DE4138214A1 - Metallisation of aluminium nitride ceramic - involves ceramic treatment to remove glass surface film - Google Patents

Metallisation of aluminium nitride ceramic - involves ceramic treatment to remove glass surface film

Info

Publication number
DE4138214A1
DE4138214A1 DE19914138214 DE4138214A DE4138214A1 DE 4138214 A1 DE4138214 A1 DE 4138214A1 DE 19914138214 DE19914138214 DE 19914138214 DE 4138214 A DE4138214 A DE 4138214A DE 4138214 A1 DE4138214 A1 DE 4138214A1
Authority
DE
Germany
Prior art keywords
ceramic
ceramic surface
treatment
chemical
metallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE19914138214
Other languages
German (de)
Inventor
Robert Dr Ing Ostwald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler Benz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Benz AG filed Critical Daimler Benz AG
Priority to DE19914138214 priority Critical patent/DE4138214A1/en
Publication of DE4138214A1 publication Critical patent/DE4138214A1/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1855Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by mechanical pretreatment, e.g. grinding, sanding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1862Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by radiant energy
    • C23C18/1865Heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • C23C18/1893Multistep pretreatment with use of organic or inorganic compounds other than metals, first

Abstract

Metallisation of Al nitride ceramic, exhibiting surface enrichment of sintering aid in the form of a glass film, is carried out by removing or perforating the film by mechanical pretreatment and intermediate treatment, finely roughening the ceramic surface by chemical post-treatment and then metallising the ceramic surface in two stages to provide an adherent metal layer. USE/ADVANTAGE - The metallised AlN ceramic is useful as a substrate for highly integrated logic circuits and for power electronics. An adherent and uniform metallisation is obtd. without use of adhesion promoters and with only slight roughening of the ceramic surface (thus allowing fine circuit line prodn.).

Description

Die Erfindung betrifft ein Verfahren zur haftfesten Metal­ lisierung von Aluminiumnitridkeramik gemäß dem Oberbegriff des Patentanspruchs 1. Die Erfindung betrifft insbesondere AlN-Keramikteile, die aufgrund ihrer Herstellungstechnik eine Art Oberflächenglasur besitzen und in metallisierter Form als Substrate für hochintegrierte Logikschaltungen und für die Leistungselektronik eingesetzt werden.The invention relates to a method for adherent metal lization of aluminum nitride ceramics according to the generic term of claim 1. The invention relates in particular AlN ceramic parts, due to their manufacturing technology have a kind of surface glaze and in metallized Form as substrates for highly integrated logic circuits and be used for power electronics.

Die Metallisierung von Keramikteilen dient ganz allgemein der Veränderung, der Verbesserung oder der Vermehrung funktioneller Eigenschaften wie z. B. der elektrischen Leitfähigkeit oder der Wärmeleitfähigkeit, der Korrosionsbeständigkeit, der mechanischen Beständigkeit oder der Kontaktierbarkeit. Von zentraler Bedeutung ist dabei die Haftfestigkeit zwischen dem relativ spröden Ke­ ramikmaterial mit geringer thermischer Ausdehnung und dem relativ duktilen Metall mit höherer thermischer Ausdeh­ nung. Um eine ausreichend hohe Haftfestigkeit auch bei Lötprozessen und hohen Betriebstemperaturen der fertigen Bauteile zu gewährleisten, müssen Haftmechanismen auf starken chemischen Bindungen und/oder starken und zahlrei­ chen mechanischen Verzahnungen bzw. Verankerungen beruhen.The metallization of ceramic parts serves in general the change, the improvement or the increase functional properties such as B. the electrical Conductivity or thermal conductivity, the  Corrosion resistance, mechanical resistance or the contactability. It is central the adhesive strength between the relatively brittle Ke ceramic material with low thermal expansion and relatively ductile metal with higher thermal expansion nung. To ensure a sufficiently high adhesive strength also Soldering processes and high operating temperatures of the finished To ensure components, adhesive mechanisms must be in place strong chemical bonds and / or strong and numerous Chen mechanical gears or anchorages are based.

Es hat nicht an Versuchen gefehlt, in Analogie zur Alumi­ niumoxidkeramik, Metallisierungsverfahren für AlN-Keramik zu entwickeln. Neben den klassischen Dünnfilmaufdampf-, Sputter- und Dickschichttechniken sind dies z. B. auch Ein­ brennmetallisierungen auf der Basis Molybdän, Wolfram oder Tantal (siehe EP-A- 02 35 682), Metallisierung einer künstlich erzeugten Haftvermittlerschicht aus Aluminiumo­ xid (DE-OS 38 44 264) sowie chemogalvanische Metallisie­ rung nach einer ätzenden Vorbehandlung der AlN-Keramik (DE-PS 38 14 224, DE-OS 36 39 642).There was no lack of attempts, analogous to the Alumi nium oxide ceramics, metallization process for AlN ceramics to develop. In addition to the classic thin film evaporation, Sputtering and thick film techniques are e.g. B. also A Firing metallizations based on molybdenum, tungsten or Tantalum (see EP-A-02 35 682), metallization of a Artificially created adhesive layer made of aluminum xid (DE-OS 38 44 264) and chemogalvanische Metallisie after a caustic pretreatment of the AlN ceramic (DE-PS 38 14 224, DE-OS 36 39 642).

Diese bekannten Verfahren sind im allgemeinen auf be­ stimmte Anwendungsfälle und spezielle Materialkombinatio­ nen beschränkt. Zur Erzielung einer guten Haftung müssen besondere Haftvermittler abgeschieden werden, die immer aus einem anderen Material als die zu beschichtenden Kör­ per und die gewünschte Beschichtung bestehen, so daß zwangsläufig neue, oft unpassende Eigenschaften auftreten oder daß eine massive Verschlechterung erwünschter Eigen­ schaften erfolgt. So verringern haftvermittelnde Zwischen­ schichten z. B. die hervorragende Wärmeleitfähigkeit der AlN-Keramik zur Metallauflage ganz erheblich. Eine zuver­ lässige Wärmeableitung von Hochleistungsbauelementen ist jedoch nur bei einer direkten Metallisierung des AlN-Kera­ miksubstrates möglich.These known methods are generally based on agreed use cases and special material combination limited. To achieve good liability special bonding agents that are always deposited made of a different material than the body to be coated per and the desired coating, so that inevitably new, often inappropriate properties occur or that a massive deterioration of desired property is done. So reduce adhesion mediators layers e.g. B. the excellent thermal conductivity of the  AlN ceramics for the metal support quite considerably. One reliable is casual heat dissipation from high-performance components however only with direct metallization of the AlN-Kera micro substrates possible.

Eine direkte Metallisierung mit z. B. Nickel oder Kupfer ist auf chemogalvanischem Wege möglich, führt jedoch auch bei saurer und/oder alkalischer Vorbehandlung der AlN-Ke­ ramik zu sehr unzuverlässigen Haftfestigkeiten. Insbeson­ dere in sogenannter Trockenpreßtechnik und erst recht in der noch wirtschaftlicheren Foliengießtechnik hergestellte AlN-Keramikteile haben stark wechselnde Zusammensetzungen und Dicken ihrer glasurähnlichen Oberflächenbereiche. Beim Sintern der "grünen Keramik" reichern sich die Sinter­ hilfsmittel (z. B. Y2O3 oder CaO) unterschiedlich stark auf der Keramikoberfläche an, so daß bei einer Vorbehandlung durch Ätzen extrem verschiedene Rauhigkeiten auf einer Substratseite, zwischen den Substratseiten und zwischen einzelnen Substraten auftreten. Das hat zur Folge, daß un­ abhängig vom Metallisierungsverfahren ebenso extreme Un­ terschiede bezüglich Auflösung und Kantenschärfe feiner Leiterzüge sowie von deren Haftfestigkeit auftreten.A direct metallization with e.g. B. nickel or copper is possible by electroplating, but leads to very unreliable adhesive strengths even with acidic and / or alkaline pretreatment of the AlN-Ke ceramic. In particular in so-called dry pressing technology and even more so in the even more economical film casting technology, AlN ceramic parts have strongly changing compositions and thicknesses of their glaze-like surface areas. When sintering the "green ceramic", the sintering aids (e.g. Y 2 O 3 or CaO) accumulate to different extents on the ceramic surface, so that when pretreated by etching, extremely different roughness on one side of the substrate, between the sides of the substrate and between individual substrates occur. The consequence of this is that, depending on the metallization process, there are also extreme differences with regard to resolution and sharpness of edges of fine conductor tracks and their adhesive strength.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Vorbehandlung von AlN-Keramikoberflächen für gleich­ mäßige und haftfeste chemogalvanische Metallisierungen an­ zugeben, das ohne Einsatz eines Haftvermittlers auskommt und bei geringer Aufrauhung der Keramikoberfläche die Her­ stellung von Feinleitern gestattet.The invention has for its object a method for the pretreatment of AlN ceramic surfaces for the same moderate and adhesive chemogalvanic metallizations admit that works without the use of an adhesion promoter and with little roughening of the ceramic surface the Her fine conductors permitted.

Die Aufgabe wird erfindungsgemäß gelöst durch die im kenn­ zeichnenden Teil des Patentanspruchs 1 angegebenen Merk­ male. Zweckmäßige Ausgestaltungen sind den Unteransprüchen zu entnehmen.The object is achieved by the in the kenn drawing part of claim 1 specified note  times. Expedient configurations are the subclaims refer to.

Bei dem erfindungsgemäßen Verfahren wird in vorteilhafter Weise durch eine mechanische Einwirkung, z. B. Schleifen, Läppen, Polieren oder Sandstrahlen die auf der Keramiko­ berfläche befindliche Glashaut entfernt bzw. durchlöchert, so daß beispielsweise durch ein alkalisches Ätzmittel ein gleichmäßiger Ätzangriff auf alle an der Keramikoberfläche befindlichen AlN-Körner stattfindet. Außerdem ist von Vor­ teil, daß durch eine relativ langsame Abscheidung zu Be­ ginn der Metallisierung eine hohe Haftfestigkeit bzw. eine intensive Verankerung der Metallschicht erzielt wird. Wenn durch dieses Verfahren alle Poren und Spalten in der Kera­ mikoberfläche sorgfältig mit Metall gefüllt sind, wird in schnell abscheidenden galvanischen Bädern die Metall­ schicht verstärkt.The method according to the invention is advantageous Way by mechanical action, e.g. B. grinding, Lapping, polishing or sandblasting on the ceramic removed or perforated glass skin, so that, for example, by an alkaline etchant uniform etching attack on all on the ceramic surface located AlN grains takes place. Also is from before partly that by a relatively slow separation to Be a high level of adhesive strength or a intensive anchoring of the metal layer is achieved. If through this process all the pores and crevices in the kera surface is carefully filled with metal rapidly depositing galvanic baths the metal layer reinforced.

Die galvanische Abscheidung erfolgt durch eine erste alka­ lische, autokatalytische Abscheidung in einem Kupfer-Form­ aldehydbad oder in einem Nickel-Hypophosphitbad, sowie durch eine zweite galvanische Dickmetallisierung mit Kup­ fer in einem schwefelsauren Kupferbad.The galvanic deposition is carried out by a first alka Mechanical, autocatalytic deposition in a copper form aldehyde bath or in a nickel hypophosphite bath, as well through a second galvanic thick metallization with Kup fer in a sulfuric acid copper bath.

Die Erfindung wird anhand folgender Ausführungsbeispiele näher erläutert.The invention is based on the following exemplary embodiments explained in more detail.

Beispiel 1example 1

Aluminiumnitridkeramiksubstrate (98% AlN), die in Trocken­ proezßtechnik hergestellt sind, haben Abmessungen von 1′′·1′′·0,635mm und eine gemittelte Rauhtiefe RZ von ca. 4 µm. Diese Substrate werden mittels eines motorgetriebenen Vor­ schubs mit 0,5 cm/s in einem Abstand von 6 cm unter einer Sandstrahldüse hindurchgefahren. Der Sandstrahl wird durch Korundteilchen (Al2O3-Körner < 50 µm) in einem Stickstoff­ strom mit 60 psi gebildet. Die Substrate werden an­ schließend in einem Neutralreiniger (Mukasol) bei Ultra­ schallunterstützung sowie in demineralisiertem Wasser ge­ spült. Nach einer Trocknung bei 125°C wird durch Rückwä­ gung eine Gewichtsabnahme von 0,36 mg/cm2 festgestellt. Die gemittelte Rauhigkeit RZ hat sich auf ca. 5,5 µm erhöht. Nach einer Ätzung in 1n-NaOH-Lösung bei 80°C für 15 min, Spülung in demineralisiertem Wasser mit Ultra­ schallunterstützung und Trocknung bei 125°C hat eine Ge­ wichtsabnahme der Substrate von 1,8 mg/cm2 stattgefunden. Die gemittelte Rauhtiefe RZ hat auf ca. 8 µm zugenommen. Nach der Erzeugung einer katalytischen Keimschicht gemäß dem bekannten Zinnchlorid-Palladiumchlorid-Verfahren wird aus einem handelsüblichen chemischen Kupfer-Formaldehydbad (Printoganth, Fa. Schering) eine erste Kupferschicht von ca 3 µm Dicke während 1,5 Stunden abgeschieden. Diese Schicht wird in einem galvanischen Kupfersulfatbad (Sloto­ coup Cu20, Fa. Schlötter) während 40 min auf ca. 20 µm ver­ stärkt. Zur Beurteilung der Haftfestigkeit werden ätztech­ nisch 1 mm breite Streifen erzeugt und in einer Zugprüfma­ schine deren Schälkräfte gemessen. Diese betragen an allen Substraten mindestens 0,8 N/mm.Aluminum nitride ceramic substrates (98% AlN), which are manufactured in dry process technology, have dimensions of 1 '' · 1 '' · 0.635mm and an average roughness depth R Z of approx. 4 µm. These substrates are moved by means of a motor-driven thrust at 0.5 cm / s at a distance of 6 cm under a sandblasting nozzle. The sandblast is formed by corundum particles (Al 2 O 3 grains <50 µm) in a nitrogen stream at 60 psi. The substrates are then rinsed in a neutral cleaner (Mukasol) with ultrasound support and in demineralized water. After drying at 125 ° C, a weight loss of 0.36 mg / cm 2 is found by reweighing. The average roughness R Z has increased to approximately 5.5 µm. After etching in 1N NaOH solution at 80 ° C for 15 min, rinsing in demineralized water with ultrasound support and drying at 125 ° C, the weight of the substrates decreased by 1.8 mg / cm 2 . The average roughness depth R Z has increased to approx. 8 µm. After the generation of a catalytic seed layer using the known tin chloride-palladium chloride process, a first copper layer of approximately 3 μm thick is deposited over a period of 1.5 hours from a commercially available chemical copper-formaldehyde bath (Printoganth, Schering). This layer is strengthened in a galvanic copper sulfate bath (Sloto coup Cu20, Schlötter) for 40 minutes to approx. 20 µm. To assess the adhesive strength, 1 mm wide strips are produced using etching technology and their peeling forces are measured in a tensile testing machine. These are at least 0.8 N / mm on all substrates.

Beispiel 2Example 2

Aluminiumnitridkeramiksubstrate, mit den gleichen Abmes­ sungen wie in Beispiel 1, die aber in Foliengießtechnik hergestellt sind, haben eine gemittelte Rauhtiefe von ca. 2,3 µm. Diese Substrate werden wie in Beispiel 1 in einer Sandstrahlanlage, aber mit Siliciumcarbidpulver der Kör­ nung < 29 µm, behandelt. Die Substrate werden anschließend in siedendem Wasser für 12 min gereinigt und dann in demi­ neralisiertem Wasser nachgespült. Nach einer Trocknung bei 125°C wird durch Rückwägung eine Gewichtsabnahme von 0,45 mg/cm2 festgestellt. Die gemittelte Rauhtiefe RZ hat auf ca. 2,9 µm zugenommen. Nach einer Ätzung in 1n-NaOH-Lö­ sung bei 65°C für 30 min, Spülung und Trocknung wie in Bei­ spiel 1, hat eine Gewichtsabnahme von 1,6 mg/cm2 stattge­ funden und die gemittelte Rauhtiefe RZ hat auf 4,2 µm zu­ genommen. Nach der Erzeugung der katalytischen Keimschicht (wie in Beispiel 1) wird aus einem alkalischen Nickel-Hy­ pophosphitbad bei einem pH-Wert von 9,5 in 2 Stunden eine ca 2 µm dicke Nickel-Phosphorschicht abgeschieden. Diese wird wie in Beispiel 1 mit Kupfer verstärkt und Schäl­ streifen erzeugt. An allen derartig beschichteten Substra­ ten werden Schälkräfte von mindestens 0,9 N/mm gemessen.Aluminum nitride ceramic substrates, with the same dimensions as in Example 1, but which are manufactured using the film casting technique, have an average roughness depth of approx. 2.3 µm. These substrates are treated in a sandblasting system as in Example 1, but with silicon carbide powder with a grain size of <29 μm. The substrates are then cleaned in boiling water for 12 minutes and then rinsed in demineralized water. After drying at 125 ° C, a weight loss of 0.45 mg / cm 2 is determined by reweighing. The average roughness depth R Z has increased to approx. 2.9 µm. After etching in 1N NaOH solution at 65 ° C for 30 min, rinsing and drying as in Example 1, a weight loss of 1.6 mg / cm 2 has taken place and the average roughness depth R Z has decreased to 4. 2 µm increased. After the catalytic seed layer has been produced (as in Example 1), an approximately 2 μm-thick nickel-phosphorus layer is deposited from an alkaline nickel hyphosphite bath at a pH of 9.5 in 2 hours. As in Example 1, this is reinforced with copper and peeling strips are produced. Peeling forces of at least 0.9 N / mm are measured on all substrates coated in this way.

Claims (10)

1. Verfahren zur Metallisierung von Aluminiumnitridkera­ mik, an deren Keramikoberfläche eine Anreicherung von Sin­ terhilfsmitteln in Form einer Glashaut vorliegt, dadurch gekennzeichnet,
  • - daß die Glashaut durch mechanische Vorbehandlung und eine Zwischenbehandlung entfernt oder durchlö­ chert wird,
  • - daß durch eine chemische Nachbehandlung die Kera­ mikoberfläche fein aufgerauht wird, und
  • - daß eine zweistufige Metallisierung der Keramiko­ berfläche derart erfolgt, daß Metallschicht und Keramikoberfläche haftfest miteinander verankert werden.
1. A process for the metallization of aluminum nitride ceramic, on the ceramic surface of which there is an accumulation of sintering aids in the form of a glass skin, characterized in that
  • - that the glass skin is removed or perforated by mechanical pretreatment and an intermediate treatment,
  • - That the Kera mic surface is finely roughened by chemical aftertreatment, and
  • - That a two-stage metallization of the ceramic surface takes place in such a way that the metal layer and the ceramic surface are firmly anchored to one another.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine mechanische Vorbehandlung durch Schleifen, Läppen, Polieren oder Sandstrahlen durchgeführt wird.2. The method according to claim 1, characterized in that mechanical pretreatment by grinding, lapping, Polishing or sandblasting is performed. 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß durch eine Zwischenbehandlung mit siedendem Lösungsmittel und/oder Ultraschallanregung in einem Spülbad der Glas­ hautabrieb und die Reste des Abriebmittels gründlich ent­ fernt werden.3. The method according to claim 1, characterized in that by an intermediate treatment with boiling solvent and / or ultrasound excitation in a glass rinse skin abrasion and the remains of the abrasive thoroughly ent be removed. 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß durch eine Zwischenbehandlung die Keramikoberfläche ent­ fettet wird.4. The method according to claim 1, characterized in that the ceramic surface by an intermediate treatment is greased. 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine chemische Nachbehandlung durch saure und/oder alkali­ sche Ätzmittel vorgenommen wird.5. The method according to claim 1, characterized in that chemical after-treatment with acid and / or alkali cal etchant is made. 6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß nach mechanischer Vorbehandlung sowie nach der chemischen Nachbehandlung die Rauhtiefe der Keramikoberfläche gemes­ sen wird.6. The method according to claim 1, characterized in that after mechanical pretreatment and after chemical After-treatment measured the roughness of the ceramic surface will. 7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß jeweils nach mechanischer Vorbehandlung, Zwischenbehand­ lung und chemischer Nachbehandlung die Gewichtsabnahme durch Wägung des Keramikteils bestimmt wird.7. The method according to claim 1, characterized in that each after mechanical pretreatment, intermediate treatment weight loss and chemical aftertreatment is determined by weighing the ceramic part. 8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß durch ein Zinnchlorid-Palladiumchlorid-Verfahren eine Keimschicht in allen Poren und Spalten auf der Keramiko­ berfläche erzeugt wird. 8. The method according to claim 1, characterized in that by a tin chloride-palladium chloride method Germ layer in all pores and crevices on the ceramic surface is generated.   9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß durch langsame chemogalvanische Abscheidung einer ersten dünnen Metallschicht aus alkalischen, autokatalytischen Metallisierungsbädern die Poren und Spalten für eine kraftschlüssige Verankerung aufgefüllt werden.9. The method according to claim 1, characterized in that by slow chemical electroplating of a first one thin metal layer made of alkaline, autocatalytic Metallization baths the pores and crevices for one non-positive anchoring to be filled. 10. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß eine zweite Metallschicht durch eine galvanische Dick­ metallisierung abgeschieden wird.10. The method according to claim 1, characterized in that that a second layer of metal through a galvanic thick metallization is deposited.
DE19914138214 1991-11-21 1991-11-21 Metallisation of aluminium nitride ceramic - involves ceramic treatment to remove glass surface film Ceased DE4138214A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19914138214 DE4138214A1 (en) 1991-11-21 1991-11-21 Metallisation of aluminium nitride ceramic - involves ceramic treatment to remove glass surface film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19914138214 DE4138214A1 (en) 1991-11-21 1991-11-21 Metallisation of aluminium nitride ceramic - involves ceramic treatment to remove glass surface film

Publications (1)

Publication Number Publication Date
DE4138214A1 true DE4138214A1 (en) 1993-05-27

Family

ID=6445228

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19914138214 Ceased DE4138214A1 (en) 1991-11-21 1991-11-21 Metallisation of aluminium nitride ceramic - involves ceramic treatment to remove glass surface film

Country Status (1)

Country Link
DE (1) DE4138214A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19833593A1 (en) * 1998-07-25 2000-01-27 Daimler Chrysler Ag Selective metallization of e.g. ceramic, glass or plastic, e.g. for circuit board or electromagnetically screened housing, comprising mechanically depositing seeds on a rough substrate surface and then chemical plating
DE19946195C1 (en) * 1999-09-27 2001-04-05 Epcos Ag Removal of alumina particle layer sintered onto sintered multilayer ceramic substrate, employs two stages of dry grit blasting followed by electrostatic repulsion of submicron residue
DE10147897C1 (en) * 2001-09-28 2003-01-23 Epcos Ag Process for directly galvanizing contact layers onto ceramic components comprises activating the regions to be galvanized using an aqueous solution containing phosphoric acid, and applying the contact layers on the treated components
EP2011779A1 (en) * 2007-07-06 2009-01-07 Vita Zahnfabrik H. Rauter GmbH & Co. KG Ceramic body and method for its production
EP3375767A1 (en) * 2017-03-16 2018-09-19 Infineon Technologies AG Electrochemically robust ceramic substrates
EP2543653B2 (en) 2011-07-04 2023-01-11 Comadur S.A. Method for manufacturing a matt ceramic

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3099608A (en) * 1959-12-30 1963-07-30 Ibm Method of electroplating on a dielectric base
DE2145905B2 (en) * 1971-09-14 1975-08-28 Standard Elektrik Lorenz Ag, 7000 Stuttgart Process for the production of surface metallized insulating materials by electroless metal deposition
DE3045281C2 (en) * 1979-06-19 1984-03-08 Institut fiziko-chimi&ccaron;eskich osnov pererabotki mineral'nogo syr'ja Sibirskogo otdelenija Akademii Nauk SSSR, Novosibirsk SOLUTION AND METHOD FOR ELECTROCHEMICAL METALLIZATION OF DIELECTRICS
DE3332029A1 (en) * 1982-09-16 1984-03-22 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Process for coating a solid
DE3326253A1 (en) * 1983-07-21 1985-01-31 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt METHOD FOR METALLIZING A SOLID BODY
DE3523956A1 (en) * 1985-07-04 1987-01-08 Licentia Gmbh METHOD FOR CHEMICALLY METALLIZING AN ELECTRICALLY POOR CONDUCTING BODY FROM AN INORGANIC MATERIAL
DE3633907A1 (en) * 1986-08-02 1988-02-04 Altan Akyuerek Method for firmly bonding a copper body to a substrate
DE3632513A1 (en) * 1986-09-22 1988-03-24 Schering Ag METHOD FOR ADHESIVE GALVANIZING OF CERAMIC MATERIALS
US4770953A (en) * 1986-02-20 1988-09-13 Kabushiki Kaisha Toshiba Aluminum nitride sintered body having conductive metallized layer
DE3421988C2 (en) * 1983-06-09 1988-09-22 Kollmorgen Technologies Corp., Dallas, Tex., Us
DE3323476C2 (en) * 1982-07-01 1988-10-20 Kollmorgen Technologies Corp., Dallas, Tex., Us
DE3814224C1 (en) * 1988-04-27 1989-07-13 W.C. Heraeus Gmbh, 6450 Hanau, De Process for pretreating aluminium nitride ceramic to be metallised
EP0219122B1 (en) * 1985-10-15 1990-07-04 Nec Corporation Metallized ceramic substrate and method of manufacturing the same
DE3928434A1 (en) * 1989-08-24 1991-02-28 Schering Ag Direct metallisation of non-conductive polymer substrate - by electroplating onto reduced or thermally decomposed metal cpd. layer
DE3928435A1 (en) * 1989-08-24 1991-02-28 Schering Ag METHOD FOR DIRECTLY METALLIZING A NON-CONDUCTIVE SUBSTRATE

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3099608A (en) * 1959-12-30 1963-07-30 Ibm Method of electroplating on a dielectric base
DE2145905B2 (en) * 1971-09-14 1975-08-28 Standard Elektrik Lorenz Ag, 7000 Stuttgart Process for the production of surface metallized insulating materials by electroless metal deposition
DE3045281C2 (en) * 1979-06-19 1984-03-08 Institut fiziko-chimi&ccaron;eskich osnov pererabotki mineral'nogo syr'ja Sibirskogo otdelenija Akademii Nauk SSSR, Novosibirsk SOLUTION AND METHOD FOR ELECTROCHEMICAL METALLIZATION OF DIELECTRICS
DE3323476C2 (en) * 1982-07-01 1988-10-20 Kollmorgen Technologies Corp., Dallas, Tex., Us
DE3332029A1 (en) * 1982-09-16 1984-03-22 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Process for coating a solid
DE3421988C2 (en) * 1983-06-09 1988-09-22 Kollmorgen Technologies Corp., Dallas, Tex., Us
DE3326253A1 (en) * 1983-07-21 1985-01-31 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt METHOD FOR METALLIZING A SOLID BODY
DE3523956A1 (en) * 1985-07-04 1987-01-08 Licentia Gmbh METHOD FOR CHEMICALLY METALLIZING AN ELECTRICALLY POOR CONDUCTING BODY FROM AN INORGANIC MATERIAL
EP0219122B1 (en) * 1985-10-15 1990-07-04 Nec Corporation Metallized ceramic substrate and method of manufacturing the same
US4770953A (en) * 1986-02-20 1988-09-13 Kabushiki Kaisha Toshiba Aluminum nitride sintered body having conductive metallized layer
DE3633907A1 (en) * 1986-08-02 1988-02-04 Altan Akyuerek Method for firmly bonding a copper body to a substrate
DE3632513A1 (en) * 1986-09-22 1988-03-24 Schering Ag METHOD FOR ADHESIVE GALVANIZING OF CERAMIC MATERIALS
DE3814224C1 (en) * 1988-04-27 1989-07-13 W.C. Heraeus Gmbh, 6450 Hanau, De Process for pretreating aluminium nitride ceramic to be metallised
DE3928434A1 (en) * 1989-08-24 1991-02-28 Schering Ag Direct metallisation of non-conductive polymer substrate - by electroplating onto reduced or thermally decomposed metal cpd. layer
DE3928435A1 (en) * 1989-08-24 1991-02-28 Schering Ag METHOD FOR DIRECTLY METALLIZING A NON-CONDUCTIVE SUBSTRATE

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
2-258686 A. C-794, Jan. 9, 1991, Vol.15/No. 7 *
BAUDRAND, Donald W.: Cleaning and Preparation of Ceramic And Metallized Ceramic Material for Pla- ting. In: PLATING AND SURFACE FINISHING, Oct.1984,S.72-75 *
Firmenschrift: Der Ultraschall-Erosions-Prozeß zurspannungsfreien Behandlung harter Materialien. ROHRER ELECTRONIC, 8000 München 5, 9/1991 DE-Z: WERDECKER, Waltraud: Metallisieren von Alu- miniumnitridsubstraten. In: TECHNISCHE RUNDSCHAU 41/87, S.106-113 *
Patents Abstracts of Japan: 1-249680 A. C-671, Dec.26, 1989, Vol.13/No.592 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19833593A1 (en) * 1998-07-25 2000-01-27 Daimler Chrysler Ag Selective metallization of e.g. ceramic, glass or plastic, e.g. for circuit board or electromagnetically screened housing, comprising mechanically depositing seeds on a rough substrate surface and then chemical plating
DE19833593C2 (en) * 1998-07-25 2002-03-14 Daimler Chrysler Ag Selective metallization process
DE19946195C1 (en) * 1999-09-27 2001-04-05 Epcos Ag Removal of alumina particle layer sintered onto sintered multilayer ceramic substrate, employs two stages of dry grit blasting followed by electrostatic repulsion of submicron residue
DE10147897C1 (en) * 2001-09-28 2003-01-23 Epcos Ag Process for directly galvanizing contact layers onto ceramic components comprises activating the regions to be galvanized using an aqueous solution containing phosphoric acid, and applying the contact layers on the treated components
EP2011779A1 (en) * 2007-07-06 2009-01-07 Vita Zahnfabrik H. Rauter GmbH & Co. KG Ceramic body and method for its production
WO2009007338A1 (en) * 2007-07-06 2009-01-15 Vita Zahnfabrik H. Rauter Gmbh & Co. Kg Ceramic body and process for the preparation thereof
JP2010532305A (en) * 2007-07-06 2010-10-07 ビタ・ゼーンファブリク・ハー・ラウター・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コー・カーゲー Ceramic body and manufacturing method thereof
US8257606B2 (en) 2007-07-06 2012-09-04 Vita Zahnfabrik H. Rauter Gmbh & Co. Kg Ceramic body and process for the preparation thereof
EP3453693A1 (en) 2007-07-06 2019-03-13 VITA-ZAHNFABRIK H. Rauter GmbH & Co. KG Ceramic body and process for the preparation thereof
EP2543653B2 (en) 2011-07-04 2023-01-11 Comadur S.A. Method for manufacturing a matt ceramic
EP3375767A1 (en) * 2017-03-16 2018-09-19 Infineon Technologies AG Electrochemically robust ceramic substrates

Similar Documents

Publication Publication Date Title
US5058799A (en) Metallized ceramic substrate and method therefor
US5100714A (en) Metallized ceramic substrate and method therefor
EP0176746B1 (en) Manufacture of copper bumps for integrated circuits
US5849170A (en) Electroless/electrolytic methods for the preparation of metallized ceramic substrates
EP0210437B1 (en) Process for the electroless plating of a poorly electrically conducting inorganic substrate
US4428986A (en) Method of preparing a beryllia substrate for subsequent autocatalytic deposition of a metallized film directly thereon
DE4138214A1 (en) Metallisation of aluminium nitride ceramic - involves ceramic treatment to remove glass surface film
JPH02166294A (en) Plated base material
EP0737657A2 (en) Process for obtaining a metal coated, metallised aluminium nitride ceramic component and the so obtained metal coated component
DE69734341T2 (en) PCB for power module
EP0149662B1 (en) Process for the metallization of a solid body
US3791861A (en) Method for producing thin film circuits on high purity alumina substrates
EP0350648A2 (en) Process for the production of highly temperature-resistant copper coatings on inorganic dielectrics
EP1478607B1 (en) Method for metallizing titanate-based ceramics
EP0238118A2 (en) Process for making metallized holes in a substrate having conductive and resistive paths and the product obtained by said process
US7147896B2 (en) Electroless nickel plating method for the preparation of zirconia ceramic
DE102014106694B3 (en) Method for metallizing at least one plate-shaped ceramic substrate and metal-ceramic substrate
JPH05160551A (en) Method of manufacturing electronic part mounting aluminum nitride board
US4842899A (en) Process for forming metallic film on inorganic material
DE3518766A1 (en) METHOD FOR METALLIZING A SUBSTRATE
JPH0613755B2 (en) Titanium substrate treatment method and titanium-based composite material
JPS61151081A (en) Manufacture of ceramic wire distribution substrate
JP3801334B2 (en) Semiconductor device mounting substrate and manufacturing method thereof
JPS61101481A (en) Metallization of silicon carbide base ceramic sintered body
JPH077237A (en) Ceramic board, surface treatment of ceramic board and formation of thin film on roughened surface of ceramic board

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8110 Request for examination paragraph 44
8127 New person/name/address of the applicant

Owner name: DAIMLERCHRYSLER AG, 70567 STUTTGART, DE

8131 Rejection