DE19934649A1 - Hydrogen generation in reformer with feed containing hydrocarbons, used in vehicle with fuel cell supplying drive or electricity consumers, uses (partial) recycling of gas containing hydrogen - Google Patents

Hydrogen generation in reformer with feed containing hydrocarbons, used in vehicle with fuel cell supplying drive or electricity consumers, uses (partial) recycling of gas containing hydrogen

Info

Publication number
DE19934649A1
DE19934649A1 DE19934649A DE19934649A DE19934649A1 DE 19934649 A1 DE19934649 A1 DE 19934649A1 DE 19934649 A DE19934649 A DE 19934649A DE 19934649 A DE19934649 A DE 19934649A DE 19934649 A1 DE19934649 A1 DE 19934649A1
Authority
DE
Germany
Prior art keywords
hydrogen
reformer
fuel cell
vehicle
recycling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE19934649A
Other languages
German (de)
Inventor
Michael Felix Himmen
Barbara Strobel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daimler AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Priority to DE19934649A priority Critical patent/DE19934649A1/en
Publication of DE19934649A1 publication Critical patent/DE19934649A1/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

In the generation of hydrogen (H2) in a reformer supplied with a mixture (II) containing hydrocarbons, the gas containing H2 produced is (partly) recycled to the reformer and added with (II).

Description

Die Erfindung betrifft ein Verfahren zur Erzeugung von Wasser­ stoff in einem Reformer, dem ein kohlenwasserstoffhaltiges Ge­ misch zugeführt wird gemäß dem Oberbegriff des Patentanspruchs 1. Insbesondere soll der erzeugte Wasserstoff zur Stromerzeu­ gung in einer Brennstoffzelle verwendet werden.The invention relates to a method for producing water substance in a reformer to which a hydrocarbon containing Ge Mix is supplied according to the preamble of the claim 1. In particular, the hydrogen generated should generate electricity be used in a fuel cell.

Zur Erzeugung von Wasserstoff wird häufig das katalytische Re­ formieren von Kohlenwasserstoffen mit Wasserdampf eingesetzt. Ziel den Spaltverfahrens ist die möglichst vollständige Um­ wandlung der Kohlenwasserstoffe in Wasserstoff und Kohlenmon­ oxid, verbunden mit einer Umsetzung des Kohlenmonoxids zu Was­ serstoff gemäß den nachfolgenden Reaktionsformeln:
To generate hydrogen, the catalytic reforming of hydrocarbons with water vapor is often used. The aim of the cracking process is to convert the hydrocarbons into hydrogen and carbon monoxide as completely as possible, combined with a conversion of the carbon monoxide to hydrogen according to the following reaction formulas:

CnHm + nH2O → nCO + (n + m/2) H2 (1)
CO + H2O → CO2 + H2 (2)
C n H m + nH 2 O → nCO + (n + m / 2) H 2 (1)
CO + H 2 O → CO 2 + H 2 (2)

Die Reaktion (2) wird als Shift-Reaktion bezeichnet. Die Reak­ tionswärme für die endothermen Spaltreaktionen wird bei der Dampfreformierung durch indirekten Wärmeaustausch aufgebracht. Im autothermen Reaktor liefern simultan ablaufende, stark exo­ therme Oxidationsreaktionen die notwendige Spaltenergie. Wei­ terhin ist auch die Reformierung mittels partieller Oxidation ohne Zugabe von Wasserdampf bekannt. The reaction (2) is called the shift reaction. The Reak heat of heat for the endothermic cleavage reactions Steam reforming applied through indirect heat exchange. In the autothermal reactor, simultaneous, strongly exo deliver thermal oxidation reactions the necessary gap energy. Wei also the reforming by means of partial oxidation known without the addition of water vapor.  

Bei der autothermen Reformierung wird die zur Spaltung der Kohlenwasserstoffe nötige Energie durch teilweise Verbrennung des Einsatzgases mittels Luft oder reinem Sauerstoff aufge­ bracht.In the autothermal reforming process, the splitting of the Hydrocarbons required energy through partial combustion of the feed gas by means of air or pure oxygen brings.

Das vom Reformer erzeugte Gas wird in einer Gasreinigungsstufe einer Nachbehandlung unterzogen, aus der beim autothermen, mit Luft betriebenen Reaktor die folgenden Gase als Hauptkomponen­ ten austreten: H2, CO2, N2, H2O und Spuren von CH4 und CO.The gas generated by the reformer is subjected to a post-treatment in a gas cleaning stage, from which the following gases emerge as main components in the autothermal, air-operated reactor: H 2 , CO 2 , N 2 , H 2 O and traces of CH 4 and CO.

Der in diesem Gemisch enthaltene Wasserstoff kann entweder zur Gewinnung reinen Wasserstoffs abgetrennt oder beispielsweise zur Stromerzeugung als Brennstoff einer Brennstoffzelle zuge­ führt werden. Das aus der Brennstoffzelle austretende Gas ent­ hält neben den genannten Komponenten noch etwa 20% der Ein­ gangskonzentration Wasserstoff.The hydrogen contained in this mixture can either be used Obtaining pure hydrogen separated or for example to generate electricity as fuel of a fuel cell leads. The gas emerging from the fuel cell ent holds about 20% of the A in addition to the components mentioned hydrogen concentration.

Ruß-Bildung ist eine unerwünschte Nebenreaktion bei der Dampf­ spaltung, da dieser die eingesetzten Katalysatoren deakti­ viert. Hierbei spielt die folgende, als Boudouard-Gleichge­ wicht bezeichnete Reaktion eine Rolle:
Soot formation is an undesirable side reaction in steam splitting, since this deactivates the catalysts used. The following reaction, known as Boudouard equilibrium, plays a role here:

2CO ↔ CO2 + C (3)2CO ↔ CO 2 + C (3)

Es handelt sich hierbei um ein druck- und temperaturabhängiges chemische Gleichgewicht. Im allgemeinen wird der Ruß-Bildung durch eine ausreichend hohe Zumischung von Wasserdampf begeg­ net, der die thermodynamischen Bedingungen verschlechtert, un­ ter denen Ruß, d. h. Kohlenstoff wie auch schwere Kohlenwasser­ stoffe, entstehen kann. It is a pressure and temperature dependent chemical equilibrium. Generally the soot formation counteracted by a sufficiently high admixture of water vapor net, which worsens the thermodynamic conditions, un the soot, d. H. Carbon as well as heavy hydrocarbon substances that can arise.  

Heutzutage besteht das Bedürfnis, mittels Reformierung von Kohlenwasserstoffen den für wasserstoffbetriebene Fahrzeuge notwendigen Wasserstoff bereitzustellen. Dies kann im Fahrzeug selbst geschehen, wobei üblicher Kraftstoff wie Benzin dem Re­ former zugeleitet wird. Das den Reformer verlassende wasser­ stoffhaltige Gasgemisch wird dann einem Brennstoffzellensystem zugeführt, das die bei der Oxidation des Wasserstoffs freiwer­ dende chemische Energie in elektrische Energie umwandelt. Als Oxidationsmittel kann Luft verwendet werden. Hierbei wird etwa 80% des zugeführten Wasserstoffs in der Brennstoffzelle ver­ braucht und der verbleibende Rest wird bisher in einem kataly­ tischen Brenner verbrannt, der katalytisch Wasserstoff und Methan-Reste dieses Gemischs mit Luft vollständig in CO2 und H2O verbrennt und Wärme erzeugt.Nowadays there is a need to provide the hydrogen necessary for hydrogen-powered vehicles by reforming hydrocarbons. This can be done in the vehicle itself, with conventional fuel such as gasoline being fed to the reformer. The hydrogen-containing gas mixture leaving the reformer is then fed to a fuel cell system which converts the chemical energy released during the oxidation of the hydrogen into electrical energy. Air can be used as the oxidizing agent. Here, about 80% of the hydrogen supplied is consumed in the fuel cell and the remainder has so far been burned in a catalytic burner that completely burns the catalytic hydrogen and methane residues of this mixture with air in CO 2 and H 2 O and generates heat.

Aus der US-4240805 ist ein Verfahren zum Regenerieren eines Reaktors für das Dampfreformieren bekannt. Hierzu werden zwei Reaktoren parallel derart geschaltet, daß ein Reaktor regene­ riert wird, während der andere Wasserstoff erzeugt. Das Rege­ nerieren erfolgt durch Zuleiten der anodenseitigen Abgase ei­ ner Brennstoffzelle, wobei die wasserstoffhaltigen Gase zusam­ men mit Luft im Reaktorinneren verbrannt werden, um die bei der Wasserstoffherstellung verbrauchte Reaktionswärme zurück­ zugewinnen. Anstelle einer eigens vorzusehenden Luftzuleitung wird auch die Zuleitung der Kathodenabgase der Brennstoffzelle vorgeschlagen, die Sauerstoff und Wasser enthalten. Dieses Verfahren dient alleine zur Regenerierung eines Reaktors und zur Wärmerückgewinnung im Parallelbetrieb und ist für den Dau­ erbetrieb mit einem einzelnen Reformerreaktor nicht geeignet.From US 4240805 is a method for regenerating a Reactor known for steam reforming. This will be two Reactors connected in parallel so that a reactor is raining is generated while the other produces hydrogen. The brisk nerieren takes place by supplying the anode-side exhaust gases ner fuel cell, the hydrogen-containing gases together can be burned with air in the interior of the reactor the heat of reaction consumed in the production of hydrogen to win. Instead of a dedicated air supply line is also the supply of the cathode exhaust gases of the fuel cell proposed that contain oxygen and water. This The method is used solely for the regeneration of a reactor and for heat recovery in parallel operation and is for the duration not suitable for operation with a single reformer reactor.

Aufgabe der vorliegenden Erfindung ist es, den Wirkungsgrad der Reformierung von Kohlenwasserstoffen zu erhöhen, wozu ins­ besondere eine verminderte Ruß-Bildung erzielt werden soll, sowie den Wirkungsgrad der Stromerzeugung einer nachgeschalte­ ten Brennstoffzelle zu verbessern.The object of the present invention is the efficiency the reforming of hydrocarbons in particular reduced soot formation is to be achieved,  as well as the efficiency of power generation downstream to improve the fuel cell.

Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Pa­ tentanspruchs 1 gelöst.This object is achieved by the features of Pa claim 1 solved.

Erfindungsgemäß wird das von dem Reformer erzeugte wasser­ stoffhaltige Gas wenigstens zum Teil dem Reformer wieder zuge­ führt, wobei das von dem Reformer erzeugte wasserstoffhaltige Gas vor der Rückführung ganz oder zum Teil einem Brennstoff­ zellensystem zur Stromerzeugung zugeleitet worden sein kann. Wie eingangs geschildert, enthält das durch Reformierung von Kohlenwasserstoffen erhaltene Gas neben Wasserstoff einen ho­ hen Anteil von CO2. Durch die erfindungsgemäße Rückführung ei­ nes Teils des den Reformer verlassenden Stoffstromes wird folglich eingangsseitig im Reformer die CO2-Konzentration er­ höht, wodurch das Bodouard-Gleichgewicht (3) nach links ver­ schoben wird. Die Ruß-Bildung wird folglich verringert und der Anteil an CO erhöht. Dieses CO steht für die spätere Bildung von Wasserstoff durch die Shift-Reaktion (2) zur Verfügung und stellt daher ein Nutzgas dar. Somit wird durch das erfindungs­ gemäße Verfahren der Bildung von Ruß begegnet, damit die Standzeiten der Katalysatoren erhöht und die Wasserstoffaus­ beute vergrößert.According to the invention, the hydrogen-containing gas generated by the reformer is at least partly fed back to the reformer, wherein the hydrogen-containing gas generated by the reformer may have been supplied entirely or in part to a fuel cell system for power generation before being recycled. As described at the beginning, the gas obtained by reforming hydrocarbons contains a high proportion of CO 2 in addition to hydrogen. By recycling a portion of the material flow leaving the reformer according to the invention, the CO 2 concentration is consequently increased on the input side in the reformer, as a result of which the Bodouard balance (3) is shifted to the left. The soot formation is consequently reduced and the proportion of CO is increased. This CO is available for the later formation of hydrogen by the shift reaction (2) and is therefore a useful gas. Thus, the process according to the invention counteracts the formation of soot so that the service life of the catalysts is increased and the hydrogen yield is increased .

Bei Dampfreformern wird durch die erfindungsgemäße Rückleitung eines Teils des erzeugten wasserstoffhaltigen Gases die H2O- Konzentration im Reformer erhöht, was bekanntlich ebenfalls zur Verringerung der Ruß-Bildung beiträgt.In steam reformers, the H 2 O concentration in the reformer is increased by returning part of the hydrogen-containing gas produced according to the invention, which is also known to contribute to reducing the formation of soot.

Schließlich wird bei der autothermen Reformierung durch die erfindungsgemäße Rückführung des wasserstoffhaltigen Stoff­ stromes Wasserstoff als Brennstoff für die exothermen Oxidati­ onsreaktionen zur Verfügung gestellt, der somit als Energie­ lieferant dient und zur Verminderung der durch die Kohlenwas­ serstoffe bereitzustellenden Reaktionswärme beiträgt.Finally, in the autothermal reforming by recycling of the hydrogen-containing substance according to the invention current hydrogen as fuel for the exothermic oxidati  ons reactions provided, which is therefore as energy serves and to reduce the amount of coal water contributes to the heat of reaction to be provided.

Mit Vorteil läßt sich die Erfindung insbesondere dann einset­ zen, wenn das durch die Reformierung erzeugte wasserstoffhal­ tige Gas einer Brennstoffzelle zur Stromerzeugung zugeleitet wird. Es sind mehrere Varianten denkbar, bei denen entweder vor, nach oder sowohl vor als auch nach der Zuleitung des Stoffstroms in die Brennstoffzelle ein Teil dieses Stoffstroms zum Reformer zurückgeführt wird. Vorteilhaft ist es, den ge­ samten vom Reformer erzeugten Stoffstrom der Anodenseite des Brennstoffzellensystems zuzuführen und einen Teil des die Brennstoffzelle verlassenden Stoffstroms wieder in den Refor­ mer einzuspeisen. Durch den Verbrauch von Wasserstoff in der Brennstoffzelle ist die CO2-Konzentration in dem die Brenn­ stoffzelle verlassenden Stoffstrom relativ höher als im Ein­ gangsstrom. Der die Brennstoffzelle verlassende Stoffstrom kann folglich das Boudouard-Gleichgewicht (3) wirksamer in Richtung auf eine Bildung von CO verschieben.The invention can be used with particular advantage when the hydrogen-containing gas generated by the reforming is fed to a fuel cell for power generation. Several variants are conceivable in which a part of this material flow is returned to the reformer either before, after or both before and after the material flow is fed into the fuel cell. It is advantageous to supply the entire stream of material generated by the reformer to the anode side of the fuel cell system and to feed a portion of the stream of fuel leaving the fuel cell back into the reformer. Due to the consumption of hydrogen in the fuel cell, the CO 2 concentration in the material flow leaving the fuel cell is relatively higher than in the input flow. The mass flow leaving the fuel cell can therefore shift the Boudouard equilibrium (3) more effectively towards the formation of CO.

Das erfindungsgemäße Verfahren eignet sich insbesondere bei autothermer Reformierung von Kohlenwasserstoffen, da hier ein Teil der Reaktionswärme vom rückgeführten Wasserstoff bereit­ gestellt werden kann.The method according to the invention is particularly suitable for autothermal reforming of hydrocarbons, since here a Part of the heat of reaction from the recycled hydrogen ready can be put.

Der verbleibende, aus der Brennstoffzelle austretende Stoff­ strom kann nach Rückführung eines Teiles desselbigen zum Re­ former zur vollständigen Verbrennung einem katalytischen Bren­ ner zugeführt werden, der ein Teil der für die Verfahrensfüh­ rung notwendigen Prozeßwärme oder -energie zurückgewinnt. The remaining substance emerging from the fuel cell electricity can be returned to Re former for complete combustion of a catalytic burner ner are supplied, which is part of the procedure for the necessary process heat or energy is recovered.  

Das Verfahren ist besonders zum Einsatz in einem Fahrzeug ge­ eignet, bei dem ein Brennstoffzellensystem zum Antrieb und/oder zur Versorgung elektrischer Verbraucher eingesetzt wird. Die zur Versorgung des Brennstoffzellensystems notwendi­ gen Wasserstoffmengen werden "on board" beispielsweise durch autotherme Reformierung von üblicherweise zum Verbrennungsmo­ torbetrieb eingesetztem Benzin erzeugt. Neben Wasserdampf wird dem Reformer als Oxidationsmittel Luft zugeführt.The method is particularly suitable for use in a vehicle is suitable in which a fuel cell system for driving and / or used to supply electrical consumers becomes. The necessary to supply the fuel cell system quantities of hydrogen are "on board", for example autothermal reforming from usually to the combustion engine gasoline used in door operation. In addition to water vapor air supplied to the reformer as an oxidizing agent.

Im folgenden soll ein Ausführungsbeispiel anhand der beigefüg­ ten Figuren die Erfindung näher erläutern.In the following, an exemplary embodiment is intended to be based on the attached ten figures explain the invention in more detail.

Fig. 1 zeigt den bisherigen Verlauf der Stoffströme in einem Fahrzeug mit Wasserstoffantrieb. Fig. 1 shows the previous course of the material flows in a vehicle with a hydrogen drive.

Fig. 2 zeigt den Verlauf der Gasströme bei einem Fahrzeug mit Wasserstoffantrieb unter Einsatz des erfindungsgemäßen Verfahrens. Fig. 2 shows the course of the gas streams in a vehicle powered by hydrogen using the method according to the invention.

Die Erfindung soll anhand des Einsatzes des erfindungsgemäßen Verfahrens für wasserstoffbetriebene Fahrzeuge geschildert werden, bei denen Wasserstoff durch autotherme Reformierung eines kohlenwasserstoffhaltigen Kraftstoffs erzeugt und an­ schließend einem Brennstoffzellensystem zur Stromerzeugung zu­ geführt wird. Der autotherme Reformer ist in den Figuren mit der Bezugsziffer 1 gekennzeichnet. Dem Reformer 1 werden aus entsprechenden Zuleitungen oder Reservoiren Luft 4, Wasser 5 und Benzin 6 in geeigneten Druck- und Temperaturbereichen zu­ geführt. Wie eingangs geschildert, dient der in der Luft ent­ haltene Sauerstoff zur Erzeugung der benötigten Reaktionswärme durch exotherme Oxidationsreaktionen mit Kohlenstoff, Kohlen­ monoxid, Kohlenwasserstoffen sowie Wasserstoff selbst. Die Kohlenwasserstoffe werden mit Wasserdampf unter Bildung von Wasserstoff umgesetzt und gespalten. Verbleibende Mengen CO werden nach der Shift-Reaktion (2) in Wasserstoff umgewandelt und der resultierende Gasstrom einer Gasreinigung unterzogen.The invention is to be described using the method according to the invention for hydrogen-powered vehicles in which hydrogen is generated by autothermal reforming of a hydrocarbon-containing fuel and is subsequently fed to a fuel cell system for generating electricity. The autothermal reformer is identified by the reference number 1 in the figures. Air 4 , water 5 and gasoline 6 are fed to the reformer 1 from suitable supply lines or reservoirs in suitable pressure and temperature ranges. As described at the beginning, the oxygen contained in the air is used to generate the required heat of reaction through exothermic oxidation reactions with carbon, carbon monoxide, hydrocarbons and hydrogen itself. The hydrocarbons are reacted with water vapor to form hydrogen and split. Remaining quantities of CO are converted into hydrogen after the shift reaction (2) and the resulting gas stream is subjected to gas purification.

Dieses den Reformer 1 verlassende Stoffgemisch wird in diesem Ausführungsbeispiel vollständig einer Brennstoffzelle 2, ge­ nauer der Anodenseite eines Brennstoffzellensystems 2 zuge­ führt. Dort wird 80% des enthaltenen Wasserstoffs zur Stromer­ zeugung umgesetzt, wodurch das Fahrzeug angetrieben und/oder elektrische Verbraucher im Fahrzeug versorgt werden können. Der die Anodenseite des Brennstoffzellensystems 2 verlassende Stoffstrom wird bisher üblicherweise einem katalytischen Brenner zugeführt, um ein Teil der verbrauchten Wärme/Energie zurückzugewinnen.This mixture of substances leaving the reformer 1 is completely supplied in this exemplary embodiment to a fuel cell 2 , more precisely to the anode side of a fuel cell system 2 . There, 80% of the hydrogen contained is converted into electricity, which can drive the vehicle and / or supply electrical consumers in the vehicle. The mass flow leaving the anode side of the fuel cell system 2 has hitherto usually been fed to a catalytic burner in order to recover part of the heat / energy consumed.

In Fig. 2 sind dieselben Komponenten aus der Fig. 1 mit den­ selben Bezugsziffern bezeichnet. Erfindungsgemäß wird ein Teil des vom Reformer 1 erzeugten wasserstoffhaltigen Gasstroms zum Reformer zurückgeführt, wobei in diesem Ausführungsbeispiel das wasserstoffhaltige Gas aus dem Reformer vollständig dem Brennstoffzellensystem 2 zugeleitet wird und erst anschließend die Rückführung zur Eingangsseite des Reformers 1 erfolgt. Diese Rückführung erfolgt durch die Leitung 7, durch die der kleinere Teil des die Brennstoffzelle verlassenden Stoffstroms zum autothermen Reformer 1 geleitet wird. Die in diesem zu­ rückgeleiteten Stoffstrom enthaltenen Komponenten CO2, H2 und H2O bewirken die folgenden Verbesserungen in der Prozeßführung: die Erhöhung der CO2-Konzentration im autothermen Reformer be­ günstigt die Bildung von CO gemäß dem Boudouard-Gleichgewicht (3), was zur Verminderung der Ruß-Bildung und zur erhöhten Ausbeute von 1% nach der Shift-Reaktion (2) führt. Der rückge­ führte Wasserstoff vermindert den Anteil des für die autother­ me Reformierung bereitzustellenden Brennstoffs, der von den zu spaltenden Kohlenwasserstoffen gebildet wird, wodurch der Wir­ kungsgrad der Wasserstofferzeugung weiterhin erhöht wird. Die gesteigerte H2O-Konzentration führt in bekannter Weise zu einer weiteren Verringerung der Ruß-Bildung. Insgesamt erzielt das erfindungsgemäße Verfahren bei dem hier vorgestellten Einsatz eine Erhöhung des Gesamtwirkungsgrades des Systems sowie des­ sen Lebensdauer.In FIG. 2, the same components in FIG. 1 are designated by the same reference numerals. According to the invention, part of the hydrogen-containing gas stream generated by the reformer 1 is returned to the reformer, in this exemplary embodiment the hydrogen-containing gas from the reformer is fed entirely to the fuel cell system 2 and only then is the return to the input side of the reformer 1 . This return takes place through line 7 , through which the smaller part of the material flow leaving the fuel cell is passed to autothermal reformer 1 . The components CO 2 , H 2 and H 2 O contained in this returned material flow result in the following improvements in the process control: the increase in the CO 2 concentration in the autothermal reformer favors the formation of CO according to the Boudouard equilibrium (3), which leads to a reduction in soot formation and an increased yield of 1% after the shift reaction (2). The recirculated hydrogen reduces the proportion of the fuel to be made available for autothermal reforming, which is formed by the hydrocarbons to be split, which further increases the efficiency of the hydrogen production. The increased H 2 O concentration leads in a known manner to a further reduction in the formation of soot. Overall, the method according to the invention achieves an increase in the overall efficiency of the system and in its service life when used here.

Claims (6)

1. Verfahren zur Erzeugung von Wasserstoff in einem Refor­ mer, dem ein kohlenwasserstoffhaltiges Gemisch zugeführt wird, dadurch gekennzeichnet, daß das von dem Reformer (1) erzeugte wasserstoffhaltige Gas wenigstens zum Teil zum Reformer (1) zurückgeführt und mit dem kohlenwasserstoffhaltigen Gemisch dem Reformer (1) zugeführt wird.1. A process for the production of hydrogen in a refor mer, to which a hydrocarbon-containing mixture is fed, characterized in that the hydrogen-containing gas generated by the reformer ( 1 ) is at least partially returned to the reformer ( 1 ) and with the hydrocarbon-containing mixture to the reformer ( 1 ) is supplied. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das von dem Reformer (1) erzeugte wasserstoffhaltige Gas vor der Rückführung einer Brennstoffzelle (2) zur Stromerzeugung zugeleitet wird.2. The method according to claim 1, characterized in that the hydrogen-containing gas generated by the reformer ( 1 ) is fed before the return of a fuel cell ( 2 ) for power generation. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Reformer (1) autotherm betrieben wird.3. The method according to claim 1 or 2, characterized in that the reformer ( 1 ) is operated autothermally. 4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß das die Brennstoffzelle (2) verlassende wasserstoffhaltige Gas zur vollständigen Verbrennung wenigstens zum Teil einem katalytischen Brenner (3) zugeführt wird.4. The method according to claim 2 or 3, characterized in that the fuel cell ( 2 ) leaving hydrogen-containing gas for complete combustion is supplied at least in part to a catalytic burner ( 3 ). 5. Anwendung des Verfahrens nach einem der vorhergehenden Ansprüche zur Erzeugung von Wasserstoff in einem Fahrzeug, bei dem Brennstoffzellen (2) zum Antrieb und/oder Versorgung ele­ trischer Verbraucher eingesetzt werden. 5. Application of the method according to one of the preceding claims for the production of hydrogen in a vehicle, in which fuel cells ( 2 ) are used to drive and / or supply electrical consumers. 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß dem Reformer (1) als kohlenwasserstoffhaltiges Gemisch ein Kraftstoff für Kraftfahrzeugantrieb, als sauerstoffhaltiges Gemisch Luft und zusätzlich Wasser oder Wasserdampf zugeführt werden.6. The method according to claim 5, characterized in that the reformer ( 1 ) as a hydrocarbon-containing mixture, a fuel for motor vehicle propulsion, air as an oxygen-containing mixture and additionally water or water vapor are supplied.
DE19934649A 1999-07-23 1999-07-23 Hydrogen generation in reformer with feed containing hydrocarbons, used in vehicle with fuel cell supplying drive or electricity consumers, uses (partial) recycling of gas containing hydrogen Ceased DE19934649A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19934649A DE19934649A1 (en) 1999-07-23 1999-07-23 Hydrogen generation in reformer with feed containing hydrocarbons, used in vehicle with fuel cell supplying drive or electricity consumers, uses (partial) recycling of gas containing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19934649A DE19934649A1 (en) 1999-07-23 1999-07-23 Hydrogen generation in reformer with feed containing hydrocarbons, used in vehicle with fuel cell supplying drive or electricity consumers, uses (partial) recycling of gas containing hydrogen

Publications (1)

Publication Number Publication Date
DE19934649A1 true DE19934649A1 (en) 2001-01-25

Family

ID=7915858

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19934649A Ceased DE19934649A1 (en) 1999-07-23 1999-07-23 Hydrogen generation in reformer with feed containing hydrocarbons, used in vehicle with fuel cell supplying drive or electricity consumers, uses (partial) recycling of gas containing hydrogen

Country Status (1)

Country Link
DE (1) DE19934649A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10062965A1 (en) * 2000-12-16 2002-06-20 Bayerische Motoren Werke Ag Fuel cell system in a vehicle with an internal combustion engine and method for its operation
WO2002059037A1 (en) * 2001-01-12 2002-08-01 Emitec Gesellschaft Für Emissionstechnologie Mbh Method for operating a reforming plant for providing hydrogen-enriched gas, and corresponding reforming plant
EP1284235A1 (en) * 2001-08-15 2003-02-19 Sulzer Hexis AG Process for reforming fuels, especially fuel oil
WO2003062141A1 (en) * 2002-01-23 2003-07-31 Statoil Asa Process for preparing synthesis gas by autothermal reforming
EP1385615A1 (en) * 2001-03-09 2004-02-04 Honda Giken Kogyo Kabushiki Kaisha Micro component hydrocarbon steam reformer system and cycle for producing hydrogen gas
DE10237834A1 (en) * 2002-08-19 2004-03-04 Robert Bosch Gmbh Security system for a facility for power generation
EP1400489A1 (en) * 2002-09-23 2004-03-24 Kellogg Brown & Root, Inc. Process and apparatus for autothermal reforming with recycle of a portion of the produced syngas
US6872379B2 (en) 2001-08-15 2005-03-29 Sulzer Hexis Ag Method for the reformation of fuels, in particular heating oil
EP1593731A3 (en) * 2004-04-09 2006-04-26 Hyun Yong Kim A high temperature reformer
WO2006119952A1 (en) * 2005-05-12 2006-11-16 Cfc Solutions Gmbh Process for operating a fuel cell arrangement and fuel cell arrangement
DE102005056363A1 (en) * 2005-11-25 2007-05-31 Süd-Chemie AG Process for reforming hydrocarbons/hydrocarbon mixtures in hydrogen and carbon mono-oxide/their product gas, includes mixing the educt with oxygen containing gas mixture, and reacting the mixture of hydrocarbon oxidation with catalyst
DE102006014196A1 (en) * 2006-03-28 2007-10-04 Bayerische Motoren Werke Ag Operating procedure for system with hydrogen producing reformer, includes separating partial-quantity of the reformats withdrawal from the reformer and before entering into processing unit, and feeding back the quantity into reformer inlet
DE102006032956A1 (en) * 2006-07-17 2008-02-07 Enerday Gmbh Reformer and method for converting fuel and oxidant to gaseous reformate
EP1927577A1 (en) * 2006-12-01 2008-06-04 Casale Chemicals S.A. Process for producing synthesis gas and related apparatus
EP1935848A1 (en) * 2006-12-20 2008-06-25 Bp Exploration Operating Company Limited Process for producing synthesis gas
EP1935847A1 (en) * 2006-12-20 2008-06-25 Bp Exploration Operating Company Limited Process for producing synthesis gas
AT505940B1 (en) * 2008-02-07 2009-05-15 Vaillant Austria Gmbh HIGH-TEMPERATURE FUEL CELL SYSTEM WITH EXHAUST GAS RECYCLING
DE102007054768A1 (en) * 2007-11-16 2009-05-20 J. Eberspächer GmbH & Co. KG Reformer, fuel cell and related operating procedures

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4010604A1 (en) * 1989-04-05 1990-10-11 Piesteritz Agrochemie METHOD FOR SEPARATELY CONTROLLING THE METHANE AND EDEL GAS CONTENT OF AN AMMONIA CRYSTAL RECYCLING EDEL GAS COMPLEX
DE4005468A1 (en) * 1990-02-21 1991-08-22 Linde Ag Operation of high temp. fuel cells - using ion-conducting electrolytes, removing cathode and anode off-gases produced and recycling anode off-gas
DE19727841A1 (en) * 1997-06-24 1999-01-07 Fraunhofer Ges Forschung Method and device for the autothermal reforming of hydrocarbons
DE19840216A1 (en) * 1997-09-04 1999-03-11 Aisin Seiki Fuel cell reforming device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4010604A1 (en) * 1989-04-05 1990-10-11 Piesteritz Agrochemie METHOD FOR SEPARATELY CONTROLLING THE METHANE AND EDEL GAS CONTENT OF AN AMMONIA CRYSTAL RECYCLING EDEL GAS COMPLEX
DE4005468A1 (en) * 1990-02-21 1991-08-22 Linde Ag Operation of high temp. fuel cells - using ion-conducting electrolytes, removing cathode and anode off-gases produced and recycling anode off-gas
DE19727841A1 (en) * 1997-06-24 1999-01-07 Fraunhofer Ges Forschung Method and device for the autothermal reforming of hydrocarbons
DE19840216A1 (en) * 1997-09-04 1999-03-11 Aisin Seiki Fuel cell reforming device

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10062965B4 (en) * 2000-12-16 2009-06-25 Bayerische Motoren Werke Aktiengesellschaft Fuel cell system in a vehicle with an internal combustion engine and method for its operation
DE10062965A1 (en) * 2000-12-16 2002-06-20 Bayerische Motoren Werke Ag Fuel cell system in a vehicle with an internal combustion engine and method for its operation
WO2002059037A1 (en) * 2001-01-12 2002-08-01 Emitec Gesellschaft Für Emissionstechnologie Mbh Method for operating a reforming plant for providing hydrogen-enriched gas, and corresponding reforming plant
EP1385615A1 (en) * 2001-03-09 2004-02-04 Honda Giken Kogyo Kabushiki Kaisha Micro component hydrocarbon steam reformer system and cycle for producing hydrogen gas
EP1385615A4 (en) * 2001-03-09 2006-10-04 Honda Motor Co Ltd Micro component hydrocarbon steam reformer system and cycle for producing hydrogen gas
US6872379B2 (en) 2001-08-15 2005-03-29 Sulzer Hexis Ag Method for the reformation of fuels, in particular heating oil
EP1284235A1 (en) * 2001-08-15 2003-02-19 Sulzer Hexis AG Process for reforming fuels, especially fuel oil
WO2003062141A1 (en) * 2002-01-23 2003-07-31 Statoil Asa Process for preparing synthesis gas by autothermal reforming
DE10237834A1 (en) * 2002-08-19 2004-03-04 Robert Bosch Gmbh Security system for a facility for power generation
EP1400489A1 (en) * 2002-09-23 2004-03-24 Kellogg Brown & Root, Inc. Process and apparatus for autothermal reforming with recycle of a portion of the produced syngas
EP1593731A3 (en) * 2004-04-09 2006-04-26 Hyun Yong Kim A high temperature reformer
US7556659B2 (en) 2004-04-09 2009-07-07 Hyun Yong Kim High temperature reformer
WO2006119952A1 (en) * 2005-05-12 2006-11-16 Cfc Solutions Gmbh Process for operating a fuel cell arrangement and fuel cell arrangement
DE102005056363A1 (en) * 2005-11-25 2007-05-31 Süd-Chemie AG Process for reforming hydrocarbons/hydrocarbon mixtures in hydrogen and carbon mono-oxide/their product gas, includes mixing the educt with oxygen containing gas mixture, and reacting the mixture of hydrocarbon oxidation with catalyst
DE102006014196A1 (en) * 2006-03-28 2007-10-04 Bayerische Motoren Werke Ag Operating procedure for system with hydrogen producing reformer, includes separating partial-quantity of the reformats withdrawal from the reformer and before entering into processing unit, and feeding back the quantity into reformer inlet
DE102006032956A1 (en) * 2006-07-17 2008-02-07 Enerday Gmbh Reformer and method for converting fuel and oxidant to gaseous reformate
DE102006032956B4 (en) * 2006-07-17 2010-07-01 Enerday Gmbh Reformer and method for converting fuel and oxidant to gaseous reformate
EP1927577A1 (en) * 2006-12-01 2008-06-04 Casale Chemicals S.A. Process for producing synthesis gas and related apparatus
EP1935848A1 (en) * 2006-12-20 2008-06-25 Bp Exploration Operating Company Limited Process for producing synthesis gas
EP1935847A1 (en) * 2006-12-20 2008-06-25 Bp Exploration Operating Company Limited Process for producing synthesis gas
DE102007054768A1 (en) * 2007-11-16 2009-05-20 J. Eberspächer GmbH & Co. KG Reformer, fuel cell and related operating procedures
AT505940B1 (en) * 2008-02-07 2009-05-15 Vaillant Austria Gmbh HIGH-TEMPERATURE FUEL CELL SYSTEM WITH EXHAUST GAS RECYCLING
EP2088638A2 (en) 2008-02-07 2009-08-12 Vaillant GmbH High temperature fuel cell system with exhaust gas reclamation
DE102009006983A1 (en) 2008-02-07 2009-08-13 Vaillant Gmbh High temperature fuel cell system with exhaust gas recirculation
EP2787568A2 (en) 2008-02-07 2014-10-08 Vaillant GmbH High temperature fuel cell system with exhaust gas reclamation
EP2787569A2 (en) 2008-02-07 2014-10-08 Vaillant GmbH High temperature fuel cell system with exhaust gas reclamation

Similar Documents

Publication Publication Date Title
DE19934649A1 (en) Hydrogen generation in reformer with feed containing hydrocarbons, used in vehicle with fuel cell supplying drive or electricity consumers, uses (partial) recycling of gas containing hydrogen
EP1082773B1 (en) Fuel cell system and method for producing electric energy using a fuel cell system
DE69818111T2 (en) METHOD FOR GENERATING ELECTRICAL ENERGY, STEAM AND CARBON DIOXIDE FROM A HYDROCARBON FEED
EP1082774B1 (en) Fuel cell system and method for generating electrical energy using a fuel cell system
EP1694598A2 (en) Reformer and method for reacting fuel and oxidant to reformate
DE102008033986B4 (en) Fuel cell system with two series-connected fuel cell stacks and method for operating such a fuel cell system
WO2000058421A1 (en) Method and device for producing energy or methanol
DE102019214812A1 (en) Process and plant for the production of synthesis gas
DE2659782A1 (en) PROCESS FOR PROCESSING COOKING GAS
DE10136768B4 (en) Fuel cell system with two transformation units for catalytic decomposition and method for catalytic decomposition
DE102011014824A1 (en) Multi-fuel pyrolysis system for generating electrical power for e.g. mobile device, has pyrolysis reactor which pyrolyzes liquid, gaseous hydrocarbon mixtures or gas mixtures, and diesel fuel by anaerobic catalytic reaction
DE3047257A1 (en) METHOD FOR PRODUCING AMMONIA SYNTHESIS GAS
DE102020000476A1 (en) Process and plant for the production of hydrogen
EP1129987A1 (en) Gas generating apparatus
DE4032652A1 (en) Operating high temp. fuel cells with ion conducting electrolytes - supplying hydrogen@ produced from carboniferous insert at anode side and converting oxygen@ at cathode to electrical energy
DE102014202803B4 (en) Process for the preparation of liquid and / or solid hydrocarbon compounds
EP3075706A1 (en) Method and a plant for the production of synthesis gas
DE10143656A1 (en) Production of energy in fuel cell system comprises introducing hydrocarbon into cracking reactor, endothermically cracking, introducing water vapor, endothermically gasifying the obtained carbon and further treating
DE10136769A1 (en) Reformer unit for generating a reformate
DE102007055135A1 (en) Method for operating a fuel cell system
DE10051563A1 (en) Process for the production of hydrogen from hydrocarbon
DE10359231A1 (en) System and method for generating a reformate
DE19954981C1 (en) Reactor used for converting a hydrocarbon or hydrocarbon derivative, especially for hydrogen recovery in a fuel cell system of a vehicle comprises a reactor unit and a heat exchanger containing a unit for selective oxygen removal
DE10010068A1 (en) Multi-fuel fuel cell system has mode in which fuel cell(s) is isolated from hydrogen generating unit and mode in which reformed material can pass to fuel cell(s)
DE19952091C1 (en) Regeneration of a catalyst used for the autothermal reforming of hydrocarbons comprises reacting sulfur bound to the catalyst with water during the autothermal reforming to release it from the catalyst

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8172 Supplementary division/partition in:

Ref document number: 19964338

Country of ref document: DE

Kind code of ref document: P

Q171 Divided out to:

Ref document number: 19964338

Country of ref document: DE

Kind code of ref document: P

8131 Rejection