Graphical user interface for monitoring and controlling use of medical devices
US6443944B1 (en) * 2000-05-19 2002-09-03 Rajiv Doshi Surgical devices comprising articulated members and methods for using the same
US20020022864A1 (en) * 2000-06-07 2002-02-21 Mahvi David M. Multipolar electrode system for radiofrequency ablation
US6638277B2 (en) * 2000-07-06 2003-10-28 Scimed Life Systems, Inc. Tumor ablation needle with independently activated and independently traversing tines
WO2002003873A2 (en) * 2000-07-10 2002-01-17 THE GOVERNMENT OF THE UNITED STATES OF AMERICA, represented by THE SECRETARY, DEPARTMENT OF HEALTH & HUMAN SERVICES, THE NATIONAL INSTITUTES OF HEALTH Radiofrequency probes for tissue treatment and methods of use
US7458974B1 (en) * 2000-07-25 2008-12-02 Endovascular Technologies, Inc. Apparatus and method for electrically induced thrombosis
DE10037660A1 (de) * 2000-07-31 2002-02-21 Curative Ag Ablationskatheter
US6471695B1 (en) 2000-09-06 2002-10-29 Radiotherapeutics, Inc. Apparatus and method for shielding tissue during tumor ablation
AU8800801A (en) * 2000-09-08 2002-03-22 James E Coleman Surgical staple
US7387628B1 (en) 2000-09-15 2008-06-17 Boston Scientific Scimed, Inc. Methods and systems for focused bipolar tissue ablation
US7306591B2 (en) 2000-10-02 2007-12-11 Novasys Medical, Inc. Apparatus and methods for treating female urinary incontinence
US6626918B1 (en) 2000-10-06 2003-09-30 Medical Technology Group Apparatus and methods for positioning a vascular sheath
US7104987B2 (en) 2000-10-17 2006-09-12 Asthmatx, Inc. Control system and process for application of energy to airway walls and other mediums
US8690910B2 (en) * 2000-12-07 2014-04-08 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US6623510B2 (en) * 2000-12-07 2003-09-23 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US6695867B2 (en) * 2002-02-21 2004-02-24 Integrated Vascular Systems, Inc. Plunger apparatus and methods for delivering a closure device
WO2002054941A2 (en) * 2001-01-11 2002-07-18 Rita Medical Systems Inc Bone-treatment instrument and method
US7087040B2 (en) 2001-02-28 2006-08-08 Rex Medical, L.P. Apparatus for delivering ablation fluid to treat lesions
US6989004B2 (en) 2001-02-28 2006-01-24 Rex Medical, L.P. Apparatus for delivering ablation fluid to treat lesions
EP1370186B1 (de) 2001-02-28 2006-01-18 Rex Medical, L.P. Vorrichtung zur abgabe von ablationsflüssigkeit zur behandlung von neoplasien
US7008421B2 (en) * 2002-08-21 2006-03-07 Resect Medical, Inc. Apparatus and method for tissue resection
US7160296B2 (en) * 2001-05-10 2007-01-09 Rita Medical Systems, Inc. Tissue ablation apparatus and method
US20080051776A1 (en) * 2001-05-21 2008-02-28 Galil Medical Ltd. Thin uninsulated cryoprobe and insulating probe introducer
US20040204669A1 (en) * 2001-07-05 2004-10-14 Hofmann Gunter A. Apparatus for electroporation mediated delivery for drugs and genes
AU2002327779B2 (en) 2001-09-28 2008-06-26 Angiodynamics, Inc. Impedance controlled tissue ablation apparatus and method
US6878147B2 (en) 2001-11-02 2005-04-12 Vivant Medical, Inc. High-strength microwave antenna assemblies
US6961602B2 (en) * 2001-12-31 2005-11-01 Biosense Webster, Inc. Catheter having multiple spines each having electrical mapping and location sensing capabilities
EP1334699A1 (de) * 2002-02-11 2003-08-13 Led S.p.A. Elektrochirurgievorrichtung
US6736835B2 (en) 2002-03-21 2004-05-18 Depuy Acromed, Inc. Early intervention spinal treatment methods and devices for use therein
US6752767B2 (en) * 2002-04-16 2004-06-22 Vivant Medical, Inc. Localization element with energized tip
US7197363B2 (en) 2002-04-16 2007-03-27 Vivant Medical, Inc. Microwave antenna having a curved configuration
US20050085807A1 (en) * 2002-04-23 2005-04-21 Andrea Venturelli Instrument with at least two active radio-frequency wires for treatment of tumours
WO2003092520A1 (en) 2002-05-06 2003-11-13 Sherwood Services Ag Blood detector for controlling anesu and method therefor
DE10224153A1 (de) * 2002-05-27 2003-12-11 Celon Ag Medical Instruments Therapiegerät
US7181288B1 (en) 2002-06-24 2007-02-20 The Cleveland Clinic Foundation Neuromodulation device and method of using the same
US6881213B2 (en) * 2002-06-28 2005-04-19 Ethicon, Inc. Device and method to expand treatment array
US7044956B2 (en) 2002-07-03 2006-05-16 Rubicor Medical, Inc. Methods and devices for cutting and collecting soft tissue
US20040077951A1 (en) * 2002-07-05 2004-04-22 Wei-Chiang Lin Apparatus and methods of detection of radiation injury using optical spectroscopy
US20050119548A1 (en) * 2002-07-05 2005-06-02 Vanderbilt University Method and apparatus for optical spectroscopic detection of cell and tissue death
US7223264B2 (en) * 2002-08-21 2007-05-29 Resect Medical, Inc. Thermal coagulation of tissue during tissue resection
US6780177B2 (en) * 2002-08-27 2004-08-24 Board Of Trustees Of The University Of Arkansas Conductive interstitial thermal therapy device
US20060167445A1 (en) 2002-08-27 2006-07-27 Gal Shafirstein Selective conductive interstitial thermal therapy device
US7089045B2 (en) * 2002-08-30 2006-08-08 Biosense Webster, Inc. Catheter and method for mapping Purkinje fibers
US8613744B2 (en) 2002-09-30 2013-12-24 Relievant Medsystems, Inc. Systems and methods for navigating an instrument through bone
US6907884B2 (en) 2002-09-30 2005-06-21 Depay Acromed, Inc. Method of straddling an intraosseous nerve
US7258690B2 (en) 2003-03-28 2007-08-21 Relievant Medsystems, Inc. Windowed thermal ablation probe
US8361067B2 (en) 2002-09-30 2013-01-29 Relievant Medsystems, Inc. Methods of therapeutically heating a vertebral body to treat back pain
US8808284B2 (en) 2008-09-26 2014-08-19 Relievant Medsystems, Inc. Systems for navigating an instrument through bone
US7027851B2 (en) * 2002-10-30 2006-04-11 Biosense Webster, Inc. Multi-tip steerable catheter
US7029451B2 (en) 2002-11-06 2006-04-18 Rubicor Medical, Inc. Excisional devices having selective cutting and atraumatic configurations and methods of using same
US7255694B2 (en) * 2002-12-10 2007-08-14 Sherwood Services Ag Variable output crest factor electrosurgical generator
US7044948B2 (en) * 2002-12-10 2006-05-16 Sherwood Services Ag Circuit for controlling arc energy from an electrosurgical generator
US6926713B2 (en) 2002-12-11 2005-08-09 Boston Scientific Scimed, Inc. Angle indexer for medical devices
US20040147917A1 (en) * 2003-01-23 2004-07-29 Mueller Richard L. Device and method for treatment of breast tissue with electromagnetic radiation
US8905937B2 (en) * 2009-02-26 2014-12-09 Integrated Vascular Systems, Inc. Methods and apparatus for locating a surface of a body lumen
US8398656B2 (en) 2003-01-30 2013-03-19 Integrated Vascular Systems, Inc. Clip applier and methods of use
US6979330B2 (en) 2003-03-13 2005-12-27 Boston Scientific Scimed, Inc. System for indirectly ablating tissue using implanted electrode devices
US7357818B2 (en) * 2003-03-26 2008-04-15 Boston Scientific Scimed, Inc. Self-retaining stent
US20040254572A1 (en) * 2003-04-25 2004-12-16 Mcintyre Jon T. Self anchoring radio frequency ablation array
US7101387B2 (en) 2003-04-30 2006-09-05 Scimed Life Systems, Inc. Radio frequency ablation cooling shield
US7722601B2 (en) 2003-05-01 2010-05-25 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US7025768B2 (en) * 2003-05-06 2006-04-11 Boston Scientific Scimed, Inc. Systems and methods for ablation of tissue
US20040226556A1 (en) 2003-05-13 2004-11-18 Deem Mark E. Apparatus for treating asthma using neurotoxin
US6904323B2 (en) * 2003-05-14 2005-06-07 Duke University Non-invasive apparatus and method for providing RF energy-induced localized hyperthermia
US20050021020A1 (en) * 2003-05-15 2005-01-27 Blaha Derek M. System for activating an electrosurgical instrument
US7818048B2 (en) 2003-06-02 2010-10-19 Biosense Webster, Inc. Catheter and method for mapping a pulmonary vein
US7003342B2 (en) * 2003-06-02 2006-02-21 Biosense Webster, Inc. Catheter and method for mapping a pulmonary vein
US7122011B2 (en) 2003-06-18 2006-10-17 Rubicor Medical, Inc. Methods and devices for cutting and collecting soft tissue
CA2532815A1 (en) * 2003-07-11 2005-01-27 Steven A. Daniel Thermal ablation of biological tissue
US7311703B2 (en) * 2003-07-18 2007-12-25 Vivant Medical, Inc. Devices and methods for cooling microwave antennas
US7160294B2 (en) * 2003-09-02 2007-01-09 Curon Medical, Inc. Systems and methods for treating hemorrhoids
US20050059964A1 (en) * 2003-09-12 2005-03-17 Fitz William R. Enhancing the effectiveness of medial branch nerve root RF neurotomy
US20050065509A1 (en) * 2003-09-22 2005-03-24 Scimed Life Systems, Inc. Flat electrode arrays for generating flat lesions
US7462188B2 (en) * 2003-09-26 2008-12-09 Abbott Laboratories Device and method for suturing intracardiac defects
US7225024B2 (en) * 2003-09-30 2007-05-29 Cardiac Pacemakers, Inc. Sensors having protective eluting coating and method therefor
US7416549B2 (en) * 2003-10-10 2008-08-26 Boston Scientific Scimed, Inc. Multi-zone bipolar ablation probe assembly
US20050080410A1 (en) * 2003-10-14 2005-04-14 Scimed Life Systems, Inc. Liquid infusion apparatus for radiofrequency tissue ablation
US8104956B2 (en) 2003-10-23 2012-01-31 Covidien Ag Thermocouple measurement circuit
AU2003284929B2 (en) 2003-10-23 2010-07-22 Covidien Ag Redundant temperature monitoring in electrosurgical systems for safety mitigation
US7155270B2 (en) * 2003-10-24 2006-12-26 Biosense Webster, Inc. Catheter with multi-spine mapping assembly
US7179256B2 (en) 2003-10-24 2007-02-20 Biosense Webster, Inc. Catheter with ablation needle and mapping assembly
US7396336B2 (en) 2003-10-30 2008-07-08 Sherwood Services Ag Switched resonant ultrasonic power amplifier system
US7566332B2 (en) * 2003-11-06 2009-07-28 Boston Scientific Scimed, Inc. Methods and apparatus for dispersing current flow in electrosurgery
US7115124B1 (en) 2003-11-12 2006-10-03 Jia Hua Xiao Device and method for tissue ablation using bipolar radio-frequency current
US6958064B2 (en) * 2003-11-14 2005-10-25 Boston Scientific Scimed, Inc. Systems and methods for performing simultaneous ablation
WO2005048862A2 (en) * 2003-11-18 2005-06-02 Scimed Life Systems, Inc. System and method for tissue ablation
US7131860B2 (en) * 2003-11-20 2006-11-07 Sherwood Services Ag Connector systems for electrosurgical generator
US20050190982A1 (en) * 2003-11-28 2005-09-01 Matsushita Electric Industrial Co., Ltd. Image reducing device and image reducing method
US7182761B2 (en) * 2003-12-11 2007-02-27 Scimed Life Systems, Inc. Ablation probe with temperature sensitive electrode array
US7150745B2 (en) 2004-01-09 2006-12-19 Barrx Medical, Inc. Devices and methods for treatment of luminal tissue
US7282051B2 (en) * 2004-02-04 2007-10-16 Boston Scientific Scimed, Inc. Ablation probe for delivering fluid through porous structure
US7766905B2 (en) 2004-02-12 2010-08-03 Covidien Ag Method and system for continuity testing of medical electrodes
US7608092B1 (en) 2004-02-20 2009-10-27 Biomet Sports Medicince, LLC Method and apparatus for performing meniscus repair
US7780662B2 (en) * 2004-03-02 2010-08-24 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
US8425539B2 (en) 2004-04-12 2013-04-23 Xlumena, Inc. Luminal structure anchoring devices and methods
US20050228413A1 (en) * 2004-04-12 2005-10-13 Binmoeller Kenneth F Automated transluminal tissue targeting and anchoring devices and methods
US8414580B2 (en) 2004-04-20 2013-04-09 Boston Scientific Scimed, Inc. Co-access bipolar ablation probe
US8142427B2 (en) * 2004-04-23 2012-03-27 Boston Scientific Scimed, Inc. Invasive ablation probe with non-coring distal tip
US7510555B2 (en) 2004-05-07 2009-03-31 Therm Med, Llc Enhanced systems and methods for RF-induced hyperthermia
US20050251233A1 (en) * 2004-05-07 2005-11-10 John Kanzius System and method for RF-induced hyperthermia
US20070250139A1 (en) * 2004-05-07 2007-10-25 John Kanzius Enhanced systems and methods for RF-induced hyperthermia II
US20050251234A1 (en) * 2004-05-07 2005-11-10 John Kanzius Systems and methods for RF-induced hyperthermia using biological cells and nanoparticles as RF enhancer carriers
IES20040368A2 (en) * 2004-05-25 2005-11-30 James E Coleman Surgical stapler
US7346382B2 (en) 2004-07-07 2008-03-18 The Cleveland Clinic Foundation Brain stimulation models, systems, devices, and methods
US8845635B2 (en) * 2005-01-18 2014-09-30 S.D.M.H. Pty. Ltd. Device and method for thermal ablation of biological tissue using spherical ablation patterns
US7458971B2 (en) * 2004-09-24 2008-12-02 Boston Scientific Scimed, Inc. RF ablation probe with unibody electrode element
US7041070B2 (en) * 2004-10-05 2006-05-09 Wen-Hsu Hsieh Massaging and oscillating device
US7776035B2 (en) * 2004-10-08 2010-08-17 Covidien Ag Cool-tip combined electrode introducer
US7553309B2 (en) 2004-10-08 2009-06-30 Covidien Ag Electrosurgical system employing multiple electrodes and method thereof
US7282049B2 (en) 2004-10-08 2007-10-16 Sherwood Services Ag Electrosurgical system employing multiple electrodes and method thereof
US7628786B2 (en) * 2004-10-13 2009-12-08 Covidien Ag Universal foot switch contact port
US7229438B2 (en) 2004-10-14 2007-06-12 Boston Scientific Scimed, Inc. Ablation probe with distal inverted electrode array
US20060089635A1 (en) * 2004-10-22 2006-04-27 Scimed Life Systems, Inc. Methods and apparatus for focused bipolar tissue ablation using an insulated shaft
US7524318B2 (en) 2004-10-28 2009-04-28 Boston Scientific Scimed, Inc. Ablation probe with flared electrodes
US8298262B2 (en) 2006-02-03 2012-10-30 Biomet Sports Medicine, Llc Method for tissue fixation
WO2006052940A2 (en) * 2004-11-05 2006-05-18 Asthmatx, Inc. Medical device with procedure improvement features
US8840645B2 (en) 2004-11-05 2014-09-23 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8137382B2 (en) 2004-11-05 2012-03-20 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US7949407B2 (en) 2004-11-05 2011-05-24 Asthmatx, Inc. Energy delivery devices and methods
US7857830B2 (en) 2006-02-03 2010-12-28 Biomet Sports Medicine, Llc Soft tissue repair and conduit device
US8128658B2 (en) 2004-11-05 2012-03-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US8118836B2 (en) 2004-11-05 2012-02-21 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US20060190042A1 (en) * 2004-11-05 2006-08-24 Arthrotek, Inc. Tissue repair assembly
US7905903B2 (en) 2006-02-03 2011-03-15 Biomet Sports Medicine, Llc Method for tissue fixation
US8361113B2 (en) 2006-02-03 2013-01-29 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8088130B2 (en) 2006-02-03 2012-01-03 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US20060189993A1 (en) * 2004-11-09 2006-08-24 Arthrotek, Inc. Soft tissue conduit device
US9801708B2 (en) 2004-11-05 2017-10-31 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8303604B2 (en) 2004-11-05 2012-11-06 Biomet Sports Medicine, Llc Soft tissue repair device and method
US7658751B2 (en) 2006-09-29 2010-02-09 Biomet Sports Medicine, Llc Method for implanting soft tissue
US7909851B2 (en) 2006-02-03 2011-03-22 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US9017381B2 (en) 2007-04-10 2015-04-28 Biomet Sports Medicine, Llc Adjustable knotless loops
US7749250B2 (en) 2006-02-03 2010-07-06 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US7905904B2 (en) 2006-02-03 2011-03-15 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US8998949B2 (en) 2004-11-09 2015-04-07 Biomet Sports Medicine, Llc Soft tissue conduit device
US7914539B2 (en) 2004-11-09 2011-03-29 Biomet Sports Medicine, Llc Tissue fixation device
US8034090B2 (en) 2004-11-09 2011-10-11 Biomet Sports Medicine, Llc Tissue fixation device
US20070093802A1 (en) * 2005-10-21 2007-04-26 Danek Christopher J Energy delivery devices and methods
US20060118127A1 (en) * 2004-12-06 2006-06-08 Chinn Douglas O Tissue protective system and method for thermoablative therapies
US8328837B2 (en) 2004-12-08 2012-12-11 Xlumena, Inc. Method and apparatus for performing needle guided interventions
US7467075B2 (en) * 2004-12-23 2008-12-16 Covidien Ag Three-dimensional finite-element code for electrosurgery and thermal ablation simulations
US8211104B2 (en) * 2005-01-06 2012-07-03 Boston Scientific Scimed, Inc. Co-access bipolar ablation probe
US20060161148A1 (en) * 2005-01-13 2006-07-20 Robert Behnke Circuit and method for controlling an electrosurgical generator using a full bridge topology
GB0502384D0 (en) * 2005-02-04 2005-03-16 Instrumedical Ltd Electro-surgical needle apparatus
US7431687B2 (en) * 2005-03-07 2008-10-07 Boston Scientific Scimed, Inc. Percutaneous array delivery system
US7601149B2 (en) 2005-03-07 2009-10-13 Boston Scientific Scimed, Inc. Apparatus for switching nominal and attenuated power between ablation probes
GB0504988D0 (en) * 2005-03-10 2005-04-20 Emcision Ltd Device and method for the treatment of diseased tissue such as tumors
US7678107B2 (en) 2005-03-10 2010-03-16 Boston Scientific Scimed, Inc. Medical needles and electrodes with improved bending stiffness
US8765116B2 (en) * 2005-03-24 2014-07-01 Medifocus, Inc. Apparatus and method for pre-conditioning/fixation and treatment of disease with heat activation/release with thermoactivated drugs and gene products
US7670337B2 (en) * 2005-03-25 2010-03-02 Boston Scientific Scimed, Inc. Ablation probe having a plurality of arrays of electrodes
US7942873B2 (en) * 2005-03-25 2011-05-17 Angiodynamics, Inc. Cavity ablation apparatus and method
US7670336B2 (en) * 2005-03-25 2010-03-02 Boston Scientific Scimed, Inc. Ablation probe with heat sink
US9474564B2 (en) 2005-03-31 2016-10-25 Covidien Ag Method and system for compensating for external impedance of an energy carrying component when controlling an electrosurgical generator
JP2006288755A (ja) * 2005-04-11 2006-10-26 Olympus Medical Systems Corp 医療処置装置
US20060235378A1 (en) * 2005-04-18 2006-10-19 Sherwood Services Ag Slider control for ablation handset
US7806893B2 (en) * 2005-04-26 2010-10-05 Boston Scientific Scimed, Inc. Apparatus and method for making a spherical lesion
US20060247615A1 (en) * 2005-04-28 2006-11-02 Boston Scientific Scimed, Inc. Multi-element bi-polar ablation electrode
US20060259103A1 (en) * 2005-04-28 2006-11-16 Boston Scientific Scimed, Inc. Tissue ablation using multi-point convergent RF beams
US7396366B2 (en) 2005-05-11 2008-07-08 Boston Scientific Scimed, Inc. Ureteral stent with conforming retention structure
US9339323B2 (en) * 2005-05-12 2016-05-17 Aesculap Ag Electrocautery method and apparatus
US7942874B2 (en) * 2005-05-12 2011-05-17 Aragon Surgical, Inc. Apparatus for tissue cauterization
US7803156B2 (en) * 2006-03-08 2010-09-28 Aragon Surgical, Inc. Method and apparatus for surgical electrocautery
US8728072B2 (en) * 2005-05-12 2014-05-20 Aesculap Ag Electrocautery method and apparatus
US8696662B2 (en) 2005-05-12 2014-04-15 Aesculap Ag Electrocautery method and apparatus
US7371234B2 (en) * 2005-05-18 2008-05-13 Boston Scienitific Scimed, Inc. Low profile radiofrequency electrode array
EP1922006A2 (de) * 2005-05-26 2008-05-21 Smith & Nephew, Inc. Elektrothermische bandscheibenbehandlung
US8784437B2 (en) 2005-06-09 2014-07-22 Xlumena, Inc. Methods and devices for endosonography-guided fundoplexy
US8777967B2 (en) 2005-06-09 2014-07-15 Xlumena, Inc. Methods and devices for anchoring to tissue
US8926633B2 (en) * 2005-06-24 2015-01-06 Abbott Laboratories Apparatus and method for delivering a closure element
US7615050B2 (en) 2005-06-27 2009-11-10 Boston Scientific Scimed, Inc. Systems and methods for creating a lesion using transjugular approach
US8512333B2 (en) * 2005-07-01 2013-08-20 Halt Medical Inc. Anchored RF ablation device for the destruction of tissue masses
US8080009B2 (en) * 2005-07-01 2011-12-20 Halt Medical Inc. Radio frequency ablation device for the destruction of tissue masses
US20080312686A1 (en) * 2005-07-01 2008-12-18 Abbott Laboratories Antimicrobial closure element and closure element applier
US8313497B2 (en) * 2005-07-01 2012-11-20 Abbott Laboratories Clip applier and methods of use
US7794458B2 (en) * 2005-07-22 2010-09-14 Boston Scientific Scimed, Inc. Bipolar radio frequency ablation device with retractable insulator
US8083754B2 (en) * 2005-08-08 2011-12-27 Abbott Laboratories Vascular suturing device with needle capture
US9456811B2 (en) * 2005-08-24 2016-10-04 Abbott Vascular Inc. Vascular closure methods and apparatuses
US8920442B2 (en) * 2005-08-24 2014-12-30 Abbott Vascular Inc. Vascular opening edge eversion methods and apparatuses
US8758397B2 (en) * 2005-08-24 2014-06-24 Abbott Vascular Inc. Vascular closure methods and apparatuses
US20070060895A1 (en) * 2005-08-24 2007-03-15 Sibbitt Wilmer L Jr Vascular closure methods and apparatuses
WO2007030486A1 (en) * 2005-09-06 2007-03-15 Nmt Medical, Inc. In tunnel electrode for sealing intracardiac defects
US9259267B2 (en) 2005-09-06 2016-02-16 W.L. Gore & Associates, Inc. Devices and methods for treating cardiac tissue
US7799023B2 (en) * 2005-09-26 2010-09-21 Coherex Medical, Inc. Compliant electrode for patent foramen ovale closure device
US7879031B2 (en) * 2005-09-27 2011-02-01 Covidien Ag Cooled RF ablation needle
US20070078454A1 (en) * 2005-09-30 2007-04-05 Mcpherson James W System and method for creating lesions using bipolar electrodes
US7744596B2 (en) 2005-10-13 2010-06-29 Boston Scientific Scimed, Inc. Magnetically augmented radio frequency ablation
US8734438B2 (en) 2005-10-21 2014-05-27 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
US20070100331A1 (en) * 2005-10-27 2007-05-03 Boston Scientific Scimed, Inc. Systems and methods for organ tissue ablation
US9333026B2 (en) 2005-11-18 2016-05-10 Boston Scientific Scimed, Inc. Radio frequency lasso
US8702694B2 (en) 2005-11-23 2014-04-22 Covidien Lp Auto-aligning ablating device and method of use
US7997278B2 (en) 2005-11-23 2011-08-16 Barrx Medical, Inc. Precision ablating method
US7947039B2 (en) 2005-12-12 2011-05-24 Covidien Ag Laparoscopic apparatus for performing electrosurgical procedures
US7704248B2 (en) * 2005-12-21 2010-04-27 Boston Scientific Scimed, Inc. Ablation device with compression balloon
US7993334B2 (en) 2005-12-29 2011-08-09 Boston Scientific Scimed, Inc. Low-profile, expanding single needle ablation probe
US7896874B2 (en) * 2005-12-29 2011-03-01 Boston Scientific Scimed, Inc. RF ablation probes with tine valves
US20070156134A1 (en) 2005-12-29 2007-07-05 Boston Scientific Scimed, Inc. Liquid delivery apparatus for tissue ablation
US8377056B2 (en) 2005-12-29 2013-02-19 Boston Scientific Scimed, Inc. Method of treating tissue with radio frequency vascular electrode array
CA2575392C (en) 2006-01-24 2015-07-07 Sherwood Services Ag System and method for tissue sealing
US9186200B2 (en) 2006-01-24 2015-11-17 Covidien Ag System and method for tissue sealing
US20070173802A1 (en) * 2006-01-24 2007-07-26 Keppel David S Method and system for transmitting data across patient isolation barrier
US20070173813A1 (en) * 2006-01-24 2007-07-26 Sherwood Services Ag System and method for tissue sealing
CA2574934C (en) 2006-01-24 2015-12-29 Sherwood Services Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
CA2574935A1 (en) 2006-01-24 2007-07-24 Sherwood Services Ag A method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US8147485B2 (en) 2006-01-24 2012-04-03 Covidien Ag System and method for tissue sealing
US7513896B2 (en) 2006-01-24 2009-04-07 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US8685016B2 (en) 2006-01-24 2014-04-01 Covidien Ag System and method for tissue sealing
US8216223B2 (en) 2006-01-24 2012-07-10 Covidien Ag System and method for tissue sealing
US9078644B2 (en) 2006-09-29 2015-07-14 Biomet Sports Medicine, Llc Fracture fixation device
US8801783B2 (en) 2006-09-29 2014-08-12 Biomet Sports Medicine, Llc Prosthetic ligament system for knee joint
US8936621B2 (en) 2006-02-03 2015-01-20 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8652172B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Flexible anchors for tissue fixation
US9271713B2 (en) 2006-02-03 2016-03-01 Biomet Sports Medicine, Llc Method and apparatus for tensioning a suture
US8506597B2 (en) 2011-10-25 2013-08-13 Biomet Sports Medicine, Llc Method and apparatus for interosseous membrane reconstruction
US8562647B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for securing soft tissue to bone
US9149267B2 (en) 2006-02-03 2015-10-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US11259792B2 (en) 2006-02-03 2022-03-01 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US7959650B2 (en) 2006-09-29 2011-06-14 Biomet Sports Medicine, Llc Adjustable knotless loops
US8251998B2 (en) 2006-08-16 2012-08-28 Biomet Sports Medicine, Llc Chondral defect repair
US9538998B2 (en) 2006-02-03 2017-01-10 Biomet Sports Medicine, Llc Method and apparatus for fracture fixation
US8597327B2 (en) 2006-02-03 2013-12-03 Biomet Manufacturing, Llc Method and apparatus for sternal closure
US8771352B2 (en) 2011-05-17 2014-07-08 Biomet Sports Medicine, Llc Method and apparatus for tibial fixation of an ACL graft
US8574235B2 (en) 2006-02-03 2013-11-05 Biomet Sports Medicine, Llc Method for trochanteric reattachment
US8562645B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US11311287B2 (en) 2006-02-03 2022-04-26 Biomet Sports Medicine, Llc Method for tissue fixation
US8652171B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US10517587B2 (en) 2006-02-03 2019-12-31 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8968364B2 (en) 2006-02-03 2015-03-03 Biomet Sports Medicine, Llc Method and apparatus for fixation of an ACL graft
US8221405B2 (en) * 2006-02-06 2012-07-17 Coherex Medical, Inc. Patent foramen ovale closure device and methods for determining RF dose for patent foramen ovale closure
US7651493B2 (en) * 2006-03-03 2010-01-26 Covidien Ag System and method for controlling electrosurgical snares
US8251990B2 (en) * 2006-03-21 2012-08-28 The Cleveland Clinic Foundation Apparatus and method of performing radiofrequency cauterization and tissue removal
US7648499B2 (en) * 2006-03-21 2010-01-19 Covidien Ag System and method for generating radio frequency energy
EP2012695B1 (de) * 2006-03-31 2015-07-22 Cook Medical Technologies LLC Elektrochirurgische schneidvorrichtung
CN101460109B (zh) 2006-04-04 2012-03-07 大学健康网络 用于热疗的线圈电极装置
US8808310B2 (en) 2006-04-20 2014-08-19 Integrated Vascular Systems, Inc. Resettable clip applier and reset tools
US8795270B2 (en) * 2006-04-24 2014-08-05 Covidien Ag System and method for ablating tissue
US7651492B2 (en) * 2006-04-24 2010-01-26 Covidien Ag Arc based adaptive control system for an electrosurgical unit
US8574229B2 (en) * 2006-05-02 2013-11-05 Aesculap Ag Surgical tool
US20070258838A1 (en) * 2006-05-03 2007-11-08 Sherwood Services Ag Peristaltic cooling pump system
US20070260240A1 (en) 2006-05-05 2007-11-08 Sherwood Services Ag Soft tissue RF transection and resection device
WO2007128064A1 (en) * 2006-05-08 2007-11-15 Cathrx Ltd Shape imparting mechanism insertion
US8753334B2 (en) * 2006-05-10 2014-06-17 Covidien Ag System and method for reducing leakage current in an electrosurgical generator
GB0700560D0 (en) * 2007-01-11 2007-02-21 Emcision Ltd Device and method for the treatment of diseased tissue such as tumours
US20070282320A1 (en) * 2006-05-30 2007-12-06 Sherwood Services Ag System and method for controlling tissue heating rate prior to cellular vaporization
US8402974B2 (en) * 2006-05-30 2013-03-26 Coherex Medical, Inc. Methods, systems, and devices for sensing, measuring, and controlling closure of a patent foramen ovale
US7938826B2 (en) * 2006-05-30 2011-05-10 Coherex Medical, Inc. Methods, systems, and devices for closing a patent foramen ovale using mechanical structures
US7763018B2 (en) 2006-07-28 2010-07-27 Covidien Ag Cool-tip thermocouple including two-piece hub
US7731717B2 (en) 2006-08-08 2010-06-08 Covidien Ag System and method for controlling RF output during tissue sealing
US8034049B2 (en) 2006-08-08 2011-10-11 Covidien Ag System and method for measuring initial tissue impedance
WO2008034100A2 (en) * 2006-09-14 2008-03-20 Lazure Technologies, Llc Ablation probe with deployable electrodes
JP4201037B2 (ja) * 2006-09-14 2008-12-24 ソニー株式会社 レンズ鏡筒回転型撮像装置
US7637907B2 (en) * 2006-09-19 2009-12-29 Covidien Ag System and method for return electrode monitoring
WO2008039188A1 (en) * 2006-09-27 2008-04-03 Boston Scientific Corporation Method of treating cancer comprising introduction of heat and delivery of liposome containing an active agent or thermo-activated drug, gene or virus to tissue
US7794457B2 (en) * 2006-09-28 2010-09-14 Covidien Ag Transformer for RF voltage sensing
US8068921B2 (en) 2006-09-29 2011-11-29 Vivant Medical, Inc. Microwave antenna assembly and method of using the same
US9918826B2 (en) 2006-09-29 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US8500818B2 (en) 2006-09-29 2013-08-06 Biomet Manufacturing, Llc Knee prosthesis assembly with ligament link
US8672969B2 (en) 2006-09-29 2014-03-18 Biomet Sports Medicine, Llc Fracture fixation device
US11259794B2 (en) 2006-09-29 2022-03-01 Biomet Sports Medicine, Llc Method for implanting soft tissue
US7931647B2 (en) * 2006-10-20 2011-04-26 Asthmatx, Inc. Method of delivering energy to a lung airway using markers
EP1916018A1 (de) * 2006-10-24 2008-04-30 Cotop International B.V. Gepulste Radiofrequenzwellen für intra-artikuläre Schmerztherapie
JP2010514509A (ja) * 2006-12-27 2010-05-06 ボストン サイエンティフィック リミテッド Rfアブレーションプローブアレイ前進機器
US8211099B2 (en) 2007-01-31 2012-07-03 Tyco Healthcare Group Lp Thermal feedback systems and methods of using the same
US7655004B2 (en) 2007-02-15 2010-02-02 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US8744599B2 (en) * 2007-03-09 2014-06-03 St. Jude Medical, Atrial Fibrillation Division, Inc. High density mapping catheter
US20080249523A1 (en) * 2007-04-03 2008-10-09 Tyco Healthcare Group Lp Controller for flexible tissue ablation procedures
CA2682397A1 (en) * 2007-04-27 2008-11-06 Vnus Medical Technologies, Inc. Systems and methods for treating hollow anatomical structures
US20080275444A1 (en) * 2007-05-02 2008-11-06 Olympus Medical Systems Corp. Endoscopic treatment instrument and tissue incision method
US8641711B2 (en) 2007-05-04 2014-02-04 Covidien Lp Method and apparatus for gastrointestinal tract ablation for treatment of obesity
US8777941B2 (en) * 2007-05-10 2014-07-15 Covidien Lp Adjustable impedance electrosurgical electrodes
US8423152B2 (en) * 2007-05-14 2013-04-16 Bsd Medical Corporation Apparatus and method for selectively heating a deposit in fatty tissue in a body
US20090306646A1 (en) * 2007-05-14 2009-12-10 Bsd Medical Corporation Apparatus and method for injection enhancement of selective heating of a deposit in tissues in a body
US9387036B2 (en) * 2007-05-14 2016-07-12 Pyrexar Medical Inc. Apparatus and method for selectively heating a deposit in fatty tissue in a body
US8784338B2 (en) 2007-06-22 2014-07-22 Covidien Lp Electrical means to normalize ablational energy transmission to a luminal tissue surface of varying size
US9486269B2 (en) * 2007-06-22 2016-11-08 Covidien Lp Electrosurgical systems and cartridges for use therewith
US8574244B2 (en) * 2007-06-25 2013-11-05 Abbott Laboratories System for closing a puncture in a vessel wall
US8251992B2 (en) 2007-07-06 2012-08-28 Tyco Healthcare Group Lp Method and apparatus for gastrointestinal tract ablation to achieve loss of persistent and/or recurrent excess body weight following a weight-loss operation
US8235983B2 (en) 2007-07-12 2012-08-07 Asthmatx, Inc. Systems and methods for delivering energy to passageways in a patient
US7834484B2 (en) 2007-07-16 2010-11-16 Tyco Healthcare Group Lp Connection cable and method for activating a voltage-controlled generator
US8273012B2 (en) 2007-07-30 2012-09-25 Tyco Healthcare Group, Lp Cleaning device and methods
US20090043301A1 (en) * 2007-08-09 2009-02-12 Asthmatx, Inc. Monopolar energy delivery devices and methods for controlling current density in tissue
US8579897B2 (en) 2007-11-21 2013-11-12 Ethicon Endo-Surgery, Inc. Bipolar forceps
US8181995B2 (en) * 2007-09-07 2012-05-22 Tyco Healthcare Group Lp Cool tip junction
US8216220B2 (en) 2007-09-07 2012-07-10 Tyco Healthcare Group Lp System and method for transmission of combined data stream
US8652022B2 (en) * 2007-09-10 2014-02-18 Boston Scientific Scimed, Inc. Stabilizer and method for irradiating tumors
WO2009036468A1 (en) * 2007-09-14 2009-03-19 Lazure Technologies, Llc Transurethral systems and methods for ablation treatment of prostate tissue
US8562602B2 (en) 2007-09-14 2013-10-22 Lazure Technologies, Llc Multi-layer electrode ablation probe and related methods
US20090076500A1 (en) * 2007-09-14 2009-03-19 Lazure Technologies, Llc Multi-tine probe and treatment by activation of opposing tines
US8512332B2 (en) 2007-09-21 2013-08-20 Covidien Lp Real-time arc control in electrosurgical generators
US20090112059A1 (en) 2007-10-31 2009-04-30 Nobis Rudolph H Apparatus and methods for closing a gastrotomy
US8241276B2 (en) 2007-11-14 2012-08-14 Halt Medical Inc. RF ablation device with jam-preventing electrical coupling member
US8251991B2 (en) * 2007-11-14 2012-08-28 Halt Medical Inc. Anchored RF ablation device for the destruction of tissue masses
US8292880B2 (en) * 2007-11-27 2012-10-23 Vivant Medical, Inc. Targeted cooling of deployable microwave antenna
US8893947B2 (en) * 2007-12-17 2014-11-25 Abbott Laboratories Clip applier and methods of use
US20090157101A1 (en) * 2007-12-17 2009-06-18 Abbott Laboratories Tissue closure system and methods of use
US8585696B2 (en) * 2007-12-28 2013-11-19 Boston Scientific Scimed, Inc. Electrosurgical probe having conductive outer surface to initiate ablation between electrode
US20090171339A1 (en) * 2007-12-28 2009-07-02 Boston Scientific Scimed, Inc. Electrosurgical probe having current enhancing protrusions
US20090198272A1 (en) * 2008-02-06 2009-08-06 Lawrence Kerver Method and apparatus for articulating the wrist of a laparoscopic grasping instrument
US8870867B2 (en) * 2008-02-06 2014-10-28 Aesculap Ag Articulable electrosurgical instrument with a stabilizable articulation actuator
US9220889B2 (en) 2008-02-11 2015-12-29 Intelect Medical, Inc. Directional electrode devices with locating features
US8019440B2 (en) 2008-02-12 2011-09-13 Intelect Medical, Inc. Directional lead assembly
US8483831B1 (en) 2008-02-15 2013-07-09 Holaira, Inc. System and method for bronchial dilation
EP2529686B1 (de) 2008-05-09 2015-10-14 Holaira, Inc. System zur Behandlung eines Bronchialbaumes
US20090281379A1 (en) * 2008-05-12 2009-11-12 Xlumena, Inc. System and method for transluminal access
US8454632B2 (en) * 2008-05-12 2013-06-04 Xlumena, Inc. Tissue anchor for securing tissue layers
US9272153B2 (en) 2008-05-15 2016-03-01 Boston Scientific Neuromodulation Corporation VOA generation system and method using a fiber specific analysis
US8771260B2 (en) 2008-05-30 2014-07-08 Ethicon Endo-Surgery, Inc. Actuating and articulating surgical device
US8849395B2 (en) * 2008-05-30 2014-09-30 Boston Scientific Scimed, Inc. Guide catheter having vasomodulating electrodes
US8906035B2 (en) 2008-06-04 2014-12-09 Ethicon Endo-Surgery, Inc. Endoscopic drop off bag
US9770297B2 (en) * 2008-06-04 2017-09-26 Covidien Lp Energy devices and methods for treating hollow anatomical structures
US8403926B2 (en) 2008-06-05 2013-03-26 Ethicon Endo-Surgery, Inc. Manually articulating devices
US8226639B2 (en) * 2008-06-10 2012-07-24 Tyco Healthcare Group Lp System and method for output control of electrosurgical generator
US8888792B2 (en) 2008-07-14 2014-11-18 Ethicon Endo-Surgery, Inc. Tissue apposition clip application devices and methods
US8608739B2 (en) * 2008-07-22 2013-12-17 Covidien Lp Electrosurgical devices, systems and methods of using the same
US20100100093A1 (en) * 2008-09-16 2010-04-22 Lazure Technologies, Llc. System and method for controlled tissue heating for destruction of cancerous cells
US10028753B2 (en) 2008-09-26 2018-07-24 Relievant Medsystems, Inc. Spine treatment kits
AU2009296474B2 (en) 2008-09-26 2015-07-02 Relievant Medsystems, Inc. Systems and methods for navigating an instrument through bone
JP5317265B2 (ja) * 2008-10-10 2013-10-16 国立大学法人 宮崎大学 ワイヤ状電極の刺入・微動・保持装置
US8157834B2 (en) 2008-11-25 2012-04-17 Ethicon Endo-Surgery, Inc. Rotational coupling device for surgical instrument with flexible actuators
US9486191B2 (en) 2009-01-09 2016-11-08 Abbott Vascular, Inc. Closure devices
US8262652B2 (en) 2009-01-12 2012-09-11 Tyco Healthcare Group Lp Imaginary impedance process monitoring and intelligent shut-off
US8361066B2 (en) 2009-01-12 2013-01-29 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8167879B2 (en) * 2009-01-28 2012-05-01 Scott M. W. Haufe Combination tissue removal and cauterization instrument
US20100256735A1 (en) * 2009-04-03 2010-10-07 Board Of Regents, The University Of Texas System Intraluminal stent with seam
US8728139B2 (en) 2009-04-16 2014-05-20 Lazure Technologies, Llc System and method for energy delivery to a tissue using an electrode array
US9364259B2 (en) 2009-04-21 2016-06-14 Xlumena, Inc. System and method for delivering expanding trocar through a sheath
US20100268029A1 (en) * 2009-04-21 2010-10-21 Xlumena, Inc. Methods and apparatus for advancing a device from one body lumen to another
US8343227B2 (en) 2009-05-28 2013-01-01 Biomet Manufacturing Corp. Knee prosthesis assembly with ligament link
WO2010138277A1 (en) 2009-05-29 2010-12-02 Xlumena, Inc. Apparatus and method for deploying stent across adjacent tissue layers
US8298187B2 (en) 2009-07-07 2012-10-30 Cook Medical Technologies Llc Fluid injection device
CA2772330A1 (en) 2009-08-27 2011-03-03 The Cleveland Clinic Foundation System and method to estimate region of tissue activation
US9775664B2 (en) 2009-09-22 2017-10-03 Mederi Therapeutics, Inc. Systems and methods for treating tissue with radiofrequency energy
US10386990B2 (en) 2009-09-22 2019-08-20 Mederi Rf, Llc Systems and methods for treating tissue with radiofrequency energy
US9474565B2 (en) 2009-09-22 2016-10-25 Mederi Therapeutics, Inc. Systems and methods for treating tissue with radiofrequency energy
US9750563B2 (en) 2009-09-22 2017-09-05 Mederi Therapeutics, Inc. Systems and methods for treating tissue with radiofrequency energy
WO2011037621A2 (en) 2009-09-22 2011-03-31 Mederi Therapeutics Inc. Systems and methods for controlling use and operation of a family of different treatment devices
US9649153B2 (en) 2009-10-27 2017-05-16 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US20110098704A1 (en) 2009-10-28 2011-04-28 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8608652B2 (en) 2009-11-05 2013-12-17 Ethicon Endo-Surgery, Inc. Vaginal entry surgical devices, kit, system, and method
AU2010314930C1 (en) 2009-11-05 2014-04-03 Stratus Medical, LLC Methods and systems for spinal radio frequency neurotomy
US10660697B2 (en) 2009-11-10 2020-05-26 Cardea Medsystems (Tianjin) Co., Ltd. Hollow body cavity ablation apparatus
WO2011059487A2 (en) 2009-11-10 2011-05-19 Cardea MedSystems, Inc. Hollow body cavity ablation apparatus
US8911439B2 (en) 2009-11-11 2014-12-16 Holaira, Inc. Non-invasive and minimally invasive denervation methods and systems for performing the same
CA2780608C (en) 2009-11-11 2019-02-26 Innovative Pulmonary Solutions, Inc. Systems, apparatuses, and methods for treating tissue and controlling stenosis
WO2011068997A1 (en) 2009-12-02 2011-06-09 The Cleveland Clinic Foundation Reversing cognitive-motor impairments in patients having a neuro-degenerative disease using a computational modeling approach to deep brain stimulation programming
US8496574B2 (en) 2009-12-17 2013-07-30 Ethicon Endo-Surgery, Inc. Selectively positionable camera for surgical guide tube assembly
US8506564B2 (en) 2009-12-18 2013-08-13 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US9028483B2 (en) * 2009-12-18 2015-05-12 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US8523914B2 (en) * 2010-01-28 2013-09-03 Warsaw Orthopedic, Inc. Bone anchor with predetermined break point and removal features
US9005198B2 (en) 2010-01-29 2015-04-14 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
CN102596080B (zh) * 2010-02-04 2016-04-20 蛇牌股份公司 腹腔镜射频手术装置
US8827992B2 (en) 2010-03-26 2014-09-09 Aesculap Ag Impedance mediated control of power delivery for electrosurgery
US8419727B2 (en) * 2010-03-26 2013-04-16 Aesculap Ag Impedance mediated power delivery for electrosurgery
US9526911B1 (en) 2010-04-27 2016-12-27 Lazure Scientific, Inc. Immune mediated cancer cell destruction, systems and methods
WO2011146243A1 (en) 2010-05-21 2011-11-24 Nimbus Concepts, Llc Systems and methods for tissue ablation
US8900251B2 (en) * 2010-05-28 2014-12-02 Zyga Technology, Inc Radial deployment surgical tool
JP5830090B2 (ja) 2010-06-14 2015-12-09 ボストン サイエンティフィック ニューロモデュレイション コーポレイション 脊髄神経調節のためのプログラミングインターフェイス
US9370353B2 (en) 2010-09-01 2016-06-21 Abbott Cardiovascular Systems, Inc. Suturing devices and methods
US9173698B2 (en) 2010-09-17 2015-11-03 Aesculap Ag Electrosurgical tissue sealing augmented with a seal-enhancing composition
US10092291B2 (en) 2011-01-25 2018-10-09 Ethicon Endo-Surgery, Inc. Surgical instrument with selectively rigidizable features
WO2012100355A1 (en) 2011-01-30 2012-08-02 University Health Network Coil electrode for thermal therapy
US9314620B2 (en) 2011-02-28 2016-04-19 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9254169B2 (en) 2011-02-28 2016-02-09 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9233241B2 (en) 2011-02-28 2016-01-12 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9049987B2 (en) 2011-03-17 2015-06-09 Ethicon Endo-Surgery, Inc. Hand held surgical device for manipulating an internal magnet assembly within a patient
US10278774B2 (en) 2011-03-18 2019-05-07 Covidien Lp Selectively expandable operative element support structure and methods of use
US9149276B2 (en) 2011-03-21 2015-10-06 Abbott Cardiovascular Systems, Inc. Clip and deployment apparatus for tissue closure
US9063643B2 (en) 2011-03-29 2015-06-23 Boston Scientific Neuromodulation Corporation System and method for leadwire location
US9237925B2 (en) 2011-04-22 2016-01-19 Ablative Solutions, Inc. Expandable catheter system for peri-ostial injection and muscle and nerve fiber ablation
US8663190B2 (en) 2011-04-22 2014-03-04 Ablative Solutions, Inc. Expandable catheter system for peri-ostial injection and muscle and nerve fiber ablation
US9414822B2 (en) 2011-05-19 2016-08-16 Abbott Cardiovascular Systems, Inc. Tissue eversion apparatus and tissue closure device and methods for use thereof
US9592389B2 (en) 2011-05-27 2017-03-14 Boston Scientific Neuromodulation Corporation Visualization of relevant stimulation leadwire electrodes relative to selected stimulation information
US9339327B2 (en) 2011-06-28 2016-05-17 Aesculap Ag Electrosurgical tissue dissecting device
EP2742448A1 (de) 2011-08-09 2014-06-18 Boston Scientific Neuromodulation Corporation Fernsteuerung für klinische blindstudien elektrischer stimulation
US9278196B2 (en) 2011-08-24 2016-03-08 Ablative Solutions, Inc. Expandable catheter system for vessel wall injection and muscle and nerve fiber ablation
US9056185B2 (en) * 2011-08-24 2015-06-16 Ablative Solutions, Inc. Expandable catheter system for fluid injection into and deep to the wall of a blood vessel
US20130053792A1 (en) 2011-08-24 2013-02-28 Ablative Solutions, Inc. Expandable catheter system for vessel wall injection and muscle and nerve fiber ablation
CN102397099A (zh) * 2011-08-30 2012-04-04 北京工业大学 动脉瘤介入式热疗装置
ES2703556T3 (es) 2011-10-15 2019-03-11 Diros Tech Inc Aparato para controlar con precisión el tamaño y la forma de ablaciones por radiofrecuencia
US9357991B2 (en) 2011-11-03 2016-06-07 Biomet Sports Medicine, Llc Method and apparatus for stitching tendons
US9381013B2 (en) 2011-11-10 2016-07-05 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US9357992B2 (en) 2011-11-10 2016-06-07 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US9370350B2 (en) 2011-11-10 2016-06-21 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
WO2013101772A1 (en) 2011-12-30 2013-07-04 Relievant Medsystems, Inc. Systems and methods for treating back pain
US9259217B2 (en) 2012-01-03 2016-02-16 Biomet Manufacturing, Llc Suture Button
EP2633876B1 (de) 2012-03-02 2014-09-24 Cook Medical Technologies LLC Dilatationskappe für endoluminale Vorrichtung
US9314299B2 (en) 2012-03-21 2016-04-19 Biosense Webster (Israel) Ltd. Flower catheter for mapping and ablating veinous and other tubular locations
US8858573B2 (en) 2012-04-10 2014-10-14 Abbott Cardiovascular Systems, Inc. Apparatus and method for suturing body lumens
US9427255B2 (en) 2012-05-14 2016-08-30 Ethicon Endo-Surgery, Inc. Apparatus for introducing a steerable camera assembly into a patient
WO2013173045A1 (en) 2012-05-17 2013-11-21 Xlumena, Inc. Methods and devices for access across adjacent tissue layers
US9241707B2 (en) 2012-05-31 2016-01-26 Abbott Cardiovascular Systems, Inc. Systems, methods, and devices for closing holes in body lumens
EP2854682B1 (de) 2012-06-04 2021-06-23 Boston Scientific Scimed, Inc. Systeme zur behandlung des gewebes eines durchgangs in einem körper
US9529025B2 (en) 2012-06-29 2016-12-27 Covidien Lp Systems and methods for measuring the frequency of signals generated by high frequency medical devices
US9078662B2 (en) 2012-07-03 2015-07-14 Ethicon Endo-Surgery, Inc. Endoscopic cap electrode and method for using the same
US9144459B2 (en) 2012-07-19 2015-09-29 Cook Medical Technologies Llc Endoscopic ultrasound ablation needle
EP2877113B1 (de) 2012-07-24 2018-07-25 Boston Scientific Scimed, Inc. Elektroden zur gewebebehandlung
US9545290B2 (en) 2012-07-30 2017-01-17 Ethicon Endo-Surgery, Inc. Needle probe guide
US9572623B2 (en) 2012-08-02 2017-02-21 Ethicon Endo-Surgery, Inc. Reusable electrode and disposable sheath
US10314649B2 (en) 2012-08-02 2019-06-11 Ethicon Endo-Surgery, Inc. Flexible expandable electrode and method of intraluminal delivery of pulsed power
EP2879757B1 (de) 2012-08-04 2019-06-26 Boston Scientific Neuromodulation Corporation Systeme und verfahren zum speichern und übertragen von registrierungen sowie atlas- und anleitungsinformationen zwischen medizinischen vorrichtungen
US9277957B2 (en) 2012-08-15 2016-03-08 Ethicon Endo-Surgery, Inc. Electrosurgical devices and methods
AU2013308906B2 (en) 2012-08-28 2016-07-21 Boston Scientific Neuromodulation Corporation Point-and-click programming for deep brain stimulation using real-time monopolar review trendlines
US10588691B2 (en) 2012-09-12 2020-03-17 Relievant Medsystems, Inc. Radiofrequency ablation of tissue within a vertebral body
US9339329B2 (en) * 2012-09-17 2016-05-17 The Regents Of The University Of California Bladder denervation for treating overactive bladder
KR102210195B1 (ko) 2012-09-26 2021-01-29 아에스쿨랍 아게 조직을 커팅 및 봉합하기 위한 장치
US9554849B2 (en) 2012-10-29 2017-01-31 Ablative Solutions, Inc. Transvascular method of treating hypertension
US8740849B1 (en) 2012-10-29 2014-06-03 Ablative Solutions, Inc. Peri-vascular tissue ablation catheter with support structures
US10945787B2 (en) 2012-10-29 2021-03-16 Ablative Solutions, Inc. Peri-vascular tissue ablation catheters
US10226278B2 (en) 2012-10-29 2019-03-12 Ablative Solutions, Inc. Method for painless renal denervation using a peri-vascular tissue ablation catheter with support structures
US9526827B2 (en) 2012-10-29 2016-12-27 Ablative Solutions, Inc. Peri-vascular tissue ablation catheter with support structures
US9301795B2 (en) 2012-10-29 2016-04-05 Ablative Solutions, Inc. Transvascular catheter for extravascular delivery
US10881458B2 (en) 2012-10-29 2021-01-05 Ablative Solutions, Inc. Peri-vascular tissue ablation catheters
US10736656B2 (en) 2012-10-29 2020-08-11 Ablative Solutions Method for painless renal denervation using a peri-vascular tissue ablation catheter with support structures
US9792412B2 (en) 2012-11-01 2017-10-17 Boston Scientific Neuromodulation Corporation Systems and methods for VOA model generation and use
US9272132B2 (en) 2012-11-02 2016-03-01 Boston Scientific Scimed, Inc. Medical device for treating airways and related methods of use
EP2914186B1 (de) 2012-11-05 2019-03-13 Relievant Medsystems, Inc. Systeme zur erzeugung von kurven durch knochen und modulationsnerven innerhalb von knochen
WO2014071372A1 (en) 2012-11-05 2014-05-08 Boston Scientific Scimed, Inc. Devices for delivering energy to body lumens
US9364209B2 (en) 2012-12-21 2016-06-14 Abbott Cardiovascular Systems, Inc. Articulating suturing device
US9398933B2 (en) 2012-12-27 2016-07-26 Holaira, Inc. Methods for improving drug efficacy including a combination of drug administration and nerve modulation
US10537286B2 (en) * 2013-01-08 2020-01-21 Biosense Webster (Israel) Ltd. Catheter with multiple spines of different lengths arranged in one or more distal assemblies
JP6342431B2 (ja) 2013-02-21 2018-06-13 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 吻合を形成するためのステントおよび同ステントを含む医療用具
US10098527B2 (en) 2013-02-27 2018-10-16 Ethidcon Endo-Surgery, Inc. System for performing a minimally invasive surgical procedure
US9757119B2 (en) 2013-03-08 2017-09-12 Biomet Sports Medicine, Llc Visual aid for identifying suture limbs arthroscopically
US9918827B2 (en) 2013-03-14 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
AU2014257302B2 (en) 2013-04-24 2019-04-18 Medovex, LLC Minimally invasive methods for spinal facet therapy to alleviate pain and associated surgical tools, kits and instructional media
US9814618B2 (en) 2013-06-06 2017-11-14 Boston Scientific Scimed, Inc. Devices for delivering energy and related methods of use
US9872719B2 (en) 2013-07-24 2018-01-23 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US9636165B2 (en) 2013-07-29 2017-05-02 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
US9724151B2 (en) 2013-08-08 2017-08-08 Relievant Medsystems, Inc. Modulating nerves within bone using bone fasteners
EP3030182B1 (de) 2013-08-09 2018-01-10 Boston Scientific Scimed, Inc. Expandierbarer katheter
US9987082B2 (en) 2013-09-05 2018-06-05 Mitragen, Inc. Valve treatment devices, systems, and methods
WO2015058096A1 (en) 2013-10-18 2015-04-23 Ziva Medical, Inc. Methods and systems for the treatment of polycystic ovary syndrome
US10517666B2 (en) 2013-10-25 2019-12-31 Ablative Solutions, Inc. Apparatus for effective ablation and nerve sensing associated with denervation
US9949652B2 (en) 2013-10-25 2018-04-24 Ablative Solutions, Inc. Apparatus for effective ablation and nerve sensing associated with denervation
US9931046B2 (en) 2013-10-25 2018-04-03 Ablative Solutions, Inc. Intravascular catheter with peri-vascular nerve activity sensors
WO2015073397A1 (en) 2013-11-13 2015-05-21 Thixos Llc Devices, kits and methods relating to treatment of facet joints
US10136886B2 (en) 2013-12-20 2018-11-27 Biomet Sports Medicine, Llc Knotless soft tissue devices and techniques
US9855402B2 (en) 2014-02-15 2018-01-02 Rex Medical, L.P. Apparatus for delivering fluid to treat renal hypertension
EP3122233B1 (de) 2014-03-28 2018-10-24 Spiration, Inc. D.B.A. Olympus Respiratory America System zur vorhersagbaren freisetzung einer medizinischen vorrichtung
US9968370B2 (en) 2014-05-28 2018-05-15 Kyphon SÀRL Multi-tine cutting device
US9615822B2 (en) 2014-05-30 2017-04-11 Biomet Sports Medicine, Llc Insertion tools and method for soft anchor
US9700291B2 (en) 2014-06-03 2017-07-11 Biomet Sports Medicine, Llc Capsule retractor
KR20240013275A (ko) 2014-07-22 2024-01-30 엑시미스 서지컬 인코포레이티드 대용적 조직 감소 및 제거 시스템 및 방법
US9959388B2 (en) 2014-07-24 2018-05-01 Boston Scientific Neuromodulation Corporation Systems, devices, and methods for providing electrical stimulation therapy feedback
US10799283B2 (en) 2014-07-28 2020-10-13 Boston Scientific Scimed, Inc. Multiple lead electrode probe for controlled tissue ablation
US10265528B2 (en) 2014-07-30 2019-04-23 Boston Scientific Neuromodulation Corporation Systems and methods for electrical stimulation-related patient population volume analysis and use
US10272247B2 (en) 2014-07-30 2019-04-30 Boston Scientific Neuromodulation Corporation Systems and methods for stimulation-related volume analysis, creation, and sharing with integrated surgical planning and stimulation programming
JP6689761B2 (ja) 2014-07-30 2020-04-28 メドヴェックス コーポレーションMedovex Corp. 痛みを和らげるための脊椎椎間関節治療用の手術用器具、及び関連の方法
US10398494B2 (en) 2014-07-30 2019-09-03 Medovex Corp. Surgical tools for spinal facet therapy to alleviate pain and related methods
US10039543B2 (en) 2014-08-22 2018-08-07 Biomet Sports Medicine, Llc Non-sliding soft anchor
WO2016057544A1 (en) 2014-10-07 2016-04-14 Boston Scientific Neuromodulation Corporation Systems, devices, and methods for electrical stimulation using feedback to adjust stimulation parameters
CN104287828A (zh) * 2014-10-20 2015-01-21 周稼 柔性中空射频治疗电极
EP3190997B8 (de) 2014-12-12 2020-04-15 Medovex Corp. Chirurgische instrumente mit positionskomponenten
US9955980B2 (en) 2015-02-24 2018-05-01 Biomet Sports Medicine, Llc Anatomic soft tissue repair
US10857348B2 (en) * 2015-03-04 2020-12-08 Arizona Board Of Regents On Behalf Of Arizona State University Compliant devices for neural prosthetic devices
US9974534B2 (en) 2015-03-31 2018-05-22 Biomet Sports Medicine, Llc Suture anchor with soft anchor of electrospun fibers
CN107635474B (zh) 2015-03-31 2022-01-07 阿布拉护理公司 用于操纵卵巢组织的方法和系统
US10342611B2 (en) 2015-04-29 2019-07-09 Innoblative Designs, Inc. Cavitary tissue ablation
US10780283B2 (en) 2015-05-26 2020-09-22 Boston Scientific Neuromodulation Corporation Systems and methods for analyzing electrical stimulation and selecting or manipulating volumes of activation
US9956419B2 (en) 2015-05-26 2018-05-01 Boston Scientific Neuromodulation Corporation Systems and methods for analyzing electrical stimulation and selecting or manipulating volumes of activation
EP3280491B1 (de) 2015-06-29 2023-03-01 Boston Scientific Neuromodulation Corporation Systeme zur auswahl von stimulationsparametern durch abzielung und lenkung
EP3280490B1 (de) 2015-06-29 2021-09-01 Boston Scientific Neuromodulation Corporation Vorrichtungen zur auswahl von stimulationsparametern basierend auf der stimulationszielregion, effekten oder nebenwirkungen
US10357173B2 (en) * 2015-09-14 2019-07-23 Biosense Webster (Israel) Ltd. Dual multiray electrode catheter
US10517668B2 (en) * 2015-09-14 2019-12-31 Boisense Webster (Israel) Ltd. Dual node multiray electrode catheter
US10524858B2 (en) * 2015-09-14 2020-01-07 Biosense Webster (Israel) Ltd. Dual node multiray electrode catheter
EP3349677A1 (de) 2015-09-17 2018-07-25 Eximis Surgical LLC Elektrochirurgische vorrichtung und verfahren
WO2017062378A1 (en) 2015-10-09 2017-04-13 Boston Scientific Neuromodulation Corporation System and methods for clinical effects mapping for directional stimulations leads
US11007007B2 (en) 2015-10-13 2021-05-18 Biosense Webster (Israel) Ltd. Self-centering multiray ablation catheter
US11039879B2 (en) 2015-10-20 2021-06-22 Gyrus Acmi, Inc. Ablation device
EP3367945B1 (de) 2015-10-29 2020-02-26 Innoblative Designs, Inc. Siebkugelgewebeablationsvorrichtungen
CN108309441A (zh) * 2015-12-30 2018-07-24 迈德医疗科技(上海) 有限公司 柔性射频消融电极
USD810290S1 (en) 2016-01-29 2018-02-13 Medovex Corp. Surgical portal driver
WO2017136261A1 (en) 2016-02-02 2017-08-10 Innoblative Designs, Inc. Cavitary tissue ablation system
WO2017151431A1 (en) 2016-03-01 2017-09-08 Innoblative Designs, Inc. Resecting and coagulating tissue
US10716942B2 (en) 2016-04-25 2020-07-21 Boston Scientific Neuromodulation Corporation System and methods for directional steering of electrical stimulation
WO2017223505A2 (en) 2016-06-24 2017-12-28 Boston Scientific Neuromodulation Corporation Systems and methods for visual analytics of clinical effects
KR20190055059A (ko) * 2016-07-11 2019-05-22 레트로배스큘러, 아이엔씨. 양극성 조직 절체 장치 및 이의 사용 방법
WO2018044881A1 (en) 2016-09-02 2018-03-08 Boston Scientific Neuromodulation Corporation Systems and methods for visualizing and directing stimulation of neural elements
US10780282B2 (en) 2016-09-20 2020-09-22 Boston Scientific Neuromodulation Corporation Systems and methods for steering electrical stimulation of patient tissue and determining stimulation parameters
CN109803719B (zh) 2016-10-14 2023-05-26 波士顿科学神经调制公司 用于闭环确定电模拟系统的刺激参数设置的系统和方法
WO2018075389A1 (en) 2016-10-17 2018-04-26 Innoblative Designs, Inc. Treatment devices and methods
JP6875757B2 (ja) 2016-11-08 2021-05-26 イノブレイティブ デザインズ, インコーポレイテッド 電気手術の組織および脈管シールデバイス
AU2017391436B2 (en) 2017-01-03 2020-06-18 Boston Scientific Neuromodulation Corporation Systems and methods for selecting MRI-compatible stimulation parameters
US10589104B2 (en) 2017-01-10 2020-03-17 Boston Scientific Neuromodulation Corporation Systems and methods for creating stimulation programs based on user-defined areas or volumes
WO2018165425A1 (en) * 2017-03-08 2018-09-13 Affera, Inc. Devices, systems and methods for balancing ablation energy
US10625082B2 (en) 2017-03-15 2020-04-21 Boston Scientific Neuromodulation Corporation Visualization of deep brain stimulation efficacy
WO2018187090A1 (en) 2017-04-03 2018-10-11 Boston Scientific Neuromodulation Corporation Systems and methods for estimating a volume of activation using a compressed database of threshold values
KR102066045B1 (ko) * 2017-06-23 2020-02-11 주식회사 루트로닉 마이크로 니들을 포함하는 rf치료장치, 그 제어방법
AU2018301355B2 (en) 2017-07-14 2020-10-01 Boston Scientific Neuromodulation Corporation Systems and methods for estimating clinical effects of electrical stimulation
EP3658053B1 (de) 2017-07-26 2023-09-13 Innoblative Designs, Inc. Minimalinvasive gelenkanordnung mit ablationsfähigkeiten
WO2019036180A1 (en) 2017-08-15 2019-02-21 Boston Scientific Neuromodulation Corporation SYSTEMS AND METHODS FOR CONTROLLING ELECTRICAL STIMULATION USING MULTIPLE STIMULATION FIELDS
WO2019094808A1 (en) 2017-11-09 2019-05-16 Acessa Health Inc. System for controlling ablation treatment and visualization
US11045648B2 (en) 2017-11-14 2021-06-29 Boston Scientific Scimed, Inc. Irreversible electroporation through a combination of substance injection and electrical field application
US11103308B2 (en) 2017-12-11 2021-08-31 Covidien Lp Reusable transmission network for dividing energy and monitoring signals between surgical devices
US11364070B2 (en) 2018-01-23 2022-06-21 Boston Scientific Scimed, Inc. Enhanced needle array and therapies for tumor ablation
US11304755B2 (en) 2018-04-18 2022-04-19 Boston Scientific Scimed, Inc. Microwave tissue ablation probe with non-metallic introducer set
WO2019210214A1 (en) 2018-04-27 2019-10-31 Boston Scientific Neuromodulation Corporation Systems for visualizing and programming electrical stimulation
US11298553B2 (en) 2018-04-27 2022-04-12 Boston Scientific Neuromodulation Corporation Multi-mode electrical stimulation systems and methods of making and using
US10849685B2 (en) 2018-07-18 2020-12-01 Ablative Solutions, Inc. Peri-vascular tissue access catheter with locking handle
TWI706769B (zh) * 2018-12-24 2020-10-11 財團法人工業技術研究院 消融裝置
US11135004B2 (en) 2018-12-24 2021-10-05 Industrial Technology Research Institute Ablation device
CA3127560A1 (en) 2019-01-25 2020-07-30 AblaCare SAS Systems and methods for applying energy to ovarian tissue
US20200289827A1 (en) 2019-03-15 2020-09-17 Boston Scientific Scimed, Inc. Time multiplexed waveform for selective cell ablation
EP3937812A1 (de) 2019-03-15 2022-01-19 Boston Scientific Scimed Inc. Wellenformgenerator und steuerung zur selektiven zellablation
JP7402889B2 (ja) * 2019-03-15 2023-12-21 ボストン サイエンティフィック サイムド,インコーポレイテッド 選択的細胞切除のための空間多重化波形
CA3150339A1 (en) 2019-09-12 2021-03-18 Brian W. Donovan TISSUE MODULATION SYSTEMS AND METHODS
US11931094B2 (en) 2019-10-15 2024-03-19 Boston Scientific Scimed, Inc. Control system and user interface for an ablation system
CN115697229A (zh) 2020-04-21 2023-02-03 波士顿科学国际有限公司 在消融系统中的自适应ecg触发
WO2023097113A1 (en) 2021-11-29 2023-06-01 Boston Scientific Scimed, Inc. Bipolar needle with adjustable electrode for geometrically controlled thermal ablation of biological tissue

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US164183A (en) * 1875-06-08 Improvement in cautery-electrodes
US1814791A (en) * 1928-05-04 1931-07-14 Frank M Ende Diathermy
US1908583A (en) * 1929-09-13 1933-05-09 Reinhold H Wappler Diathermic electrode
US1943543A (en) * 1932-06-21 1934-01-16 William J Mcfadden Surgical instrument
US2022065A (en) * 1932-07-07 1935-11-26 Frederick C Wappler Therapeutic applicator device
US2004559A (en) * 1932-11-22 1935-06-11 Wappler Frederick Charles Method and instrument for electrosurgical treatment of tissue
US2056377A (en) * 1933-08-16 1936-10-06 Wappler Frederick Charles Electrodic instrument
DE1007960B (de) * 1953-09-19 1957-05-09 Richard Wolf Koagulationselektrode fuer Endoskope
US3460539A (en) * 1967-03-10 1969-08-12 James E Anhalt Sr Cautery tip
US3645265A (en) * 1969-06-25 1972-02-29 Gregory Majzlin Intrauterine cauterizing device
US3858586A (en) * 1971-03-11 1975-01-07 Martin Lessen Surgical method and electrode therefor
DE2124684A1 (de) * 1971-05-18 1972-11-30 Stadelmann W Einstichelektrode
DE2513868C2 (de) * 1974-04-01 1982-11-04 Olympus Optical Co., Ltd., Tokyo Bipolare Elektrodiathermiefaßzange
US4033351A (en) * 1974-06-14 1977-07-05 Siemens Aktiengesellschaft Bipolar cutting electrode for high-frequency surgery
CH587664A5 (de) * 1974-09-05 1977-05-13 Fischer Fa F L
US4026301A (en) * 1975-04-21 1977-05-31 Medtronic, Inc. Apparatus and method for optimum electrode placement in the treatment of disease syndromes such as spinal curvature
US4005714A (en) * 1975-05-03 1977-02-01 Richard Wolf Gmbh Bipolar coagulation forceps
US4041952A (en) * 1976-03-04 1977-08-16 Valleylab, Inc. Electrosurgical forceps
GB1578871A (en) * 1977-01-13 1980-11-12 Prosearch Ltd Anti-rust composition
US4449528A (en) * 1980-03-20 1984-05-22 University Of Washington Fast pulse thermal cautery probe and method
US4353371A (en) * 1980-09-24 1982-10-12 Cosman Eric R Longitudinally, side-biting, bipolar coagulating, surgical instrument
US4578061A (en) 1980-10-28 1986-03-25 Lemelson Jerome H Injection catheter and method
DE3120102A1 (de) 1981-05-20 1982-12-09 F.L. Fischer GmbH & Co, 7800 Freiburg Anordnung zur hochfrequenzkoagulation von eiweiss fuer chirurgische zwecke
US4582057A (en) * 1981-07-20 1986-04-15 Regents Of The University Of Washington Fast pulse thermal cautery probe
US4578067A (en) 1982-04-12 1986-03-25 Alcon (Puerto Rico) Inc. Hemostatic-adhesive, collagen dressing for severed biological surfaces
US5370675A (en) * 1992-08-12 1994-12-06 Vidamed, Inc. Medical probe device and method
US5385544A (en) * 1992-08-12 1995-01-31 Vidamed, Inc. BPH ablation method and apparatus
US5435805A (en) * 1992-08-12 1995-07-25 Vidamed, Inc. Medical probe device with optical viewing capability
US5421819A (en) * 1992-08-12 1995-06-06 Vidamed, Inc. Medical probe device
US4492231A (en) * 1982-09-17 1985-01-08 Auth David C Non-sticking electrocautery system and forceps
US4523924A (en) * 1982-12-20 1985-06-18 Ciba-Geigy Corporation Process for the preparation of stable aqueous solutions of water-soluble reactive dyes by membrane separation
US4511356A (en) 1983-02-22 1985-04-16 Edward C. Froning Cannula, obturator, stylet and needle hub connectors for lumbar disc puncture
FR2560052B1 (fr) * 1984-02-29 1988-02-05 Benhaim Jean Perfectionnement a une sonde de catheterisme vasculaire
DE3511107A1 (de) * 1985-03-27 1986-10-02 Fischer MET GmbH, 7800 Freiburg Vorrichtung zur bipolaren hochfrequenzkoagulation von biologischem gewebe
US4655216A (en) * 1985-07-23 1987-04-07 Alfred Tischer Combination instrument for laparoscopical tube sterilization
US4691703A (en) * 1986-04-25 1987-09-08 Board Of Regents, University Of Washington Thermal cautery system
DE3629809A1 (de) * 1986-09-02 1988-03-10 Wolf Gmbh Richard Koagulationszange
JPS63275632A (ja) * 1987-05-07 1988-11-14 Asahi Chem Ind Co Ltd 新規な硬化性全芳香族ポリアミド
US4936842A (en) * 1987-05-08 1990-06-26 Circon Corporation Electrosurgical probe apparatus
US4823791A (en) * 1987-05-08 1989-04-25 Circon Acmi Division Of Circon Corporation Electrosurgical probe apparatus
US4802476A (en) * 1987-06-01 1989-02-07 Everest Medical Corporation Electro-surgical instrument
SE500798C2 (sv) * 1987-11-13 1994-09-05 Bjoern Nordenstroem Elektrodanordning inrättad att temporärt införas i ett levande väsens kropp
GB2213381B (en) 1987-12-12 1992-06-03 Univ Wales Medicine Surgical diathermy instruments
JP2619941B2 (ja) * 1988-10-31 1997-06-11 オリンパス光学工業株式会社 温熱治療用プローブ
DE8909492U1 (de) * 1989-02-24 1990-02-08 Ueckmann, Bernd, 6950 Mosbach, De
US4938761A (en) * 1989-03-06 1990-07-03 Mdt Corporation Bipolar electrosurgical forceps
US5089002A (en) * 1989-04-06 1992-02-18 Kirwan Surgical Products, Inc. Disposable bipolar coagulator
US5078717A (en) * 1989-04-13 1992-01-07 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
US5104393A (en) * 1989-08-30 1992-04-14 Angelase, Inc. Catheter
SE463429B (sv) * 1989-11-24 1990-11-19 Saab Scania Ab Arrangemang foer turboreglering i en foerbraenningsmotor
US5364393A (en) * 1990-07-02 1994-11-15 Heart Technology, Inc. Tissue dissipative recanalization catheter
US5083565A (en) * 1990-08-03 1992-01-28 Everest Medical Corporation Electrosurgical instrument for ablating endocardial tissue
US5100423A (en) * 1990-08-21 1992-03-31 Medical Engineering & Development Institute, Inc. Ablation catheter
US5282845A (en) * 1990-10-01 1994-02-01 Ventritex, Inc. Multiple electrode deployable lead
JPH0714394B2 (ja) * 1990-12-10 1995-02-22 ハウメディカ・インコーポレーテッド 間質細胞へのレーザエネルギの供給装置及び方法
FR2671010B1 (fr) * 1990-12-27 1993-07-09 Ela Medical Sa Sonde endocardiaque munie d'un organe de fixation active.
DE4100422A1 (de) * 1991-01-09 1992-07-16 Wolf Gmbh Richard Chirurgisches instrument zum trennen und koagulieren
JPH0596012A (ja) * 1991-10-07 1993-04-20 Olympus Optical Co Ltd 温熱治療装置
US5322503A (en) * 1991-10-18 1994-06-21 Desai Ashvin H Endoscopic surgical instrument
US5662680A (en) * 1991-10-18 1997-09-02 Desai; Ashvin H. Endoscopic surgical instrument
AU3067392A (en) * 1991-11-08 1993-06-07 Ep Technologies Inc Systems and methods for ablating tissue while monitoring tissue impedance
US5281216A (en) * 1992-03-31 1994-01-25 Valleylab, Inc. Electrosurgical bipolar treating apparatus
IT1257200B (it) * 1992-05-27 1996-01-10 Rosso & C Snc Lica Procedimento ed apparecchio per il trattamento cosmetico del corpo umano mediante rimozione di accumuli adiposi.
DE4223050C2 (de) * 1992-07-14 1995-05-24 Wilhelm Aichele Vorrichtung zum Formschneiden vorlaufender Werkstoffbahnen
US5486161A (en) * 1993-02-02 1996-01-23 Zomed International Medical probe device and method
GB9217085D0 (en) * 1992-08-12 1992-09-23 Lucas Ind Plc Fuel system
US5720718A (en) * 1992-08-12 1998-02-24 Vidamed, Inc. Medical probe apparatus with enhanced RF, resistance heating, and microwave ablation capabilities
US5470308A (en) * 1992-08-12 1995-11-28 Vidamed, Inc. Medical probe with biopsy stylet
JPH0677648A (ja) * 1992-08-20 1994-03-18 Polyplastics Co 立体的多層導電回路を有する複合成形品及びその製造方法
WO1994004550A1 (en) * 1992-08-21 1994-03-03 Triplex Pharmaceutical Corporation Cholesteryl-modified triple-helix forming oligonucleotides and uses thereof
DE4235506A1 (de) 1992-10-21 1994-04-28 Bavaria Med Tech Katheter zur Injektion von Arzneimitteln
JPH08506259A (ja) * 1993-02-02 1996-07-09 ヴィーダメッド インコーポレイテッド 経尿道ニードル切除装置および方法
US5403311A (en) * 1993-03-29 1995-04-04 Boston Scientific Corporation Electro-coagulation and ablation and other electrotherapeutic treatments of body tissue
US5395368A (en) * 1993-05-20 1995-03-07 Ellman; Alan G. Multiple-wire electrosurgical electrodes
US5551426A (en) * 1993-07-14 1996-09-03 Hummel; John D. Intracardiac ablation and mapping catheter
US5433739A (en) * 1993-11-02 1995-07-18 Sluijter; Menno E. Method and apparatus for heating an intervertebral disc for relief of back pain
US5507743A (en) * 1993-11-08 1996-04-16 Zomed International Coiled RF electrode treatment apparatus
US5472441A (en) * 1993-11-08 1995-12-05 Zomed International Device for treating cancer and non-malignant tumors and methods
US5536267A (en) * 1993-11-08 1996-07-16 Zomed International Multiple electrode ablation apparatus
US5458597A (en) * 1993-11-08 1995-10-17 Zomed International Device for treating cancer and non-malignant tumors and methods

Also Published As

Publication number Publication date
EP0902655B1 (de) 2003-09-10
ES2275251T3 (es) 2007-06-01
ES2206566T3 (es) 2004-05-16
US5855576A (en) 1999-01-05
US6468273B1 (en) 2002-10-22
DE69634786D1 (de) 2005-06-30
CA2215698C (en) 2007-12-04
DE69636694T2 (de) 2007-10-18
WO1996029946A1 (en) 1996-10-03
CA2215698A1 (en) 1996-10-03
KR100473041B1 (ko) 2006-01-12
EP1297796A1 (de) 2003-04-02
US5868740A (en) 1999-02-09
AU702531B2 (en) 1999-02-25
US5827276A (en) 1998-10-27
JPH11509431A (ja) 1999-08-24
AU5318396A (en) 1996-10-16
EP0902655A1 (de) 1999-03-24
DE69629948D1 (de) 2003-10-16
EP1297796B1 (de) 2005-05-25
EP1576932A1 (de) 2005-09-21
DE69634786T2 (de) 2006-02-02
KR19980703219A (ko) 1998-10-15
US6454765B1 (en) 2002-09-24
DE69636694D1 (de) 2006-12-21
EP1576932B1 (de) 2006-11-08
JP2006320771A (ja) 2006-11-30

Similar Documents

Publication Publication Date Title
DE69629948T2 (de) Vorrichtung zur ablation von gewebemassen
DE69532140T2 (de) Ablationsvorrichtung mit mehreren Elektroden
US6575967B1 (en) Method and systems for volumetric tissue ablation
DE60121168T2 (de) Ablationsnadel für tumore
DE60302409T2 (de) Gerät zur Denervierung des Intraossalnervs
DE69634051T2 (de) Gerät zur ablation einer bestimmten masse
DE69836640T2 (de) Vorrichtung zur behandlung von gewebe mit mehrfach-elektroden
DE69827799T2 (de) Vielelektrodensystem für ablation
DE69921482T2 (de) Flüssigkeitsgekühlte nasse elektrode
EP1044654B1 (de) Anordnung zur elektro-thermischen Behandlung des menschlichen oder tierischen Körpers
EP1898823B1 (de) Biegeweiche applikationsvorrichtung zur hochfrequenztherapie von biologischem gewebe
US7962223B2 (en) Ablation probe for drug release in tissue ablation procedures
DE102005020277A1 (de) Bipolare virtuelle Elektrode zur transurethralen Nadelablation
DE19713797A1 (de) Elektrochirurgisches Instrument zur Herbeiführung einer Myomnekrose
DE102004019764A1 (de) Vorrichtung und Verfahren zur transurethralen Prostatabehandlung
DE4416902A1 (de) Medizinische Sondenvorrichtung mit optischem Sehvermögen
DE102004019765A1 (de) Abgabe von flüssigem transurethralem Prostatabehandlungsmittel
US20070250053A1 (en) Ablation probe with ribbed insulated sheath
DE10224153A1 (de) Therapiegerät
EP4349288A1 (de) Ablationssonde mit innerer kühlung
DE68929556T2 (de) Vorrichtung mit einer Kühlvorrichtung zur chirurgischen Behandlung von Geweben mit Hyperthermie, vorzugsweise der Prostata

Legal Events

Date Code Title Description
8364 No opposition during term of opposition