DE4139515A1 - Optical detection and classification of precipitation - using light beam with vertical dimension smaller than largest particle to be detected - Google Patents

Optical detection and classification of precipitation - using light beam with vertical dimension smaller than largest particle to be detected

Info

Publication number
DE4139515A1
DE4139515A1 DE4139515A DE4139515A DE4139515A1 DE 4139515 A1 DE4139515 A1 DE 4139515A1 DE 4139515 A DE4139515 A DE 4139515A DE 4139515 A DE4139515 A DE 4139515A DE 4139515 A1 DE4139515 A1 DE 4139515A1
Authority
DE
Germany
Prior art keywords
light beam
precipitation
detected
rain
smaller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE4139515A
Other languages
German (de)
Inventor
Sten Loefving
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of DE4139515A1 publication Critical patent/DE4139515A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/95Lidar systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4802Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Abstract

An optical method for detecting and classifying precipitation involves an arrangement contg. a radiation source and detection system. The radiation coincides with a detection region. The vertical extent of the light beam is less than the diagram of the largest particle to be detected or between 0.1 and 1 mm. The horizontal extent is greater than the vertical extent. Large rain drops can be distinguised from small ones since they cause shorter pulses. Snow can be distinguised from rain since snow drops cause oonger pulses than rain drops. USE - Optical detection and classification of precipitation.

Description

Es ist heutzutage üblich, daß Wetterdaten von automatischen sogenannten Wetterstationen für verschiedene Zentralen eingesam­ melt werden, um schnellen Zugang zu Wetterinformationen innerhalb eines relativ großen Gebietes zu erhalten. Beispielsweise ist daß Straßenamt damit beschäftigt, ein Netz solcher Automat­ stationen aufzubauen, um Beschlußunterlagen für das Straßennetz zu haben, wenn Einsätze beschlossen werden sollen, wie z. B. Sandsträuen oder Schneepflügen. Für die meisten Wettergrößen, wie Temperatur, Windstärke und Windrichtung, sind heute auto­ matische Geber zugängig. Wenn es aber um Niederschläge und Nebel geht, ist es schwierig preiswerte Lösungen zu finden.It is now common for weather data to be automatic so-called weather stations for various central gesam be melted to provide quick access to weather information within a relatively large area. For example that street bureau busy with a network of such automat to build decision-making documents for the road network to have assignments, such as: B. Sandsträuen or snowplows. For most weather parameters, like temperature, wind force and wind direction, today are auto accessible to all donors. But when it comes to rainfall and fog it is difficult to find cheap solutions.

Zweck der Erfindung und die wichtigsten Kennzeichen der ErfindungPurpose of the invention and the main characteristics of the invention

Der Zweck der vorliegenden Erfindung ist ein unikes und billiges optisches Verfahren zum Detektieren und Klassifizieren von Niederschlägen der oben angegebenen Art vorzuschlagen. Diese Aufgabe wurde dadurch gelöst, daß die vertikale Ausstreckung des vom Lichtstrahl verbreiteten Lichtes kleiner ist als der Durch­ messer der größten Partikel die detektiert werden sollen oder zwischen 0,1 und 1 mm beträgt, wobei große Regentropfen von kleineren dadurch unterschieden werden indem sie kürzere Pulse verursachen, und Schnee von Regen unterschieden wird, indem Schneeflocken längere Pulse als Regentropfen verursachen, und daß die horizontale Ausstreckung des Lichtstrahles größer ist als dessen vertikale Ausstreckung.The purpose of the present invention is a unique and cheap one Optical method for detecting and classifying To propose precipitation of the type indicated above. These Problem was solved in that the vertical extension of the from the light beam diffused light is smaller than the through knife of the largest particles to be detected or between 0.1 and 1 mm, with large raindrops of smaller ones are distinguished by shorter pulses and snow is distinguished from rain by Snowflakes cause longer pulses than raindrops, and that the horizontal extension of the light beam is greater as its vertical extension.

Beschreibung eines AusführungsbeispielsDescription of an embodiment

Die vorliegende Erfindung nützt einen schmalen und ovalen Licht­ strahl aus, dessen vertikale Ausstreckung in der Größenordnung von 0,1 bis 1,0 mm ist, was mit Hilfe eines Halbleiterlasers realisiert werden kann. Wenn Partikel in der Luft angestrahlt werden, wird ein Licht nach hinten abgestreut, das von einem Detektor aufgefangen wird, der mit der Bestrahlungsquelle zusam­ mengebaut ist und welches rückwärts verbreitete Licht detektiert wird. Wenn die betreffende Partikeln Nebelpartikel sind, verur­ sacht dies ein Signal mit einer kontinuierlichen Komponente, was in einem DC-Signal vom Detektor resultiert. Wenn dagegen be­ ispielsweise Hagelkörner in den Strahl hineinfallen, erzeugt dieses einen Puls. Die Länge dieser Pulse hängt von der Fall­ geschwindigkeit der Partikel ab, sodaß ein schnell fallendes Partikel einen kürzeren Puls als ein langsam fallendes Partikel verursacht. Außerdem beeinflußt die Struktur des Partikels die Länge des Pulses, sodaß ein Wassertropfen einen kürzeren Puls als eine ebensoschnell fallende Schneeflocke verursacht. Dies hat seinen Grund darin, daß die periferen Teile der Schneeflocken licht nach Rückwärts verbreiten, während nur die zentralen Teile des Regentropfens dicht nach hinten verbreiten (reflektieren). Zur Sache gehört auch, daß kleine Regentropfen langsamer fallen als größe, was seinen Grund darin hat, daß das Verhältnis zwischen den antreibenden und bremsenden Kräften für große Regentropfen größer ist als für kleine.The present invention uses a narrow and oval light beam out, whose vertical extent is on the order of magnitude from 0.1 to 1.0 mm is what, with the help of a semiconductor laser can be realized. When particles are irradiated in the air a light is scattered backwards, that of one Detector is collected, which together with the irradiation source  is built and which detected backward light becomes. If the particles are mist particles, verur this is a signal with a continuous component, what resulting in a DC signal from the detector. If on the other hand be For example, hailstones fall into the stream this one pulse. The length of these pulses depends on the case Speed of the particles, so that a rapidly falling Particles have a shorter pulse than a slowly falling particle caused. In addition, the structure of the particle affects the Length of the pulse, so that a drop of water has a shorter pulse as an equally fast falling snowflake. this has its reason is that the periferen parts of the snowflakes light to reverse, while only the central parts of raindrops spread close to the back (reflect). The thing is also that small raindrops fall more slowly as a greatness, which has its reason in the fact that the relationship between the driving and braking forces for big ones Raindrops are bigger than small ones.

Das somit beschriebene Phenomen bietet eine Möglichkeit an, nur mit Hilfe von gemessener Pulszeit, die Niederschläge zu klassifi­ zieren. Für einen Strahl mit einer Höhe von etwa 0,3 mm kann man folgende typische Resultate erwarten:The phenomenon thus described offers a possibility, only with the help of measured pulse time, the precipitation to classifi adorn. For a beam with a height of about 0.3 mm you can expect the following typical results:

Art des NiederschlagesType of precipitation Pulszeitpulse time Regen (D=1 mm)Rain (D = 1 mm) 0.10 ms0.10 ms Nieselregen (D=0,1 mm)Drizzle (D = 0.1 mm) 0.15 ms @0.15 ms @ Schneesnow 0.25 ms0.25 ms

Der Lichtstrahl wird mit ovalen Querschnitt ausgebildet, dessen kürzere Achse vertikal verläuft. Dadurch werden in gewisser Hin­ sicht die Fehler die durch Wind verursacht sind, vermieden. Wenn die Partikeln durch Einfluß eines Windes schräg durch die zentralen Teile des ovalen Strahles fallen, entspricht die Pulslänge der vertikalen Geschwindigkeit, was ja das ist, was man zu messen wünscht. The light beam is formed with an oval cross-section, whose shorter axis is vertical. This will in some way The errors caused by wind are avoided. If the particles through the influence of a wind obliquely through the central parts of the oval ray fall, corresponds to the Pulse length of vertical speed, which is what you are wants to measure.  

Ein wichtiges Kennzeichen der vorliegende Erfindung ist somit, daß das nach hinten verbreitete Licht registriert wird, wenn ein Niederschlagspartikel einen Lichtstrahl passiert, dessen vertika­ le Ausstreckung kleiner oder vergleichbar mit dem Durchmesser der Partikeln ist, die registriert und klassifiziert werden sollen. Nichts hindert jedoch daran, daß man die Strahlung detektiert, die in anderen Richtungen als rückwärts verbreitet werden. Der Grund weshalb in der vorliegenden Erfindung die Zerstreung nach hinten ausgenützt wird ist, daß dadurch die Konstruktion sehr einfach und widerstandsfähig ist, und außerdem den geringsten denkbaren Einfluß auf die Luftströmungen um den Geber herum mitführt, wobei die Luftströmung beim Messen eine Fehlerquelle ausmacht.An important feature of the present invention is therefore that the light spread to the rear is registered when a Precipitation particle passes a beam of light whose vertika le extension smaller or comparable to the diameter of the particles that are registered and classified should. Nothing prevents the radiation detected spreading in other directions than backwards become. The reason why in the present invention the Disruption is exploited to the rear is that thereby the Construction is very simple and durable, and besides the least conceivable influence on the air flows around the Encoder carries around, wherein the air flow when measuring a Error source.

Es existieren sogenannte "present weather instruments", die mit optischen Verfahren, zusammen mit einem kraftvollen Computer Niederschlag detektieren und klassifizieren. Diese Instrumente unterscheiden sich von der vorliegende Erfindung durch zwei wichtige Punkte. Erstens arbeiten sie mit einem Lichtstrahl, dessen Querschnittsfläche bedeutend größer ist als die Nie­ derschlagspartikel, was für die Funktion eine Bedingung ist. Diese Instrumente bearbeiten nämlich die Querschnittsfläche via die Amplitude der registrierten Signale. Zum zweiten wird das Licht detektiert, welches die Niederschlagspartikel nicht verb­ reite (Transmissionsprinzip) oder das Licht welches die Partikel in einem Winkel verbreiten, der annähernd in Richtung des Licht­ strahles liegen (Verbreitung in Richtung vorwärts).There are so-called "present weather instruments" with the optical process, together with a powerful computer Detect and classify precipitation. These instruments differ from the present invention by two important points. First, they work with a beam of light, whose cross-sectional area is significantly larger than the Never impact particle, which is a condition for the function. These instruments process the cross-sectional area via the amplitude of the registered signals. The second is the Light detected, which does not verb the precipitation particles ride (transmission principle) or the light which the particles spread at an angle that is approaching towards the light jet (spread in the direction forward).

Es ist möglich auf Basis der Pulszeit jedes Tropfens dessen Volumen zu berechnen, was auch eine Berechnung des Niederschlages in Millimetern ermöglicht.It is possible based on the pulse time of each drop of it Calculate volume, which is also a calculation of precipitation in millimeters.

Die Erfindung ist nicht auf das oben beschriebene Beispiel begrenzt sondern kann im Rahmen der Ansprüche variiert werden. Somit kann ein AM-modulierter Halbleiterlaser nebst Fokuzie­ rungsobjektiv neben einem Detektor mit dazugehörender Sammellinse gemäß beigefügter Abbildung montiert werden. Wenn der Laser­ strahl die optische Achse der Detektorlinse in einem Winkel schneidet, der größer als halbe Öffnungswinkel des Detektie­ rungsbereiches ist, gemäß Abbildung, wird der Detektor verbrei­ tetes Licht von eventuellen Partikel innerhalb eines begrenzen Gebietes empfangen, daß von einem Schnitt zwischen dem Detektie­ rungsbereich und dem Laserstrahl definiert wird. Nach der Syn­ kronmodulierung des Detektorsignales werden Pulse erhalten, wenn Partikeln durch daß eben definierte Gebiet passieren. Die Elektronik enthält Kreise zur Bestimmung der Pulslängen.The invention is not based on the example described above limited but can be varied within the scope of the claims. Thus, an AM-modulated semiconductor laser and Fokuzie tion lens next to a detector with associated condenser lens mounted as shown in the picture. If the laser Beam the optical axis of the detector lens at an angle  which is greater than half the detection angle of the detector as shown, the detector will spread limited light from any particles within a limit Area received that from a cut between the Detektie range and the laser beam is defined. After the Syn Crown modulation of the detector signal will receive pulses when Particles pass through just defined area. The Electronics contains circuits for determining the pulse lengths.

Claims (2)

1. Optisches Verfahren zum Detektieren und Klassifizieren von Niederschlägen, wobei eine Ausrüstung zur Anwendung kommt, die eine Bestrahlungsquelle und ein Detektierungssystem beinhaltet, wobei die Strahlen mit dem Detektierungsbereich innerhalb eines Gebietes zusammenfallen, dadurch gekennzeichnet, daß vertikale Ausstreckung des vom Lichtstrahl verbreiteten Lichtes kleiner ist als der Durchmesser der größten Partikel die detektiert werden sollen oder zwischen 0,1 und 1 mm beträgt, wobei große Regentropfen von kleineren dadurch unterschieden werden indem sie kürzere Pulse verursachen, und Schnee von Regen unterschieden wird, indem Schneeflocken längere Pulse als Regen­ tropfen verursachen und daß die horizontale Ausstreckung des Lichtstrahles größer als dessen vertikale Ausstreckung ist.An optical method for detecting and classifying precipitates using equipment comprising an irradiation source and a detection system, the rays coinciding with the detection area within a region, characterized in that vertical extension of the light diffused by the light beam is smaller as the diameter of the largest particles to be detected, or between 0.1 and 1 mm, where large raindrops are distinguished from smaller ones by causing shorter pulses, and snow is distinguished from rain by snowflakes causing longer pulses than rain drops and that the horizontal extension of the light beam is greater than its vertical extension. 2. Optisches Verfahren zum Detektieren und Klassifizieren von Niederschlägen, wobei eine Ausrüstung zur Anwendung kommt, die eine Bestrahlungsquelle und ein Detektierungssystem beinhaltet, wobei die Strahlen mit dem Detektierungsbereich innerhalb eines Volumens zusammenfallen, dadurch gekennzeichnet, daß die vertikale Ausstreckung des vom Lichtstrahl rückwärts verbreiteten Lichtes kleiner ist als der Durchmesser der größten Partikel die detektiert werden sollen oder zwischen 0,1 und 1 mm beträgt, wobei große Regentropfen von kleineren dadurch unter­ schieden werden indem sie kürzere Pulse verursachen, und Schnee von Regen unterschieden wird, indem Schneeflocken längere Pulse als Regentropfen verursachen, und daß die horizontale Ausstreck­ ung des Lichtstrahles größer als dessen vertikale Ausstreckung ist.2. Optical method for detecting and classifying Precipitation, using equipment that is used includes an irradiation source and a detection system, wherein the rays coincide with the detection region within a Volume coincide, characterized, that the vertical extension of the backward from the light beam diffused light is smaller than the diameter of the largest Particles to be detected or between 0.1 and 1 mm is, whereby large raindrops of smaller thereby under divide by causing shorter pulses and snow Rain is differentiated by snowflakes having longer pulses as raindrops cause, and that the horizontal Ausstreck tion of the light beam greater than its vertical extension is.
DE4139515A 1990-11-30 1991-11-29 Optical detection and classification of precipitation - using light beam with vertical dimension smaller than largest particle to be detected Withdrawn DE4139515A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE9003817A SE467553B (en) 1990-11-30 1990-11-30 OPTICAL METHOD TO DETECT AND CLASSIFY RETURNS BY DETECTING SPRITT RESP BACKGROUND LIGHT FROM A BRIGHT

Publications (1)

Publication Number Publication Date
DE4139515A1 true DE4139515A1 (en) 1992-06-04

Family

ID=20381058

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4139515A Withdrawn DE4139515A1 (en) 1990-11-30 1991-11-29 Optical detection and classification of precipitation - using light beam with vertical dimension smaller than largest particle to be detected

Country Status (2)

Country Link
DE (1) DE4139515A1 (en)
SE (1) SE467553B (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0698261A1 (en) * 1993-05-07 1996-02-28 Dennis J. Hegyi Multi-fonction light sensor for vehicle
WO1997040407A1 (en) * 1996-04-18 1997-10-30 Krupp Fördertechnik Gmbh Photogrammetric process for three-dimensional tracking of moving objects
US6084519A (en) * 1993-05-07 2000-07-04 Control Devices, Inc. Multi-function light sensor for vehicle
US6118383A (en) * 1993-05-07 2000-09-12 Hegyi; Dennis J. Multi-function light sensor for vehicle
US6313454B1 (en) 1999-07-02 2001-11-06 Donnelly Corporation Rain sensor
US6320176B1 (en) 1993-02-26 2001-11-20 Donnelly Corporation Vehicle rain sensor using imaging sensor
US6353392B1 (en) 1997-10-30 2002-03-05 Donnelly Corporation Rain sensor with fog discrimination
WO2004021546A2 (en) * 2002-08-09 2004-03-11 Conti Temic Microelectronic Gmbh Means of transport with a three-dimensional distance camera and method for the operation thereof
US7655894B2 (en) 1996-03-25 2010-02-02 Donnelly Corporation Vehicular image sensing system
US7859565B2 (en) 1993-02-26 2010-12-28 Donnelly Corporation Vision system for a vehicle including image processor
US7972045B2 (en) 2006-08-11 2011-07-05 Donnelly Corporation Automatic headlamp control system
US8017898B2 (en) 2007-08-17 2011-09-13 Magna Electronics Inc. Vehicular imaging system in an automatic headlamp control system
US8063759B2 (en) 1993-02-26 2011-11-22 Donnelly Corporation Vehicle vision system
US8446470B2 (en) 2007-10-04 2013-05-21 Magna Electronics, Inc. Combined RGB and IR imaging sensor
US8451107B2 (en) 2007-09-11 2013-05-28 Magna Electronics, Inc. Imaging system for vehicle
US9509957B2 (en) 2008-07-24 2016-11-29 Magna Electronics Inc. Vehicle imaging system
US9940528B2 (en) 2004-12-23 2018-04-10 Magna Electronics Inc. Driver assistance system for vehicle

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6320176B1 (en) 1993-02-26 2001-11-20 Donnelly Corporation Vehicle rain sensor using imaging sensor
US8063759B2 (en) 1993-02-26 2011-11-22 Donnelly Corporation Vehicle vision system
US7859565B2 (en) 1993-02-26 2010-12-28 Donnelly Corporation Vision system for a vehicle including image processor
US6831261B2 (en) 1993-02-26 2004-12-14 Donnelly Corporation Vehicle headlight control using imaging sensor
US6559435B2 (en) 1993-02-26 2003-05-06 Donnelly Corporation Vehicle headlight control using imaging sensor identifying objects by geometric configuration
EP0698261A1 (en) * 1993-05-07 1996-02-28 Dennis J. Hegyi Multi-fonction light sensor for vehicle
US6118383A (en) * 1993-05-07 2000-09-12 Hegyi; Dennis J. Multi-function light sensor for vehicle
US6084519A (en) * 1993-05-07 2000-07-04 Control Devices, Inc. Multi-function light sensor for vehicle
US5703568A (en) * 1993-05-07 1997-12-30 Hegyi; Dennis J. Multi function light sensor for vehicle
EP0698261A4 (en) * 1993-05-07 1996-07-03 Dennis J Hegyi Multi-fonction light sensor for vehicle
US8492698B2 (en) 1996-03-25 2013-07-23 Donnelly Corporation Driver assistance system for a vehicle
US8481910B2 (en) 1996-03-25 2013-07-09 Donnelly Corporation Vehicular image sensing system
US8324552B2 (en) 1996-03-25 2012-12-04 Donnelly Corporation Vehicular image sensing system
US8222588B2 (en) 1996-03-25 2012-07-17 Donnelly Corporation Vehicular image sensing system
US7994462B2 (en) 1996-03-25 2011-08-09 Donnelly Corporation Vehicular image sensing system
US7655894B2 (en) 1996-03-25 2010-02-02 Donnelly Corporation Vehicular image sensing system
WO1997040407A1 (en) * 1996-04-18 1997-10-30 Krupp Fördertechnik Gmbh Photogrammetric process for three-dimensional tracking of moving objects
US6806452B2 (en) 1997-09-22 2004-10-19 Donnelly Corporation Interior rearview mirror system including a forward facing video device
US6768422B2 (en) 1997-10-30 2004-07-27 Donnelly Corporation Precipitation sensor
US6353392B1 (en) 1997-10-30 2002-03-05 Donnelly Corporation Rain sensor with fog discrimination
US6313454B1 (en) 1999-07-02 2001-11-06 Donnelly Corporation Rain sensor
US8629768B2 (en) 1999-08-12 2014-01-14 Donnelly Corporation Vehicle vision system
US8203443B2 (en) 1999-08-12 2012-06-19 Donnelly Corporation Vehicle vision system
WO2004021546A2 (en) * 2002-08-09 2004-03-11 Conti Temic Microelectronic Gmbh Means of transport with a three-dimensional distance camera and method for the operation thereof
WO2004021546A3 (en) * 2002-08-09 2004-06-03 Conti Temic Microelectronic Means of transport with a three-dimensional distance camera and method for the operation thereof
US9940528B2 (en) 2004-12-23 2018-04-10 Magna Electronics Inc. Driver assistance system for vehicle
US11308720B2 (en) 2004-12-23 2022-04-19 Magna Electronics Inc. Vehicular imaging system
US10509972B2 (en) 2004-12-23 2019-12-17 Magna Electronics Inc. Vehicular vision system
US8434919B2 (en) 2006-08-11 2013-05-07 Donnelly Corporation Adaptive forward lighting system for vehicle
US8162518B2 (en) 2006-08-11 2012-04-24 Donnelly Corporation Adaptive forward lighting system for vehicle
US7972045B2 (en) 2006-08-11 2011-07-05 Donnelly Corporation Automatic headlamp control system
US9018577B2 (en) 2007-08-17 2015-04-28 Magna Electronics Inc. Vehicular imaging system with camera misalignment correction and capturing image data at different resolution levels dependent on distance to object in field of view
US11908166B2 (en) 2007-08-17 2024-02-20 Magna Electronics Inc. Vehicular imaging system with misalignment correction of camera
US9972100B2 (en) 2007-08-17 2018-05-15 Magna Electronics Inc. Vehicular imaging system comprising an imaging device with a single image sensor and image processor for determining a totally blocked state or partially blocked state of the single image sensor as well as an automatic correction for misalignment of the imaging device
US11328447B2 (en) 2007-08-17 2022-05-10 Magna Electronics Inc. Method of blockage determination and misalignment correction for vehicular vision system
US8017898B2 (en) 2007-08-17 2011-09-13 Magna Electronics Inc. Vehicular imaging system in an automatic headlamp control system
US10726578B2 (en) 2007-08-17 2020-07-28 Magna Electronics Inc. Vehicular imaging system with blockage determination and misalignment correction
US10766417B2 (en) 2007-09-11 2020-09-08 Magna Electronics Inc. Imaging system for vehicle
US11613209B2 (en) 2007-09-11 2023-03-28 Magna Electronics Inc. System and method for guiding reversing of a vehicle toward a trailer hitch
US9796332B2 (en) 2007-09-11 2017-10-24 Magna Electronics Inc. Imaging system for vehicle
US8451107B2 (en) 2007-09-11 2013-05-28 Magna Electronics, Inc. Imaging system for vehicle
US8446470B2 (en) 2007-10-04 2013-05-21 Magna Electronics, Inc. Combined RGB and IR imaging sensor
US11165975B2 (en) 2007-10-04 2021-11-02 Magna Electronics Inc. Imaging system for vehicle
US10616507B2 (en) 2007-10-04 2020-04-07 Magna Electronics Inc. Imaging system for vehicle
US10003755B2 (en) 2007-10-04 2018-06-19 Magna Electronics Inc. Imaging system for vehicle
US8908040B2 (en) 2007-10-04 2014-12-09 Magna Electronics Inc. Imaging system for vehicle
US11091105B2 (en) 2008-07-24 2021-08-17 Magna Electronics Inc. Vehicle vision system
US9509957B2 (en) 2008-07-24 2016-11-29 Magna Electronics Inc. Vehicle imaging system

Also Published As

Publication number Publication date
SE9003817L (en) 1992-05-31
SE467553B (en) 1992-08-03
SE9003817D0 (en) 1990-11-30

Similar Documents

Publication Publication Date Title
DE4139515A1 (en) Optical detection and classification of precipitation - using light beam with vertical dimension smaller than largest particle to be detected
DE3735267C3 (en) Visibility measurement device
EP0785883B1 (en) Sensor for determining visual range and rain cover
EP0286910B1 (en) Traffic surveillance device
DE3590723C2 (en)
DE3926228C2 (en)
EP2804014B1 (en) Device and method for determining a characteristic of a vehicle
EP1695109B1 (en) Device for measuring the distance to far-off objects and close objects
WO2004070418A1 (en) Method for determining types of precipitation in the atmosphere
EP0467127A2 (en) Method and device for optically detecting and evaluating scattered light signals
DE102005051218B4 (en) Method and device for avoiding accidents
DE2922643A1 (en) DEVICE FOR PAYMENT AND CLASSIFICATION OF PARTICLES
DE4128012C1 (en) Vehicle separation and visibility detector for warning car driver - uses laser and polygon wheel to scan in front of vehicle in horizontal direction and at various elevation angles
DE4408226A1 (en) Process coupled technical surface roughness measurement appts.
WO1998004931A1 (en) Range of vision measurement process and device
EP0674184B1 (en) Method and apparatus for the classification of vehicles by means of a traffic radar system
EP0346601B1 (en) Method and apparatus for measuring fluid flow velocity, in particular in a wind tunnel
DE102019106544B4 (en) Ambient light sensing device, rain light sensor for use on a windshield and motor vehicle
DE1962551A1 (en) Laser-Doppler flow probe with large spatial resolution
EP0823626A2 (en) Device and method for measuring particle fluxes in a fluid
DE102015009308B4 (en) Method for operating a driver assistance system and motor vehicle
DE102019107396A1 (en) Detection and classification of raised road markings using LIDAR
DE102013019801B4 (en) Method for measuring the speed of a motor vehicle moving on a road
DE102015110826B4 (en) Device and method for measuring precipitation
DE3517044C2 (en)

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee