DE3027433A1 - Pressure diffusion sepn. method for mixts. - uses perpendicular identical frequency wave fields with differing phases - Google Patents

Pressure diffusion sepn. method for mixts. - uses perpendicular identical frequency wave fields with differing phases

Info

Publication number
DE3027433A1
DE3027433A1 DE19803027433 DE3027433A DE3027433A1 DE 3027433 A1 DE3027433 A1 DE 3027433A1 DE 19803027433 DE19803027433 DE 19803027433 DE 3027433 A DE3027433 A DE 3027433A DE 3027433 A1 DE3027433 A1 DE 3027433A1
Authority
DE
Germany
Prior art keywords
pressure
fields
oscillating
walls
sepn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19803027433
Other languages
German (de)
Inventor
Oskar Dipl.-Ing. Dr. 8000 München Bschorr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Messerschmitt Bolkow Blohm AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messerschmitt Bolkow Blohm AG filed Critical Messerschmitt Bolkow Blohm AG
Priority to DE19803027433 priority Critical patent/DE3027433A1/en
Publication of DE3027433A1 publication Critical patent/DE3027433A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/28Mechanical auxiliary equipment for acceleration of sedimentation, e.g. by vibrators or the like
    • B01D21/283Settling tanks provided with vibrators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D43/00Separating particles from liquids, or liquids from solids, otherwise than by sedimentation or filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element
    • B01D59/50Separation involving two or more processes covered by different groups selected from groups B01D59/02, B01D59/10, B01D59/20, B01D59/22, B01D59/28, B01D59/34, B01D59/36, B01D59/38, B01D59/44

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Centrifugal Separators (AREA)

Abstract

The sepn. of mixts. of two gases, two liqs., a gas with a colloid, or a liq. with a solid, and based on differing molecular weights or specific gravities is effected by pressure diffusion using varying pressure fields. These fields are two-dimensional mutually perpendicular wave fields operating at the same frequency but with pi/2 phase shift. The mixt. for sepn. is fed by co-current or counter-flow perpendicular to the vibration plane along the longitudinal axis of a prismatic sepn. chamber with the sepd. components leaving at the roof of the chamber. The wave-fields can be formed by two vibrating walls, each tuned to the natural frequency of the standing waves. A circular polarised wave field produced by a single vibrating wall and reflecting wall, or by tubular valves, may be used. The method separates a variety of mixtures, in particular gaseous isotopes, with high efficiency and low power consumption. No moving parts or pressure compressors are involved.

Description

Die Erfindung bezieht sich auf ein Verfahren zur TrennungThe invention relates to a method of separation

von Gemischen aufgrund unterschiedlichem Molekular-bzw.of mixtures due to different molecular or.

spezifischem Gewicht mit gasförml#/gasfärmig,gasformig/ kolloidal,flüssig/flüssig oder #1üssig/fest-Komponenten.specific gravity with gaseous / gaseous, gaseous / colloidal, liquid / liquid or # 1 liquid / solid components.

Solche physikalische Trennverfahren sind an sich bekannt.Such physical separation processes are known per se.

Sie werden im wesentlichen unter Verwendung von Ultrazentrifugen,Massenspektrographen oder Trennwanddiffusion, Thermodiffusion bzw.Trenngasdiffusion etc.durchgeführt.They are essentially using ultracentrifuges, mass spectrographs or partition wall diffusion, thermal diffusion or separation gas diffusion etc.

Bezogen auf die erforderliche Trennarbeit ist hierbei die Ultrazentrifuge allen anderen vorgenannten Trennverfahren um eine Größenordnung besser,nur verhinderten eine Reihe technisch nicht gelöster Probleme, vorallem die kritischen Resonanzschwingungen,eine Durchsetzung der Ultrazentrifuge gegenüber der Trennwanddiffusion.In relation to the required separation work, the ultracentrifuge is used here all other aforementioned separation processes by an order of magnitude better, only prevented a number of technically unsolved problems, especially the critical resonance vibrations, one Implementation of the ultracentrifuge against partition wall diffusion.

In der Ultrazentrifuge kommt es zu einer Trennung aufgrund der Druckdiffusion in einem Feld mit stationären Druckgradienten.Dieser Druckgradient wird auch die stationäre radiale Zentrifugalbeschleunigung aufrechterhalten.Separation occurs in the ultracentrifuge due to pressure diffusion in a field with stationary pressure gradients. This pressure gradient is also the Maintain steady radial centrifugal acceleration.

Die vorgenannten Verfahren können jedoch nur spezielle Zustandsarten des zu trennenden Gemisches verarbeiten.Hierbei wirkt sich beispielsweise bei Zentrifugen die schwingungsinstabilität nachteilig aus und bei den Diffusionsanlagen der hohe Energieaufwand.However, the aforementioned methods can only be used for special types of states of the mixture to be separated. This has an effect on centrifuges, for example the vibration instability is a disadvantage, and in the case of diffusion systems the high one Energy expenditure.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde,ein Verfahren der eingangs genannten Art zu schaffen,das einmal auf alle drei Zustandarten anwendbar ist zum andernmal eine Gemischtrennung ohne mechanisch bewegte Teile und ohne Druckkompressoren erlaubt.The present invention is based on the object of a method of the type mentioned at the outset, which can be applied once to all three types of state On the other hand, there is a mixture separation without mechanically moving parts and without pressure compressors permitted.

Diese Aufgabe wird durch die in den Ansprüchen niedergelegten Maßnahmen in optimaler Weise gelöst.In der nachfolgenden Beschreibung sind Ausf+hrungsbeispiele abgehandelt und in der Zeichnung schematisch dargestellt. Es zeigen Fig.la einen Querschnitt in der X-Y-Ebene der Grundausführung in schematischer Darstellung, Fig.lb einen Längsschnitt gemäß Fig.la, Fig.2 einen Querschnitt durch eine Trennkammer mit Koinzidenzanregung, Fig.3 einen Querschnitt durch eine Trennkammer mit nur einer Anregung, Fig.4 einen Querschnitt durch eine Trennkammer mit pneumatischer Anregung, Fig.5 eine Trennkammer mit gekrümmten Wandungen in schematischer Darstellung.This task is accomplished by the measures laid down in the claims solved in an optimal way. The following description includes exemplary embodiments dealt with and shown schematically in the drawing. There Fig.la show a Cross-section in the X-Y plane of the basic design in a schematic representation, Fig.lb a longitudinal section according to Fig.la, Fig.2 a cross section through a separation chamber with coincidence excitation, Figure 3 shows a cross section through a separation chamber with only one Suggestion, 4 shows a cross section through a separation chamber with pneumatic Excitation, Fig. 5 a separation chamber with curved walls in a schematic representation.

Der allgemeine Erfindungsgedanke sieht eine Lösung der gestellten Aufgabe mittels instationärer Druckfelder vor.Im besonderen werden gekrwzte stehende Wellen benützt.Bekanntlich treten in einem stehenden Wellenfeld sehr hohe Wechselbeschleunigungen auf.ßei linearen Schwingungen kommt es aber zu einer weitgehenden Aufhebung einer rsultierenden Beschleunigung.Im gekreuzten Wellenfeld führen die Teilchen kreisförmige Bewegungen um ihre Ruhelage aus,die sich jedoch nicht auf einen gemeinsamen Mittelpunkt beziehen.The general idea of the invention sees a solution to the posed Task by means of unsteady pressure fields, especially abbreviated standing ones It is well known that very high alternating accelerations occur in a standing wave field auf.ßei linear oscillations, however, there is an extensive cancellation of a The resulting acceleration. In the crossed wave field, the particles are circular Movements around their rest position, but not on a common center relate.

Dadurch ergibt sich eine zentrifugale Beschleunigung .Nach der Theorie der Druckdiffusion ist aber der entmischende Diffusionsstrom proportional der Beschleunigung.This results in a centrifugal acceleration, according to the theory the pressure diffusion, however, the segregating diffusion flow is proportional to the acceleration.

Für ein rechtwinkelig gekreuztes ( in der X-und Y-Achse) ,stehendes Wellenfeld ergibt sich nun folgende Feldverteilung der Schnelle ~v",der Beschleunigung "b" und des Druckes t#'1,wobei der Index 11011 jeweils die Amplitude bezeichnet und AJ die Kreis funktion sowie k k die Wellenzahl.For a right-angled crossed (in the X and Y axes), standing Wave field results in the following field distribution of the velocity ~ v ", the acceleration "b" and the pressure t # '1, where the index 11011 denotes the amplitude in each case and AJ is the circular function and k k is the wave number.

v = v sinW t sin k x ; v = v cos AS t sin k y Y o b = v OJ cos4>t sin kx x 0 Mit Drücken t pO,die etwa 1/3 des Grunddruckes ausmachen, lassen sich Beschleunigungen erreichen,die an die Ultrazentrifugen heranreichen.Da sich die resultierende Beschlednigung als nicht-linearer Effekt ergibt,sind auch aus diesem Grunde hohe Druckamplituden anzustreben.v = v sinW t sin kx; v = v cos AS t sin ky Y ob = v OJ cos4> t sin kx x 0 With pressures t pO, which amount to about 1/3 of the base pressure, accelerations can be achieved that approach the ultracentrifuges. Since the resulting acceleration results as a non-linear effect, high pressure amplitudes should also be aimed for for this reason.

Für nicht-rechtwinkelige und nicht-zirkulare Wellenfelder ergeben sich elliptische Bewegungen der Teilchen.Auch in diesem Fall ergibt sich eine resultierende Beschleunigungskomponente.Zur Erzeugung und Aufrechterhaltung von stehenden Wellenfeldern gibt es eine Reihe von Antriebsarten.For non-rectangular and non-circular wave fields result elliptical motions of the particles. In this case, too, there is a resulting Acceleration component. For the generation and maintenance of standing wave fields there are a number of types of drive.

Die sinnfälligste ist diejenige,bei der eine Begrenzungswand in der Art eines Kolbens konphas periodisch hin-und herbewegt wird,wobei eine reflektierende Wand gegenübersteht.Die Anregungsfrequenz ist dabei auf die Resonanz mit der stehenden Welle abgestimmt.Zweckmäßigerweise wird eine höhere Harmonische mit mehreren Wellenzügen angeregt.The most obvious is the one with a boundary wall in the Kind of a piston konphas is periodically reciprocated, with a reflective The excitation frequency is based on the resonance with the standing wall A higher harmonic with several wave trains is expediently tuned stimulated.

Die dazu senkrecht stehende,gekreuzte Welle wird analog angeregt.Beide Wellen haben dabei dieselbe Frequenz und sind lediglich in der Phase um t/2 versetzt.The crossed wave that is perpendicular to this is excited analogously Waves have the same frequency and are only shifted in phase by t / 2.

Bei der vorgeschlagenen Anregung eines gekreuzten zweidimensionalen Wellenfeldes mittels Koinzidenz wird in einem plattenförmigen Wellenleiter eine Biegeschwingung einge-Ieitet.Diese Platte strahlt in bekannter Weise Energie an das Umgebungsmedium ab.Bei Resonanzanpassung von der Platte und dem Trennraum ergibt sich ein stehendes Wellenfeld; Mit einer dazu um t /2 phasenverschobenen Platte ergibt sich ein gekreuztes Feld.At the proposed excitation of a crossed two-dimensional Wave field by means of coincidence becomes in a plate-shaped waveguide a Bending vibration initiated. This plate radiates energy in a known way With resonance matching of the plate and the separation space results a standing wave field; With a phase shifted by t / 2 Plate results in a crossed field.

Bei dem Vorschlag,ein stehendes Wellenfeld mittels pneumatischer Energie aufrechtzuerhalten,wird im Takt in den Überdruckberg Druckmedium eingeführt und/oder im Unterdruckberg Medium entnommen.Da die Stellen der Druckmaximas bzw. -minimas ortsfest sind,kann dies durch feste rohrförmige,senkrecht zur Bewegungsebene stehende Einbauten erfolgen.Die Steuerung wird dabei zweckmäßig durch rotierende Ventile (Schlitzventile) durchgeführt.With the proposal, a standing wave field by means of pneumatic energy to maintain, is introduced and / or in the cycle in the overpressure mountain pressure medium The medium is taken from the negative pressure mountain are stationary, this can be done by means of fixed tubular ones that are perpendicular to the plane of movement The control is expediently carried out by rotating valves (Slit valves) carried out.

Das zu trennende Gut wird senkrecht in der Feldbewegung geführt.Verläuft die zirkulare Schwingung in der X-,Y-Ebene, so wird das Gut in Z-Richtung bewegt.Analog zum Betrieb bei den Zentrifugen kann dabei das Gleich-bzw. Gegenstromprinzip angewendet werden.Ebenso ist eine Konvektionsströmung nach Art des Clusius-Di-cl<el'schen Trennrohres zur Summation des Trenneffektes möglich.Die Hintereinanderschaltung von verschiedenen Trennstufen erfolgt ebenfalls analog zum Zentrifugenverfahren.The material to be separated is guided vertically in the field movement the circular oscillation in the X-, Y-plane, the good is moved in the Z-direction. Analog for operation in the centrifuges can be the same or. Countercurrent principle applied Likewise, there is a convection flow in the manner of the Clusius-Di-cl <el'schen Separating pipe to add up the separating effect is possible from different separation stages is also carried out analogously to the centrifuge process.

In den Fig.la,lb ist nun ein Ausführungsbeispiel zur Demonstration des Arbeitsprinzips gezeigt.In der Trennkammer 1 befindet sich das zu trennende Gemisch,beispielsweise eine gasförmige Isofropenmischung.Die Trennkammer 1 stellt einen prismatischen rechtwinkeligen Raum dar.Eine Seitenwand 2 wird periodisch in der Resonanz einer stehenden Welle in x-Richtung angeregt.Ggenüberliegend ist eine Wand 4 fest angeordnet und ist auf optimale Reflexion mit geringem Reflexionsverlust ausgelegt.Bei Verwendung von metallischen Werkstoffen verhalten die Wafldoberfläche-n einen Kunststoffüberzuglum die sogenannte ~unvermeidliche Aosorptiontr zu verrirrgern.Dieser Kunststcffüberzug soll weiterhin eine geringe Temperaturleitzahl haben.In the Fig.la, lb is now an embodiment for demonstration The working principle is shown in the separation chamber 1 that is to be separated Mixture, for example a gaseous isofropene mixture. The separation chamber 1 provides a prismatic right-angled space. A side wall 2 is periodically in The resonance of a standing wave is excited in the x-direction Wall 4 is fixed and is on optimal reflection with low reflection loss When using metallic materials, the wafld surface behaves a plastic cover to dissipate the so-called unavoidable absorption door Plastic coating should continue to have a low thermal diffusivity.

In derselben Weise bilden eine Schwingwand 3 und eine Festwand 5 ebenfalls eine stehende Welle in Y-Richtung derselben Frequnez,aber mit t #/2 Phasenverschiebung.In the same way, an oscillating wall 3 and a fixed wall 5 also form a standing wave in Y-direction of the same frequency, but with t # / 2 phase shift.

In dem dargestellten Ausführungsbeispiel werden die Schwingwände 2 und 3 über ein elektromagnetisches Tauchspulensystem 7 angetrieben.Vorteilhafterweise werden die Schwingwände über Federn 6 abgestützt und in Resonanz betrieben.Sie schwingen dabei in sich jeweils konphas.Das zu trennende Gut strömt senkrecht zur x-y-Schwingebene in z-Richtung .Bei Gleichstrombetrieb wird dabei das Gemisch an der Grundfläche 8 eingeführt und an der Deckfläche 9 die Komponenten durch die Kanäle #1Ö" entnommen.Hierbei sammelt sich die leichtere Komponente entlang dne Linien sink x = sink y = 1 und die schwerere Komponente bei sin kx= sin k y = .Hierbei werden x und y jeweils von den zugeordneten Wandpaaren aus gemessenSmit"k"ist die Wellenzahl 2 g/ 2 bezeichnet.Für stehende Wellen gilt die Bedingung, daß die Wellenlänge i #ein ganzes Vielfaches der Wandabstände ist.In the illustrated embodiment, the oscillating walls 2 and 3 driven by an electromagnetic moving coil system 7. Advantageously the oscillating walls are supported by springs 6 and operated in resonance. They oscillate The material to be separated flows perpendicular to the x-y oscillation plane in the z-direction. With direct current operation, the mixture is at the base 8 introduced and the components removed from the top surface 9 through channels # 10 ". Here the lighter component collects along the lines sink x = sink y = 1 and the heavier component at sin kx = sin k y =. Here x and y are each from the associated wall pairs measured with "k" the wave number 2 g / 2 is designated standing waves the condition applies that the wavelength i # is a whole multiple the wall clearance is.

Man kann die Betriebsarten und Schaltungen bei der Ultrazentrifuge analog auf diesen Fall übertragen,wenn man jeweils eine quadratische Schwingungszelle ,die von Schwingungsknoten zu Schwingungsknoten reicht,als eine Röhrenzentrifuge auffaßt.Deshalb dürfte sich eine Beschreibung des Betriebes nach dem Gegenstromprinzip und die verschiedenen Hintereinanderschaltungen erübrigen.You can see the operating modes and circuits on the ultracentrifuge analogously transferred to this case, if one has a square oscillation cell in each case that extends from vibration node to vibration node, as a tube centrifuge Therefore, a description of the operation according to the countercurrent principle should be and the various series connections are unnecessary.

In Fig.2 ist ein Beispiel einer Trennanlage mit Koinzidenzantrieb dargestellt.Eine prismatische Trennkammer 11 wird durch zwei senkrecht zueinander stehende feste Wandpaare 14 und 15 begrenzt.In Fig.2 is an example of a separation system with a coincidence drive A prismatic separation chamber 11 is formed by two perpendicular to each other standing fixed wall pairs 14 and 15 limited.

Die Wände sind jeweils optimal reflektierend ausgebildet.The walls are each designed to be optimally reflective.

In der Trennkammer 11 befinden sich zwei zueinander gekreuzte Platten 12,13.Diese werden z.B. durch ein wechselndes Drehmoment von Momentengebern 17 zu Biegeschwingungen angeregt.Wird die Koordinatenorientierung analog gemäß dem in Fig.l gezeigten und beschriebenen Beispiel übernommen,so schwingt eine Platte in x- und die andere in y-Richtung.In z-Richtung verläuft die Schwingung jeweils konphas (2-dimensionales Feld).Durch Bestimmung der Biegewellenlänge auf den Platten auf die Abmessungen der Trennkammer läßt sich in an sich bekannter Weise ein stehendes Wellenfeld aufrechterhalten.Ein gekreuztes Feld erhält man wieder durch eine Phasenversetzung um#/2.Die Zufuhr des zu trennenden Gemisches und die Abfuhr der getrennten Komponenten erfolgt analog Fig.l an der Grundfläche und der D #ckfläche.In the separation chamber 11 there are two mutually crossed plates 12,13. These are e.g. due to an alternating torque from torque sensors 17 to Bending vibrations are excited. If the coordinate orientation is analogous to that in Fig.l adopted and described example, a plate swings in x- and the other in y-direction. In z-direction the oscillation is conphas (2-dimensional field). By determining the bending wavelength on the plates the dimensions of the separation chamber can be a standing one in a manner known per se Maintain wave field. A crossed field is obtained again by a phase shift around # / 2.The supply of the mixture to be separated and the discharge of the separated components takes place analogously to Fig. 1 on the base and the top surface.

Die Fig.3 zeigt ein Ausführungsbeispiel mit nur einem Anregungsmechanismus.Die Trennkammer 21 besteht dabei aus zueinander nicht-rechtwinklig stehenden festen Wänden 24.3 shows an embodiment with only one excitation mechanism Separation chamber 21 consists of fixed ones that are not at right angles to one another Walls 24.

Lediglich eine Wandseite 22 wird periodisch,hier durch einen Exzenterantrieb 27 symbolisiert, angeregt.Dank der Nichtrechtwinkeligkeit wird die ursprünglich in eine Richtung ( z. B. y-Richtung ) verlaufende Schwingung in die x-Richtung umgelenkt,so daß sich ebenfalls ein gekreuztes zweidimensionales stehendes Wellenfeld ergibt.Durch die Wandabstände lassen sich Gebiete erreichen,in denen eine zirkulare Teilchenbewegung herrscht.Im allgemeinen Fallfür nicht senkrechte und nicht um 2 /2 verschobene Wellenfelder - ergeben sich elliptische Teilchenbewegungen.Only one wall side 22 is periodic, here by an eccentric drive 27 symbolizes, stimulates. Thanks to the non-orthogonality, it becomes original Vibration running in one direction (e.g. y-direction) deflected in the x-direction, see above that there is also a crossed two-dimensional standing wave field the wall distances can be reached areas in which a circular particle movement In the general case for wave fields that are not perpendicular and not shifted by 2/2 - elliptical particle movements result.

Die Fig.4 zeigt eine prismatische Trennkammer 31 mit feststehenden,reflektierenden Seitenwänden 35.in denen das zirkulare stehende Wellenfeld mit pneumatischer Energie aufrechterhalten wird.Dies geschieht z.B. durch ein in z-Richtung verlaufendes Rohr 36 mit Schlitzen 37.In dem Rohr rotiert ein Innenrohr 38 mit Schlitzen 39.Im Innenrohr 38 wird das zu trennende Gemisch unter Druck zugeführt.4 shows a prismatic separation chamber 31 with fixed, reflective Side walls 35. in which the circular standing wave field with pneumatic energy is maintained; this is done, for example, by moving in the z-direction extending tube 36 with slots 37. An inner tube 38 with slots rotates in the tube 39. In the inner tube 38, the mixture to be separated is fed under pressure.

Bei Rotation des Innenrohres wird periodisch Druckmedium in die Trennkammer 31 ausgestoßen.Bei Anpassung der Pulsationsfrequenz auf die Eigenfrequenzen der Trennkammer 31 läßt sich ein stehendes Wellenfeld erzeugen.Um zirkulare Felder zu erhalten,sind auch die einzelnen Schitzrohre 36,38 in der Phase aufeinander abgestimmt.When the inner tube rotates, pressure medium is periodically drawn into the separation chamber 31 ejected.When adjusting the pulsation frequency to the natural frequencies of the Separation chamber 31 can generate a standing wave field. Circular fields too received, the individual Schitzrohre 36,38 are coordinated in phase.

Abschließend sei noch auf das Ausführungsbeispiel gemäß Fig.5 eingegangen.Diese zeigt in schematischer Draufsicht eine prismatische Trennkammer 41 mit gekrümmten Wandungen 44 dar.Die Erregung einer zweidimensionalen stehenden Welle in der x-y-Ebene erfolgt durch einen in der z-Richtung verlaufenden Streifenkolben 42,der durch einen magnetostriktiven Wandler 47 angetrieben wird.Die Breite der Trennkammer 41 ist kleiner als die angeregte Eigenfrequenz i /2.Damit führt das Medium Schwingungen entlang der gekrümmten Linie aus.Entsprechend dem Krümmungsradius g ergibt sich eine vom Krümmungsmittelpunkt weggerichtete Beschleunigungskomponente v 2/ 9 ; wobei 2 die mittlere Schnellebewegung ist.Finally, the exemplary embodiment according to FIG. 5 will be discussed shows a schematic plan view of a prismatic separation chamber 41 with curved Walls 44. The excitation of a two-dimensional standing wave in the x-y plane takes place by a extending in the z-direction strip piston 42, which is carried out by a Magnetostrictive transducer 47 is driven. The width of the separation chamber 41 is smaller than the excited natural frequency i /2. This means that the medium carries vibrations along the curved line. Corresponding to the radius of curvature g results an acceleration component v 2/9 directed away from the center of curvature; whereby 2 is the mean rapid movement.

LeerseiteBlank page

Claims (7)

Verfahren zur Trennung von Gemischen Patentansprüche.Process for the separation of mixtures Patent claims. 1. Verfahren zur Trennung von Gemischen aufgrund von unterschiedlichem Molekular-bzw.spezifischem Gewicht mit gasfdrmig/gasförmig'gasförmig/kolloidal'flüssig/flüssig oder flüssig/fest-Komponenten,dadurch g e k e n n z e i c h -n e t ,daß die Druckdiffusion von instationären Druckfeldern,im besonderen zweidimensionale ,zueinander senkrecht stehende ,mit derselben Frequenz mit t/2 Phasenverschiebung schwingende,Wellenfelder'durchgeführt wird,dergestelt, daß das zu trennende Gemisch im Gleich-oder Gegenstromverfahren senkrecht zu der Schwingungsebene in der Längsachse einer prismatischen Trennkammer geführt wird,und sich die Zu-und Ableitungen des Trenngemisches und der getrennten Komponenten an der Grund-und Deckfläche der Trennkammer befinden.1. Method of separation of mixtures due to different Molecular or specific weight with gaseous / gaseous'gaseous / colloidal'liquid / liquid or liquid / solid components, in that the pressure diffusion of unsteady pressure fields, in particular two-dimensional ones, perpendicular to one another standing wave fields oscillating at the same frequency with t / 2 phase shift is, such that the mixture to be separated in the cocurrent or countercurrent process perpendicular to the plane of vibration in the longitudinal axis of a prismatic separation chamber is performed, and the supply and discharge lines of the separation mixture and the separated Components are located on the base and top surface of the separation chamber. 2. Verfahren nach Anspruch 1 ,dadurch g e k e n n z e i c h -n e t ,daß ein zweidimensionales stehendes Wellenfeld durch aneinander rechtwinklig angeordnete Schwing-wände (2 und 3) mit jeweils gegenüberliegenden festen Reflexionswänden (4und5) erzielt wird'wobei die Schwingfrequenz der Schwingwände (2und 3) auf die Eigenfrequenz der stehenden Wellen abgestimmt ist.2. The method according to claim 1, characterized in that g e k e n n z e i c h -n e t that a two-dimensional standing wave field by arranged at right angles to each other Oscillating walls (2 and 3) each with opposing fixed reflection walls (4 and 5) is achieved'wherein the oscillation frequency of the oscillating walls (2 and 3) to the natural frequency of the standing waves is tuned. 3. Verfahren nach Anspruch 1 ,dadurch g e k e n n z e i c h -n e t ,daß ein gekreuztes zweidimensionales stehendes Wellenfeld durch zwei zueinander senkrecht stehende Platten (12 und 13) durch Momentgeber (17) zu Biegeschwingungen angeregt werden,wobei die Eigenfrequenzen der Platten (12, 13) auf die Eigenfrequenzen der stehenden Wellen abgestimmt sind.3. The method according to claim 1, characterized in that g e k e n n z e i c h -n e t that a crossed two-dimensional standing wave field by two to each other vertically standing plates (12 and 13) by moment sensors (17) to bending vibrations are excited, the natural frequencies of the plates (12, 13) on the natural frequencies of the standing waves are matched. 4. Verfahren nach Anspruch 1 ,dadurch g e k e n n z e i c h -n e t ,daß ein zirkular polarisiertes Wellenfeld mit nur einer Schwingwand (22) erzeugt wird wobei die #eflexionswände (24) einer Trennkammer (21) nicht rechtwinklig zueinander angeordnet sind.4. The method according to claim 1, characterized in that g e k e n n z e i c h -n e t that generates a circularly polarized wave field with only one oscillating wall (22) The reflection walls (24) of a separation chamber (21) are not at right angles to one another are arranged. 5. Verfahren nach Anspruch 1 ,dadurch g e k e n n z e i c h -n e t ,daß ein zirkular polarisiertes Wellenfeld durch ein oder mehrere Rohrventile (37-39) erreicht wird,wobei das Druckmedium im Takt der stehenden Wellen im Druckmaximum eingespeist bzw. im Druckminimum Medium entzogen wird.5. The method according to claim 1, characterized in that g e k e n n z e i c h -n e t that a circularly polarized wave field through one or more pipe valves (37-39) is achieved, the pressure medium in the cycle of the standing waves in the pressure maximum fed in or the medium is withdrawn at the minimum pressure. 6. Verfahren nach Anspruch 1 ,dadurch g e k e n n z e i c h -n e t ,daß in einer Trennkammer (41) mit gekrümmten Wänden ~44) eine stehende Welle mittels einer Schwingwand (42) aufrechterhalten wird,so daß sich aufgrund der nicht geradlinigen Schwingbewegung eine resultierende zentrifugale Beschleunigung ergibt.6. The method according to claim 1, characterized in that g e k e n n z e i c h -n e t that in a separation chamber (41) with curved walls ~ 44) a standing wave by means of an oscillating wall (42) is maintained, so that due to the non-rectilinear Oscillating motion results in a resulting centrifugal acceleration. 7. Verfahren nach Anspruch 1 ,dadurch g e k e n n z e i c hn e t ,daß die Reflexions-und Schwingwände (2,3,4,5 etc.) mit einem Stoff geringer Temperaturleitzahl,z.B. Kunststoff überzogen werden.7. The method according to claim 1, characterized in that the reflection and oscillating walls (2, 3, 4, 5, etc.) with a material with a low thermal diffusivity, e.g. Plastic coated.
DE19803027433 1980-07-19 1980-07-19 Pressure diffusion sepn. method for mixts. - uses perpendicular identical frequency wave fields with differing phases Withdrawn DE3027433A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19803027433 DE3027433A1 (en) 1980-07-19 1980-07-19 Pressure diffusion sepn. method for mixts. - uses perpendicular identical frequency wave fields with differing phases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19803027433 DE3027433A1 (en) 1980-07-19 1980-07-19 Pressure diffusion sepn. method for mixts. - uses perpendicular identical frequency wave fields with differing phases

Publications (1)

Publication Number Publication Date
DE3027433A1 true DE3027433A1 (en) 1982-02-18

Family

ID=6107612

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19803027433 Withdrawn DE3027433A1 (en) 1980-07-19 1980-07-19 Pressure diffusion sepn. method for mixts. - uses perpendicular identical frequency wave fields with differing phases

Country Status (1)

Country Link
DE (1) DE3027433A1 (en)

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0311220A2 (en) * 1982-10-15 1989-04-12 JEWETT, Warren Read Improvements in or relating to the treatment of multi-phase systems
WO1990005008A1 (en) * 1988-11-03 1990-05-17 Ewald Benes Process and device for separating particles
WO1995001214A1 (en) * 1993-07-02 1995-01-12 University Of British Columbia Acoustic filter for separating and recycling suspended particles
US5527460A (en) * 1993-05-11 1996-06-18 Sonosep Biotech Inc. Multilayered piezoelectric resonator for the separation of suspended particles
US5711888A (en) * 1993-05-11 1998-01-27 Sonosep Biotech, Inc. Multilayered piezoelectric resonator for the separation of suspended particles
US7835000B2 (en) 2006-11-03 2010-11-16 Los Alamos National Security, Llc System and method for measuring particles in a sample stream of a flow cytometer or the like
US7837040B2 (en) 2007-04-09 2010-11-23 Los Alamos National Security, Llc Acoustic concentration of particles in fluid flow
US8083068B2 (en) 2007-04-09 2011-12-27 Los Alamos National Security, Llc Apparatus for separating particles utilizing engineered acoustic contrast capture particles
US8134705B2 (en) 2007-04-02 2012-03-13 Life Technologies Corporation Particle imaging systems and methods using acoustic radiation pressure
US8263407B2 (en) 2007-10-24 2012-09-11 Los Alamos National Security, Llc Method for non-contact particle manipulation and control of particle spacing along an axis
US8266951B2 (en) 2007-12-19 2012-09-18 Los Alamos National Security, Llc Particle analysis in an acoustic cytometer
US8528406B2 (en) 2007-10-24 2013-09-10 Los Alamos National Security, LLP Method for non-contact particle manipulation and control of particle spacing along an axis
WO2014014941A1 (en) * 2012-07-16 2014-01-23 Flodesign Sonics, Inc. Improved separation of multi-component fluid through ultrasonic acoustophoresis
US8714014B2 (en) 2008-01-16 2014-05-06 Life Technologies Corporation System and method for acoustic focusing hardware and implementations
US8783109B2 (en) 2004-07-29 2014-07-22 Los Alamos National Sercurity, LLC Ultrasonic analyte concentration and application in flow cytometry
US9228183B2 (en) 2012-03-15 2016-01-05 Flodesign Sonics, Inc. Acoustophoretic separation technology using multi-dimensional standing waves
US9272234B2 (en) 2012-03-15 2016-03-01 Flodesign Sonics, Inc. Separation of multi-component fluid through ultrasonic acoustophoresis
US9340435B2 (en) 2012-03-15 2016-05-17 Flodesign Sonics, Inc. Separation of multi-component fluid through ultrasonic acoustophoresis
US9410256B2 (en) 2009-11-16 2016-08-09 Flodesign Sonics, Inc. Ultrasound and acoustophoresis for water purification
US9416344B2 (en) 2012-03-15 2016-08-16 Flodesign Sonics, Inc. Bioreactor using acoustic standing waves
US9422328B2 (en) 2012-03-15 2016-08-23 Flodesign Sonics, Inc. Acoustic bioreactor processes
US9457302B2 (en) 2014-05-08 2016-10-04 Flodesign Sonics, Inc. Acoustophoretic device with piezoelectric transducer array
US9550134B2 (en) 2015-05-20 2017-01-24 Flodesign Sonics, Inc. Acoustic manipulation of particles in standing wave fields
US9623348B2 (en) 2012-03-15 2017-04-18 Flodesign Sonics, Inc. Reflector for an acoustophoretic device
US9670477B2 (en) 2015-04-29 2017-06-06 Flodesign Sonics, Inc. Acoustophoretic device for angled wave particle deflection
US9675906B2 (en) 2014-09-30 2017-06-13 Flodesign Sonics, Inc. Acoustophoretic clarification of particle-laden non-flowing fluids
US9688958B2 (en) 2012-03-15 2017-06-27 Flodesign Sonics, Inc. Acoustic bioreactor processes
US9695063B2 (en) 2010-08-23 2017-07-04 Flodesign Sonics, Inc Combined acoustic micro filtration and phononic crystal membrane particle separation
US9725710B2 (en) 2014-01-08 2017-08-08 Flodesign Sonics, Inc. Acoustophoresis device with dual acoustophoretic chamber
US9725690B2 (en) 2013-06-24 2017-08-08 Flodesign Sonics, Inc. Fluid dynamic sonic separator
US9738867B2 (en) 2012-03-15 2017-08-22 Flodesign Sonics, Inc. Bioreactor using acoustic standing waves
US9745569B2 (en) 2013-09-13 2017-08-29 Flodesign Sonics, Inc. System for generating high concentration factors for low cell density suspensions
US9745548B2 (en) 2012-03-15 2017-08-29 Flodesign Sonics, Inc. Acoustic perfusion devices
US9744483B2 (en) 2014-07-02 2017-08-29 Flodesign Sonics, Inc. Large scale acoustic separation device
US9752114B2 (en) 2012-03-15 2017-09-05 Flodesign Sonics, Inc Bioreactor using acoustic standing waves
US9783775B2 (en) 2012-03-15 2017-10-10 Flodesign Sonics, Inc. Bioreactor using acoustic standing waves
US9796956B2 (en) 2013-11-06 2017-10-24 Flodesign Sonics, Inc. Multi-stage acoustophoresis device
US9796607B2 (en) 2010-06-16 2017-10-24 Flodesign Sonics, Inc. Phononic crystal desalination system and methods of use
US9822333B2 (en) 2012-03-15 2017-11-21 Flodesign Sonics, Inc. Acoustic perfusion devices
US9827511B2 (en) 2014-07-02 2017-11-28 Flodesign Sonics, Inc. Acoustophoretic device with uniform fluid flow
US9950282B2 (en) 2012-03-15 2018-04-24 Flodesign Sonics, Inc. Electronic configuration and control for acoustic standing wave generation
US10040011B2 (en) 2012-03-15 2018-08-07 Flodesign Sonics, Inc. Acoustophoretic multi-component separation technology platform
US10071383B2 (en) 2010-08-23 2018-09-11 Flodesign Sonics, Inc. High-volume fast separation of multi-phase components in fluid suspensions
US10106770B2 (en) 2015-03-24 2018-10-23 Flodesign Sonics, Inc. Methods and apparatus for particle aggregation using acoustic standing waves
US10161926B2 (en) 2015-06-11 2018-12-25 Flodesign Sonics, Inc. Acoustic methods for separation of cells and pathogens
US10322949B2 (en) 2012-03-15 2019-06-18 Flodesign Sonics, Inc. Transducer and reflector configurations for an acoustophoretic device
US10370635B2 (en) 2012-03-15 2019-08-06 Flodesign Sonics, Inc. Acoustic separation of T cells
US10610804B2 (en) 2014-10-24 2020-04-07 Life Technologies Corporation Acoustically settled liquid-liquid sample purification system
US10640760B2 (en) 2016-05-03 2020-05-05 Flodesign Sonics, Inc. Therapeutic cell washing, concentration, and separation utilizing acoustophoresis
US10662402B2 (en) 2012-03-15 2020-05-26 Flodesign Sonics, Inc. Acoustic perfusion devices
US10689609B2 (en) 2012-03-15 2020-06-23 Flodesign Sonics, Inc. Acoustic bioreactor processes
US10704021B2 (en) 2012-03-15 2020-07-07 Flodesign Sonics, Inc. Acoustic perfusion devices
US10710006B2 (en) 2016-04-25 2020-07-14 Flodesign Sonics, Inc. Piezoelectric transducer for generation of an acoustic standing wave
US10737953B2 (en) 2012-04-20 2020-08-11 Flodesign Sonics, Inc. Acoustophoretic method for use in bioreactors
US10785574B2 (en) 2017-12-14 2020-09-22 Flodesign Sonics, Inc. Acoustic transducer driver and controller
US10953436B2 (en) 2012-03-15 2021-03-23 Flodesign Sonics, Inc. Acoustophoretic device with piezoelectric transducer array
US10967298B2 (en) 2012-03-15 2021-04-06 Flodesign Sonics, Inc. Driver and control for variable impedence load
US11021699B2 (en) 2015-04-29 2021-06-01 FioDesign Sonics, Inc. Separation using angled acoustic waves
US11085035B2 (en) 2016-05-03 2021-08-10 Flodesign Sonics, Inc. Therapeutic cell washing, concentration, and separation utilizing acoustophoresis
US11179747B2 (en) 2015-07-09 2021-11-23 Flodesign Sonics, Inc. Non-planar and non-symmetrical piezoelectric crystals and reflectors
US11214789B2 (en) 2016-05-03 2022-01-04 Flodesign Sonics, Inc. Concentration and washing of particles with acoustics
US11324873B2 (en) 2012-04-20 2022-05-10 Flodesign Sonics, Inc. Acoustic blood separation processes and devices
US11377651B2 (en) 2016-10-19 2022-07-05 Flodesign Sonics, Inc. Cell therapy processes utilizing acoustophoresis
US11420136B2 (en) 2016-10-19 2022-08-23 Flodesign Sonics, Inc. Affinity cell extraction by acoustics
US11459540B2 (en) 2015-07-28 2022-10-04 Flodesign Sonics, Inc. Expanded bed affinity selection
US11474085B2 (en) 2015-07-28 2022-10-18 Flodesign Sonics, Inc. Expanded bed affinity selection
US11708572B2 (en) 2015-04-29 2023-07-25 Flodesign Sonics, Inc. Acoustic cell separation techniques and processes

Cited By (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0311220A3 (en) * 1982-10-15 1989-07-26 JEWETT, Warren Read Improvements in or relating to the treatment of multi-phase systems
EP0311220A2 (en) * 1982-10-15 1989-04-12 JEWETT, Warren Read Improvements in or relating to the treatment of multi-phase systems
WO1990005008A1 (en) * 1988-11-03 1990-05-17 Ewald Benes Process and device for separating particles
US5225089A (en) * 1988-11-03 1993-07-06 Ewald Benes Method and apparatus for separating particles
US5711888A (en) * 1993-05-11 1998-01-27 Sonosep Biotech, Inc. Multilayered piezoelectric resonator for the separation of suspended particles
US5527460A (en) * 1993-05-11 1996-06-18 Sonosep Biotech Inc. Multilayered piezoelectric resonator for the separation of suspended particles
US5626767A (en) * 1993-07-02 1997-05-06 Sonosep Biotech Inc. Acoustic filter for separating and recycling suspended particles
WO1995001214A1 (en) * 1993-07-02 1995-01-12 University Of British Columbia Acoustic filter for separating and recycling suspended particles
US10537831B2 (en) 2004-07-29 2020-01-21 Triad National Security, Llc Ultrasonic analyte concentration and application in flow cytometry
US9074979B2 (en) 2004-07-29 2015-07-07 Los Alamos National Security, Llc Ultrasonic analyte concentration and application in flow cytometry
US8783109B2 (en) 2004-07-29 2014-07-22 Los Alamos National Sercurity, LLC Ultrasonic analyte concentration and application in flow cytometry
US8564776B2 (en) 2006-11-03 2013-10-22 Los Alamos National Security, Llc System and method for measuring particles in a sample stream of a flow cytometer using a low power laser source
US7835000B2 (en) 2006-11-03 2010-11-16 Los Alamos National Security, Llc System and method for measuring particles in a sample stream of a flow cytometer or the like
US9494509B2 (en) 2006-11-03 2016-11-15 Los Alamos National Security, Llc System and method for measuring particles in a sample stream of a flow cytometer using low-power laser source
US8767208B2 (en) 2006-11-03 2014-07-01 Los Alamos National Security, Llc System and method for measuring particles in a sample stream of a flow cytometer using low-power laser source
US8227257B2 (en) 2007-04-02 2012-07-24 Life Technologies Corporation Medium switching systems and methods using acoustic radiation pressure
US8873051B2 (en) 2007-04-02 2014-10-28 Life Technologies Corporation Methods and systems for controlling the flow of particles for detection
US8436993B2 (en) 2007-04-02 2013-05-07 Life Technologies Corporation Methods and systems for controlling the flow of particles for detection
US8507293B2 (en) 2007-04-02 2013-08-13 Life Technologies Corporation Medium switching systems and methods using acoustic radiation pressure
US10969325B2 (en) 2007-04-02 2021-04-06 Life Technologies Corporation Particle analyzing systems and methods using acoustic radiation pressure
US9134271B2 (en) 2007-04-02 2015-09-15 Life Technologies Corporation Particle quantifying systems and methods using acoustic radiation pressure
US8134705B2 (en) 2007-04-02 2012-03-13 Life Technologies Corporation Particle imaging systems and methods using acoustic radiation pressure
US9476855B2 (en) 2007-04-02 2016-10-25 Life Technologies Corporation Particle analyzing systems and methods using acoustic radiation pressure
US10254212B2 (en) 2007-04-02 2019-04-09 Life Technologies Corporation Particle analyzing systems and methods using acoustic radiation pressure
US8309408B2 (en) 2007-04-02 2012-11-13 Life Technologies Corporation Particle quantifying systems and methods using acoustic radiation pressure
US8846408B2 (en) 2007-04-02 2014-09-30 Life Technologies Corporation Particle analyzing systems and methods using acoustic radiation pressure
US9457139B2 (en) 2007-04-02 2016-10-04 Life Technologies Corporation Kits for systems and methods using acoustic radiation pressure
US8865476B2 (en) 2007-04-02 2014-10-21 Life Technologies Corporation Particle switching systems and methods using acoustic radiation pressure
US8900870B2 (en) 2007-04-02 2014-12-02 Life Technologies Corporation Methods for fusing cells using acoustic radiation pressure
US9339744B2 (en) 2007-04-09 2016-05-17 Los Alamos National Security, Llc Apparatus for separating particles utilizing engineered acoustic contrast capture particles
US8863958B2 (en) 2007-04-09 2014-10-21 Los Alamos National Security, Llc Apparatus for separating particles utilizing engineered acoustic contrast capture particles
US8083068B2 (en) 2007-04-09 2011-12-27 Los Alamos National Security, Llc Apparatus for separating particles utilizing engineered acoustic contrast capture particles
US7837040B2 (en) 2007-04-09 2010-11-23 Los Alamos National Security, Llc Acoustic concentration of particles in fluid flow
US9909117B2 (en) 2007-04-09 2018-03-06 Los Alamos National Security, Llc Systems and methods for separating particles utilizing engineered acoustic contrast capture particles
US9733171B2 (en) 2007-04-09 2017-08-15 Los Alamos National Security, Llc Acoustic concentration of particles in fluid flow
US8263407B2 (en) 2007-10-24 2012-09-11 Los Alamos National Security, Llc Method for non-contact particle manipulation and control of particle spacing along an axis
US8932520B2 (en) 2007-10-24 2015-01-13 Los Alamos National Security, Llc Method for non-contact particle manipulation and control of particle spacing along an axis
US8528406B2 (en) 2007-10-24 2013-09-10 Los Alamos National Security, LLP Method for non-contact particle manipulation and control of particle spacing along an axis
US9488621B2 (en) 2007-12-19 2016-11-08 Los Alamos National Security, Llc Particle analysis in an acoustic cytometer
US9038467B2 (en) 2007-12-19 2015-05-26 Los Alamos National Security, Llc Particle analysis in an acoustic cytometer
US8266951B2 (en) 2007-12-19 2012-09-18 Los Alamos National Security, Llc Particle analysis in an acoustic cytometer
US11287362B2 (en) 2007-12-19 2022-03-29 Triad National Security, Llc Particle analysis in an acoustic cytometer
US8266950B2 (en) 2007-12-19 2012-09-18 Los Alamos National Security, LLP Particle analysis in an acoustic cytometer
US11287363B2 (en) 2007-12-19 2022-03-29 Triad National Security, Llc Particle analysis in an acoustic cytometer
US8714014B2 (en) 2008-01-16 2014-05-06 Life Technologies Corporation System and method for acoustic focusing hardware and implementations
US10976234B2 (en) 2008-01-16 2021-04-13 Life Technologies Corporation System and method for acoustic focusing hardware and implementations
US10427956B2 (en) 2009-11-16 2019-10-01 Flodesign Sonics, Inc. Ultrasound and acoustophoresis for water purification
US9410256B2 (en) 2009-11-16 2016-08-09 Flodesign Sonics, Inc. Ultrasound and acoustophoresis for water purification
US9796607B2 (en) 2010-06-16 2017-10-24 Flodesign Sonics, Inc. Phononic crystal desalination system and methods of use
US9695063B2 (en) 2010-08-23 2017-07-04 Flodesign Sonics, Inc Combined acoustic micro filtration and phononic crystal membrane particle separation
US10071383B2 (en) 2010-08-23 2018-09-11 Flodesign Sonics, Inc. High-volume fast separation of multi-phase components in fluid suspensions
US10662404B2 (en) 2012-03-15 2020-05-26 Flodesign Sonics, Inc. Bioreactor using acoustic standing waves
US9272234B2 (en) 2012-03-15 2016-03-01 Flodesign Sonics, Inc. Separation of multi-component fluid through ultrasonic acoustophoresis
US9675902B2 (en) 2012-03-15 2017-06-13 Flodesign Sonics, Inc. Separation of multi-component fluid through ultrasonic acoustophoresis
US9701955B2 (en) 2012-03-15 2017-07-11 Flodesign Sonics, Inc. Acoustophoretic separation technology using multi-dimensional standing waves
US9228183B2 (en) 2012-03-15 2016-01-05 Flodesign Sonics, Inc. Acoustophoretic separation technology using multi-dimensional standing waves
US11007457B2 (en) 2012-03-15 2021-05-18 Flodesign Sonics, Inc. Electronic configuration and control for acoustic standing wave generation
US9688958B2 (en) 2012-03-15 2017-06-27 Flodesign Sonics, Inc. Acoustic bioreactor processes
US9738867B2 (en) 2012-03-15 2017-08-22 Flodesign Sonics, Inc. Bioreactor using acoustic standing waves
US9340435B2 (en) 2012-03-15 2016-05-17 Flodesign Sonics, Inc. Separation of multi-component fluid through ultrasonic acoustophoresis
US9745548B2 (en) 2012-03-15 2017-08-29 Flodesign Sonics, Inc. Acoustic perfusion devices
US10967298B2 (en) 2012-03-15 2021-04-06 Flodesign Sonics, Inc. Driver and control for variable impedence load
US9752114B2 (en) 2012-03-15 2017-09-05 Flodesign Sonics, Inc Bioreactor using acoustic standing waves
US9783775B2 (en) 2012-03-15 2017-10-10 Flodesign Sonics, Inc. Bioreactor using acoustic standing waves
US10953436B2 (en) 2012-03-15 2021-03-23 Flodesign Sonics, Inc. Acoustophoretic device with piezoelectric transducer array
US10947493B2 (en) 2012-03-15 2021-03-16 Flodesign Sonics, Inc. Acoustic perfusion devices
US9822333B2 (en) 2012-03-15 2017-11-21 Flodesign Sonics, Inc. Acoustic perfusion devices
US10724029B2 (en) 2012-03-15 2020-07-28 Flodesign Sonics, Inc. Acoustophoretic separation technology using multi-dimensional standing waves
US9623348B2 (en) 2012-03-15 2017-04-18 Flodesign Sonics, Inc. Reflector for an acoustophoretic device
US9950282B2 (en) 2012-03-15 2018-04-24 Flodesign Sonics, Inc. Electronic configuration and control for acoustic standing wave generation
US10040011B2 (en) 2012-03-15 2018-08-07 Flodesign Sonics, Inc. Acoustophoretic multi-component separation technology platform
US10704021B2 (en) 2012-03-15 2020-07-07 Flodesign Sonics, Inc. Acoustic perfusion devices
US10689609B2 (en) 2012-03-15 2020-06-23 Flodesign Sonics, Inc. Acoustic bioreactor processes
US9416344B2 (en) 2012-03-15 2016-08-16 Flodesign Sonics, Inc. Bioreactor using acoustic standing waves
US10662402B2 (en) 2012-03-15 2020-05-26 Flodesign Sonics, Inc. Acoustic perfusion devices
US9422328B2 (en) 2012-03-15 2016-08-23 Flodesign Sonics, Inc. Acoustic bioreactor processes
US10322949B2 (en) 2012-03-15 2019-06-18 Flodesign Sonics, Inc. Transducer and reflector configurations for an acoustophoretic device
US10350514B2 (en) 2012-03-15 2019-07-16 Flodesign Sonics, Inc. Separation of multi-component fluid through ultrasonic acoustophoresis
US10370635B2 (en) 2012-03-15 2019-08-06 Flodesign Sonics, Inc. Acoustic separation of T cells
US9458450B2 (en) 2012-03-15 2016-10-04 Flodesign Sonics, Inc. Acoustophoretic separation technology using multi-dimensional standing waves
US10737953B2 (en) 2012-04-20 2020-08-11 Flodesign Sonics, Inc. Acoustophoretic method for use in bioreactors
US11324873B2 (en) 2012-04-20 2022-05-10 Flodesign Sonics, Inc. Acoustic blood separation processes and devices
WO2014014941A1 (en) * 2012-07-16 2014-01-23 Flodesign Sonics, Inc. Improved separation of multi-component fluid through ultrasonic acoustophoresis
US9725690B2 (en) 2013-06-24 2017-08-08 Flodesign Sonics, Inc. Fluid dynamic sonic separator
US9745569B2 (en) 2013-09-13 2017-08-29 Flodesign Sonics, Inc. System for generating high concentration factors for low cell density suspensions
US10308928B2 (en) 2013-09-13 2019-06-04 Flodesign Sonics, Inc. System for generating high concentration factors for low cell density suspensions
US9796956B2 (en) 2013-11-06 2017-10-24 Flodesign Sonics, Inc. Multi-stage acoustophoresis device
US9725710B2 (en) 2014-01-08 2017-08-08 Flodesign Sonics, Inc. Acoustophoresis device with dual acoustophoretic chamber
US10975368B2 (en) 2014-01-08 2021-04-13 Flodesign Sonics, Inc. Acoustophoresis device with dual acoustophoretic chamber
US9457302B2 (en) 2014-05-08 2016-10-04 Flodesign Sonics, Inc. Acoustophoretic device with piezoelectric transducer array
US10814253B2 (en) 2014-07-02 2020-10-27 Flodesign Sonics, Inc. Large scale acoustic separation device
US9744483B2 (en) 2014-07-02 2017-08-29 Flodesign Sonics, Inc. Large scale acoustic separation device
US9827511B2 (en) 2014-07-02 2017-11-28 Flodesign Sonics, Inc. Acoustophoretic device with uniform fluid flow
US9675906B2 (en) 2014-09-30 2017-06-13 Flodesign Sonics, Inc. Acoustophoretic clarification of particle-laden non-flowing fluids
US11865475B2 (en) 2014-10-24 2024-01-09 Life Technologies Corporation Acoustically settled liquid-liquid sample purification system and method of use
US11173417B2 (en) 2014-10-24 2021-11-16 Life Technologies Corporation Acoustically settled liquid-liquid sample purification system
US10610804B2 (en) 2014-10-24 2020-04-07 Life Technologies Corporation Acoustically settled liquid-liquid sample purification system
US10106770B2 (en) 2015-03-24 2018-10-23 Flodesign Sonics, Inc. Methods and apparatus for particle aggregation using acoustic standing waves
US9670477B2 (en) 2015-04-29 2017-06-06 Flodesign Sonics, Inc. Acoustophoretic device for angled wave particle deflection
US11708572B2 (en) 2015-04-29 2023-07-25 Flodesign Sonics, Inc. Acoustic cell separation techniques and processes
US11021699B2 (en) 2015-04-29 2021-06-01 FioDesign Sonics, Inc. Separation using angled acoustic waves
US10550382B2 (en) 2015-04-29 2020-02-04 Flodesign Sonics, Inc. Acoustophoretic device for angled wave particle deflection
US9550134B2 (en) 2015-05-20 2017-01-24 Flodesign Sonics, Inc. Acoustic manipulation of particles in standing wave fields
US10161926B2 (en) 2015-06-11 2018-12-25 Flodesign Sonics, Inc. Acoustic methods for separation of cells and pathogens
US11179747B2 (en) 2015-07-09 2021-11-23 Flodesign Sonics, Inc. Non-planar and non-symmetrical piezoelectric crystals and reflectors
US11474085B2 (en) 2015-07-28 2022-10-18 Flodesign Sonics, Inc. Expanded bed affinity selection
US11459540B2 (en) 2015-07-28 2022-10-04 Flodesign Sonics, Inc. Expanded bed affinity selection
US10710006B2 (en) 2016-04-25 2020-07-14 Flodesign Sonics, Inc. Piezoelectric transducer for generation of an acoustic standing wave
US11214789B2 (en) 2016-05-03 2022-01-04 Flodesign Sonics, Inc. Concentration and washing of particles with acoustics
US11085035B2 (en) 2016-05-03 2021-08-10 Flodesign Sonics, Inc. Therapeutic cell washing, concentration, and separation utilizing acoustophoresis
US10640760B2 (en) 2016-05-03 2020-05-05 Flodesign Sonics, Inc. Therapeutic cell washing, concentration, and separation utilizing acoustophoresis
US11377651B2 (en) 2016-10-19 2022-07-05 Flodesign Sonics, Inc. Cell therapy processes utilizing acoustophoresis
US11420136B2 (en) 2016-10-19 2022-08-23 Flodesign Sonics, Inc. Affinity cell extraction by acoustics
US10785574B2 (en) 2017-12-14 2020-09-22 Flodesign Sonics, Inc. Acoustic transducer driver and controller

Similar Documents

Publication Publication Date Title
DE3027433A1 (en) Pressure diffusion sepn. method for mixts. - uses perpendicular identical frequency wave fields with differing phases
DE2939923C2 (en)
DE3415630C2 (en)
DE19928759B4 (en) Angular rate sensor
EP0400115B1 (en) Process and device for separating particles
DE2522890C3 (en) Process and hydraulic test device for performing resonance tests
DE2950919A1 (en) IMPROVEMENTS TO VIBRATION DEVICES FOR THE TREATMENT OF AN OPTICAL BEAM
WO2017071864A1 (en) Mems sensor for measuring at least one measurement variable of a fluid
Appleton et al. Energy-Loss Spectra of Channeled Iodine and Oxygen Ions in Gold
Tsuboi Optically active lattice vibrations of zinc blende type and wurtzite type crystals
US5957297A (en) Apparatus for separating heavy particles of material from lighter ones
Nash Several approximate analyses of the bending of a rectangular cantilever plate by uniform normal pressure
Szemplińska-Stupnicka The resonant vibration of homogeneous non-linear systems
DE102005009095A1 (en) Device for generation of three-dimensional oscillations in rigid vibration table has six unbalanced shafts whereby each of two counter rotating unbalanced shafts of oriented exciter represents one coordinate axis
DE19623227C2 (en) Laborrüttelmaschine
DE944157C (en) Swing arrangement
AT118033B (en) Method and device for the mutual influence of vibrating structures and unrelated masses.
US2767850A (en) Thermal diffusion method
Dankworth et al. Time-dependent vertical gas—liquid flow in packed beds
EP0012740B1 (en) Method and device to determine the particle distribution in particle mixtures
DE2908229A1 (en) WORKING METHOD AND SETTING MACHINE FOR THE PREPARATION OF COAL
DE3712180C2 (en)
Buras et al. Explanation of neutron diffraction phenomena observed in vibrating piezoelectric crystals
DE10245722B4 (en) With the inverse piezoelectric effect excitable spring element, vibratory conveyor unit and method for conveying and / or sorting
DE102011008576A1 (en) Method and device for generating a vibrating motion of a mass

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
8125 Change of the main classification

Ipc: B01D 57/00

8139 Disposal/non-payment of the annual fee