DE4442370A1 - Process for the deposition of metallic layers on substrate bodies and composite bodies from a substrate body and at least one surface layer - Google Patents

Process for the deposition of metallic layers on substrate bodies and composite bodies from a substrate body and at least one surface layer

Info

Publication number
DE4442370A1
DE4442370A1 DE19944442370 DE4442370A DE4442370A1 DE 4442370 A1 DE4442370 A1 DE 4442370A1 DE 19944442370 DE19944442370 DE 19944442370 DE 4442370 A DE4442370 A DE 4442370A DE 4442370 A1 DE4442370 A1 DE 4442370A1
Authority
DE
Germany
Prior art keywords
metal
voltage
layer
pulsed
substrate body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19944442370
Other languages
German (de)
Inventor
Hendrikus Van Den Dr Berg
Ralf Dipl Phys Tabersky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Widia GmbH
Original Assignee
Widia GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Widia GmbH filed Critical Widia GmbH
Priority to DE19944442370 priority Critical patent/DE4442370A1/en
Priority to PCT/DE1995/001244 priority patent/WO1996017103A1/en
Publication of DE4442370A1 publication Critical patent/DE4442370A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/515Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using pulsed discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/027Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal matrix material comprising a mixture of at least two metals or metal phases or metal matrix composites, e.g. metal matrix with embedded inorganic hard particles, CERMET, MMC.

Abstract

The invention concerns a method of depositing metal films on substrates made of hardmetal, cermet, steel or ceramic material, using metal halides as the reaction gas in a plasma CVD process in which the substrate temperature is < 500 DEG C. The invention also concerns a composite consisting of a steel, cermet, hardmetal or ceramic substrate plus at least one metal or metal-alloy surface film applied by a plasma CVD process using metal halides as the reaction gas. The chlorine content of the metal or metal-alloy film is less than 1 % by wt.

Description

Die Erfindung betrifft ein Verfahren zur Abscheidung metalli­ scher Schichten auf Substratkörpern aus Hartmetall, Cermet, Stahl oder Keramik, unter Verwendung von Metallhalogeniden als Reaktionsgas in einem Plasma-CVD-Prozeß.The invention relates to a method for metal deposition shear layers on substrate bodies made of hard metal, cermet, Steel or ceramic, using metal halides as Reaction gas in a plasma CVD process.

Die Erfindung betrifft ferner einen Verbundkörper aus einem Stahl-, Cermet-, Hartmetall- oder Keramik-Substratkörper und mindestens einer aus einem Metall oder einer Metallegierung bestehenden Oberflächenschicht, die mittels eines Plasma-CVD- Prozesses unter Verwendung von Metallhalogeniden als Reaktions­ gas aufgebracht ist.The invention further relates to a composite body from a Steel, cermet, hard metal or ceramic substrate bodies and at least one of a metal or a metal alloy existing surface layer, which by means of a plasma CVD Process using metal halides as a reaction gas is applied.

Ein Verfahren zur Beschichtung eines Werkzeuggrundkörpers, vor zugsweise aus Hartmetall oder Stahl mit Carbiden, Nitriden und/oder Carbonitriden von Titan und/oder Zirkonium mittels eines Plasma-CVD-Verfahrens, ist u. a. aus der DE 38 41 731 C1 bekannt. Hierzu wird die Plasmaaktivierung an dem als Kathode geschalteten Werkzeuggrundkörper durch eine gepulste Gleich­ spannung mit einer in den Pulspausen verbleiben Restspannung einer Größe durchgeführt, die gleich oder größer als das nied­ rigste ionisierungspotential der beteiligten Gase des CVD-Prozesses ist, maximal jedoch 50% des maximalen Wertes der gepulsten Gleichspannung ist. Zur Abscheidung werden Tempera­ turen zwischen 400 und 600°C angegeben.A method for coating a tool body, before preferably made of hard metal or steel with carbides, nitrides and / or carbonitrides of titanium and / or zirconium a plasma CVD process is u. a. from DE 38 41 731 C1 known. For this purpose, the plasma activation on the as cathode switched tool body by a pulsed equal voltage with a residual voltage remaining in the pulse pauses performed a size that is equal to or larger than the nied Rigid ionization potential of the gases involved CVD process is, however, a maximum of 50% of the maximum value of the pulsed DC voltage. Tempera are used for separation structures between 400 and 600 ° C.

Darüber hinaus ist es bekannt, ein Niederdruckplasma durch eine Gleichspannung oder durch eine hochfrequente Wechselspannung bei Drücken zwischen 10 und 1000 Pascal zu erzeugen. In addition, it is known to use a low pressure plasma DC voltage or by a high-frequency AC voltage to generate at pressures between 10 and 1000 Pascal.  

In der EP 0 199 527 A1 wird ein Plasma-CVD-Verfahren beschrie­ ben, bei dem an das zu beschichtende Substrat aus Stahl oder einem Cermet eine negative, das Plasma anregende Gleichspannung bis 1500 V angelegt wird, der eine Hochfrequenzspannung mit z. B. 13,56 MHZ überlagert wird. Hiermit sollen auf den Substratkörper Schichten aus Boriden, Carbiden, Nitriden oder Oxiden der Elemente der IVa- bis VIa-Gruppe des periodischen Systemes oder des Siliciums oder Aluminiums oder Bors, insbe­ sondere Carbide oder Nitride des Titans aufgetragen werden. Obwohl allgemein von Beschichtungstemperaturen zwischen 300 und 1100°C gesprochen wird, beschränken sich die angegebenen Aus­ führungsbeispiele auf solche Substratkörpertemperaturen, die bei 500, 600 oder 650°C liegen. Die Zusammensetzung der Spenderme­ dien wird nicht beschrieben.A plasma CVD method is described in EP 0 199 527 A1 ben where the steel or substrate to be coated a negative DC voltage that stimulates the plasma up to 1500 V is applied using a high frequency voltage e.g. B. 13.56 MHz is superimposed. This is intended to Layers of borides, carbides, nitrides or Oxides of the elements of the IVa to VIa group of the periodic Systemes or silicon or aluminum or boron, esp special carbides or nitrides of titanium are applied. Although generally from coating temperatures between 300 and 1100 ° C is spoken, the specified Aus limit leadership examples on such substrate body temperatures that at 500, 600 or 650 ° C. The composition of the donor service is not described.

Aus der DE 35 15 919 C2 ist auch ein beschichteter Verbundkör­ per aus einem Hartmetallgrundkörper und einer metallischen Zwi­ schenschicht und mindestens einer metallfreien Hartstoffschicht bekannt. Die metallische Zwischenschicht besteht aus Molybdän und/oder Wolfram und hat eine Dicke von 0,1 bis 2 µm und ist durch einen PVD-Prozeß aufgebracht. Das angewendete PVD-Verfahren, beispielsweise die Kathodenzerstäubung, hat den Vorteil, daß bei niedrigen Temperaturen von 200 bis 600°C gear­ beitet werden kann, jedoch den entscheidenden Nachteil, daß komplexe Geometrien wegen verfahrensbedingter Abschattungs­ effekte nicht gleichmäßig beschichtet werden können.From DE 35 15 919 C2 is also a coated composite body per from a hard metal base and a metallic intermediate layer and at least one metal-free hard material layer known. The metallic intermediate layer consists of molybdenum and / or tungsten and has a thickness of 0.1 to 2 µm and is applied by a PVD process. The applied PVD process, for example cathode sputtering, has the Advantage that at low temperatures of 200 to 600 ° C gear can be processed, however, the decisive disadvantage that complex geometries due to process-related shadowing effects cannot be coated evenly.

Die CVD-Technik, die Beschichtungstemperaturen von mindestens ca. 1000°C erfordert, hat den Nachteil, daß bei der Synthese von Metallen mit niedrigerem Schmelzpunkt als der Abscheidetem­ peratur, z. B. bei der Abscheidung von Aluminium, Stabilisatoren mit in die Schichten eingebracht werden müssen. Darüber hinaus ist es erforderlich, mit sehr hohem Überschuß der in der Regel chlorhaltigen Spendermedien zu arbeiten, um eine gleichmäßige Schichtdickenverteilung und ausreichende Wachstumsgeschwindig­ keiten zu erreichen. Dies führt jedoch zu hohen Belastungen des Umfeldes durch Kontamination der Beschichtungsanlagen und des Abgassystemes durch korrosive Chlorablagerungen.The CVD technology, the coating temperatures of at least requires about 1000 ° C, has the disadvantage that in the synthesis of metals with a lower melting point than the deposited temperature, e.g. B. in the deposition of aluminum, stabilizers must be brought into the layers. Furthermore it is usually required with a very high excess chlorine-containing dispensing media work to ensure an even  Layer thickness distribution and sufficient growth speed achievements. However, this leads to high loads on the Environment due to contamination of the coating systems and the Exhaust system through corrosive chlorine deposits.

Die vorstehend erwähnte Plasma-CVD-Technik arbeitet hingegen bei Temperaturen von ca. 500°C. Bei diesen Temperaturen wird ein gewisser Anteil Chlor mit in die Schichten eingebaut, der mit weiter fallender Beschichtungstemperatur exponenziell grö­ ßer wird. Da bekanntlich Chlorgehalte ab etwa 4 bis 5 Massen-% nachteilige Effekte auf die Eigenschaften der betreffenden Schicht haben, ist in der Praxis als untere Grenze für die Abscheidetemperatur etwa 500°C angenommen worden. Um chlorfreie Hartstoffschichten zu erhalten, ist unter Anwendung der PCVD-Technik vorgeschlagen worden, Metalle oder Metallegierun­ gen unter Verwendung metallorganischer Spendermedien zu synthe­ tisieren. In der Praxis konnten die betreffenden Metall- oder Metallegierungsschichten jedoch ein nur unzureichendes Eigen­ schaftsprofil (Haftfähigkeit, Verschleißfestigkeit) erreichen.The above-mentioned plasma CVD technology, however, works at temperatures of approx. 500 ° C. At these temperatures a certain amount of chlorine built into the layers, the exponentially larger with further falling coating temperature gets better. As is known, chlorine contents from about 4 to 5% by mass adverse effects on the properties of the concerned Having in practice is the lower limit for the layer Deposition temperature about 500 ° C has been assumed. To chlorine free Obtaining hard material layers is possible using the PCVD technology has been proposed to metals or metal alloys gene using organometallic donor media to synthe tize. In practice, the metal or Metal alloy layers, however, are insufficient properties reach the profile (adhesion, wear resistance).

Entgegen der Annahme, daß eine Absenkung der Substrattemperatur während des PCVD-Prozesses zu wachsendem Chlorgehalt in der abgeschiedenen Oberflächenschicht führt, zeigt überraschender­ weise eine Plasma-CVD-Abscheidung bei Substrattemperaturen von weniger als 400°C eine abgeschiedene Metall- oder Metallegie­ rungsoberflächenschicht, in der kein Chlor nachweisbar mittels des EDX-Verfahrens (Nachweisgrenze bei ca. 0,5 Massen-%) nach­ weisbar ist. Selbst bei Beschichtungsversuchen mit Substrattem­ peraturen von 200°C konnte kein Chlor nachgewiesen werden.Contrary to the assumption that a lowering of the substrate temperature during the PCVD process to increase chlorine in the deposited surface layer leads, shows more surprising exhibit plasma CVD deposition at substrate temperatures of a deposited metal or metal alloy less than 400 ° C layer in which no chlorine can be detected the EDX method (detection limit at approx. 0.5 mass%) is detectable. Even when trying to coat with substrates chlorine could not be detected at temperatures of 200 ° C.

Weiterbildungen des erfindungsgemäßen Verfahrens sind in den Ansprüchen 2 bis 9 beschrieben.Further developments of the method according to the invention are in the Claims 2 to 9 described.

So werden bevorzugt auf einem Substratkörper der eingangs genannten Art Aluminium, Silicium oder Metalle der IVa-, Va- oder VIa-Gruppe des Periodensystemes (Nebengruppenelemente bzw. Übergangselemente) oder Legierungen hieraus abgeschieden. Vor­ zugsweise ist die Metallschicht eine von mehreren Schichten, beispielsweise die auf den Substratkörper aufgetragene erste von mehreren Schichten oder eine Zwischenschicht, die insbe­ sondere eine Diffusionsbarriere sein kann.So are preferred on a substrate body of the beginning mentioned type aluminum, silicon or metals of IVa, Va or VIa group of the periodic table (subgroup elements or Transition elements) or alloys deposited therefrom. Before  preferably the metal layer is one of several layers, for example the first applied to the substrate body of several layers or an intermediate layer, in particular special can be a diffusion barrier.

Insbesondere wendet man das Verfahren nach Ansprüchen 4 bis 9 an, das grundsätzlich, allerdings für andere Beschichtungen, aus der DE 38 41 731 C1 bekannt ist. Im einzelnen wird daher auf die dort angewendete Verfahrenstechnik mit der Maßgabe hin­ gewiesen, daß beispielsweise als Metallspendermedium Metallchloride zusammen mit Wasserstoff und Argon in den Reak­ tionsraum einer PCVD-Beschichtungsanlage einzuleiten sind und die Substrattemperatur auf Werte unter 500°C, vorzugsweise unter 400°C eingestellt wird.In particular, the method according to claims 4 to 9 is used in principle, but for other coatings, is known from DE 38 41 731 C1. In detail, therefore to the process technology used there with the stipulation instructed that, for example, as a metal donation medium Metal chlorides along with hydrogen and argon in the reak of a PCVD coating system and the substrate temperature to values below 500 ° C, preferably is set below 400 ° C.

Erfindungsgemäß wird ferner der im Anspruch 10 beschriebene Verbundkörper vorgeschlagen, dessen Chlorgehalt in der Metall- oder Metallegierungsoberflächenschicht < 1 Massen-%, vorzugswei­ sen < 0,5 Massen-% ist.According to the invention is further described in claim 10 Composite body proposed, the chlorine content in the metal or metal alloy surface layer <1 mass%, preferably two sen <0.5 mass%.

Weiterbildungen dieses Verbundkörpers sind in den Ansprüchen 11 bis 13 beschrieben.Developments of this composite body are in claims 11 to 13 described.

So kann der Verbundkörper neben einer oder mehreren Metall- oder Metallegierungsoberflächenschichten mit einer Dicke von jeweils maximal 5 µm weitere Oberflächenschichten anderer Zusammensetzung aufweisen, wobei die Gesamtdicke aller Oberflä­ chenschichten maximal 20 µm beträgt. Als Stoff für die übrigen Oberflächenschichten kommen Carbide, Nitride, Carbonitride, Boride oder Oxide der Elemente der IVa- bis VIa-Gruppe des Periodensystemes (Nebengruppenelemente bzw. Übergangselemente) in Frage.In addition to one or more metal or metal alloy surface layers with a thickness of in each case a maximum of 5 µm further surface layers of others Have composition, the total thickness of all surfaces maximum layers is 20 µm. As material for the rest Surface layers come carbides, nitrides, carbonitrides, Borides or oxides of the elements of the IVa to VIa group of Periodic table (sub-group elements or transition elements) in question.

Bevorzugt besteht der Verbundkörper aus einem Substratkörper aus einem Hartmetall mit 6 bis 10 Massen-% Binder, insbesondere Cobalt und/oder Nickel, Rest WC. Das WC kann bis zu 30% durch TiC, TaC und/oder NbC ersetzt sein. The composite body preferably consists of a substrate body made of a hard metal with 6 to 10 mass% binder, in particular Cobalt and / or nickel, rest of the toilet. The toilet can go through up to 30% TiC, TaC and / or NbC can be replaced.  

In praktischen Versuchen ist als Aluminiumspendermedium AlCl₃ durch Chlorierung von Al-Spänen erzeugt und zusammen mit H₂ und Ar₂ in den Reaktionsraum einer PCVD-Beschichtungsanlage einge­ leitet worden. Die Substratkörper aus Hartmetall, Stahl, einem Cermet oder einer Keramik sind kathodisch geschaltet. Das Plasma wird durch eine gepulste Gleichspannungsquelle erzeugt. Bei Substrattemperaturen von 200°C wurde überraschenderweise Aluminium abgeschieden, ohne daß in der betreffenden Aluminium­ schicht Chlor nachweisbar war. Dies ist insofern überraschend, weil bekannt ist, daß bei der Abscheidung von Hartstoffschich­ ten, wie AlN oder TiN bei entsprechend niedrigen Temperaturen unzulässig hohe Anteile von Chlor in die Schichten eingebaut werden.In practical tests, AlCl₃ is the aluminum donor medium generated by chlorination of Al chips and together with H₂ and Ar₂ in the reaction chamber of a PCVD coating system been directed. The substrate body made of hard metal, steel, one Cermet or a ceramic are connected cathodically. The Plasma is generated by a pulsed DC voltage source. Surprisingly, at substrate temperatures of 200 ° C Aluminum deposited without the aluminum in question layer of chlorine was detectable. This is surprising in that because it is known that in the deposition of hard material layer ten, such as AlN or TiN at correspondingly low temperatures impermissibly high levels of chlorine built into the layers will.

In einem konkreten Ausführungsbeispiel ist in eine Gasatmo­ sphäre aus 78 Vol.-% H₂, 20 Vol.-% Ar und 2 Vol.-% AlCl₃ bei einem Druck von 300 Pa und einer Substrattemperatur von 200°C in einer Niederdruckglimmentladung Aluminium mit einer Wachs­ tumsgeschwindigkeit von ca. 3 µm/h abgeschieden worden. Hierbei waren die Substrate kathodisch geschaltet, während die Behäl­ terwand auf Erdpotential lag. Das Plasma ist durch eine gepul­ ste Gleichspannungsquelle mit Pulszeiten von 50 µs und Pausen­ zeiten von 130 µs erzeugt worden. Das Aluminiumchlorid wurde durch Chlorierung von Al-Spänen synthetisiert und mit H₂ als Trägergas in den Reaktionsraum eingeleitet. Innerhalb der Meß­ genauigkeit des EDX-Verfahrens konnte kein Chlor in der Alumi­ niumschicht nachgewiesen werden. Ein Röntgenbeugungsdiagramm zeigt, daß das abgeschiedene Aluminium in kristalliner Form vorliegt.In a specific embodiment is in a gas atmosphere sphere from 78 vol .-% H₂, 20 vol .-% Ar and 2 vol .-% AlCl₃ a pressure of 300 Pa and a substrate temperature of 200 ° C in a low pressure glow discharge aluminum with a wax 3 µm / h. Here the substrates were connected cathodically while the containers terwand was at earth potential. The plasma is pulsed through a Most direct voltage source with pulse times of 50 µs and pauses times of 130 µs have been generated. The aluminum chloride was synthesized by chlorination of Al chips and with H₂ as Carrier gas introduced into the reaction space. Within the meas Accuracy of the EDX process could not chlorine in the Alumi nium layer can be detected. An X-ray diffraction pattern shows that the deposited aluminum in crystalline form is present.

In einem weiteren Ausführungsbeispiel wird aus 85 Vol.-% H₂, 13,6 Vol.-% Ar, 0,8 Vol.-% AlCl₃ und 0,6 Vol.-% TiCl₄ bei einem Druck von 300 Pa und einer Substrattemperatur von 400°C in einer Niederdruckglimmentladung eine Al-Ti-Legierungsschicht dargestellt, die nach einer EDX-Analyse aus 74 Massen-% Ti und 26 Massen-% Al zusammengesetzt ist. Auch hier kann innerhalb der Meßgenauigkeit des genannten Verfahrens kein Chlor nachge­ wiesen werden. Der Substratkörper war jeweils kathodisch geschaltet, die Behälterwand lag auf Erdpotential. Zur Plasma­ erzeugung wurde eine gepulste Gleichspannungsquelle mit Puls­ zeiten von 50 µs und Pausenzeiten von 100 µs verwendet. Das AlCl₃ wurde durch Chlorierung von Al-Spänen synthetisiert und mit H₂ als Trägergas in den Reaktionsraum eingeleitet. TiCl₄ wurde durch Verdampfen der flüssigen Phase erzeugt und mit H₂ als Trägergas ebenfalls in den Reaktionsraum eingeleitet. Die Härte der genannten Schicht lag bei 800 HV 0,05.In a further embodiment, 85 vol.% H₂, 13.6 vol .-% Ar, 0.8 vol .-% AlCl₃ and 0.6 vol .-% TiCl₄ at one Pressure of 300 Pa and a substrate temperature of 400 ° C in a low-pressure glow discharge an Al-Ti alloy layer shown that according to an EDX analysis from 74 mass% Ti and 26 mass% Al is composed. Again, inside  no chlorine nachge the measuring accuracy of the method mentioned be shown. The substrate body was cathodic in each case switched, the container wall was at ground potential. To plasma generation was a pulsed DC voltage source with pulse times of 50 µs and pause times of 100 µs are used. The AlCl₃ was synthesized by chlorination of Al chips and initiated with H₂ as a carrier gas in the reaction chamber. TiCl₄ was generated by evaporation of the liquid phase and with H₂ also introduced as a carrier gas into the reaction space. The The hardness of the layer mentioned was 800 HV 0.05.

Claims (13)

1. Verfahren zur Abscheidung metallischer Schichten auf Sub­ stratkörpern aus Hartmetall, Cermet, Stahl oder Keramik, unter Verwendung von Metallhalogeniden als Reaktionsgas in einem Plasma-CVD-Prozeß, gekennzeichnet durch eine Substratkörpertemperatur von weniger als 500°C, vorzugsweise < 400°C.1. Process for the deposition of metallic layers on sub strate bodies made of hard metal, cermet, steel or ceramic, using metal halides as reaction gas in a plasma CVD process, characterized by a substrate body temperature of less than 500 ° C, preferably <400 ° C. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Substratkörper mit Al, Si, einem Metall der IVa-, Va- oder VIa-Gruppe des Periodensystemes (Nebengruppenelemente bzw. Übergangselemente) oder Legierungen hieraus beschichtet wird.2. The method according to claim 1, characterized in that the Substrate body with Al, Si, a metal of IVa, Va- or VIa group of the periodic table (subgroup elements or Transition elements) or alloys coated therefrom becomes. 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Metallschicht eine von mehreren Schichten ist, vorzugs­ weise eine auf den Substratkörper aufgetragene erste Schicht oder eine Zwischenschicht ist.3. The method according to claim 2, characterized in that the Metal layer is one of several layers, preferably as a first applied to the substrate body Layer or an intermediate layer. 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Plasmaaktivierung an dem als Kathode geschalteten Werkzeuggrundkörper durch eine gepulste Gleichspannung mit einer in den Pulspausen ver­ bleibenden Restgleichspannung einer Größe, die gleich oder größer als das niedrigste Ionisierungspotential der betei­ ligten Gase des CVD-Prozesses ist, maximal jedoch 50% des maximalen Wertes der gepulsten Gleichspannung ist, durch­ geführt wird.4. The method according to any one of claims 1 to 3, characterized characterized in that the plasma activation at the as Tool body connected by a cathode pulsed DC voltage with a ver in the pulse pauses residual DC voltage of a size that is equal to or greater than the lowest ionization potential in betei gases in the CVD process, up to a maximum of 50% of the is the maximum value of the pulsed DC voltage to be led. 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die gepulste Gleichspannung zwischen 200 bis 900 V gehalten wird. 5. The method according to any one of claims 1 to 4, characterized characterized in that the pulsed DC voltage between 200 to 900 V is maintained.   6. Verfahren nach einem der Ansprüche 1 bis 5, gekennzeichnet durch ein Verhältnis der Restgleichspannung zur maximalen gepulsten Gleichspannung zwischen 0,02 und 0,5.6. The method according to any one of claims 1 to 5, characterized by a ratio of the residual DC voltage to the maximum pulsed DC voltage between 0.02 and 0.5. 7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Periodendauer der gepulsten Gleichspannung zwischen 20 µs und 20 ms eingestellt wird.7. The method according to any one of claims 1 to 6, characterized characterized in that the period of the pulsed DC voltage between 20 µs and 20 ms is set. 8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Verhältnis der Pulslänge zu der Pulspause zwischen 0,1 bis 2 liegt.8. The method according to any one of claims 1 to 7, characterized characterized in that the ratio of the pulse length to the Pulse pause is between 0.1 to 2. 9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Schichtwachstumsgeschwindigkeit 0,5 bis 10 µm/h beträgt.9. The method according to any one of claims 1 to 8, characterized characterized in that the layer growth rate 0.5 to 10 µm / h. 10. Verbundkörper aus einem Stahl-, Cermet-, Hartmetall- oder Keramik-Substratkörper und mindestens einer aus einem Metall oder einer Metallegierung bestehenden Oberflächen­ schicht, die mittels eines Plasma-CVD-Prozesses unter Ver­ wendung von Metallhalogeniden als Reaktionsgas aufgebracht ist, dadurch gekennzeichnet, daß der Chlorgehalt in der Metall- oder Metallegierungsoberflächenschicht 1 Massen-%, vorzugsweise < 0,5 Massen-%, ist.10. Composite body made of a steel, cermet, hard metal or Ceramic substrate body and at least one of one Metal or a metal alloy existing surfaces layer, which by means of a plasma CVD process under Ver Application of metal halides applied as the reaction gas is characterized in that the chlorine content in the Metal or metal alloy surface layer  1% by mass, preferably <0.5% by mass. 11. Verbundkörper nach Anspruch 10, dadurch gekennzeichnet, daß die Metall- oder Metallegierungsoberflächenschicht eine Dicke von maximal 5 µm besitzt und daß die Gesamt­ dicke aller Oberflächenschichten maximal 20 µm beträgt.11. Composite body according to claim 10, characterized in that that the metal or metal alloy surface layer has a maximum thickness of 5 microns and that the total thickness of all surface layers is a maximum of 20 µm. 12. Verbundkörper nach Anspruch 10 oder 11, dadurch gekenn­ zeichnet, daß der Substratkörper aus einem Hartmetall mit 6 bis 10 Massen-% Binder, vorzugsweise Co und/oder Ni, Rest WC besteht. 12. Composite body according to claim 10 or 11, characterized records that the substrate body made of a hard metal 6 to 10% by mass of binder, preferably Co and / or Ni, Remaining toilet exists.   13. Verbundkörper nach Anspruch 12, dadurch gekennzeichnet, daß bis zu 30 Massen-% des WC durch TiC, TaC und/oder NbC ersetzt sind.13. Composite body according to claim 12, characterized in that that up to 30% by mass of the WC by TiC, TaC and / or NbC are replaced.
DE19944442370 1994-11-29 1994-11-29 Process for the deposition of metallic layers on substrate bodies and composite bodies from a substrate body and at least one surface layer Withdrawn DE4442370A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE19944442370 DE4442370A1 (en) 1994-11-29 1994-11-29 Process for the deposition of metallic layers on substrate bodies and composite bodies from a substrate body and at least one surface layer
PCT/DE1995/001244 WO1996017103A1 (en) 1994-11-29 1995-09-09 Method of depositing metal films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19944442370 DE4442370A1 (en) 1994-11-29 1994-11-29 Process for the deposition of metallic layers on substrate bodies and composite bodies from a substrate body and at least one surface layer

Publications (1)

Publication Number Publication Date
DE4442370A1 true DE4442370A1 (en) 1996-05-30

Family

ID=6534390

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19944442370 Withdrawn DE4442370A1 (en) 1994-11-29 1994-11-29 Process for the deposition of metallic layers on substrate bodies and composite bodies from a substrate body and at least one surface layer

Country Status (2)

Country Link
DE (1) DE4442370A1 (en)
WO (1) WO1996017103A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101462386A (en) * 2007-12-21 2009-06-24 山特维克知识产权股份有限公司 Coated cutting tool and a method of making a coated cutting tool

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4709655A (en) * 1985-12-03 1987-12-01 Varian Associates, Inc. Chemical vapor deposition apparatus
US4892751A (en) * 1987-01-19 1990-01-09 Hitachi, Ltd. Method of and apparatus for forming a thin film
DE3841731C1 (en) * 1988-12-10 1990-04-12 Krupp Widia Gmbh, 4300 Essen, De Process for coating a tool base, and tool produced by this process
DE3841730A1 (en) * 1988-12-10 1990-06-13 Krupp Widia Gmbh METHOD FOR COATING A BASIC METAL BODY WITH A NON-CONDUCTIVE COATING MATERIAL
DE4122449A1 (en) * 1990-07-27 1992-01-30 Kali Chemie Ag METHOD OF DEPOSITING COPPER-CONTAINING LAYER I
EP0488112A1 (en) * 1990-11-30 1992-06-03 Central Glass Company, Limited Method of forming thin film of amorphous silicon by plasma CVD
DE4126852A1 (en) * 1991-08-14 1993-02-18 Krupp Widia Gmbh TOOL WITH WEAR-RESISTANT DIAMOND CUTTING, METHOD FOR THE PRODUCTION THEREOF AND THE USE THEREOF
DE4136321A1 (en) * 1991-11-05 1993-05-06 Solvay Deutschland Gmbh, 3000 Hannover, De METHOD FOR DEPOSITING MOLYBDA OR WOLFRAM CONTAINING LAYERS
US5288527A (en) * 1990-09-03 1994-02-22 Saint Gobain Vitrage International C/O Saint Gobain Recherche Silicon nitride thin films with improved properties
US5320880A (en) * 1992-10-20 1994-06-14 Micron Technology, Inc. Method of providing a silicon film having a roughened outer surface

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60208473A (en) * 1984-03-30 1985-10-21 Mitsubishi Metal Corp Artificial diamond-coated tool member
KR920000801B1 (en) * 1988-02-04 1992-01-23 이데미쯔세끼유가가꾸 가부시기가이샤 Method of producing sintered hard metal with diamond film

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4709655A (en) * 1985-12-03 1987-12-01 Varian Associates, Inc. Chemical vapor deposition apparatus
US4892751A (en) * 1987-01-19 1990-01-09 Hitachi, Ltd. Method of and apparatus for forming a thin film
DE3841731C1 (en) * 1988-12-10 1990-04-12 Krupp Widia Gmbh, 4300 Essen, De Process for coating a tool base, and tool produced by this process
DE3841730A1 (en) * 1988-12-10 1990-06-13 Krupp Widia Gmbh METHOD FOR COATING A BASIC METAL BODY WITH A NON-CONDUCTIVE COATING MATERIAL
DE4122449A1 (en) * 1990-07-27 1992-01-30 Kali Chemie Ag METHOD OF DEPOSITING COPPER-CONTAINING LAYER I
US5288527A (en) * 1990-09-03 1994-02-22 Saint Gobain Vitrage International C/O Saint Gobain Recherche Silicon nitride thin films with improved properties
EP0488112A1 (en) * 1990-11-30 1992-06-03 Central Glass Company, Limited Method of forming thin film of amorphous silicon by plasma CVD
DE4126852A1 (en) * 1991-08-14 1993-02-18 Krupp Widia Gmbh TOOL WITH WEAR-RESISTANT DIAMOND CUTTING, METHOD FOR THE PRODUCTION THEREOF AND THE USE THEREOF
DE4136321A1 (en) * 1991-11-05 1993-05-06 Solvay Deutschland Gmbh, 3000 Hannover, De METHOD FOR DEPOSITING MOLYBDA OR WOLFRAM CONTAINING LAYERS
US5320880A (en) * 1992-10-20 1994-06-14 Micron Technology, Inc. Method of providing a silicon film having a roughened outer surface

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JP 2-282480 A., In: Patents Abstracts of Japan, C-803,Febr.7,1991,Vol.15,No.52 *
Verschleiß- und Korrosionsschutz durch ionen- und plasmagestützte Vakuum- Beschichtungstechnologien, 2. Internationale Tagung 11/12. März 1986, Technische Hochschule Darmstadt, S.239-264 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101462386A (en) * 2007-12-21 2009-06-24 山特维克知识产权股份有限公司 Coated cutting tool and a method of making a coated cutting tool

Also Published As

Publication number Publication date
WO1996017103A1 (en) 1996-06-06

Similar Documents

Publication Publication Date Title
DE2727250C2 (en) Surface coated cemented carbide article and method for making the same
EP0632850B1 (en) Composite body and its use
DE102009046667B4 (en) Coated bodies of metal, hardmetal, cermet or ceramic, and methods of coating such bodies
DE69509218T3 (en) OXIDE-COATED CUTTING TOOL
EP0730670B1 (en) Coated body, its method of production and its use
EP2209929B1 (en) Coated tool
EP1902155B1 (en) Hard-coated body and method for production thereof
EP0577678B1 (en) Composite body, its use and process for producing it
AT8346U1 (en) COATED TOOL
DE69619275T2 (en) COATED ROTATABLE INSERT AND METHOD FOR THE PRODUCTION THEREOF
DE19980940B4 (en) Coated carbide cutting tool
DE4112218A1 (en) COATING SYSTEMS FOR TITANIUM OXIDATION PROTECTION
DE4239234A1 (en) Tool and method for coating a tool body
DE102012004367B4 (en) Aluminum oxynitride coated article and process for its preparation
EP1161573A1 (en) Tool with a molybdenum sulphide coating and method for producing the same
AT5008U1 (en) CARBIDE WEAR PART WITH MIXED OXIDE LAYER
EP0845053B1 (en) Composite body and process for its production
DE3515919C2 (en)
DE60023628T2 (en) METHOD FOR PRODUCING A PVD AI2O3 COATED CUTTING TOOL
DE102014104672A1 (en) Coated cutting tool and method for its manufacture
DE19825572A1 (en) Hard metal, cermet, ceramic or steel tool especially a throwaway cutter tip for machining metal
EP0783596A1 (en) Composite body, use of this composite body and process for its preparation
DE4442370A1 (en) Process for the deposition of metallic layers on substrate bodies and composite bodies from a substrate body and at least one surface layer
DE4110006A1 (en) Composite body comprising alpha-alumina layer deposited by plasma CVD on a hard metal - where half-intensity width of the alumina X=ray diffraction lines is at least three times greater than normal
EP0224495A1 (en) Process for the manufacture of wear resistant binding materials

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8110 Request for examination paragraph 44
8130 Withdrawal