DE69333513T2 - Rohrförmige, medizinische endoprothese - Google Patents

Rohrförmige, medizinische endoprothese Download PDF

Info

Publication number
DE69333513T2
DE69333513T2 DE69333513T DE69333513T DE69333513T2 DE 69333513 T2 DE69333513 T2 DE 69333513T2 DE 69333513 T DE69333513 T DE 69333513T DE 69333513 T DE69333513 T DE 69333513T DE 69333513 T2 DE69333513 T2 DE 69333513T2
Authority
DE
Germany
Prior art keywords
metal
stent
core
stent according
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE69333513T
Other languages
English (en)
Other versions
DE69333513D1 (de
Inventor
R. Kevin HEATH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Corp
Original Assignee
Boston Scientific Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston Scientific Corp filed Critical Boston Scientific Corp
Application granted granted Critical
Publication of DE69333513D1 publication Critical patent/DE69333513D1/de
Publication of DE69333513T2 publication Critical patent/DE69333513T2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/082Inorganic materials
    • A61L31/088Other specific inorganic materials not covered by A61L31/084 or A61L31/086
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/18Materials at least partially X-ray or laser opaque
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0108Steering means as part of the catheter or advancing means; Markers for positioning using radio-opaque or ultrasound markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
    • A61F2210/0019Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol operated at only one temperature whilst inside or touching the human body, e.g. constrained in a non-operative shape during surgery, another temperature only occurring before the operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0006Rounded shapes, e.g. with rounded corners circular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0013Horseshoe-shaped, e.g. crescent-shaped, C-shaped, U-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0096Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers
    • A61F2250/0098Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers radio-opaque, e.g. radio-opaque markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09166Guide wires having radio-opaque features

Description

  • Diese Erfindung betrifft röhrenförmige innerhalb des Körpers zu verwendende Endoprothesen.
  • Röhrenförmige Endoprothesen, wie medizinische Stents, werden innerhalb des Körpers angeordnet, um eine Funktion, wie das Aufrechterhalten einer Körperlumenöffnung, zum Beispiel eines Durchgangs, der durch einen Tumor verschlossen wurde, oder eines Blutgefäßes, das durch Plaque eingeschränkt ist, durchzuführen. Röhrenförmige Endoprothesen in Form von Transplantaten werden verwendet, um durch sie ein Lumen, wie die Aorta oder andere Blutgefäße, welche z.B. durch ein Aneurysma geschwächt worden sind, zu ersetzen oder zu verstärken.
  • Typischerweise werden diese Endoprothesen innerhalb des Körpers durch einen Katheter zugeführt, der die Vorrichtung in kompakter oder anders größenverringerter Form trägt, während sie zur gewünschten Stelle transportiert wird. Die Größe ist besonders klein, wenn eine perkutane Einführungstechnik verwendet wird. Beim Erreichen der Stelle wird die Endoprothese expandiert, so dass es die Wände des Lumens belegt.
  • Der Expansionsmechanismus kann das Formen der Endoprothese einschließen, um z.B., durch Aufblähen eines Ballons, der durch den Katheter eingebracht wird, radial nach außen zu expandieren, um die Vorrichtung plastisch zu verformen und an einer vorherbestimmten expandierten Position in Verbindung mit der Lumenwand zu befestigen. Das Expansionsmittel, der Ballon, kann dann entleert und der Katheter entfernt werden.
  • Bei einer anderen Technik wird die Endoprothese aus einem hoch elastischen Material gebildet, das reversibel kompakt gemacht und expandiert werden kann. Während der Einführung in den Körper, wird die Endoprothese im kompakten Zustand gehalten, und beim Erreichen der gewünschten Stelle zur Einpflanzung wird der Zwang entfernt und ermöglicht der Vorrichtung, durch ihre eigene innere elastische Rückstellkraft selbst zu expandieren.
  • In vielen Fällen wird Röntgenfluoroskopie zur Darstellung einer Endoprothese innerhalb des Körperhohlraums verwendet, um die Anordnung und den Betrieb zu überwachen. Die Vorrichtung kann nach Anordnung auch durch Röntgenfilm für eine medizinische Anschlußauswertung dargestellt werden. Bis jetzt hat das Erfordernis für Radiopazität den Aufbau von Vorrichtungen auf bestimmte Materialien beschränkt, welche wiederum die Merkmale beschränkt hat, die für bestimmte Anwendungen und die erhältlichen Einführungstechniken erreichbar sind.
  • US-A-4,768,507 offenbart die Verwendung eines intravasalen Schraubenfederstents zum Verhindern von Arterienrestenose im Anschluss an Ballonangioplastie. Der Stent kann aus einem rostfreien Federstahl oder einer Legierung aus Titan, wie T-6A1-4V gebildet sein.
  • EP-A-0 433 011 offenbart eine Verbesserung des Stents von US-A-4,768,507, bei welcher der Stent ein Material, das radioaktiv ist, umfasst oder aus diesem aufgebaut ist, und welcher dadurch dazu dient, die Proliferation von schnell wachsenden Zellen zu verringern, um Intimahyperplasie zu inhibieren. In einer Ausführungsform ist der Stent aus einem einzigen Metall oder Legierung gebildet, welche/s bestrahlt ist, um radioaktiv zu werden. In der zweiten Ausführungsform ist der Stent aus einem Draht mit einem Radioisotopenkern und einem Mantel gebildet. In einer dritten Ausführungsform ist ein Stent aus einem Federmaterialkern gebildet, der mit einer Radoisotopenbeschichtung, wie Gold 198, beschichtet ist. Diese Vorrichtung kann wiederum mit einer antithrombogenen Beschichtung, wie Kohlenstoff, beschichtet sein.
  • Gemäß der vorliegenden Erfindung wird ein röhrenförmiger medizinischer Stent, wie in Anspruch 1 definiert, bereitgestellt.
  • In der Erfindung wird Metall, wie in Form von Draht oder Faden oder dergleichen, zum Aufbauen der röhrenförmigen medizinischen Endoprothese verwendet. Wünschenswerte Eigenschaften dieser Drähte variieren mit der Stentanwendung, schließen aber Eigenschaften, wie Steifheit, Zugfestigkeit, Elastizität, Radiopazität, Schweißbarkeit, Biegehaltbarkeit, Leitfähigkeit usw., ein. Diese Eigenschaften sind in herkömmlichen Drähten schwer zu finden. Gemäß der Erfindung wenden die gewünschten Eigenschaften hoher Radiopazität zusammen mit Elastizität und Festigkeit durch Erzeugen eines Mehrfachmetallkoaxialaufbaus, durch Kombinieren eines strahlenundurchlässigen Metalls mit einem elastischen Metall erreicht. Ein dichtes strahlenundurchlässiges Material (z.B. Tantal) wird auf der Innenseite (Kern) bereitgestellt, weil dichte Materialien allgemein weniger elastisch sind, und das elastische Material (z.B. Titan oder Nickel-Titan-Legierung) auf der Außenseite (Mantel). Der Mantel oder die „Haut" des Drahts machen mehr Verformung beim Verbiegen durch als der Kern, also ist die elastische Komponente gut an der Haut angeordnet.
  • Die vorzugsweise zwei oder mehrere ungleichartigen Metalle werden miteinander verbunden, um ein einheitliches Element zu erzeugen. Typischerweise trägt jedes Metall eine wünschenswerte Eigenschaft zur Vorrichtung bei, welche durch die Gegenwart des anderen Metalls im Wesentlichen nicht beeinträchtigt wird. Insbesondere stellt ein Metall erhöhte Radiopazität bereit. Das Metallaußenelement weist eine vorherbestimmte Dichte und eine exponierte Außenfläche und einen Kern auf, der ein Metall einschließt, das eine größere Dichte aufweist als das Außenelement, um die Radiopazität zu erhöhen. Der Kern ist innerhalb des Außenelements befestigt und im Wesentlichen von diesem eingeschlossen. Vorzugsweise ist der Stent so aufgebaut, dass die mechanischen Eigenschaften, zum Beispiel die elastischen Eigenschaften, des Metalls, das das Außenelement bildet, durch den Kern zu einem gewünschten Grad beeinflusst werden, so dass der Stent eine gewünschte Gesamtleistung aufweist, die für seine beabsichtigte Verwendung geeignet ist. Vorzugsweise beherrschen die mechanischen Eigenschaften des Außenelements die mechanischen Eigenschaften, zum Beispiel die elastischen Eigenschaften, des Metalls, das das Außenelement bildet, durch den Kern zu einem gewünschten Grad beeinflusst werden, so dass der Stent eine gewünschte Gesamtleistung aufweist, die für seine beabsichtigte Verwendung geeignet ist. Vorzugsweise beherrschen die mechanischen Eigenschaften des Außenelements die Eigenschaften des Stents, aber die Radiopazität des Elements wird im Wesentlichen durch den dichteren Kern erhöht. Die Erfindung ermöglicht auch erhöhte Radiopazität des Stents, ohne andere wichtige Eigenschaften, wie die Bioverträglichkeit, kleine Größe oder andere Leistungseigenschaften, nachteilig zu beeinflussen und in einigen Fällen zu verbessern. Diese Leistungsvorteile können durch geeignete Auswahl des Materials des Außenelements und des Kerns, seiner relativen Grüße und geometrischen Konfiguration verwirklicht werden. Die bestimmten zu erreichenden Leistungseigenschaften sind durch die Stentanwendung vorgegeben.
  • Der Begriff „Metall", wie hier verwendet, schließt elektropositive chemische Elemente ein, die durch Duktilität, Schmiedbarkeit, Glanz und Leitfähigkeit von Wärme und Elektrizität gekennzeichnet sind, welches den Wasserstoff einer Säure ersetzen kann und mit dem Hydroxylrest Basen bildet, und schließt Gemische ein, die diese Elemente und Legierungen einschließen. Viele Beispiele sind nachstehend angegeben.
  • Die Vorrichtung der vorliegenden Erfindung ist zur Verkleinerung auf eine kleine Größe zum Einführen in das Körperlumen in der Lage und zu einer ausreichend großen Größe expandierbar, um die Wand des Körperlumens zu belegen,
  • Das Außenelement und der Kern sind so, dass die Endoprothese elastisch und zur Radialverringerung der Größe ohne plastische Verformung auf die kleine Größe zum Einführen in den Körper in der Lage ist und durch eine interne elastische Selbstrückstellkraft auf die große Größe zum Belegen der Wand des Lumens selbstexpandierbar ist.
  • Vorzugsweise wird die Vorrichtung durch Stricken des Drahts oder Fadens zu locker ineinandergreifenden Schleifen des Fadens zur röhrenförmigen Form erzeugt. Das Metall des Kerns weist eine größere Dichte auf als das Metall des Außenelements der Vorrichtung. Das Querschnittsmaß des Fadens beträgt etwa 0,006 bis etwa 0,0045 Zoll (0,11 bis 0,15 mm) und der Kern weist ein Querschnittsmaß von etwa 0,0014 bis etwa 0,00195 Zoll (0,036 bis 0,050 mm) auf. Der Kern weist eine Dichte von etwa 9,9 g/cm3 oder mehr auf. Der Kern ist ausgewählt aus der Gruppe, bestehend aus Wolfram, Tantal, Rhenium, Iridium, Silber, Gold, Bismut und Platin. Vorzugsweise ist das Außenelement ausgewählt aus superelastischen Legierungen und Vorstufen von superelastischen Legierungen und rostfreiem Stahl. Vorzugsweise ist das Außenelement Nitinol. Vorzugsweise ist der Kern Tantal.
  • In einer bevorzugten Ausführungsform der Erfindung wird eine selbstexpandierende röhrenförmige Prothesenvorrichtung zur Verwendung innerhalb des Körpers bereitgestellt, die aus locker ineinandergreifenden gestrickten Schleiften eines Metallfadenmaterials gebildet ist. Der Faden ist aus einem elastischen Metall gebildet, das zur Durchbiegung ohne plastische Verformung in der tage ist, um eine Setbstrückstellkraft zu erzeugen.
  • Das Fadenmaterial ist aus einem elastischen Metallaußenelement ausgedehnter Länge mit hoher Elastizität und einer exponierten Außenfläche und einem Kern aus einem anderen Metalls als dem Außenelement gebildet, wobei der Kern innerhalb des Außenelements befestigt und im Wesentlichen von diesem eingeschlossen ist. Die Vorrichtung ist zur Verkleinerung auf eine kleine Größe zur Einführung in das Körperlumen in der Lage und durch die interne Rückstellkraft auf eine ausreichend große Größe expandierbar, um die Wand des Körperlumens zu belegen.
  • Verschiedene bevorzugte Ausführungsformen dieses Gesichtspunkts sowie andere Gesichtspunkte können die schon erwähnten Merkmale sowie eins oder mehrere der folgenden Merkmale einschließen. Der Kern ist etwa 25% oder mehr des Querschnittsmaßes. Der Kern ist zwischen etwa 1 und 40%, z.B. etwa 28% oder weniger, vorzugsweise 33% des Querschnittsmaßes. Der Kern weist ein Elastizitätsmodul von etwa 500 GPa oder kleiner, wie etwa 200 GPa oder kleiner, auf.
  • Die medizinische Stentvorrichtung ist zur Anordnung oder Handhabung im Körper durch Mittel außerhalb des Körpers unter Anleitung eines Fluoroskops in der Lage. Die Vorrichtung ist mindestens teilweise ein verlängertes fadenförmiges Metallelement, das so gestaltet ist, dass es sich elastisch verformt, damit die Vorrichtung in einem Gebrauchsstadium in eine charakteristische Verformungskonfiguration gezwungen wird und sich selbsttätig elastisch aus der Verformung zurückstellen kann, wenn die Verformungskräfte weggenommen werden. Das fadenförmige Metallelement schließt einen Kern eines ersten Metalls einer ersten ausgewählten Dicke und eine innig umgebende Hülle eines zweiten ausgewählten Metalls einer zweiten picke ein. Das erste Metall ist ein Metall hoher Dichte, das eine charakteristische verhältnismäßig hohe Radiopazität zeigt, und das zweite Metall ist ein Metall geringerer Dichte, das im Wesentlichen mehr Elastizität als das erste Metall aufweist. Der kombinierte Effekt der ausgewählten Dicken des ersten und des zweiten Metalls im fadenförmigen Element erhöht die Radio-Opazität des fadenförmigen Elements, wobei verbesserte Visualisierung durch Fluoroskopie oder Röntgenstrahlen des fadenförmigen Elements im Körper während des Verleihens ausreichender Elastizität bereitgestellt wird, damit das fadenförmige Element sich selbsttätig elastisch aus seiner charakteristischen Verformungskonfiguration zurückstellen kann.
  • Das Metallelement der röhrenförmigen Endoprothese besteht aus mindestens zwei verschiedenen Metallen, die ein exponiertes äußeres Metall mit ausgewählten mechanischen Eigenschaften und ein inneres Metall einschließen, das innerhalb des äußeren Metalls umgeben ist, wobei das innere Metall eine verhältnismäßig hohe Dichte aufweist, verglichen mit dem äußeren Metall, zum Erhöhen der Radiopazität der Endoprothese.
  • In verschiedenen bevorzugten Ausführungsformen von einem der Gesichtspunkte der Erfindung wird der Faden durch Ziehform-Techniken erzeugt, die ein großes Anfangselement verwenden, welches einen Metallkern verschiedener Eigenschaften als eine umgebende Metallhülle aufweist.
  • Noch andere Ausführungsformen der Erfindung werden aus der folgenden Beschreibung und aus den Patentansprüchen selbstverständlich.
  • Beschreibung der bevorzugten Ausfuhrungsform(en)
  • Wir beschreiben zuerst kurz die Zeichnungen.
  • Zeichnungen
  • 1 ist eine perspektivische Darstellung von einem Stent gemäß der Erfindung, während 1a eine vergrößerte Darstellung von benachbarten Schleifen eines Fadens ist, der gestrickt ist, um den Stent zu bilden;
  • 2 ist eine stark vergrößerte schematische Querschnittsansicht des Stentfadens in 1a über die Linien 22; während 2a eine ähnlich vergrößerte Längsquerschnittsansicht eines Teils des Fadens ist;
  • 3 ist eine schematische Längsquerschnittsansicht eines Stentfadens gemäß 2 in einer gebogenen Konfiguration;
  • die 4 bis 4b veranschaulichen die Anordnung eines selbstexpandierenden Stents gemäß der Erfindung;
  • die 5 bis 5b veranschaulichen die Anordnung eines plastisch verformbaren Stents;
  • 6 ist ein Diagramm der Belastung als Funktion des Verstellung für mehrere Stentdrähte gemäß der Erfindung.
  • Beschreibung
  • Bezugnehmend auf die 1 und 1a, ist ein Endoprothesestent 10 gemäß einer bevorzugten Ausführungsform zur Verwendung im Gallenbaum gestaltet und aus einem elastischen Faden 11 gebildet, der zu einem Netzzylinder 12 gestrickt wird, der sich zu den Enden 14, 14' koaxial entlang der Achse 13 über eine Arbeitslänge L etwa 4–6 cm erstreckt, und einen maximalen expandierten Durchmesser, D, von etwa 9–10 mm aufweist. Das Stricken bildet eine Reihe von locker ineinandergreifenden gestrickten Schleifen (z.B. wie durch benachbarte Schleifen 16, 16' angezeigt, 1a), welche bezüglich zueinander gleiten können, wenn sich der Stent radial im kompakten Zustand befindet, zum Beispiel wenn er auf einem Katheter, wie nachstehend weiter besprochen, in den Gallengang befördert wird.
  • Bezugnehmend auf die 2 und 2a, ist der Faden 11 ein drahtförmiges Element, das ein Längsaußenelement 4 einschließt, das konzentrisch um einen Mittelkern 8 angeordnet ist, welcher sich entlang der Achse 6 erstreckt. Das Längselement 4, das einen Außendurchmesser, d0, von etwa 0,0052 Zoll(0,13 mm) aufweist, ist aus einem Metall, wie Nitinol, gebildet, das wünschenswerte Eigenschaften, wie hohe Elastizität und Bioverträglichkeit seiner exponierten Außenfläche 7, zeigt. (Die Oberfläche 7 kann eine Nichtmetallbeschichtung aus z.B. Fluorkohlenstoffen, Silikonen, hydrophilen und schmiermittelähnlichen bioverträglichen Materialien einschließen). Der Kern 8 mit einem Durchmesser, dc, von etwa 0,00175 Zoll (0,044 mm), schließt ein Metall, wie Tantal, mit einer Dichte ein, die großer ist, als die des Längselements 4, um die Radiopazität des Fadens und folglich des Stents, aus welchem er gebildet ist, zu erhöhen. Der Kern 8 ist verbunden mit und im Wesentlichen eingeschlossen vom Außenelement 4, so dass der Kern keine erhebliche exponierte Oberfläche aufweist und deshalb das Körpergewebe nicht berührt, wenn er während der Verwendung innerhalb des Körpers angeordnet wird. Wie veranschaulicht, ist der Kern 8 vorzugsweise ein kontinuierliches massives Element in innigem Kontakt mit und verbunden mit den Innenteilen des Außenelements 4, ohne erhebliche Lücken in der Grenzfläche 10 zwischen dem Kern und dem Außenelement zu erzeugen. Vorzugsweise werden die elastischen Eigenschaften des Fadens 11 durch die elastischen Eigenschaften des Längselements 4 beherrscht. Das Kernmaterial 8 erhöht die Radiopazität des Fadens 11, beeinflusst aber vorzugsweise im Wesentlichen nicht die mechanische Leistung des Fadens. Ein Gesichtspunkt der vorliegenden Erfindung ist, dass herausgefunden worden ist, dass ein Stent aus einem Verbundstofffaden gebildet sein kann, der im Wesentlichen die Elastizitätseigenschaften von zum Beispiel einem massiven elastischen (verwendet im linearen Bereich) oder superelastischen Nitinolfaden (um zum Beispiel einen selbstexpandierenden Stent zu erzeugen) trotz der Gegenwart eines dichten, z.B. Tantal, Kerns zeigt, und dass der Stent, der aus dem Verbundstofffaden gebildet ist, strahlenundurchlässiger ist als ein Stent, der aus einem massiven Nitinolfaden gebildet ist.
  • Bezugnehmend auf 3, ist der Faden 11 in einer gebogenen Anordnung gezeigt, wie es sein kann, wenn er zum Beispiel in einer gestrickten Stentvorrichtung verwendet wird. Der Innen- und der Außenteil (I) beziehungsweise (O) erfahren einten breiten Bereich von Kompression und Spannung, wenn der Faden gebogen wird, wie während des Strickens des Stents und während der Anordnung des Stents und bei Verwendung. Ein Vorteil des Fadens ist, dass durch Anordnung des strahlenundurchlässigen Kernmaterials 8 nahe der Achse 6 der Bereich der Spannung und Kompression, die dem Kern auferlegt werden, verhältnismäßig klein ist, und eine weite Breite von steifen, dichten, massiven und/oder im Wesentlichen strahlenundurchlässigen Materialien kann verwendet werden, welche für ihre Antwort auf Verbiegen oder andere Eigenschaften sonst nicht geeignet sein könnten.
  • Parameterauswahl
  • Allgemein beruhen die Eigenschaften des Fadens und folglich die Auswahl des Außenelement- und des Kemmetalls auf der Stentanwendung. Besonders bevorzugte Verwendungen von Stents der Erfindung sind für den Gallenbaum (z.B. 8–12 mm Durchmesser, 2–8 cm Länge), wie dem Ductus hepaticus und pancreaticus (z.B. 412 mm Durchmesser), den Harntrakt, der die Prostata und die Urethra (z.B. 14–15 mm Durchmesser, 3–4 cm Länge) und den Ureter (z.B. 3–4 mm Durchmesser) einschließt, und das Gefäßsystem, das das Lebergefäßsystem z.B. zur Behandlung von Pfortaderhochdruck (z.B. 4–10 mm Durchmesser, 5–6 cm Länge), das Neurogefäßsystem (z.B. 1 mm Durchmesser) und die Aorta (z.B. 20 mm Durchmesser) zum Beispiel zur Behandlung von Aneurysmen oder Verletzungen einschließt. Ein Faden mit einem größeren Außendurchmesser, d0, kann für größere Stents verwendet werden. Zum Beispiel kann ein Fadenaußendurchmesser, d0, im Bereich von 0,008 Zoll (0,2 mm) im Fall eines Aortenstents verwendet werden.
  • Vorzugsweise ist das Maß des Kerns (dc) weniger als etwa 50% (aber typischerweise mehr als etwa 1%) des Außendurchmessers des Fadens, stärker bevorzugt zwischen etwa 40% und 25%, zum Beispiel etwa 33%. Ausführungsformen des Stents mit erhöhter Radiopazität sind besonders in den Anwendungen brauchbar, bei denen der Stent eine kleine Große aufweisen muss, zum Beispiel einen Stentdrahtaußendurchmesser (d0) von kleiner als etwa 0,015 Zoll (0,38 mm), z.B. sogar weniger als 0,0075 Zoll (0,19 mm), und für welche für vorteilhafte elastische Eigenschaften weniger dichte Metalle erforderlich sind. Zum Beispiel ist in einer anderen bevorzugten Ausführungsform der Faden aus Nitinol mit einem Außendurchmesser, d0, von etwa 0,006 Zoll (0,15 mm) und der Kern aus Tantal mit einem Durchmesser, d0, von etwa 0,002 Zoll (0,05 mm) gebildet.
  • Bezugnehmend auf die 4 bis 4b, ist in Ausführungsformen, wie denen, die in Bezug auf die 1 und 1a diskutiert wurden, der Stent 10 ein selbstexpandierender Stent, der in ein Körperlumen 20, wie dem Gallenbaum, eingeführt werden kann. Der Stent 10 wird auf einem Katheter 24 angeordnet, welcher eine Hülse 26 einschließt, um den Stent 10 in einer verhältnismäßig kompakten Form aufrechtzuerhalten (4). Dieses wird typischerweise durch Aufrollen des Stents auf sich selbst und auf ein Paar kleine Dorne, die einen Teil der Wand des Stents klemmen und die körperlich zusammen gedreht werden, bis der volle Umfang des Stents in der so erhaltenen aufgerollten Form aufgenommen war, erreicht. In anderen Fällen kann der Stent koaxial auf dem Katheter angeordnet sein. Der Katheter wird innerhalb des Lumens an der Region angeordnet, die einem Tumor 22 entspricht, und die Hülse 26 um den Stent 10 wird zum Beispiel durch axiales Herausziehen in Richtung von Pfeil 28 entfernt, wobei folglich bewirkt wird, dass der Stent 10 durch Freisetzung seiner inneren Rückstellkraft (4a) radial expandiert. Die innere Rückstellkraft ist ausreichend, um das Lumen 20 durch radiales Nachaußendrücken des Tumorwachstums 22 (oder in einigen Fällen durch Drücken der Okklusion gegen die Lumenwand) zu weiten, wobei folglich ein Durchgang geöffnet wird, der ungehindertes Fließen durch das Lumen ermöglicht, und das Entfernen des Katheters 24 ermöglicht wird (4b). In einer anderen Ausführungsform kann der Stent in einem Röhrchen mit einer distalen axialen Öffnung zusammengedrückt sein und aus dem Ende des Röhrchens geschoben werden, wodurch er selbstexpandiert.
  • Bezugnehmend nun auf die 5 bis 5b, die keine Ausführungsform der Erfindung zeigen, kann der Stent auch eine plastisch verformbare röhrchen-ähnliche gestrickte Struktur 50 aufweisen. Die einzelnen Fadennetze greifen in einem Schleifenmuster locker ineinander und während der Radialexpansion der gestrickten Struktur werden die Schleifen, die die einzelnen Netze bilden, über die elastischen Grenzen des Fadens hinaus verformt, was plastische Verformung des Fadens zur Folge hat. Der Stent 50 wird auf einem Ballon 51 angeordnet, der nahe dem distalen Ende eines Katheters 52 getragen wird. Der Katheter 52 wird durch ein Lumen 54, z.B. ein Blutgefäß, geführt, bis der Teil, der den Ballon und Stent trägt, die Region der Okklusion 53 erreicht (5). Der Stent 50 wird dann durch Einlassen von Druck in den Ballon 51 über seine elastische Grenze hinaus radial expandiert und gegen die Gefäßwand gedrückt, wobei das Ergebnis war, dass die Okklusion 53 zusammengedrückt wird, und die ihn umgebende Gefäßwand macht eine Radialexpansion durch (5a). Der Druck wird dann aus dem Ballon freigegeben, und der Katheter wird aus dem Gefäß herausgezogen (5b).
  • Der Stent in der Ballon-expandierbaren Ausführungsform ist vorzugsweise mit einem dichten strahlenundurchlässigen Kern, der aus Tantal gebildet ist, und einem Außenelement gebildet, das aus plastisch verformbarem rostfreiem Stahl gebildet ist. Während der Stentfaden plastisch verformbar ist, kann der Faden so ausgewählt sein, dass er Elastizität aufweist, die ausreicht, um die Bedürfnisse des bestimmten Gefäßes zu befriedigen Außerdem können selbstexpandierende Stents, wie vorstehend bezüglich der 4 und folgende besprochen, mit einem Ballonzuführsystem verwendet werden, um die Erweiterung eines Körperlumens zu unterstützen.
  • In verschiedenen Ausführungsformen sind die Metalle, die im Faden verwendet werden, und ihre Konfiguration so ausgewählt, dass sie verschiedene wünschenswerte Eigenschaften zeigen. Zum Beispiel können das relative Maß des Kerns und des Außenelements und die bestimmten Materialien, die für diese Elemente verwendet wurden, ausgewählt sein, beruhend auf den gewünschten mechanischen Gesamteigenschaften des Stents und dem Grad, zu welchem Röntgenstrahlensichtbarkeit zu erhöhen ist, weil der Kern die mechanischen Eigenschaften des Fadens beeinflusst, verglichen mit einem massiven Faden, der aus dem Außenmaterial gebildet ist, und die Radiopazität eine Funktion der Summe der Masse zwischen einer Röntgenstrahlquelle und einem Detektor ist. In gestrickter Stent mit überlappenden Teilen, kann weniger strahlenundurchlässiges Material erfordern, um ausreichende Sichtbarkeit bereitzustellen. Ähnlich kann die Stelle der Verwendung im Körper die Menge des dichten Materials beeinflussen, die für ausreichende Sichtbarkeit benötigt wird. Die Sichtbarkeit einer Vorrichtung kann durch bekannte Verfahren, wie der ASTM-Bezeichnung F640-79 „Standard Test Method for Radiopacity of Plastics for Medical Use", getestet werden. In diesem Test werden die Hintergrunddichten, welche klinisch angetroffen werden, durch eine Aluminiumplatte nachgeahmt, die über dem Stent angeordnet ist, und verschiedene Dicken aufweist.
  • Die Eigenschaften des Außenelementmetalls und des Kerns, welche in Betracht gezogen werden können, schließen die Dichte, den Elastizitätsmodul (in geglühten und gehärteten Zuständen), Bioverträglichkeit (in erster Linie ein Faktor für das Material des Außenlängselements), Biegesteifheit, Haltbarkeit, Zug- und Druckfestigkeit und die erforderliche Radiopazität und Auflösung ein. In einigen Fällen, wenn wünschenswert, können die Innen- und Außenmetalle dasselbe Metall oder Metalle derselben Elementarzusammensetzung sein, die z.B. wegen verschiedener Kristallstruktur oder anderer Eigenschaften verschiedene Metalle sind.
  • In anderen Ausführungsformen von elastischen Fadenelementen ist das Außenelement aus einer kontinuierlichen massiven Masse eines hochelastischen bioverträglichen Metalls, wie einer superelastischen oder pseudo-elastischen Metalllegierung, zum Beispiel einem Nitinol (z.B., 55% Nickel, 45% Titan), gebildet Andere Beispiele von superelastischen Materialien schließen z.B. Silber-Cadmium (Ag-Cd), Gold-Cadmium (Au-Cd), Gold-Kupfer-Zink (Au-Cu-Zn), Kuper-Aluminium-Nickel (Cu-Al-Ni), Kupfer-Gold-Zink (Cu-Au-Zn), Kupfer-Zink (Cu-Zn), Kupfer-Zink Aluminium (Cu-Zn-Al), Kupfer-Zink Zinn (Cu-Zn-Sn), Kupfer-Zink Xenon (Cu-Zn-Xe), Eisen-Beryllium (Fe3Be), Eisen-Platin (Fe3Pt), Indium-Thallium (In-Tl), Eisen-Mangan (Fe-Mn), Nickel-Titanium-Vanadium (Ni-Tr-V), Eisen-Nickel-Titan-Kobalt (Fe-Ni-Ti-Co) und Kupfer-Zinn (Cu-Sn) ein (siehe Schetsky, L. McDonald, „Shape Memory Alloys", Encyclopedia of Chemical Technology (3. Aufl.), John Wiley & Sons, 1982, Bd. 20, S. 726-736 für eine vollständige Diskussion über superelastische Legierungen). Vorzugsweise in einigen Fällen von elastischen Fadenelementen wird Nitinol oder ein anderes hochelastisches Metall als Außenelement in einer Anordnung verwendet, in weicher es nie über den geradlinigen Teil seiner Belastungkurve hinaus belastet wird. Andere Beispiele von Metallen, die für das Außenelement geeignet sind, schließen rostfreien Stahl oder die Vorstufe von superelastischen Legierungen ein. Vorstufen von superelastischen Legierungen sind solche Legierungen, welche dieselben chemischen Bestandteile wie superelastische Legierungen aufweisen, aber nicht verarbeitet worden sind, um die superelastische. Eigenschaft unter den Bedingungen der Verwendung zu verleihen. Derartige Legierungen sind ferner beschrieben in der miteigentürnlichen und gleichzeitig anhängigen US-Patentanmeldung mit der Seriennummer 07/507 375, eingereicht am 10. April 1990, von R. Sahatjian (siehe auch PCT Anmeldung US91/02420).
  • Das Kernmaterial ist vorzugsweise eine kontinuierliche massive Masse, kann aber auch in Pulverform vorliegen. Typischerweise schließt der Kern ein Metall ein, das verhältnismäßig dicht ist, um die Radiopazität zu erhöhen. Das Kernmetall weist eine Dichte von etwa 9,9 g/cm3 oder mehr auf. Vorzugsweise ist der Kern aus Tantal (Dichte = 16.6 g/cm3) gebildet. Andere Materialien und ihre Dichte schließen Wolfram (19,3 g/cm3), Rhenium (21,2 g/cm3), Bismut (9,9 g/cm3), Silber (16,49 g/cm3), Gold (19,3 g/cm3), Platin (21,45 g/cm3) und Iridium (22,4 g/cm3) ein. Der Kern ist etwas steifer als das Außenelement. Vorzugsweise weist das Kernmetall ein niedriges Elastizitätsmodul, z.B. vorzugsweise unter etwa 550 GPa, z.B. wie Tantal (186 GPa), auf. Allgemein hat ein kleinerer Unterschied zwischen dem Elastizitätsmodul zwischen dem Außenelement und dem Kern eine kleinere Veränderung des Moduls von dem des Außenelements im Faden der Erfindung zur Folge. Für größere Unterschiede kann ein kleinerer Kern verwendet werden, um einen Faden herzustellen, in welchem die elastischen Eigenschaften durch das Außenelement vorherrschen.
  • Das Außenelement und der Kern können in vielen geometrischen Querschnittskonfigurationen, wie kreisförmig, quadratisch, dreieckig, sechseckig, achteckig, trapezförmig, vorliegen, und die geometrische Konfiguration des Kerns kann sich von der des Längselements unterscheiden. Zum Beispiel kann das Außenelement eines Fadens rechteckig im Querschnitt mit einem rechteckigen Kern sein, oder dreieckig oder sechseckig im Querschnitt mit einem kreisförmigen Kern sein. Ein Stentfaden kann auch die Form eines Röhrchens annehmen, wobei sich ein Lumen innerhalb des Kerns entlang der Achse erstreckt. Ein Stentfaden kann auch aufeinanderfolgende Schichten von weniger dichtem Außenmaterial und dichterem Kernmaterial einschließen, um ein Mehrfachverbundstoffsystem von drei Schichten oder mehr von außen nach innen zu erzeugen. Der Kern kann sich entlang der Achse in einem gewünschten Muster intermittierend erstrecken.
  • Der Faden kann ein Ziehformelement sein, das zum Beispiel durch Ausbohren der Mitte einer verhältnismäßig großen Stange des Außenelementmaterials, um eine Bohrung zu erzeugen, Anordnen einer Stange des Kernmaterials in der Bohrung Abdichten der Enden der Bohrung z.B. durch Sicken, und Ziehen der Form durch eine Reihe von Düsen abnehmenden Durchmessers, bis der gewünschte Außendurchmesser erreicht ist, erzeugt wird. Die Komponente kann wärmebehandelt sein, um superelastische Eigenschaften zu glühen, zu härten oder zu verleihen. Andere Verfahren der Erzeugung sind auch möglich, z.B. durch Beschichten des Kerns mit dem gewünschten Außenelement, wie durch Elektroplattieren oder stromloses Plattieren. Die im Außenelement und Kern verwendeten Materialien sind auch, bezogen auf ihre Verarbeitbarkeit zum Erzeugen des Fadens, einschließlich Faktoren, wie Verarbeitungsfähigkeit, zum Erzeugen des Längselements zu einem röhrenförmigen Stück und des Kernelements zu einem stangenförmigen Stück, Stabilität in gasförmigen Umgebungen bei Glühtemperaturen, Eigenschaften, die sich auf das Ziehen, Schweißen, Schmieden, Hämmern beziehen, die Fähigkeit, Schichten, wie Klebstoffe, Polymere, Gleitmittel, anzunehmen, und in praktischen Gesichtspunkten, wie Kosten und Verfügbarkeit, ausgewählt.
  • Wie aus dem Vorstehenden ersichtlich ist, werden die Stents der Erfindung vorzugsweise durch Siricken eines Fadens, am meisten bevorzugt auf einer Rundstrickmaschine aufgebaut. Gestrickte Metallstents werden z.B. in Strecker, US-Patent Nr. 4,922,905 diskutiert. Es ist ersichtlich, dass der Stent aus einem Verbundstoffmetallfaden durch andere Mittel, wie Spinnen, Häkeln oder Formen des Fadens zu einem spiralfederförmigen Element, gebildet werden kann. Es ist ferner ersichtlich, dass der Verbundstofffaden innerhalb eines Stents, der aus einem herkömmlichen Metall oder aus Nichtmetallmaterialien (z.B. Dacron im Fall eines Aortentransplantats) gebildet sein kann, eingebracht sein kann, um wünschenswerte Eigenschaften, wie Festigkeit und/oder Radiopazität, beizutragen.
  • Das folgende Beispiel veranschaulicht einen Stentfaden.
  • Beispiel
  • Ein elastischer, strahlenundurchlässiger Faden zur Verwendung in einem Stent kann wie folgt gebildet werden. Ein 500 Fuß (etwa 150 m) langer faden (0,0052 Zoll (0,13 mm) im Durchmesser) mit einem Außenelement, das aus einer Vorstufe einer superelastischen Nitinol-Legierung (55% Ni/45% Ti) gebildet wird, und einem Kernmaterial aus Tantal (0,00175 Zoll (0,04 mm) im Durchmesser) wird durch Bohren einer Bohrung mit einem Durchmesser von 0,25-Zoll (6,4 mm) in eine 0,75 Zoll (19 mm)-Stange des Außenelementmaterials und Bereitstellen eines Tantalelements von im Wesentlichen passendem Außendurchmesser im gebohrten Lumen. Die Stange wird in einem Standardwarmschmiede- und -walzgerät mechanisch geschmiedet, dann gehämmert, so dass keine wesentlichen Lücken zwischen Kern und Außenlängselement vorliegen. Ein Ende der Stange wird abgedichtet, und das entgegengesetzte Ende wird längs durch ein Düse zum Enddurchmesser kaltgezogen. Anfangs ist das Außenelement des Fadens die Vorstufe einer superelastischen Legierung, d.h. es ist noch nicht wärmebehandelt worden, um die superelastische Eigenschaft unter den voraussichtlichen Gebrauchsbedingungen zu verleihen.
  • Bezugnehmend auf 6, sind Kurven von Belastung gegen Verstellung veranschaulicht (zur Klarheit sind die Kurven C, D und A hintereinander um 0,025 Zoll (0,64 mm) auf der x-Achse versetzt). Die Kurve A veranschaulicht den Faden, wie im vorstehenden Punkt diskutiert, vor dem Hitzeglühen, weiches die superelastische Eigenschaft induziert; der Faden zeigt im Wesentlichen lineare elastische Verformung als Funktion der Spannung bis zu einem Bruchpunkt z. Die Kurven B, C, D veranschaulichen Spannungs/Dehnungs-Kurven nach 3 Minuten langem, 5 Minuten langem beziehungsweise 15 Minuten langem Glühen des Fadens bei 460°C. Wie diese Kurven veranschaulichen, wird trotz des Vorhandenseins des Tantalkerns die superelastische Natur des Fadens im Wesentlichen bewahrt, wie durch die beträchtlichen Plateaus (p) auf der Spannungs/Dehnungs-Kurve ersichtlich wird. Wie auch veranschaulicht, nimmt die Spannung, bei welcher konstante Verstellung auftritt, mit Zunahme des Glühens ab, wie es bei einem superelastischen Material erwartet wenden würde. Die mechanischen Eigenschaften des Drahtes werden deshalb trotz des Vorhandenseins des Tantalkerns durch die Nitinollegierung beherrscht.
  • Bezugnehmend auf Tabelle I, werden der Elastizitätsmodul und die Plateau-Spannung, die, bezogen auf die Spannungs-Dehnungs-Messungen, berechnet wurden, wie vorstehend, für die Fäden der Erfindung und einen massiven Faden aus einer Ni-Ti-Legierung verglichen.
  • Tabelle 1
    Figure 00140001
  • Wie die Ergebnisse in Tabelle I veranschaulichen, wurde der Elastizitätsmodul der Fäden der Erfindung weniger als 30% variiert, verglichen mit dem massiven Ni-Ti-Faden. Die Plateau-Spannung der Fäden der Erfindung unter Verwendung eines superelastischen Außenelements wurde weniger als etwa 10% variiert, verglichen mit einem massiven superelastischen Ni-Ti-Faden. Der, wie beschrieben, gebildete Verbundstofffaden zeigt etwa 30% oder mehr erhöhte Röntgenstrahlsichtbarkeit gegenüber einem Faden derselben Dicke, der aus massivem Material gebildet wurde.
  • Es ist selbstverständlich, dass derartige Fäden sowohl in den Fällen verwendet werden können, in denen die superelastische Eigenschaft verwendet wird, als auch in den Fällen, in denen sie nicht verwendet wird (alle Spannung innerhalb des geradlinigen Teils der Spannungs-Dehnungs-Kurve).
  • Die Sichtbarkeit eines gestrickten Stents, der aus dem Faden gebildet wurde, war größer als ein Vergleichsstent unter Verwendung eines massiven Nitinolfadens eines größeren Durchmessers (0,006 Zoll(0,015 cm)), aber unter Verwendung des Stents der Erfindung war die Kraft, die zur Radialkompression des Stents erforderlich war, verringert, verglichen mit dem Stent, der aus dickerem Nitinolfaden gebildet ist. Folglich war die Radiopazität des Stents erhöht, während die mechanischen Eigenschaften durch das Außenelement, Nitinol, beherrscht wurden. Die Anordnung des Stents, wie vorstehend beschrieben, kann durch Röntgenstrahlfluoroskopie überwacht werden.
  • Vorzugsweise weisen Fäden, wie beschrieben, die durch die mechanischen Eigenschaften eines Außenelements, wie Nitinol, beherrscht werden und allgemein zufriedenste ende Radiopazität zeigen, Außendurchmesser (do) von etwa 0,008 bis 0,0045 Zoll (0,91 bis 0,2 mm) mit einem Kern, z.B. aus Tantal, mit einem Durchmesser (dc) von etwa 0,0014 bis 0,00195 Zoll(0,036 bis 0,050 mm) auf.
  • 2–2
    Linie
    4
    Längsaußenelement; Längselement; Außenelement
    6
    Achse
    7
    Außenfläche; Oberfläche
    8
    Mittelkern; Kern; Kernmaterial
    10
    Endoprothese; Stent, Endoprothesestent; Grenzfläche
    11
    elastischer Faden; Faden
    12
    Netzzylinder
    13
    Achse
    14, 14'
    Ende des Netzzylinders 12
    16, 16'
    benachbarte Schleifen
    20
    Körperlumen; Lumen
    22
    Tumor, Tumorwachstum
    24
    Katheter
    26
    Hülse
    28
    Pfeil
    50
    Stent; plastisch verformbare röhrchen-ähnliche gestrickte Struktur
    51
    Ballon
    52
    Katheter
    53
    Okklusion
    54
    Lumen
    A
    Kurve des Fadens vor dem Hitzeglühen
    B
    Spannungs-Dehnungs-Kurve
    C
    Spannungs-Dehnungs-Kurve
    D
    Spannungs-Dehnungs-Kurve (6)
    D
    Durchmesser
    I
    Innenteil
    L
    Arbeitslänge
    O
    Außenteil
    P
    Plateau der Spannungs-Dehnungs-Kurve
    Z
    Bruchpunkt
    dc
    Durchmesser der Kerns
    do
    Außendurchmesser des Stents

Claims (15)

  1. Röhrenförmiger medizinischer Stent aus einem Metalldraht, bestehend aus einem Kern (8) und einer Hülle (4), die den Kern (8) innig umgibt, wobei der Kern (8) aus einem ersten Metall und die Hülle (4) aus einem zweiten Metall gebildet ist, wobei der Stent so gestaltet ist, dass er sich elastisch verformt, damit die Vorrichtung in einem Gebrauchsstadium in eine charakteristische Verformungskonfiguration gezwungen werden und sich selbsttätig elastisch aus der Verformung zurückstellen kann, wenn die Verformungskräfte weggenommen werden, wobei das erste Metall eine erste gewählte Dicke und das zweite Metall eine zweite gewählte Dicke haben, so dass der kombinierte Effekt der gewählten Dicken die Radiopazität des Stents erhöht, dadurch gekennzeichnet, dass das erste Metall eine höhere Dichte hat als das zweite Metall, und dadurch, dass das zweite Metall eine größere Elastizität hat als das erste Metall, wobei das erste Metall eine Dichte von wenigstens etwa 9900 kg/m3 (9,9 g/cm3) hat und ausgewählt ist aus der Gruppe bestehend aus Wolfram, Tantal, Rhenium, Iridium, Silber, Gold, Wismut und Platin, wobei der Draht ein transversales Querschnittsmaß von etwa 0,11 bis 0,15 mm (0,0045 bis 0,006 Zoll) und der Kern (8) ein transversales Querschnittsmaß von etwa 0,036 bis 0,050 mm (0,0014 bis 0,00195 Zoll) hat.
  2. Stent nach Anspruch 1, dadurch gekennzeichnet, dass der Metalldraht (11) durch Ziehformen hergestellt wird.
  3. Stent nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass das zweite Metall ausgewählt ist aus der Gruppe bestehend aus Edelstahl, superelastischen Legierungen und Vorläufern von superelastischen Legierungen.
  4. Stent nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Stent durch Stricken, Weben oder Häkeln des Drahtes (11) gebildet ist.
  5. Stent nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das erste Metall Tantal ist.
  6. Stent nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das zweite Metall Nitinol ist.
  7. Stent nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Kern (8) einen Durchmesser hat, der größer als etwa 1% des Gesamtdurchmessers des Drahtes (11) ist.
  8. Stent nach Anspruch i, dadurch gekennzeichnet, dass der Kern (8) einen Durchmesser hat, der etwa 50% oder weniger des Gesamtdurchmessers des Drahtes (11) beträgt.
  9. Stent nach Anspruch 8, dadurch gekennzeichnet, dass der Kern (8) einen Durchmesser hat, der etwa 1 bis 40% des Gesamtdurchmessers des Drahtes (11) beträgt.
  10. Stent nach Anspruch 9, dadurch gekennzeichnet, dass der Kern (8) einen Durchmesser hat, der etwa 25 bis 40% des Gesamtdurchmessers des Drahtes (11) beträgt.
  11. Stent nach Anspruch 10, dadurch gekennzeichnet, dass der Kern (8) etwa 33% des Gesamtdurchmessers des Drahtes (11) beträgt.
  12. Stent nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das erste Metall ein Elastizitätsmodul von höchstens etwa 500 GPa hat.
  13. Stent nach Anspruch 11, dadurch gekennzeichnet, dass das erste Metall ein Elastizitätsmodul von höchstens etwa 200 GPa hat.
  14. Stent nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Stent eine Länge im Bereich von etwa 2 bis 8 cm hat.
  15. Stent nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Stent eine Länge im Bereich von etwa 4 bis 12 mm hat.
DE69333513T 1992-03-31 1993-03-30 Rohrförmige, medizinische endoprothese Expired - Lifetime DE69333513T2 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US86125392A 1992-03-31 1992-03-31
US861253 1992-03-31
US91063192A 1992-07-08 1992-07-08
US910631 1992-07-08
PCT/US1993/002970 WO1993019804A1 (en) 1992-03-31 1993-03-30 Tubular medical endoprostheses

Publications (2)

Publication Number Publication Date
DE69333513D1 DE69333513D1 (de) 2004-06-17
DE69333513T2 true DE69333513T2 (de) 2005-04-07

Family

ID=27127619

Family Applications (3)

Application Number Title Priority Date Filing Date
DE69332950T Expired - Lifetime DE69332950T2 (de) 1992-03-31 1993-03-29 Blutgefässfilter
DE69333513T Expired - Lifetime DE69333513T2 (de) 1992-03-31 1993-03-30 Rohrförmige, medizinische endoprothese
DE69334302T Expired - Lifetime DE69334302D1 (de) 1992-03-31 1993-03-30 Rohrförmige, medizinische Prothesen

Family Applications Before (1)

Application Number Title Priority Date Filing Date
DE69332950T Expired - Lifetime DE69332950T2 (de) 1992-03-31 1993-03-29 Blutgefässfilter

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE69334302T Expired - Lifetime DE69334302D1 (de) 1992-03-31 1993-03-30 Rohrförmige, medizinische Prothesen

Country Status (5)

Country Link
US (3) US5725570A (de)
EP (3) EP0633798B1 (de)
JP (2) JPH07505316A (de)
DE (3) DE69332950T2 (de)
WO (2) WO1993019803A1 (de)

Families Citing this family (489)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366504A (en) * 1992-05-20 1994-11-22 Boston Scientific Corporation Tubular medical prosthesis
US6497709B1 (en) 1992-03-31 2002-12-24 Boston Scientific Corporation Metal medical device
US7101392B2 (en) * 1992-03-31 2006-09-05 Boston Scientific Corporation Tubular medical endoprostheses
JPH07505316A (ja) 1992-03-31 1995-06-15 ボストン サイエンティフィック コーポレーション 医療用ワイヤ
US5630840A (en) 1993-01-19 1997-05-20 Schneider (Usa) Inc Clad composite stent
CA2152594C (en) * 1993-01-19 1998-12-01 David W. Mayer Clad composite stent
US20050059889A1 (en) * 1996-10-16 2005-03-17 Schneider (Usa) Inc., A Minnesota Corporation Clad composite stent
US6039749A (en) 1994-02-10 2000-03-21 Endovascular Systems, Inc. Method and apparatus for deploying non-circular stents and graftstent complexes
CA2188429C (en) * 1994-05-09 2000-10-31 David W. Mayer Clad composite stent
JPH10504738A (ja) 1994-07-08 1998-05-12 マイクロベナ コーポレイション 医療装置の形成方法及び脈管塞栓装置
JPH10508504A (ja) * 1994-09-16 1998-08-25 バイオプシス メディカル インコーポレイテッド 組織を特定しおよびマーキングする方法および装置
US5709704A (en) 1994-11-30 1998-01-20 Boston Scientific Corporation Blood clot filtering
US5630829A (en) * 1994-12-09 1997-05-20 Intervascular, Inc. High hoop strength intraluminal stent
JPH09215753A (ja) * 1996-02-08 1997-08-19 Schneider Usa Inc チタン合金製自己拡張型ステント
IL117472A0 (en) 1996-03-13 1996-07-23 Instent Israel Ltd Radiopaque stent markers
US6334871B1 (en) 1996-03-13 2002-01-01 Medtronic, Inc. Radiopaque stent markers
US6042578A (en) 1996-05-13 2000-03-28 Schneider (Usa) Inc. Catheter reinforcing braids
US6027528A (en) * 1996-05-28 2000-02-22 Cordis Corporation Composite material endoprosthesis
US5733326A (en) * 1996-05-28 1998-03-31 Cordis Corporation Composite material endoprosthesis
US6077295A (en) 1996-07-15 2000-06-20 Advanced Cardiovascular Systems, Inc. Self-expanding stent delivery system
US5902310A (en) * 1996-08-12 1999-05-11 Ethicon Endo-Surgery, Inc. Apparatus and method for marking tissue
US8663311B2 (en) * 1997-01-24 2014-03-04 Celonova Stent, Inc. Device comprising biodegradable bistable or multistable cells and methods of use
IL131063A (en) 1997-01-24 2005-07-25 Kentucky Oil N V Bistable spring construction for a stent and other medical apparatus
US10028851B2 (en) 1997-04-15 2018-07-24 Advanced Cardiovascular Systems, Inc. Coatings for controlling erosion of a substrate of an implantable medical device
US8172897B2 (en) 1997-04-15 2012-05-08 Advanced Cardiovascular Systems, Inc. Polymer and metal composite implantable medical devices
US6240616B1 (en) 1997-04-15 2001-06-05 Advanced Cardiovascular Systems, Inc. Method of manufacturing a medicated porous metal prosthesis
US6278057B1 (en) * 1997-05-02 2001-08-21 General Science And Technology Corp. Medical devices incorporating at least one element made from a plurality of twisted and drawn wires at least one of the wires being a nickel-titanium alloy wire
US6070589A (en) 1997-08-01 2000-06-06 Teramed, Inc. Methods for deploying bypass graft stents
US6161399A (en) * 1997-10-24 2000-12-19 Iowa-India Investments Company Limited Process for manufacturing a wire reinforced monolayer fabric stent
US6270464B1 (en) 1998-06-22 2001-08-07 Artemis Medical, Inc. Biopsy localization method and device
NO311781B1 (no) 1997-11-13 2002-01-28 Medinol Ltd Flerlags-stenter av metall
US6159165A (en) * 1997-12-05 2000-12-12 Micrus Corporation Three dimensional spherical micro-coils manufactured from radiopaque nickel-titanium microstrand
US6342067B1 (en) * 1998-01-09 2002-01-29 Nitinol Development Corporation Intravascular stent having curved bridges for connecting adjacent hoops
US6395019B2 (en) 1998-02-09 2002-05-28 Trivascular, Inc. Endovascular graft
US6290731B1 (en) 1998-03-30 2001-09-18 Cordis Corporation Aortic graft having a precursor gasket for repairing an abdominal aortic aneurysm
US6656215B1 (en) * 2000-11-16 2003-12-02 Cordis Corporation Stent graft having an improved means for attaching a stent to a graft
US6520983B1 (en) 1998-03-31 2003-02-18 Scimed Life Systems, Inc. Stent delivery system
US7713297B2 (en) 1998-04-11 2010-05-11 Boston Scientific Scimed, Inc. Drug-releasing stent with ceramic-containing layer
US20030040790A1 (en) 1998-04-15 2003-02-27 Furst Joseph G. Stent coating
US20020099438A1 (en) * 1998-04-15 2002-07-25 Furst Joseph G. Irradiated stent coating
US6387060B1 (en) 1998-06-17 2002-05-14 Advanced Cardiovascular Systems, Inc. Composite radiopaque intracorporeal product
US6325824B2 (en) * 1998-07-22 2001-12-04 Advanced Cardiovascular Systems, Inc. Crush resistant stent
US8070796B2 (en) 1998-07-27 2011-12-06 Icon Interventional Systems, Inc. Thrombosis inhibiting graft
US7967855B2 (en) 1998-07-27 2011-06-28 Icon Interventional Systems, Inc. Coated medical device
EP1105181B1 (de) 1998-08-19 2004-02-04 Cook Incorporated Vorgeformter Führungsdraht
CA2315731A1 (en) * 1998-09-08 2000-03-16 Interventional Technologies Inc. Low pressure stent
US6551340B1 (en) 1998-10-09 2003-04-22 Board Of Regents The University Of Texas System Vasoocclusion coil device having a core therein
US6356782B1 (en) 1998-12-24 2002-03-12 Vivant Medical, Inc. Subcutaneous cavity marking device and method
US9669113B1 (en) 1998-12-24 2017-06-06 Devicor Medical Products, Inc. Device and method for safe location and marking of a biopsy cavity
US6371904B1 (en) 1998-12-24 2002-04-16 Vivant Medical, Inc. Subcutaneous cavity marking device and method
US6234981B1 (en) 1998-12-30 2001-05-22 Advanced Cardiovascular Systems, Inc. Vapor deposition coated intracorporeal device
US7645242B1 (en) * 1998-12-31 2010-01-12 Advanced Cardiovascular Systems, Inc. Composite guidewire with drawn and filled tube construction
US7717864B1 (en) 1998-12-31 2010-05-18 Advanced Cardiovascular Systems, Inc. Composite guidewire with drawn and filled tube construction
US6142975A (en) 1998-12-31 2000-11-07 Advanced Cardiovascular Systems, Inc. Guidewire having braided wire over drawn tube construction
US7018401B1 (en) 1999-02-01 2006-03-28 Board Of Regents, The University Of Texas System Woven intravascular devices and methods for making the same and apparatus for delivery of the same
US6620192B1 (en) 1999-03-16 2003-09-16 Advanced Cardiovascular Systems, Inc. Multilayer stent
NL1011779C2 (nl) * 1999-04-13 2000-10-16 Elephant Dental Bv Biomedisch hulpmiddel of implantaat.
US6730116B1 (en) * 1999-04-16 2004-05-04 Medtronic, Inc. Medical device for intraluminal endovascular stenting
US6767418B1 (en) 1999-04-23 2004-07-27 Terumo Kabushiki Kaisha Ti-Zr type alloy and medical appliance formed thereof
US6890350B1 (en) 1999-07-28 2005-05-10 Scimed Life Systems, Inc. Combination self-expandable, balloon-expandable endoluminal device
US6387123B1 (en) 1999-10-13 2002-05-14 Advanced Cardiovascular Systems, Inc. Stent with radiopaque core
US6331189B1 (en) 1999-10-18 2001-12-18 Medtronic, Inc. Flexible medical stent
US6217589B1 (en) * 1999-10-27 2001-04-17 Scimed Life Systems, Inc. Retrieval device made of precursor alloy cable and method of manufacturing
US6733513B2 (en) 1999-11-04 2004-05-11 Advanced Bioprosthetic Surfaces, Ltd. Balloon catheter having metal balloon and method of making same
US6475235B1 (en) 1999-11-16 2002-11-05 Iowa-India Investments Company, Limited Encapsulated stent preform
US8458879B2 (en) 2001-07-03 2013-06-11 Advanced Bio Prosthetic Surfaces, Ltd., A Wholly Owned Subsidiary Of Palmaz Scientific, Inc. Method of fabricating an implantable medical device
US6508832B1 (en) 1999-12-09 2003-01-21 Advanced Cardiovascular Systems, Inc. Implantable nickel-free stainless steel stents and method of making the same
US6280465B1 (en) 1999-12-30 2001-08-28 Advanced Cardiovascular Systems, Inc. Apparatus and method for delivering a self-expanding stent on a guide wire
US7250058B1 (en) * 2000-03-24 2007-07-31 Abbott Cardiovascular Systems Inc. Radiopaque intraluminal stent
US6695878B2 (en) 2000-06-26 2004-02-24 Rex Medical, L.P. Vascular device for valve leaflet apposition
US6527800B1 (en) 2000-06-26 2003-03-04 Rex Medical, L.P. Vascular device and method for valve leaflet apposition
US6676698B2 (en) 2000-06-26 2004-01-13 Rex Medicol, L.P. Vascular device with valve for approximating vessel wall
US6799637B2 (en) 2000-10-20 2004-10-05 Schlumberger Technology Corporation Expandable tubing and method
CA2421797A1 (en) 2000-09-12 2002-03-21 Boston Scientific Limited Selectively etched radiopaque intraluminal device
US6652574B1 (en) 2000-09-28 2003-11-25 Vascular Concepts Holdings Limited Product and process for manufacturing a wire stent coated with a biocompatible fluoropolymer
US6492615B1 (en) 2000-10-12 2002-12-10 Scimed Life Systems, Inc. Laser polishing of medical devices
WO2003061502A1 (en) * 2000-10-26 2003-07-31 Scimed Life Systems, Inc. Stent having radiopaque markers and method of fabricating the same
WO2002036045A2 (en) * 2000-10-31 2002-05-10 Scimed Life Systems, Inc. Endoluminal device having superelastic and plastically deformable sections
US6641776B1 (en) * 2000-11-15 2003-11-04 Scimed Life Systems, Inc. Method for preparing radiopaque surgical implement
US7314483B2 (en) * 2000-11-16 2008-01-01 Cordis Corp. Stent graft with branch leg
US6458145B1 (en) * 2000-11-28 2002-10-01 Hatch Medical L.L.C. Intra vascular snare and method of forming the same
US6569194B1 (en) * 2000-12-28 2003-05-27 Advanced Cardiovascular Systems, Inc. Thermoelastic and superelastic Ni-Ti-W alloy
US6641607B1 (en) 2000-12-29 2003-11-04 Advanced Cardiovascular Systems, Inc. Double tube stent
NO335594B1 (no) * 2001-01-16 2015-01-12 Halliburton Energy Serv Inc Ekspanderbare anordninger og fremgangsmåte for disse
US6699274B2 (en) * 2001-01-22 2004-03-02 Scimed Life Systems, Inc. Stent delivery system and method of manufacturing same
US7044958B2 (en) 2001-04-03 2006-05-16 Medtronic Vascular, Inc. Temporary device for capturing embolic material
US6818006B2 (en) * 2001-04-03 2004-11-16 Medtronic Vascular, Inc. Temporary intraluminal filter guidewire
US6866677B2 (en) * 2001-04-03 2005-03-15 Medtronic Ave, Inc. Temporary intraluminal filter guidewire and methods of use
US6783538B2 (en) 2001-06-18 2004-08-31 Rex Medical, L.P Removable vein filter
JP2005519644A (ja) 2001-06-18 2005-07-07 レックス メディカル リミテッド パートナーシップ 静脈フィルタ
US8282668B2 (en) 2001-06-18 2012-10-09 Rex Medical, L.P. Vein filter
US6793665B2 (en) 2001-06-18 2004-09-21 Rex Medical, L.P. Multiple access vein filter
US6623506B2 (en) * 2001-06-18 2003-09-23 Rex Medical, L.P Vein filter
US7179275B2 (en) * 2001-06-18 2007-02-20 Rex Medical, L.P. Vein filter
AU2002345328A1 (en) 2001-06-27 2003-03-03 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
US6926733B2 (en) * 2001-08-02 2005-08-09 Boston Scientific Scimed, Inc. Method for enhancing sheet or tubing metal stent radiopacity
US20040137066A1 (en) * 2001-11-26 2004-07-15 Swaminathan Jayaraman Rationally designed therapeutic intravascular implant coating
US7989018B2 (en) 2001-09-17 2011-08-02 Advanced Cardiovascular Systems, Inc. Fluid treatment of a polymeric coating on an implantable medical device
US7285304B1 (en) 2003-06-25 2007-10-23 Advanced Cardiovascular Systems, Inc. Fluid treatment of a polymeric coating on an implantable medical device
US7776379B2 (en) 2001-09-19 2010-08-17 Medlogics Device Corporation Metallic structures incorporating bioactive materials and methods for creating the same
US20030060873A1 (en) * 2001-09-19 2003-03-27 Nanomedical Technologies, Inc. Metallic structures incorporating bioactive materials and methods for creating the same
US6863683B2 (en) 2001-09-19 2005-03-08 Abbott Laboratoris Vascular Entities Limited Cold-molding process for loading a stent onto a stent delivery system
US20030060842A1 (en) * 2001-09-27 2003-03-27 Yem Chin Method and apparatus for measuring and controlling blade depth of a tissue cutting apparatus in an endoscopic catheter
US7326237B2 (en) * 2002-01-08 2008-02-05 Cordis Corporation Supra-renal anchoring prosthesis
US6740096B2 (en) * 2002-01-16 2004-05-25 Scimed Life Systems, Inc. Treatment and removal of objects in anatomical lumens
US6790224B2 (en) * 2002-02-04 2004-09-14 Scimed Life Systems, Inc. Medical devices
US6989024B2 (en) * 2002-02-28 2006-01-24 Counter Clockwise, Inc. Guidewire loaded stent for delivery through a catheter
US8328877B2 (en) 2002-03-19 2012-12-11 Boston Scientific Scimed, Inc. Stent retention element and related methods
US20030181972A1 (en) * 2002-03-22 2003-09-25 Scimed Life Systems, Inc. MRI and x-ray compatible stent material
US20030191492A1 (en) * 2002-04-05 2003-10-09 Scimed Life Systems, Inc. Radial coil expandable medical wire
AU2003262373A1 (en) * 2002-04-19 2003-11-03 Salviac Limited A medical device
US6865810B2 (en) * 2002-06-27 2005-03-15 Scimed Life Systems, Inc. Methods of making medical devices
US8016881B2 (en) 2002-07-31 2011-09-13 Icon Interventional Systems, Inc. Sutures and surgical staples for anastamoses, wound closures, and surgical closures
US7399311B2 (en) 2002-08-05 2008-07-15 Boston Scientific Scimed, Inc. Medical devices
ATE318555T1 (de) * 2002-08-13 2006-03-15 Abbott Lab Vascular Entpr Ltd Stent
US7029495B2 (en) * 2002-08-28 2006-04-18 Scimed Life Systems, Inc. Medical devices and methods of making the same
AU2003270817B2 (en) 2002-09-26 2009-09-17 Vactronix Scientific, Llc High strength vacuum deposited nitionol alloy films, medical thin film graft materials and method of making same
US20060100695A1 (en) * 2002-09-27 2006-05-11 Peacock James C Iii Implantable stent with modified ends
US6638301B1 (en) * 2002-10-02 2003-10-28 Scimed Life Systems, Inc. Medical device with radiopacity
US6814746B2 (en) * 2002-11-01 2004-11-09 Ev3 Peripheral, Inc. Implant delivery system with marker interlock
US8105373B2 (en) 2002-12-16 2012-01-31 Boston Scientific Scimed, Inc. Flexible stent with improved axial strength
US8435550B2 (en) 2002-12-16 2013-05-07 Abbot Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US7758881B2 (en) 2004-06-30 2010-07-20 Advanced Cardiovascular Systems, Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US7294214B2 (en) * 2003-01-08 2007-11-13 Scimed Life Systems, Inc. Medical devices
DE10301850B4 (de) * 2003-01-16 2017-05-04 Dendron Gmbh Stent
US20040143317A1 (en) * 2003-01-17 2004-07-22 Stinson Jonathan S. Medical devices
JP2004222953A (ja) * 2003-01-22 2004-08-12 Kanegafuchi Chem Ind Co Ltd 生体留置用ステント
JP2004255175A (ja) * 2003-02-03 2004-09-16 Piolax Medical Device:Kk ガイドワイヤ及びその製造方法
US7487579B2 (en) * 2003-03-12 2009-02-10 Boston Scientific Scimed, Inc. Methods of making medical devices
US7792568B2 (en) * 2003-03-17 2010-09-07 Boston Scientific Scimed, Inc. MRI-visible medical devices
US7771463B2 (en) 2003-03-26 2010-08-10 Ton Dai T Twist-down implant delivery technologies
ES2346059T3 (es) 2003-03-26 2010-10-08 Biosensors International Group Ltd. Cateter de suministro de implantes con juntas erosionables electroliticamente.
US20040193179A1 (en) 2003-03-26 2004-09-30 Cardiomind, Inc. Balloon catheter lumen based stent delivery systems
US20040204737A1 (en) * 2003-04-11 2004-10-14 Scimed Life Systems, Inc. Embolic filter loop fabricated from composite material
JP4692902B2 (ja) 2003-04-28 2011-06-01 キップス・ベイ・メディカル・インコーポレーテッド 柔軟な静脈移植体
US7998188B2 (en) 2003-04-28 2011-08-16 Kips Bay Medical, Inc. Compliant blood vessel graft
US20050131520A1 (en) * 2003-04-28 2005-06-16 Zilla Peter P. Compliant blood vessel graft
US7789979B2 (en) 2003-05-02 2010-09-07 Gore Enterprise Holdings, Inc. Shape memory alloy articles with improved fatigue performance and methods therefor
DE602004024053D1 (de) 2003-05-07 2009-12-24 Advanced Bio Prothestic Surfac Metallische implantierbare prothesen und herstellungsverfahren dafür
US7235093B2 (en) * 2003-05-20 2007-06-26 Boston Scientific Scimed, Inc. Mechanism to improve stent securement
JP4798662B2 (ja) * 2003-06-13 2011-10-19 ゲーカーエスエスフォルシュングスツェントゥルム ゲーストハハト ゲーエムベーハー ステント
US20040260269A1 (en) * 2003-06-23 2004-12-23 Yair Assaf Method for treating false aneurysm and a needle for use in such a method
US9861346B2 (en) 2003-07-14 2018-01-09 W. L. Gore & Associates, Inc. Patent foramen ovale (PFO) closure device with linearly elongating petals
US7455737B2 (en) * 2003-08-25 2008-11-25 Boston Scientific Scimed, Inc. Selective treatment of linear elastic materials to produce localized areas of superelasticity
US20050055045A1 (en) * 2003-09-10 2005-03-10 Scimed Life Systems, Inc. Composite medical devices
US20050060025A1 (en) * 2003-09-12 2005-03-17 Mackiewicz David A. Radiopaque markers for medical devices
US7488343B2 (en) * 2003-09-16 2009-02-10 Boston Scientific Scimed, Inc. Medical devices
US7020947B2 (en) 2003-09-23 2006-04-04 Fort Wayne Metals Research Products Corporation Metal wire with filaments for biomedical applications
US7198675B2 (en) 2003-09-30 2007-04-03 Advanced Cardiovascular Systems Stent mandrel fixture and method for selectively coating surfaces of a stent
US7208172B2 (en) * 2003-11-03 2007-04-24 Medlogics Device Corporation Metallic composite coating for delivery of therapeutic agents from the surface of implantable devices
US20050119723A1 (en) * 2003-11-28 2005-06-02 Medlogics Device Corporation Medical device with porous surface containing bioerodable bioactive composites and related methods
US20060085062A1 (en) * 2003-11-28 2006-04-20 Medlogics Device Corporation Implantable stent with endothelialization factor
US20050131522A1 (en) * 2003-12-10 2005-06-16 Stinson Jonathan S. Medical devices and methods of making the same
DE10361942A1 (de) * 2003-12-24 2005-07-21 Restate Patent Ag Radioopaker Marker für medizinische Implantate
US8062326B2 (en) 2004-01-22 2011-11-22 Rex Medical, L.P. Vein filter
US8500774B2 (en) 2004-01-22 2013-08-06 Rex Medical, L.P. Vein filter
US7976562B2 (en) 2004-01-22 2011-07-12 Rex Medical, L.P. Method of removing a vein filter
US7704266B2 (en) 2004-01-22 2010-04-27 Rex Medical, L.P. Vein filter
US9510929B2 (en) 2004-01-22 2016-12-06 Argon Medical Devices, Inc. Vein filter
US7338512B2 (en) 2004-01-22 2008-03-04 Rex Medical, L.P. Vein filter
US7854756B2 (en) * 2004-01-22 2010-12-21 Boston Scientific Scimed, Inc. Medical devices
US8211140B2 (en) 2004-01-22 2012-07-03 Rex Medical, L.P. Vein filter
US8162972B2 (en) 2004-01-22 2012-04-24 Rex Medical, Lp Vein filter
US7243408B2 (en) * 2004-02-09 2007-07-17 Boston Scientific Scimed, Inc. Process method for attaching radio opaque markers to shape memory stent
US8137397B2 (en) * 2004-02-26 2012-03-20 Boston Scientific Scimed, Inc. Medical devices
US7651521B2 (en) 2004-03-02 2010-01-26 Cardiomind, Inc. Corewire actuated delivery system with fixed distal stent-carrying extension
US7761138B2 (en) * 2004-03-12 2010-07-20 Boston Scientific Scimed, Inc. MRI and X-ray visualization
US8216299B2 (en) 2004-04-01 2012-07-10 Cook Medical Technologies Llc Method to retract a body vessel wall with remodelable material
US20060041262A1 (en) * 2004-05-19 2006-02-23 Calvert Jay W Interlaced wire for implants
US20060206200A1 (en) * 2004-05-25 2006-09-14 Chestnut Medical Technologies, Inc. Flexible vascular occluding device
AU2005247490B2 (en) 2004-05-25 2011-05-19 Covidien Lp Flexible vascular occluding device
US8147534B2 (en) 2005-05-25 2012-04-03 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US8267985B2 (en) 2005-05-25 2012-09-18 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US8617234B2 (en) * 2004-05-25 2013-12-31 Covidien Lp Flexible vascular occluding device
US8628564B2 (en) 2004-05-25 2014-01-14 Covidien Lp Methods and apparatus for luminal stenting
KR101300437B1 (ko) 2004-05-25 2013-08-26 코비디엔 엘피 동맥류용 혈관 스텐트
US20050283226A1 (en) * 2004-06-18 2005-12-22 Scimed Life Systems, Inc. Medical devices
US20050288775A1 (en) * 2004-06-24 2005-12-29 Scimed Life Systems, Inc. Metallic fibers reinforced textile prosthesis
US8568469B1 (en) 2004-06-28 2013-10-29 Advanced Cardiovascular Systems, Inc. Stent locking element and a method of securing a stent on a delivery system
US8241554B1 (en) 2004-06-29 2012-08-14 Advanced Cardiovascular Systems, Inc. Method of forming a stent pattern on a tube
US8778256B1 (en) 2004-09-30 2014-07-15 Advanced Cardiovascular Systems, Inc. Deformation of a polymer tube in the fabrication of a medical article
US7971333B2 (en) 2006-05-30 2011-07-05 Advanced Cardiovascular Systems, Inc. Manufacturing process for polymetric stents
US8747878B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device by controlling crystalline structure
US8747879B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device to reduce chance of late inflammatory response
US7731890B2 (en) 2006-06-15 2010-06-08 Advanced Cardiovascular Systems, Inc. Methods of fabricating stents with enhanced fracture toughness
CA2838073C (en) 2004-08-13 2018-05-29 Reynolds M. Delgado, Iii Method and apparatus for long-term assisting a left ventricle to pump blood
US9283099B2 (en) 2004-08-25 2016-03-15 Advanced Cardiovascular Systems, Inc. Stent-catheter assembly with a releasable connection for stent retention
US7229471B2 (en) 2004-09-10 2007-06-12 Advanced Cardiovascular Systems, Inc. Compositions containing fast-leaching plasticizers for improved performance of medical devices
US7393181B2 (en) * 2004-09-17 2008-07-01 The Penn State Research Foundation Expandable impeller pump
WO2006036457A2 (en) 2004-09-27 2006-04-06 Rex Medical, L.P. Vein filter
US8173062B1 (en) 2004-09-30 2012-05-08 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube in fabricating a medical article
US8043553B1 (en) 2004-09-30 2011-10-25 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube with a restraining surface in fabricating a medical article
US7875233B2 (en) 2004-09-30 2011-01-25 Advanced Cardiovascular Systems, Inc. Method of fabricating a biaxially oriented implantable medical device
CA2585284C (en) 2004-11-10 2013-07-23 Boston Scientific Limited Atraumatic stent with reduced deployment force, method for making the same and method and apparatus for deploying and positioning the stent
JP3857295B2 (ja) * 2004-11-10 2006-12-13 三菱電機株式会社 半導体発光素子
US7632307B2 (en) * 2004-12-16 2009-12-15 Advanced Cardiovascular Systems, Inc. Abluminal, multilayer coating constructs for drug-delivery stents
US7727273B2 (en) * 2005-01-13 2010-06-01 Boston Scientific Scimed, Inc. Medical devices and methods of making the same
US20060182873A1 (en) * 2005-02-17 2006-08-17 Klisch Leo M Medical devices
US8048028B2 (en) * 2005-02-17 2011-11-01 Boston Scientific Scimed, Inc. Reinforced medical balloon
AU2006221046B2 (en) 2005-03-03 2012-02-02 Icon Medical Corp. Improved metal alloys for medical device
US9107899B2 (en) 2005-03-03 2015-08-18 Icon Medical Corporation Metal alloys for medical devices
US7452502B2 (en) 2005-03-03 2008-11-18 Icon Medical Corp. Metal alloy for a stent
US7540995B2 (en) * 2005-03-03 2009-06-02 Icon Medical Corp. Process for forming an improved metal alloy stent
WO2006110197A2 (en) 2005-03-03 2006-10-19 Icon Medical Corp. Polymer biodegradable medical device
US20060200048A1 (en) * 2005-03-03 2006-09-07 Icon Medical Corp. Removable sheath for device protection
US7998164B2 (en) 2005-03-11 2011-08-16 Boston Scientific Scimed, Inc. Intravascular filter with centering member
US7641983B2 (en) * 2005-04-04 2010-01-05 Boston Scientific Scimed, Inc. Medical devices including composites
US20060225337A1 (en) * 2005-04-08 2006-10-12 Moffitt Patrick E Leader and leader sections for use in fly fishing
US7381048B2 (en) 2005-04-12 2008-06-03 Advanced Cardiovascular Systems, Inc. Stents with profiles for gripping a balloon catheter and molds for fabricating stents
US20070118207A1 (en) * 2005-05-04 2007-05-24 Aga Medical Corporation System for controlled delivery of stents and grafts
US20060253184A1 (en) * 2005-05-04 2006-11-09 Kurt Amplatz System for the controlled delivery of stents and grafts
US20060259126A1 (en) * 2005-05-05 2006-11-16 Jason Lenz Medical devices and methods of making the same
CA2608160C (en) 2005-05-09 2013-12-03 Jurgen Dorn Implant delivery device
EP2666508B1 (de) * 2005-05-13 2019-07-24 Boston Scientific Limited Integrierte stent-repositionierungs- und rückholschleife
US8273101B2 (en) 2005-05-25 2012-09-25 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US20060276875A1 (en) 2005-05-27 2006-12-07 Stinson Jonathan S Medical devices
US20060276910A1 (en) * 2005-06-01 2006-12-07 Jan Weber Endoprostheses
US20060282151A1 (en) * 2005-06-14 2006-12-14 Jan Weber Medical device system
US20070009564A1 (en) * 2005-06-22 2007-01-11 Mcclain James B Drug/polymer composite materials and methods of making the same
US20090062909A1 (en) 2005-07-15 2009-03-05 Micell Technologies, Inc. Stent with polymer coating containing amorphous rapamycin
AU2006270221B2 (en) 2005-07-15 2012-01-19 Micell Technologies, Inc. Polymer coatings containing drug powder of controlled morphology
US7658880B2 (en) 2005-07-29 2010-02-09 Advanced Cardiovascular Systems, Inc. Polymeric stent polishing method and apparatus
US7540997B2 (en) 2005-08-23 2009-06-02 Boston Scientific Scimed, Inc. Medical devices having alloy compositions
US9248034B2 (en) 2005-08-23 2016-02-02 Advanced Cardiovascular Systems, Inc. Controlled disintegrating implantable medical devices
US20070073374A1 (en) * 2005-09-29 2007-03-29 Anderl Steven F Endoprostheses including nickel-titanium alloys
EP1769774A1 (de) * 2005-10-03 2007-04-04 Noureddine Frid Strahlungsundurchlässige Endoprothese
CA2625264C (en) 2005-10-13 2015-12-15 Synthes (U.S.A.) Drug-impregnated sleeve for a medical implant
US20070100414A1 (en) 2005-11-02 2007-05-03 Cardiomind, Inc. Indirect-release electrolytic implant delivery systems
US7867547B2 (en) 2005-12-19 2011-01-11 Advanced Cardiovascular Systems, Inc. Selectively coating luminal surfaces of stents
US20070156230A1 (en) 2006-01-04 2007-07-05 Dugan Stephen R Stents with radiopaque markers
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US7951185B1 (en) 2006-01-06 2011-05-31 Advanced Cardiovascular Systems, Inc. Delivery of a stent at an elevated temperature
US20080004689A1 (en) * 2006-01-19 2008-01-03 Linda Jahnke Systems and Methods for Making Medical Devices
US9375215B2 (en) * 2006-01-20 2016-06-28 W. L. Gore & Associates, Inc. Device for rapid repair of body conduits
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US20070191931A1 (en) * 2006-02-16 2007-08-16 Jan Weber Bioerodible endoprostheses and methods of making the same
US9526814B2 (en) * 2006-02-16 2016-12-27 Boston Scientific Scimed, Inc. Medical balloons and methods of making the same
US8152833B2 (en) 2006-02-22 2012-04-10 Tyco Healthcare Group Lp Embolic protection systems having radiopaque filter mesh
US7699884B2 (en) 2006-03-22 2010-04-20 Cardiomind, Inc. Method of stenting with minimal diameter guided delivery systems
EP3115070B8 (de) 2006-03-23 2019-05-08 The Penn State Research Foundation Herzunterstützungsvorrichtung mit erweiterbarer kreiselradpumpe
US20070224235A1 (en) 2006-03-24 2007-09-27 Barron Tenney Medical devices having nanoporous coatings for controlled therapeutic agent delivery
US8187620B2 (en) 2006-03-27 2012-05-29 Boston Scientific Scimed, Inc. Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents
JP5078271B2 (ja) 2006-03-30 2012-11-21 テルモ株式会社 生体器官拡張用ステントおよびその製造方法
US7964210B2 (en) 2006-03-31 2011-06-21 Abbott Cardiovascular Systems Inc. Degradable polymeric implantable medical devices with a continuous phase and discrete phase
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
ES2540059T3 (es) * 2006-04-26 2015-07-08 Micell Technologies, Inc. Recubrimientos que contienen múltiples fármacos
US8003156B2 (en) 2006-05-04 2011-08-23 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US7761968B2 (en) 2006-05-25 2010-07-27 Advanced Cardiovascular Systems, Inc. Method of crimping a polymeric stent
US7951194B2 (en) 2006-05-26 2011-05-31 Abbott Cardiovascular Sysetms Inc. Bioabsorbable stent with radiopaque coating
US20130325104A1 (en) 2006-05-26 2013-12-05 Abbott Cardiovascular Systems Inc. Stents With Radiopaque Markers
US20070282434A1 (en) * 2006-05-30 2007-12-06 Yunbing Wang Copolymer-bioceramic composite implantable medical devices
US8343530B2 (en) 2006-05-30 2013-01-01 Abbott Cardiovascular Systems Inc. Polymer-and polymer blend-bioceramic composite implantable medical devices
US7959940B2 (en) 2006-05-30 2011-06-14 Advanced Cardiovascular Systems, Inc. Polymer-bioceramic composite implantable medical devices
US7842737B2 (en) 2006-09-29 2010-11-30 Abbott Cardiovascular Systems Inc. Polymer blend-bioceramic composite implantable medical devices
US8486135B2 (en) 2006-06-01 2013-07-16 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from branched polymers
US8034287B2 (en) 2006-06-01 2011-10-11 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US8603530B2 (en) 2006-06-14 2013-12-10 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8048448B2 (en) 2006-06-15 2011-11-01 Abbott Cardiovascular Systems Inc. Nanoshells for drug delivery
US8535372B1 (en) 2006-06-16 2013-09-17 Abbott Cardiovascular Systems Inc. Bioabsorbable stent with prohealing layer
US8333000B2 (en) 2006-06-19 2012-12-18 Advanced Cardiovascular Systems, Inc. Methods for improving stent retention on a balloon catheter
US8017237B2 (en) 2006-06-23 2011-09-13 Abbott Cardiovascular Systems, Inc. Nanoshells on polymers
US9072820B2 (en) 2006-06-26 2015-07-07 Advanced Cardiovascular Systems, Inc. Polymer composite stent with polymer particles
US8128688B2 (en) 2006-06-27 2012-03-06 Abbott Cardiovascular Systems Inc. Carbon coating on an implantable device
US8815275B2 (en) 2006-06-28 2014-08-26 Boston Scientific Scimed, Inc. Coatings for medical devices comprising a therapeutic agent and a metallic material
US8771343B2 (en) 2006-06-29 2014-07-08 Boston Scientific Scimed, Inc. Medical devices with selective titanium oxide coatings
US7794776B1 (en) 2006-06-29 2010-09-14 Abbott Cardiovascular Systems Inc. Modification of polymer stents with radiation
US7740791B2 (en) 2006-06-30 2010-06-22 Advanced Cardiovascular Systems, Inc. Method of fabricating a stent with features by blow molding
US7823263B2 (en) 2006-07-11 2010-11-02 Abbott Cardiovascular Systems Inc. Method of removing stent islands from a stent
US7757543B2 (en) 2006-07-13 2010-07-20 Advanced Cardiovascular Systems, Inc. Radio frequency identification monitoring of stents
US7998404B2 (en) 2006-07-13 2011-08-16 Advanced Cardiovascular Systems, Inc. Reduced temperature sterilization of stents
US7794495B2 (en) 2006-07-17 2010-09-14 Advanced Cardiovascular Systems, Inc. Controlled degradation of stents
US7886419B2 (en) 2006-07-18 2011-02-15 Advanced Cardiovascular Systems, Inc. Stent crimping apparatus and method
US8016879B2 (en) 2006-08-01 2011-09-13 Abbott Cardiovascular Systems Inc. Drug delivery after biodegradation of the stent scaffolding
EP2054537A2 (de) * 2006-08-02 2009-05-06 Boston Scientific Scimed, Inc. Endoprothese mit dreidimensionaler desintegrationssteuerung
US9173733B1 (en) 2006-08-21 2015-11-03 Abbott Cardiovascular Systems Inc. Tracheobronchial implantable medical device and methods of use
US10076401B2 (en) 2006-08-29 2018-09-18 Argon Medical Devices, Inc. Vein filter
US7923022B2 (en) 2006-09-13 2011-04-12 Advanced Cardiovascular Systems, Inc. Degradable polymeric implantable medical devices with continuous phase and discrete phase
WO2008033711A2 (en) 2006-09-14 2008-03-20 Boston Scientific Limited Medical devices with drug-eluting coating
CA2663220A1 (en) 2006-09-15 2008-03-20 Boston Scientific Limited Medical devices and methods of making the same
JP2010503494A (ja) * 2006-09-15 2010-02-04 ボストン サイエンティフィック リミテッド 生分解性内部人工器官およびその製造方法
US20080071353A1 (en) * 2006-09-15 2008-03-20 Boston Scientific Scimed, Inc. Endoprosthesis containing magnetic induction particles
WO2008034048A2 (en) * 2006-09-15 2008-03-20 Boston Scientific Limited Bioerodible endoprosthesis with biostable inorganic layers
WO2008034031A2 (en) 2006-09-15 2008-03-20 Boston Scientific Limited Bioerodible endoprostheses and methods of making the same
US9402936B2 (en) * 2006-09-15 2016-08-02 Boston Scientific Scimed, Inc. Medical devices having alloy compositions
JP2010503490A (ja) * 2006-09-15 2010-02-04 ボストン サイエンティフィック リミテッド 調整可能な表面特徴を備えた内部人工器官
WO2008036554A2 (en) * 2006-09-18 2008-03-27 Boston Scientific Limited Endoprostheses
EP2066271A1 (de) * 2006-09-18 2009-06-10 Boston Scientific Limited Medizinische vorrichtung mit poröser oberfläche
EP2068962B1 (de) 2006-09-18 2013-01-30 Boston Scientific Limited Endoprothesen
US20080069858A1 (en) * 2006-09-20 2008-03-20 Boston Scientific Scimed, Inc. Medical devices having biodegradable polymeric regions with overlying hard, thin layers
US7963942B2 (en) * 2006-09-20 2011-06-21 Boston Scientific Scimed, Inc. Medical balloons with modified surfaces
US7780798B2 (en) 2006-10-13 2010-08-24 Boston Scientific Scimed, Inc. Medical devices including hardened alloys
US20080097577A1 (en) * 2006-10-20 2008-04-24 Boston Scientific Scimed, Inc. Medical device hydrogen surface treatment by electrochemical reduction
CN103767810B (zh) 2006-10-22 2016-06-15 Idev科技公司 自伸展支架的成形方法
US9539593B2 (en) * 2006-10-23 2017-01-10 Micell Technologies, Inc. Holder for electrically charging a substrate during coating
US7981150B2 (en) 2006-11-09 2011-07-19 Boston Scientific Scimed, Inc. Endoprosthesis with coatings
US9622888B2 (en) 2006-11-16 2017-04-18 W. L. Gore & Associates, Inc. Stent having flexibly connected adjacent stent elements
WO2008070189A2 (en) * 2006-12-06 2008-06-12 The Cleveland Clinic Foundation Method and system for treating acute heart failure by neuromodulation
US8099849B2 (en) 2006-12-13 2012-01-24 Abbott Cardiovascular Systems Inc. Optimizing fracture toughness of polymeric stent
WO2008082698A2 (en) * 2006-12-28 2008-07-10 Boston Scientific Limited Medical devices and methods of making the same
ES2506144T3 (es) 2006-12-28 2014-10-13 Boston Scientific Limited Endoprótesis bioerosionables y procedimiento de fabricación de las mismas
US11426494B2 (en) 2007-01-08 2022-08-30 MT Acquisition Holdings LLC Stents having biodegradable layers
US9737642B2 (en) * 2007-01-08 2017-08-22 Micell Technologies, Inc. Stents having biodegradable layers
US20080166526A1 (en) * 2007-01-08 2008-07-10 Monk Russell A Formed panel structure
US20080188825A1 (en) * 2007-02-01 2008-08-07 Liliana Atanasoska Catheters and medical balloons
US7972375B2 (en) * 2007-02-05 2011-07-05 Boston Scientific Scimed, Inc. Endoprostheses including metal matrix composite structures
US8070797B2 (en) 2007-03-01 2011-12-06 Boston Scientific Scimed, Inc. Medical device with a porous surface for delivery of a therapeutic agent
US8431149B2 (en) 2007-03-01 2013-04-30 Boston Scientific Scimed, Inc. Coated medical devices for abluminal drug delivery
US20080221437A1 (en) * 2007-03-09 2008-09-11 Agro Mark A Steerable snare for use in the colon and method for the same
US9005242B2 (en) 2007-04-05 2015-04-14 W.L. Gore & Associates, Inc. Septal closure device with centering mechanism
US8067054B2 (en) 2007-04-05 2011-11-29 Boston Scientific Scimed, Inc. Stents with ceramic drug reservoir layer and methods of making and using the same
US8262723B2 (en) 2007-04-09 2012-09-11 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from polymer blends with star-block copolymers
US8409270B2 (en) 2007-04-16 2013-04-02 Boston Scientific Scimed, Inc. Radiopaque compositions, stents and methods of preparation
EA020509B1 (ru) * 2007-04-17 2014-11-28 Миселл Текнолоджиз, Инк. Стенты с биоразлагаемыми слоями
US20080287984A1 (en) * 2007-05-18 2008-11-20 Jan Weber Medical balloons and methods of making the same
US7976915B2 (en) 2007-05-23 2011-07-12 Boston Scientific Scimed, Inc. Endoprosthesis with select ceramic morphology
AU2008256684B2 (en) 2007-05-25 2012-06-14 Micell Technologies, Inc. Polymer films for medical device coating
US7829008B2 (en) 2007-05-30 2010-11-09 Abbott Cardiovascular Systems Inc. Fabricating a stent from a blow molded tube
US7959857B2 (en) 2007-06-01 2011-06-14 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US20110022149A1 (en) 2007-06-04 2011-01-27 Cox Brian J Methods and devices for treatment of vascular defects
US8293260B2 (en) 2007-06-05 2012-10-23 Abbott Cardiovascular Systems Inc. Elastomeric copolymer coatings containing poly (tetramethyl carbonate) for implantable medical devices
US8202528B2 (en) 2007-06-05 2012-06-19 Abbott Cardiovascular Systems Inc. Implantable medical devices with elastomeric block copolymer coatings
US8425591B1 (en) 2007-06-11 2013-04-23 Abbott Cardiovascular Systems Inc. Methods of forming polymer-bioceramic composite medical devices with bioceramic particles
US8048441B2 (en) 2007-06-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Nanobead releasing medical devices
US7901452B2 (en) 2007-06-27 2011-03-08 Abbott Cardiovascular Systems Inc. Method to fabricate a stent having selected morphology to reduce restenosis
US8398702B2 (en) 2007-06-29 2013-03-19 Boston Scientific Scimed, Inc. Molybdenum endoprostheses
US7955381B1 (en) 2007-06-29 2011-06-07 Advanced Cardiovascular Systems, Inc. Polymer-bioceramic composite implantable medical device with different types of bioceramic particles
DE102007030751B4 (de) * 2007-07-02 2009-06-10 Acandis Gmbh & Co. Kg Verfahren zur Herstellung eines Stents
US7942926B2 (en) 2007-07-11 2011-05-17 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8002823B2 (en) 2007-07-11 2011-08-23 Boston Scientific Scimed, Inc. Endoprosthesis coating
US7604662B2 (en) 2007-07-13 2009-10-20 Boston Scientific Scimed, Inc. Endoprostheses containing boride intermetallic phases
US9284409B2 (en) * 2007-07-19 2016-03-15 Boston Scientific Scimed, Inc. Endoprosthesis having a non-fouling surface
US8815273B2 (en) 2007-07-27 2014-08-26 Boston Scientific Scimed, Inc. Drug eluting medical devices having porous layers
US7931683B2 (en) 2007-07-27 2011-04-26 Boston Scientific Scimed, Inc. Articles having ceramic coated surfaces
US8221822B2 (en) 2007-07-31 2012-07-17 Boston Scientific Scimed, Inc. Medical device coating by laser cladding
WO2009020520A1 (en) 2007-08-03 2009-02-12 Boston Scientific Scimed, Inc. Coating for medical device having increased surface area
US8834551B2 (en) 2007-08-31 2014-09-16 Rex Medical, L.P. Vascular device with valve for approximating vessel wall
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
US9034007B2 (en) * 2007-09-21 2015-05-19 Insera Therapeutics, Inc. Distal embolic protection devices with a variable thickness microguidewire and methods for their use
AU2008308474B2 (en) 2007-10-04 2014-07-24 Trivascular, Inc. Modular vascular graft for low profile percutaneous delivery
US20100298928A1 (en) * 2007-10-19 2010-11-25 Micell Technologies, Inc. Drug Coated Stents
US7938855B2 (en) 2007-11-02 2011-05-10 Boston Scientific Scimed, Inc. Deformable underlayer for stent
US8216632B2 (en) * 2007-11-02 2012-07-10 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8029554B2 (en) 2007-11-02 2011-10-04 Boston Scientific Scimed, Inc. Stent with embedded material
US8128579B2 (en) 2007-11-02 2012-03-06 Boston Scientific Scimed, Inc. Guidewires with improved fatigue life and methods of making the same
US20090118812A1 (en) * 2007-11-02 2009-05-07 Boston Scientific Scimed, Inc. Endoprosthesis coating
US7846199B2 (en) 2007-11-19 2010-12-07 Cook Incorporated Remodelable prosthetic valve
US8623071B2 (en) * 2008-01-07 2014-01-07 DePuy Synthes Products, LLC Radiopaque super-elastic intravascular stent
US8926688B2 (en) 2008-01-11 2015-01-06 W. L. Gore & Assoc. Inc. Stent having adjacent elements connected by flexible webs
US20130165967A1 (en) 2008-03-07 2013-06-27 W.L. Gore & Associates, Inc. Heart occlusion devices
CA2721832C (en) * 2008-04-17 2018-08-07 Micell Technologies, Inc. Stents having bioabsorbable layers
JP5581311B2 (ja) 2008-04-22 2014-08-27 ボストン サイエンティフィック サイムド,インコーポレイテッド 無機材料のコーティングを有する医療デバイス及びその製造方法
US8932346B2 (en) 2008-04-24 2015-01-13 Boston Scientific Scimed, Inc. Medical devices having inorganic particle layers
CA3048277C (en) 2008-05-02 2022-06-21 Sequent Medical Inc. Filamentary devices for treatment of vascular defects
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US9675482B2 (en) 2008-05-13 2017-06-13 Covidien Lp Braid implant delivery systems
WO2009148821A2 (en) * 2008-05-29 2009-12-10 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US8114147B2 (en) 2008-06-16 2012-02-14 Boston Scientific Scimed, Inc. Continuous double layered stent for migration resistance
WO2009155328A2 (en) * 2008-06-18 2009-12-23 Boston Scientific Scimed, Inc. Endoprosthesis coating
US9510856B2 (en) 2008-07-17 2016-12-06 Micell Technologies, Inc. Drug delivery medical device
JP2011528275A (ja) * 2008-07-17 2011-11-17 ミセル テクノロジーズ,インク. 薬物送達医療デバイス
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US20100057188A1 (en) * 2008-08-28 2010-03-04 Boston Scientific Scimed, Inc. Endoprostheses with porous regions and non-polymeric coating
US8114153B2 (en) * 2008-09-05 2012-02-14 Boston Scientific Scimed, Inc. Endoprostheses
WO2010033370A2 (en) * 2008-09-17 2010-03-25 National Ict Australia Limited (Nicta) Knitted catheter
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
US8231980B2 (en) 2008-12-03 2012-07-31 Boston Scientific Scimed, Inc. Medical implants including iridium oxide
US8834913B2 (en) * 2008-12-26 2014-09-16 Battelle Memorial Institute Medical implants and methods of making medical implants
WO2010101901A2 (en) 2009-03-02 2010-09-10 Boston Scientific Scimed, Inc. Self-buffering medical implants
US8071156B2 (en) 2009-03-04 2011-12-06 Boston Scientific Scimed, Inc. Endoprostheses
US20100228337A1 (en) * 2009-03-04 2010-09-09 Abbott Laboratories Vascular Enterprises Limited Mirror image stent and method of use
CA2756307C (en) * 2009-03-23 2017-08-08 Micell Technologies, Inc. Peripheral stents having layers and reinforcement fibers
CN102481195B (zh) * 2009-04-01 2015-03-25 米歇尔技术公司 涂覆支架
EP3366326A1 (de) 2009-04-17 2018-08-29 Micell Technologies, Inc. Stents mit gesteuerter elution
US8287937B2 (en) 2009-04-24 2012-10-16 Boston Scientific Scimed, Inc. Endoprosthese
US9381006B2 (en) 2009-06-22 2016-07-05 W. L. Gore & Associates, Inc. Sealing device and delivery system
US8956389B2 (en) 2009-06-22 2015-02-17 W. L. Gore & Associates, Inc. Sealing device and delivery system
US20120029556A1 (en) 2009-06-22 2012-02-02 Masters Steven J Sealing device and delivery system
US8657870B2 (en) 2009-06-26 2014-02-25 Biosensors International Group, Ltd. Implant delivery apparatus and methods with electrolytic release
US20110022158A1 (en) 2009-07-22 2011-01-27 Boston Scientific Scimed, Inc. Bioerodible Medical Implants
US20110022162A1 (en) * 2009-07-23 2011-01-27 Boston Scientific Scimed, Inc. Endoprostheses
US20110070358A1 (en) 2009-09-20 2011-03-24 Medtronic Vascular, Inc. Method of forming hollow tubular drug eluting medical devices
US8808353B2 (en) 2010-01-30 2014-08-19 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds having a low crossing profile
US8568471B2 (en) 2010-01-30 2013-10-29 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds
WO2011097103A1 (en) * 2010-02-02 2011-08-11 Micell Technologies, Inc. Stent and stent delivery system with improved deliverability
US8398916B2 (en) 2010-03-04 2013-03-19 Icon Medical Corp. Method for forming a tubular medical device
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
US20110238153A1 (en) * 2010-03-26 2011-09-29 Boston Scientific Scimed, Inc. Endoprostheses
US8895099B2 (en) * 2010-03-26 2014-11-25 Boston Scientific Scimed, Inc. Endoprosthesis
US8795762B2 (en) * 2010-03-26 2014-08-05 Battelle Memorial Institute System and method for enhanced electrostatic deposition and surface coatings
JP5806289B2 (ja) 2010-04-06 2015-11-10 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 内部人工器官
US8636811B2 (en) 2010-04-07 2014-01-28 Medtronic Vascular, Inc. Drug eluting rolled stent and stent delivery system
WO2011133655A1 (en) 2010-04-22 2011-10-27 Micell Technologies, Inc. Stents and other devices having extracellular matrix coating
US9615948B2 (en) 2010-04-26 2017-04-11 Medtronic Vascular, Inc. Drug eluting folded stent and stent delivery system
EP2563290B1 (de) 2010-04-30 2020-09-02 Boston Scientific Scimed, Inc. Vorrichtung und verfahren zur herstellung eines einzeldrahtstents
US8920490B2 (en) 2010-05-13 2014-12-30 Boston Scientific Scimed, Inc. Endoprostheses
JP5721017B2 (ja) 2010-06-25 2015-05-20 フォート ウェイン メタルス リサーチ プロダクツ コーポレーション 医療デバイス用のバイメタル複合ワイヤ、バイメタル複合ワイヤから形成されるステント、及びバイメタル複合ワイヤとステントを製造する方法
CA2805631C (en) 2010-07-16 2018-07-31 Micell Technologies, Inc. Drug delivery medical device
WO2012033637A1 (en) 2010-09-07 2012-03-15 Boston Scientific Scimed, Inc. Bioerodible magnesium alloy containing endoprostheses
WO2012054166A1 (en) 2010-10-18 2012-04-26 Boston Scientific Scimed, Inc. Medical implant including a magnesium-based tie layer
US11298251B2 (en) 2010-11-17 2022-04-12 Abbott Cardiovascular Systems, Inc. Radiopaque intraluminal stents comprising cobalt-based alloys with primarily single-phase supersaturated tungsten content
US9566147B2 (en) 2010-11-17 2017-02-14 Abbott Cardiovascular Systems, Inc. Radiopaque intraluminal stents comprising cobalt-based alloys containing one or more platinum group metals, refractory metals, or combinations thereof
EP2648791A1 (de) 2010-12-08 2013-10-16 Boston Scientific Scimed, Inc. Medikamentenbeschichtete ballons für zweifachbehandlung
CN103402578B (zh) 2010-12-13 2016-03-02 内诺斯蒂姆股份有限公司 起搏器回收系统和方法
EP2658484A1 (de) 2010-12-30 2013-11-06 Boston Scientific Scimed, Inc. Stentausführungen mit mehrstufiger öffnung
WO2012094641A2 (en) 2011-01-06 2012-07-12 Thoratec Corporation Percutaneous heart pump
US20120177910A1 (en) 2011-01-11 2012-07-12 Boston Scientific Scimed, Inc. Coated Medical Devices
JP2014511247A (ja) 2011-03-03 2014-05-15 ボストン サイエンティフィック サイムド,インコーポレイテッド 低歪み高強度ステント
WO2012119037A1 (en) 2011-03-03 2012-09-07 Boston Scientific Scimed, Inc. Stent with reduced profile
WO2012166819A1 (en) 2011-05-31 2012-12-06 Micell Technologies, Inc. System and process for formation of a time-released, drug-eluting transferable coating
US9724494B2 (en) 2011-06-29 2017-08-08 Abbott Cardiovascular Systems, Inc. Guide wire device including a solderable linear elastic nickel-titanium distal end section and methods of preparation therefor
US10117972B2 (en) 2011-07-15 2018-11-06 Micell Technologies, Inc. Drug delivery medical device
US8726483B2 (en) 2011-07-29 2014-05-20 Abbott Cardiovascular Systems Inc. Methods for uniform crimping and deployment of a polymer scaffold
US9770232B2 (en) 2011-08-12 2017-09-26 W. L. Gore & Associates, Inc. Heart occlusion devices
US10188772B2 (en) 2011-10-18 2019-01-29 Micell Technologies, Inc. Drug delivery medical device
TWI590843B (zh) 2011-12-28 2017-07-11 信迪思有限公司 膜及其製造方法
US8992595B2 (en) 2012-04-04 2015-03-31 Trivascular, Inc. Durable stent graft with tapered struts and stable delivery methods and devices
US9498363B2 (en) 2012-04-06 2016-11-22 Trivascular, Inc. Delivery catheter for endovascular device
US9168122B2 (en) 2012-04-26 2015-10-27 Rex Medical, L.P. Vascular device and method for valve leaflet apposition
GB2504176A (en) 2012-05-14 2014-01-22 Thoratec Corp Collapsible impeller for catheter pump
US9446179B2 (en) 2012-05-14 2016-09-20 Thoratec Corporation Distal bearing support
US9872947B2 (en) 2012-05-14 2018-01-23 Tc1 Llc Sheath system for catheter pump
US8721517B2 (en) 2012-05-14 2014-05-13 Thoratec Corporation Impeller for catheter pump
US9327067B2 (en) 2012-05-14 2016-05-03 Thoratec Corporation Impeller for catheter pump
US9358329B2 (en) 2012-07-03 2016-06-07 Thoratec Corporation Catheter pump
US9421311B2 (en) 2012-07-03 2016-08-23 Thoratec Corporation Motor assembly for catheter pump
EP4186557A1 (de) 2012-07-03 2023-05-31 Tc1 Llc Motoranordnung für katheterpumpe
US9155647B2 (en) 2012-07-18 2015-10-13 Covidien Lp Methods and apparatus for luminal stenting
US9301831B2 (en) 2012-10-30 2016-04-05 Covidien Lp Methods for attaining a predetermined porosity of a vascular device
US9452070B2 (en) 2012-10-31 2016-09-27 Covidien Lp Methods and systems for increasing a density of a region of a vascular device
US9943427B2 (en) 2012-11-06 2018-04-17 Covidien Lp Shaped occluding devices and methods of using the same
US10828019B2 (en) 2013-01-18 2020-11-10 W.L. Gore & Associates, Inc. Sealing device and delivery system
US9157174B2 (en) 2013-02-05 2015-10-13 Covidien Lp Vascular device for aneurysm treatment and providing blood flow into a perforator vessel
CN105142687B (zh) 2013-02-15 2017-12-08 波士顿科学国际有限公司 用于内假体的生物溶蚀性镁合金微结构
AU2014248508B2 (en) 2013-03-12 2018-11-08 Micell Technologies, Inc. Bioabsorbable biomedical implants
US11077294B2 (en) 2013-03-13 2021-08-03 Tc1 Llc Sheath assembly for catheter pump
US9415196B2 (en) * 2013-03-13 2016-08-16 Boston Scientific Scimed, Inc. Pancreatic stent drainage system
EP4122520A1 (de) 2013-03-13 2023-01-25 Tc1 Llc Flüssigkeitsbehandlungssystem
US11033728B2 (en) 2013-03-13 2021-06-15 Tc1 Llc Fluid handling system
WO2014150288A2 (en) 2013-03-15 2014-09-25 Insera Therapeutics, Inc. Vascular treatment devices and methods
US8715314B1 (en) 2013-03-15 2014-05-06 Insera Therapeutics, Inc. Vascular treatment measurement methods
US8679150B1 (en) 2013-03-15 2014-03-25 Insera Therapeutics, Inc. Shape-set textile structure based mechanical thrombectomy methods
US9308302B2 (en) 2013-03-15 2016-04-12 Thoratec Corporation Catheter pump assembly including a stator
US8715315B1 (en) 2013-03-15 2014-05-06 Insera Therapeutics, Inc. Vascular treatment systems
JP2016519965A (ja) 2013-05-15 2016-07-11 マイセル・テクノロジーズ,インコーポレイテッド 生体吸収性バイオメディカルインプラント
CN105555328B (zh) 2013-06-21 2019-01-11 德普伊新特斯产品公司 膜及制造方法
US9955976B2 (en) 2013-08-16 2018-05-01 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
US9078658B2 (en) 2013-08-16 2015-07-14 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
EP3038666B1 (de) 2013-08-28 2018-04-18 Boston Scientific Scimed, Inc. Bioabbaubare verbundwerkstoffe für endoprothesen
JP2017501756A (ja) 2013-10-29 2017-01-19 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 体内プロテーゼ用の生侵食性マグネシウム合金マイクロ構造
US9668861B2 (en) 2014-03-15 2017-06-06 Rex Medical, L.P. Vascular device for treating venous valve insufficiency
US9629635B2 (en) 2014-04-14 2017-04-25 Sequent Medical, Inc. Devices for therapeutic vascular procedures
US10105475B2 (en) 2014-04-15 2018-10-23 Tc1 Llc Catheter pump introducer systems and methods
US10583232B2 (en) 2014-04-15 2020-03-10 Tc1 Llc Catheter pump with off-set motor position
EP3131599B1 (de) 2014-04-15 2019-02-20 Tc1 Llc Katheterpumpe mit zugangsports
US10029037B2 (en) 2014-04-15 2018-07-24 Tc1 Llc Sensors for catheter pumps
CN111790047B (zh) 2014-05-22 2022-09-27 卡迪诺米克公司 用于电神经调制的导管和导管系统
US9808230B2 (en) 2014-06-06 2017-11-07 W. L. Gore & Associates, Inc. Sealing device and delivery system
BR112016030273A2 (pt) 2014-06-24 2017-08-22 Icon Medical Corp Dispositivo médico e método para formar o referido dispositivo
AU2015315570B2 (en) 2014-09-08 2020-05-14 CARDIONOMIC, Inc. Methods for electrical neuromodulation of the heart
EP3194007B1 (de) 2014-09-08 2018-07-04 Cardionomic, Inc. Katheter und elektrodensysteme zur elektrischen neuromodulation
US10299948B2 (en) 2014-11-26 2019-05-28 W. L. Gore & Associates, Inc. Balloon expandable endoprosthesis
EP3610917A1 (de) 2015-01-05 2020-02-19 Cardionomic, Inc. Herzmodulationermöglichungsverfahren und -systeme
EP3247420B1 (de) 2015-01-22 2019-10-02 Tc1 Llc Motorbaugruppe verringerter rotierender masse für katheterpumpe
WO2016118784A1 (en) 2015-01-22 2016-07-28 Thoratec Corporation Attachment mechanisms for motor of catheter pump
EP3598986B1 (de) 2015-01-22 2021-02-17 Tc1 Llc Motoranordnung mit wärmetauscher für katheterpumpe
US9999527B2 (en) 2015-02-11 2018-06-19 Abbott Cardiovascular Systems Inc. Scaffolds having radiopaque markers
WO2016145368A1 (en) 2015-03-11 2016-09-15 Boston Scientific Scimed, Inc. Bioerodible magnesium alloy microstructures for endoprostheses
US9907890B2 (en) 2015-04-16 2018-03-06 Tc1 Llc Catheter pump with positioning brace
US9700443B2 (en) 2015-06-12 2017-07-11 Abbott Cardiovascular Systems Inc. Methods for attaching a radiopaque marker to a scaffold
WO2017023527A1 (en) 2015-08-03 2017-02-09 Advanced Endovascular Therapeutics Novel coatings for medical devices
AU2016325720B2 (en) 2015-09-25 2021-06-24 Procyrion, Inc. Non-occluding intravascular blood pump providing reduced hemolysis
JP2019508201A (ja) 2016-02-16 2019-03-28 インセラ セラピューティクス,インク. 吸引装置および固定された血流迂回装置
US11766506B2 (en) 2016-03-04 2023-09-26 Mirus Llc Stent device for spinal fusion
CA3015372A1 (en) 2016-03-09 2017-09-14 CARDIONOMIC, Inc. Cardiac contractility neurostimulation systems and methods
US10568752B2 (en) 2016-05-25 2020-02-25 W. L. Gore & Associates, Inc. Controlled endoprosthesis balloon expansion
JP2020054411A (ja) * 2017-02-08 2020-04-09 テルモ株式会社 ガイドワイヤ
WO2019055434A1 (en) 2017-09-13 2019-03-21 CARDIONOMIC, Inc. NEUROSTIMULATION SYSTEMS AND METHODS FOR AFFECTING CARDIAC CONTRACTILITY
CN107496006A (zh) * 2017-09-22 2017-12-22 南京普微森医疗科技有限公司 取血栓支架
JP6989698B2 (ja) 2017-10-25 2022-01-05 ボストン サイエンティフィック サイムド, インコーポレイテッドBoston Scientific Scimed, Inc. 非外傷性スペーサを備えたステント
US10575973B2 (en) 2018-04-11 2020-03-03 Abbott Cardiovascular Systems Inc. Intravascular stent having high fatigue performance
SG11202101191PA (en) 2018-08-13 2021-03-30 Cardionomic Inc Systems and methods for affecting cardiac contractility and/or relaxation
US11291453B2 (en) 2019-03-15 2022-04-05 Sequent Medical, Inc. Filamentary devices having a flexible joint for treatment of vascular defects
CN113573765A (zh) 2019-03-15 2021-10-29 后续医疗股份有限公司 用于治疗血管缺陷的丝装置
WO2020190620A1 (en) 2019-03-15 2020-09-24 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
SG11202111619WA (en) 2019-05-06 2021-11-29 Cardionomic Inc Systems and methods for denoising physiological signals during electrical neuromodulation
CA3160442A1 (en) 2019-12-03 2021-06-10 Procyrion, Inc. Blood pumps
WO2021119413A1 (en) 2019-12-13 2021-06-17 Procyrion, Inc. Support structures for intravascular blood pumps
EP4176920A4 (de) * 2020-07-03 2024-03-13 Asahi Intecc Co Ltd Führungsdraht

Family Cites Families (210)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3335443A (en) * 1967-08-15 Ultrasonic brush
US2524661A (en) * 1947-05-03 1950-10-03 Elgin Nat Watch Co Alloy having high elastic strengths
US3196876A (en) * 1961-05-10 1965-07-27 Maurice M Miller Dilator
GB1205743A (en) 1966-07-15 1970-09-16 Nat Res Dev Surgical dilator
US3466166A (en) * 1967-01-03 1969-09-09 Gen Electric Method for making a hollow metal article
NL145136C (de) * 1967-07-25 1900-01-01
US3562024A (en) * 1967-12-04 1971-02-09 Standard Pressed Steel Co Cobalt-nickel base alloys containing chromium and molybdenum
US3528410A (en) * 1968-09-16 1970-09-15 Surgical Design Corp Ultrasonic method for retinal attachment
US3558066A (en) * 1969-01-21 1971-01-26 Howard Alliger Ultrasonic extraction of viable antigens from gram positive bacteria
US3584327A (en) 1969-04-04 1971-06-15 Fibra Sonics Ultrasonic transmission system
US3605750A (en) * 1969-04-07 1971-09-20 David S Sheridan X-ray tip catheter
US3618614A (en) * 1969-05-06 1971-11-09 Scient Tube Products Inc Nontoxic radiopaque multiwall medical-surgical tubings
US3618594A (en) * 1970-04-06 1971-11-09 Surgical Design Corp Ultrasonic apparatus for retinal reattachment
US3930173A (en) * 1971-06-15 1975-12-30 Surgical Design Corp Ultrasonic transducers
DE2219790C3 (de) * 1972-04-22 1974-11-07 R Pohlman Einrichtung zum Erzeugen von Sprödbrüchen bei harten Steinen
US3805787A (en) * 1972-06-16 1974-04-23 Surgical Design Corp Ultrasonic surgical instrument
US3861391A (en) * 1972-07-02 1975-01-21 Blackstone Corp Apparatus for disintegration of urinary calculi
US3830240A (en) * 1972-07-02 1974-08-20 Blackstone Corp Method and apparatus for disintegration of urinary calculi
US3749086A (en) * 1972-07-24 1973-07-31 Medical Evaluation Devices & I Spring guide with flexible distal tip
DE2242863A1 (de) * 1972-08-31 1974-03-14 Karl Storz Operationselement zur zerkleinerung von steinen im menschlichen koerper durch ultraschall
US3942519A (en) * 1972-12-26 1976-03-09 Ultrasonic Systems, Inc. Method of ultrasonic cryogenic cataract removal
US4188952A (en) * 1973-12-28 1980-02-19 Loschilov Vladimir I Surgical instrument for ultrasonic separation of biological tissue
US3956826A (en) * 1974-03-19 1976-05-18 Cavitron Corporation Ultrasonic device and method
US3941122A (en) * 1974-04-08 1976-03-02 Bolt Beranek And Newman, Inc. High frequency ultrasonic process and apparatus for selectively dissolving and removing unwanted solid and semi-solid materials and the like
US4023557A (en) * 1975-11-05 1977-05-17 Uop Inc. Solar collector utilizing copper lined aluminum tubing and method of making such tubing
US4041931A (en) * 1976-05-17 1977-08-16 Elliott Donald P Radiopaque anastomosis marker
CH630289A5 (de) * 1977-05-09 1982-06-15 Bbc Brown Boveri & Cie Hochdaempfender verbundwerkstoff.
US4370131A (en) * 1977-06-24 1983-01-25 Surgical Design Ultrasonic transducer tips
GB1531659A (en) * 1977-07-21 1978-11-08 Gekhman B Apparatus for disintegration of urinary concretions
US4425115A (en) * 1977-12-19 1984-01-10 Wuchinich David G Ultrasonic resonant vibrator
US4202349A (en) * 1978-04-24 1980-05-13 Jones James W Radiopaque vessel markers
CA1153264A (en) * 1979-02-08 1983-09-06 Hidenaga Yoshimura Medical vascular guide wire and self-guiding type catheter
US4281419A (en) * 1979-12-10 1981-08-04 Richards Manufacturing Company, Inc. Middle ear ossicular replacement prosthesis having a movable joint
US4657024A (en) * 1980-02-04 1987-04-14 Teleflex Incorporated Medical-surgical catheter
US4295464A (en) * 1980-03-21 1981-10-20 Shihata Alfred A Ureteric stone extractor with two ballooned catheters
FI59720C (fi) * 1980-04-02 1981-10-12 Outokumpu Oy Koppartraod foer livmoderinlaegg samt foerfarande foer framstaellning av densamma
DE3019996A1 (de) 1980-05-24 1981-12-03 Institute für Textil- und Faserforschung Stuttgart, 7410 Reutlingen Hohlorgan
DE3175974D1 (en) 1980-11-07 1987-04-16 David Baram A valve
US4465481A (en) * 1981-02-26 1984-08-14 Innovative Surgical Products, Inc. Single piece wound drain catheter
US4406284B1 (en) * 1981-03-20 1997-11-18 Surgical Design Corp Ultrasonic handpiece design
US4417578A (en) * 1981-03-20 1983-11-29 Surgical Design Ultrasonic transducer with energy shielding
CH651463A5 (de) 1981-06-24 1985-09-30 Sulzer Ag Sehnen- und/oder baenderersatz.
US4425908A (en) * 1981-10-22 1984-01-17 Beth Israel Hospital Blood clot filter
DE8132839U1 (de) * 1981-11-10 1982-03-11 B. Braun Melsungen Ag, 3508 Melsungen Versteifungskern fuer einen katheterschlauch
CH660882A5 (de) * 1982-02-05 1987-05-29 Bbc Brown Boveri & Cie Werkstoff mit zweiweg-gedaechtniseffekt und verfahren zu dessen herstellung.
GB2116045B (en) * 1982-03-04 1985-01-23 Wolf Gmbh Richard Piezoelectric transducers having a curved tubular shaft for disintegrating calculi
GB2116046B (en) * 1982-03-04 1985-05-22 Wolf Gmbh Richard Apparatus for disintegrating and removing calculi
SE445884B (sv) * 1982-04-30 1986-07-28 Medinvent Sa Anordning for implantation av en rorformig protes
US4474180A (en) * 1982-05-13 1984-10-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Apparatus for disintegrating kidney stones
US4464176A (en) * 1982-06-04 1984-08-07 Mallinckrodt, Inc. Blood vessel catheter for medicine delivery and method of manufacture
US4535759A (en) 1982-09-30 1985-08-20 Cabot Medical Corporation Ultrasonic medical instrument
FR2541901B1 (fr) * 1983-03-01 1985-06-07 Franceschi Claude Filtre contre les embolies
CH653369A5 (de) * 1983-03-14 1985-12-31 Bbc Brown Boveri & Cie Verbundwerkstoff in stab-, rohr-, band-, blech- oder plattenform mit reversiblen thermo-mechanischen eigenschaften und verfahren zu dessen herstellung.
DE3329176C1 (de) 1983-08-12 1984-11-22 Sterimed Gesellschaft für medizinischen Bedarf mbH, 6600 Saarbrücken Medizinisches Gerät mit Einführungshilfe
WO1985000097A1 (en) * 1983-06-28 1985-01-17 Sterimed Gesellschaft Für Medizinischen Bedarf Mbh Medical apparatus with insertion aid device
US4517793A (en) * 1983-08-23 1985-05-21 Vernon-Carus Limited Radio opaque fibre
CA1232814A (en) * 1983-09-16 1988-02-16 Hidetoshi Sakamoto Guide wire for catheter
US4719916A (en) * 1983-10-03 1988-01-19 Biagio Ravo Intraintestinal bypass tube
JPS6082648A (ja) * 1983-10-08 1985-05-10 Agency Of Ind Science & Technol 高強度・難加工材の成形法
US4572184A (en) * 1983-10-28 1986-02-25 Blackstone Corporation Wave guide attachment means and methods
US4848348A (en) * 1983-11-14 1989-07-18 Minnesota Mining And Manufacturing Company Coated films
US4654092A (en) * 1983-11-15 1987-03-31 Raychem Corporation Nickel-titanium-base shape-memory alloy composite structure
JPS60126170A (ja) * 1983-12-14 1985-07-05 テルモ株式会社 カテ−テルとその製造方法
SE452404B (sv) 1984-02-03 1987-11-30 Medinvent Sa Flerskiktat protesmaterial samt forfarande for dess framstellning
CA1237482A (en) * 1984-03-09 1988-05-31 Frank B. Stiles Catheter for effecting removal of obstructions from a biological duct
US4577637A (en) * 1984-07-13 1986-03-25 Argon Medical Corp. Flexible metal radiopaque indicator and plugs for catheters
US4697595A (en) * 1984-07-24 1987-10-06 Telectronics N.V. Ultrasonically marked cardiac catheters
YU132884A (en) * 1984-07-26 1987-12-31 Branko Breyer Electrode cateter with ultrasonic marking
US4580568A (en) * 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
SE452110B (sv) 1984-11-08 1987-11-16 Medinvent Sa Flerskiktat protesmaterial samt forfarande for dess framstellning
US4602633A (en) * 1984-11-16 1986-07-29 Blackstone Corporation Methods and apparatus for disintegration of urinary calculi under direct vision
ES8705239A1 (es) * 1984-12-05 1987-05-01 Medinvent Sa Un dispositivo para implantar,mediante insercion en un lugarde dificil acceso, una protesis sustancialmente tubular y radialmente expandible
DE3447642C1 (de) * 1984-12-28 1986-09-18 Bernhard M. Dr. 5600 Wuppertal Cramer Lenkbarer Fuehrungsdraht fuer Katheter
CH665784A5 (de) * 1985-03-21 1988-06-15 Hansen Dieter Ag Ultraschallbearbeitungswerkzeug.
SE450809B (sv) 1985-04-10 1987-08-03 Medinvent Sa Plant emne avsett for tillverkning av en spiralfjeder lemplig for transluminal implantation samt derav tillverkad spiralfjeder
SE447061B (sv) 1985-06-10 1986-10-27 Medinvent Sa Inforingsanordning, spec for implantering i en levande organism
US4816018A (en) * 1985-08-02 1989-03-28 Ultramed Corporation Ultrasonic probe tip
US4750488A (en) * 1986-05-19 1988-06-14 Sonomed Technology, Inc. Vibration apparatus preferably for endoscopic ultrasonic aspirator
US4750902A (en) * 1985-08-28 1988-06-14 Sonomed Technology, Inc. Endoscopic ultrasonic aspirators
US4698058A (en) * 1985-10-15 1987-10-06 Albert R. Greenfeld Ultrasonic self-cleaning catheter system for indwelling drains and medication supply
US4823793A (en) * 1985-10-30 1989-04-25 The United States Of America As Represented By The Administrator Of The National Aeronuautics & Space Administration Cutting head for ultrasonic lithotripsy
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4830262A (en) * 1985-11-19 1989-05-16 Nippon Seisen Co., Ltd. Method of making titanium-nickel alloys by consolidation of compound material
US4748986A (en) * 1985-11-26 1988-06-07 Advanced Cardiovascular Systems, Inc. Floppy guide wire with opaque tip
DE3640745A1 (de) 1985-11-30 1987-06-04 Ernst Peter Prof Dr M Strecker Katheter zum herstellen oder erweitern von verbindungen zu oder zwischen koerperhohlraeumen
US4681110A (en) * 1985-12-02 1987-07-21 Wiktor Dominik M Catheter arrangement having a blood vessel liner, and method of using it
US4724846A (en) * 1986-01-10 1988-02-16 Medrad, Inc. Catheter guide wire assembly
EP0556940A1 (de) * 1986-02-24 1993-08-25 Robert E. Fischell Intravaskulärer Stent
US4731084A (en) * 1986-03-14 1988-03-15 Richards Medical Company Prosthetic ligament
SE453258B (sv) 1986-04-21 1988-01-25 Medinvent Sa Elastisk, sjelvexpanderande protes samt forfarande for dess framstellning
US4867173A (en) * 1986-06-30 1989-09-19 Meadox Surgimed A/S Steerable guidewire
US4819618A (en) * 1986-08-18 1989-04-11 Liprie Sam F Iridium/platinum implant, method of encapsulation, and method of implantation
SE454482B (sv) 1986-09-30 1988-05-09 Medinvent Sa Anordning for implantation
US5024232A (en) 1986-10-07 1991-06-18 The Research Foundation Of State University Of Ny Novel radiopaque heavy metal polymer complexes, compositions of matter and articles prepared therefrom
SE455834B (sv) 1986-10-31 1988-08-15 Medinvent Sa Anordning for transluminal implantation av en i huvudsak rorformig, radiellt expanderbar protes
US4793348A (en) * 1986-11-15 1988-12-27 Palmaz Julio C Balloon expandable vena cava filter to prevent migration of lower extremity venous clots into the pulmonary circulation
US4748971A (en) * 1987-01-30 1988-06-07 German Borodulin Vibrational apparatus for accelerating passage of stones from ureter
IT1202558B (it) 1987-02-17 1989-02-09 Alberto Arpesani Protesi interna per la sostituzione di una parte del corpo umano particolarmente nelle operazioni vascolari
US4936845A (en) * 1987-03-17 1990-06-26 Cordis Corporation Catheter system having distal tip for opening obstructions
US5025799A (en) * 1987-05-13 1991-06-25 Wilson Bruce C Steerable memory alloy guide wires
US4817600A (en) * 1987-05-22 1989-04-04 Medi-Tech, Inc. Implantable filter
US4796637A (en) * 1987-06-17 1989-01-10 Victory Engineering Company Radiopaque marker for stereotaxic catheter
US4989608A (en) 1987-07-02 1991-02-05 Ratner Adam V Device construction and method facilitating magnetic resonance imaging of foreign objects in a body
JPS6458263A (en) 1987-08-28 1989-03-06 Terumo Corp Intravascular introducing catheter
AU614092B2 (en) 1987-09-11 1991-08-22 Paul Max Grinwald Improved method and apparatus for enhanced drug permeation of skin
US4953553A (en) * 1989-05-11 1990-09-04 Advanced Cardiovascular Systems, Inc. Pressure monitoring guidewire with a flexible distal portion
US4964409A (en) 1989-05-11 1990-10-23 Advanced Cardiovascular Systems, Inc. Flexible hollow guiding member with means for fluid communication therethrough
WO1989003197A1 (en) 1987-10-08 1989-04-20 Terumo Kabushiki Kaisha Instrument and apparatus for securing inner diameter of lumen of tubular organ
US4886062A (en) 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US4870953A (en) * 1987-11-13 1989-10-03 Donmicheal T Anthony Intravascular ultrasonic catheter/probe and method for treating intravascular blockage
US4934380A (en) * 1987-11-27 1990-06-19 Boston Scientific Corporation Medical guidewire
US4830023A (en) * 1987-11-27 1989-05-16 Medi-Tech, Incorporated Medical guidewire
US4906241A (en) * 1987-11-30 1990-03-06 Boston Scientific Corporation Dilation balloon
US5256764A (en) 1987-12-17 1993-10-26 United States Surgical Corporation Medical devices fabricated from homopolymers and copolymers having recurring carbonate units
US4846186A (en) * 1988-01-12 1989-07-11 Cordis Corporation Flexible guidewire
US4971490A (en) 1988-03-01 1990-11-20 National Standard Company Flexible guide wire with improved mounting arrangement for coil spring tip
US4932419A (en) * 1988-03-21 1990-06-12 Boston Scientific Corporation Multi-filar, cross-wound coil for medical devices
US5052407A (en) 1988-04-14 1991-10-01 Mieczyslaw Mirowski Cardiac defibrillation/cardioversion spiral patch electrode
US4907572A (en) * 1988-04-14 1990-03-13 Urological Instruments Research, Inc. Vibrational method for accelerating passage of stones from ureter
US4884579A (en) * 1988-04-18 1989-12-05 Target Therapeutics Catheter guide wire
US4883486A (en) * 1988-05-31 1989-11-28 Indu Kapadia Prosthetic ligament
US4830003A (en) * 1988-06-17 1989-05-16 Wolff Rodney G Compressive stent and delivery system
US4995878A (en) 1988-07-15 1991-02-26 Rai Dinker B Method for descending venography
US5374261A (en) 1990-07-24 1994-12-20 Yoon; Inbae Multifunctional devices for use in endoscopic surgical procedures and methods-therefor
US4920954A (en) * 1988-08-05 1990-05-01 Sonic Needle Corporation Ultrasonic device for applying cavitation forces
US4980964A (en) 1988-08-19 1991-01-01 Jan Boeke Superconducting wire
GB8820608D0 (en) 1988-08-31 1988-09-28 Shell Int Research Method for placing body of shape memory within tubing
US5092877A (en) 1988-09-01 1992-03-03 Corvita Corporation Radially expandable endoprosthesis
US5019090A (en) 1988-09-01 1991-05-28 Corvita Corporation Radially expandable endoprosthesis and the like
SE8803444D0 (sv) 1988-09-28 1988-09-28 Medinvent Sa A device for transluminal implantation or extraction
CA1322628C (en) * 1988-10-04 1993-10-05 Richard A. Schatz Expandable intraluminal graft
US5207706A (en) 1988-10-05 1993-05-04 Menaker M D Gerald Method and means for gold-coating implantable intravascular devices
US4984581A (en) 1988-10-12 1991-01-15 Flexmedics Corporation Flexible guide having two-way shape memory alloy
US5019085A (en) 1988-10-25 1991-05-28 Cordis Corporation Apparatus and method for placement of a stent within a subject vessel
US5001825A (en) 1988-11-03 1991-03-26 Cordis Corporation Catheter guidewire fabrication method
US4950227A (en) * 1988-11-07 1990-08-21 Boston Scientific Corporation Stent delivery system
US4899733A (en) * 1988-12-19 1990-02-13 Blackstone Ultrasonic, Inc. Device and technique for transurethral ultrasonic lithotripsy using a flexible ureteroscope
JP2610507B2 (ja) 1988-12-29 1997-05-14 テルモ株式会社 ガイドワイヤー
US4856516A (en) * 1989-01-09 1989-08-15 Cordis Corporation Endovascular stent apparatus and method
US5152777A (en) 1989-01-25 1992-10-06 Uresil Corporation Device and method for providing protection from emboli and preventing occulsion of blood vessels
US5024617A (en) 1989-03-03 1991-06-18 Wilson-Cook Medical, Inc. Sphincterotomy method and device having controlled bending and orientation
US4969891A (en) 1989-03-06 1990-11-13 Gewertz Bruce L Removable vascular filter
US4957110A (en) * 1989-03-17 1990-09-18 C. R. Bard, Inc. Steerable guidewire having electrodes for measuring vessel cross-section and blood flow
US4922924A (en) * 1989-04-27 1990-05-08 C. R. Bard, Inc. Catheter guidewire with varying radiopacity
EP0395098B1 (de) * 1989-04-28 1994-04-06 Tokin Corporation Schnell betriebsbereiter Führungsdraht für Katheter unter Anwendung einer Memory-Legierung mit Pseudoelastizität
US5003989A (en) 1989-05-11 1991-04-02 Advanced Cardiovascular Systems, Inc. Steerable dilation catheter
US5015253A (en) 1989-06-15 1991-05-14 Cordis Corporation Non-woven endoprosthesis
US5171262A (en) 1989-06-15 1992-12-15 Cordis Corporation Non-woven endoprosthesis
US5111829A (en) 1989-06-28 1992-05-12 Boston Scientific Corporation Steerable highly elongated guidewire
CA2019063E (en) 1989-06-29 2000-01-04 Brian L. Bates Hydrophilically coated flexible wire guide
EP0408245B1 (de) 1989-07-13 1994-03-02 American Medical Systems, Inc. Vorrichtung zur Einführung eines Erweiterungsgerätes
US5015183A (en) 1989-08-07 1991-05-14 Fenick Thomas J Locating device and method of placing a tooth implant
US5674278A (en) * 1989-08-24 1997-10-07 Arterial Vascular Engineering, Inc. Endovascular support device
IE73670B1 (en) 1989-10-02 1997-07-02 Medtronic Inc Articulated stent
FR2655839B2 (fr) * 1989-10-09 1994-03-04 Fondation Avenir Rech Medical Filtre anti-embolie pulmonaire et son kit de presentation et mise en place.
US5147385A (en) 1989-11-01 1992-09-15 Schneider (Europe) A.G. Stent and catheter for the introduction of the stent
US5163433A (en) 1989-11-01 1992-11-17 Olympus Optical Co., Ltd. Ultrasound type treatment apparatus
US5059166A (en) 1989-12-11 1991-10-22 Medical Innovative Technologies R & D Limited Partnership Intra-arterial stent with the capability to inhibit intimal hyperplasia
US5176617A (en) 1989-12-11 1993-01-05 Medical Innovative Technologies R & D Limited Partnership Use of a stent with the capability to inhibit malignant growth in a vessel such as a biliary duct
US5477864A (en) * 1989-12-21 1995-12-26 Smith & Nephew Richards, Inc. Cardiovascular guidewire of enhanced biocompatibility
EP0435518B1 (de) 1989-12-29 1995-02-15 Med Institute, Inc. Flexibler knickbeständiger Katheter
US5012797A (en) 1990-01-08 1991-05-07 Montefiore Hospital Association Of Western Pennsylvania Method for removing skin wrinkles
US5095915A (en) 1990-03-19 1992-03-17 Target Therapeutics Guidewire with flexible distal tip
US5109830A (en) 1990-04-10 1992-05-05 Candela Laser Corporation Apparatus for navigation of body cavities
US5071407A (en) 1990-04-12 1991-12-10 Schneider (U.S.A.) Inc. Radially expandable fixation member
US5171233A (en) 1990-04-25 1992-12-15 Microvena Corporation Snare-type probe
DE4018163A1 (de) * 1990-06-04 1991-12-05 Vita Valve Medizintechnik Gmbh Implantat
US5147317A (en) 1990-06-04 1992-09-15 C.R. Bard, Inc. Low friction varied radiopacity guidewire
US5203348A (en) 1990-06-06 1993-04-20 Cardiac Pacemakers, Inc. Subcutaneous defibrillation electrodes
US5064435A (en) 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5069217A (en) 1990-07-09 1991-12-03 Lake Region Manufacturing Co., Inc. Steerable guide wire
DE4022956A1 (de) 1990-07-19 1992-02-06 Sebastian Dr Freudenberg Endoluminalschiene
US5139480A (en) 1990-08-22 1992-08-18 Biotech Laboratories, Inc. Necking stents
US5163952A (en) * 1990-09-14 1992-11-17 Michael Froix Expandable polymeric stent with memory and delivery apparatus and method
US5064428A (en) 1990-09-18 1991-11-12 Cook Incorporated Medical retrieval basket
DE9014230U1 (de) 1990-10-13 1991-11-21 Angiomed Ag, 7500 Karlsruhe, De
US5217483A (en) 1990-11-28 1993-06-08 Numed, Inc. Intravascular radially expandable stent
US5304115A (en) * 1991-01-11 1994-04-19 Baxter International Inc. Ultrasonic angioplasty device incorporating improved transmission member and ablation probe
ATE140647T1 (de) 1991-04-09 1996-08-15 Furukawa Electric Co Ltd Verbundene teile von ni-ti-legierugen mit verschiedenen metallen und verbindungsverfahren dafür
US5197978B1 (en) * 1991-04-26 1996-05-28 Advanced Coronary Tech Removable heat-recoverable tissue supporting device
US5256158A (en) 1991-05-17 1993-10-26 Act Medical, Inc. Device having a radiopaque marker for endoscopic accessories and method of making same
US5276455A (en) 1991-05-24 1994-01-04 The Boeing Company Packaging architecture for phased arrays
US5213111A (en) 1991-07-10 1993-05-25 Cook Incorporated Composite wire guide construction
US5320100A (en) 1991-09-16 1994-06-14 Atrium Medical Corporation Implantable prosthetic device having integral patency diagnostic indicia
US5366504A (en) 1992-05-20 1994-11-22 Boston Scientific Corporation Tubular medical prosthesis
GB2260287A (en) 1991-10-10 1993-04-14 Micropore International Ltd Drawing insulated tube
US5354309A (en) 1991-10-11 1994-10-11 Angiomed Ag Apparatus for widening a stenosis in a body cavity
CA2380683C (en) 1991-10-28 2006-08-08 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5282823A (en) * 1992-03-19 1994-02-01 Medtronic, Inc. Intravascular radially expandable stent
JPH07505316A (ja) * 1992-03-31 1995-06-15 ボストン サイエンティフィック コーポレーション 医療用ワイヤ
DE9206170U1 (de) * 1992-05-08 1992-07-16 Neuss, Malte, Dipl.-Ing. (Fh), 7750 Konstanz, De
US5380273A (en) 1992-05-19 1995-01-10 Dubrul; Will R. Vibrating catheter
US5382259A (en) 1992-10-26 1995-01-17 Target Therapeutics, Inc. Vasoocclusion coil with attached tubular woven or braided fibrous covering
US5630840A (en) 1993-01-19 1997-05-20 Schneider (Usa) Inc Clad composite stent
CA2152594C (en) * 1993-01-19 1998-12-01 David W. Mayer Clad composite stent
EP0684787B1 (de) 1993-02-19 2004-05-12 Boston Scientific Corporation Chirurgischer extraktor
US5334201A (en) 1993-03-12 1994-08-02 Cowan Kevin P Permanent stent made of a cross linkable material
US5474563A (en) 1993-03-25 1995-12-12 Myler; Richard Cardiovascular stent and retrieval apparatus
US5489927A (en) 1993-08-30 1996-02-06 Hewlett-Packard Company Wiper for ink jet printers
JP3464249B2 (ja) 1993-09-03 2003-11-05 ヤマハマリン株式会社 船外機用エンジンの防水構造
US5389106A (en) 1993-10-29 1995-02-14 Numed, Inc. Impermeable expandable intravascular stent
US5556413A (en) 1994-03-11 1996-09-17 Advanced Cardiovascular Systems, Inc. Coiled stent with locking ends
US5476508A (en) 1994-05-26 1995-12-19 Tfx Medical Stent with mutually interlocking filaments
US5658296A (en) 1994-11-21 1997-08-19 Boston Scientific Corporation Method for making surgical retrieval baskets
BE1009277A3 (fr) * 1995-04-12 1997-01-07 Corvita Europ Tuteur auto-expansible pour dispositif medical a introduire dans une cavite d'un corps, et son procede de preparation.
US5609629A (en) 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
US5891191A (en) * 1996-04-30 1999-04-06 Schneider (Usa) Inc Cobalt-chromium-molybdenum alloy stent and stent-graft
US5733326A (en) 1996-05-28 1998-03-31 Cordis Corporation Composite material endoprosthesis
US5843163A (en) 1996-06-06 1998-12-01 Wall; William H. Expandable stent having radioactive treatment means
US5858556A (en) 1997-01-21 1999-01-12 Uti Corporation Multilayer composite tubular structure and method of making

Also Published As

Publication number Publication date
JPH07505319A (ja) 1995-06-15
US6290721B1 (en) 2001-09-18
EP0633799A1 (de) 1995-01-18
US5725570A (en) 1998-03-10
EP0633798A4 (de) 1995-07-12
JP3493195B2 (ja) 2004-02-03
EP1334701A2 (de) 2003-08-13
EP0633798B1 (de) 2003-05-07
EP0633799A4 (de) 1995-06-28
US6287331B1 (en) 2001-09-11
EP0633798A1 (de) 1995-01-18
DE69332950T2 (de) 2004-05-13
EP1334701A3 (de) 2003-12-10
DE69333513D1 (de) 2004-06-17
DE69334302D1 (de) 2010-01-07
WO1993019803A1 (en) 1993-10-14
DE69332950D1 (de) 2003-06-12
JPH07505316A (ja) 1995-06-15
EP1334701B1 (de) 2009-11-25
EP0633799B1 (de) 2004-05-12
WO1993019804A1 (en) 1993-10-14

Similar Documents

Publication Publication Date Title
DE69333513T2 (de) Rohrförmige, medizinische endoprothese
DE69908736T2 (de) Ballonexpandierbarer überzogener Stent
DE69938266T2 (de) Einführvorrichtung für einen selbstexpandierbaren stent
DE69925327T2 (de) Endoprosthese aus Verbundmaterial
DE69433268T2 (de) Stent
DE69733111T2 (de) Kompositstent
DE69821245T2 (de) Spiralförmige netzendoprothese
DE60220649T2 (de) Stent aus einer Röntgenopakeslegierung
US7101392B2 (en) Tubular medical endoprostheses
DE60128300T2 (de) Einführvorrichtung für einen selbstexpandierenden Stent
DE69736369T2 (de) Selbstexpandierbarer Stent aus einer Titanlegierung
DE69834170T2 (de) Niedrig- profil selbst-expandierbarer blutgefäss stent
DE60313736T2 (de) Prothese implantierbar in darmgefässe
DE60221552T2 (de) Einführungsvorrichtung für einen selbstexpandierenden stent
EP2698130B1 (de) Verfahren zum Herstellen eines Körperimplantats
EP1542617A1 (de) Medizinisches implantat
EP1419793A1 (de) Endoprothese mit einer Trägerstruktur aus einer Magnesiumlegierung
DE102010024085A1 (de) Zuführsystem für ein medizinisches Funktionselement
DE102018133345B4 (de) Stent
DE102010046408B4 (de) Zuführsystem
DE10301850B4 (de) Stent
DE102018133285B4 (de) Medizinische Vorrichtung, insbesondere Stent, und Set mit einer solchen Vorrichtung
DE102019104828B4 (de) Medizinische Vorrichtung, insbesondere Flow Diverter, und Set mit einer solchen Vorrichtung
EP2754425A1 (de) Vorrichtung und Verfahren zum Crimpen eines Implantats

Legal Events

Date Code Title Description
8364 No opposition during term of opposition