DE19912737A1 - Production of porous silicon oxide film useful as antireflection coating on glass or transparent plastics, involves using self-shading or atoms and molecules in plasma-enhanced chemical vapor deposition - Google Patents

Production of porous silicon oxide film useful as antireflection coating on glass or transparent plastics, involves using self-shading or atoms and molecules in plasma-enhanced chemical vapor deposition

Info

Publication number
DE19912737A1
DE19912737A1 DE19912737A DE19912737A DE19912737A1 DE 19912737 A1 DE19912737 A1 DE 19912737A1 DE 19912737 A DE19912737 A DE 19912737A DE 19912737 A DE19912737 A DE 19912737A DE 19912737 A1 DE19912737 A1 DE 19912737A1
Authority
DE
Germany
Prior art keywords
layers
sio
plasma
produced
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19912737A
Other languages
German (de)
Inventor
Henning Nagel
Axel Metz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE19912737A priority Critical patent/DE19912737A1/en
Publication of DE19912737A1 publication Critical patent/DE19912737A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon

Abstract

Production of silicon oxide (SiOx) films comprises plasma-enhanced chemical vapor deposition (PECVD) and growing porous films on a substrate by self-shading of the atoms and molecules during production. An Independent claim is also included for SiOx films produced in this way.

Description

Die Erfindung bezieht sich auf ein Verfahren zur Herstellung von porösen SiOx-Schichten und auf poröse SiOx-Schichten, wobei der Brechungsindex der Schichten unterhalb dessen von Glas (ca. 1,5) eingestellt werden kann. Dies ermöglicht eine Verwendung der porösen SiOx- Schichten als Antireflexbeschichtung von Glas und transparenten Kunststoffen.The invention relates to a method for producing porous SiO x layers and to porous SiO x layers, wherein the refractive index of the layers can be set below that of glass (approx. 1.5). This enables the porous SiO x layers to be used as an anti-reflective coating on glass and transparent plastics.

Poröse SiOx-Schichten werden derzeit naßchemisch im Tauchverfahren [1] oder durch chemisches Ätzen von massiven Schichten [2] hergestellt. Nachteile dieser Verfahren sind die langwierige Herstellungsdauer der Schichten und die nicht einfach zu verändernden Schicht­ eigenschaften wie z. B. des für die Verwendung als Antireflexschichten wichtigen Brechungs­ indexes. Außerdem benötigen die im Tauchverfahren hergestellten Schichten in der Regel einen Trocknungsschritt bei erhöhter Temperatur [3], der ebenso wie die erforderliche Benetzung der Oberflächen durch die verwendeten Flüssigkeiten eine Beschichtung von Kunststoffen oft ausschließt. Keines der erwähnten Verfahren hat sich deshalb und wegen der relativ hohen Kosten bislang auf großtechnischer Ebene durchgesetzt.Porous SiO x layers are currently produced by wet-chemical immersion [1] or by chemical etching of massive layers [2]. Disadvantages of this method are the lengthy production time of the layers and the layer properties that are not easy to change, such as. B. the refractive index important for use as anti-reflective layers. In addition, the layers produced in the immersion process generally require a drying step at elevated temperature [3], which, like the required wetting of the surfaces by the liquids used, often precludes coating plastics. For this reason, and because of the relatively high costs, none of the processes mentioned has so far established itself on an industrial scale.

Aufgabe der Erfindung ist es, ein einfaches Verfahren zur Herstellung von porösen SiOx- Schichten und nach diesem Verfahren hergestellte poröse SiOx-Schichten mit guten optischen Eigenschaften bereitzustellen. Es soll möglich sein, ein- und mehrlagige Antireflexschichten aus porösem SiOx auf beliebigen Trägermaterialien ohne Temperaturbelastung und ohne Einwirkung naßchemischer Substanzen in kurzer Zeit herzustellen. Der Brechungsindex der porösen SiOx-Schichten soll dazu in einem weiten Bereich leicht einstellbar sein. Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 und durch Schichten mit den Merkmalen des Anspruchs 8 gelöst. Erfindungsgemäß wird das Verfahren der plasmaunterstützten Gasphasenabscheidung (plasma-enhanced chemical vapour depo­ sition, PECVD) verwandt. Hierbei werden Anlagen- und Prozeßparameter so eingestellt, daß die Schichten auf der Substratoberfläche porös aufwachsen. Darin unterscheidet sich das Verfahren von dem zur Herstellung massiver SiOx-Schichten und auch von dem sogenannten "Fogging-Effekt", bei dem die Prozeßgase in der Gasphase reagieren und sich die entstandenen SiOx-Partikel auf dem Substrat niederschlagen. Hochauflösende rasterelek­ tronenmikroskopische Aufnahmen von Schichten mit unterschiedlichem Brechungsindex n (Abb. 1: n = 1,3; Abb. 2: n = 1, 2) zeigen eine Art Stengelwachstum, ein charakteristisches Merkmal der auf den Substraten aufwachsenden Schichten. Durch gezielte Beeinflussung dieses Effektes ist es möglich, den Brechungsindex der abgeschiedenen Schichten stufenlos zwischen 1,10 und 1,46 einzustellen. Brechungsindizes kleiner als 1,46 entstehen durch eine zunehmende Porosität der SiOx-Schicht auf Grund zunehmender Porengröße und sind mit dem bekannten Effective-Medium-Modell zu erklären. Danach ergibt sich der Brechungs­ index n der porösen Schicht aus der Gleichung
The object of the invention is to provide a simple method for producing porous SiO x layers and porous SiO x layers produced by this method with good optical properties. It should be possible to produce single-layer and multi-layer anti-reflective layers of porous SiO x on any support materials without thermal stress and without the action of wet chemical substances in a short time. For this purpose, the refractive index of the porous SiO x layers should be easily adjustable over a wide range. This object is achieved by a method with the features of claim 1 and by layers with the features of claim 8. According to the invention, the method of plasma-enhanced chemical vapor deposition (PECVD) is used. System and process parameters are set so that the layers grow porous on the substrate surface. The process differs from that for the production of massive SiO x layers and also from the so-called "fogging effect", in which the process gases react in the gas phase and the SiO x particles formed are deposited on the substrate. High-resolution scanning electron micrographs of layers with different refractive index n ( Fig. 1: n = 1.3; Fig. 2: n = 1, 2) show a kind of stem growth, a characteristic feature of the layers growing on the substrates. By specifically influencing this effect, it is possible to continuously adjust the refractive index of the deposited layers between 1.10 and 1.46. Refractive indices of less than 1.46 result from increasing porosity of the SiO x layer due to increasing pore size and can be explained with the known effective medium model. Then the refractive index n of the porous layer results from the equation

n = VSiOx . nSiOx + VLuft . nLuft,
n = V SiO x . n SiO x + V air . n air ,

wobei
nLuft: Brechungsindex von Luft
nSiOx : Brechungsindex von SiOx
VLuft: Volumendichte der Poren
VSiOx : Volumendichte der SiOx-Teilchen.
in which
n Air : refractive index of air
n SiO x : refractive index of SiO x
V Air : volume density of the pores
V SiO x : volume density of the SiO x particles.

Der Brechungsindex der Schichten liegt somit zwischen dem von Luft (nLuft = 1) und dem der SiOx-Teilchen (nSiOx = 1,46). Voraussetzung ist, das die Porengröße kleiner ist als die Wellenlänge des Lichts. Wäre dies nicht der Fall, würde das Licht gestreut werden. Die mit dem erfindungsgemäßen Verfahren hergestellten Schichten zeigen jedoch keinerlei Licht­ streuung, auch nicht für sehr kleine Wellenlängen im ultravioletten Spektralbereich. Daß die Schichten tatsächlich aus SiOx-Teilchen bestehen, zeigt ein Infrarottransmissionsspektrum einer auf einem Siliziumsubstrat abgeschiedenen Schicht, siehe Abb. 3. Es sind deutlich die für SiOx charakteristischen Absorptionen bei 465 cm-1, 800 cm-1, 1075 cm-1 und 1150 cm-1 zu erkennen [4]. Die Absorption bei 935 cm-1 ist Si-OH-Schwingungen zuzuordnen [5], die dadurch zustande kommen, daß die Schicht unter Verwendung von Silan (SiH4) hergestellt wurde, das während des Beschichtungsprozesses Wasserstoff abgibt.The refractive index of the layers is thus between that of air (n air = 1) and that of the SiO x particles (n SiO x = 1.46). The prerequisite is that the pore size is smaller than the wavelength of the light. If this were not the case, the light would be scattered. However, the layers produced by the method according to the invention show no light scatter, not even for very small wavelengths in the ultraviolet spectral range. An infrared transmission spectrum of a layer deposited on a silicon substrate shows that the layers actually consist of SiO x particles, see Fig. 3. The absorptions characteristic of SiO x at 465 cm -1 , 800 cm -1 , 1075 cm -1 are clearly shown and 1150 cm -1 can be seen [4]. The absorption at 935 cm -1 can be assigned to Si-OH vibrations [5], which are caused by the fact that the layer was produced using silane (SiH 4 ), which emits hydrogen during the coating process.

Die nach dem erfindungsgemäßen Verfahren hergestellten Schichten eignen sich vorzugs­ weise zur ein- und mehrlagigen Antireflexbeschichtung von Substraten mit einem Brechungsindex < 2, 2 wie z. B. Glas oder Plexiglas. Abb. 4 zeigt die stark erhöhte spektrale Transmission von doppelseitig mit porösem PECVD-SiOx (PSO) beschichtetem Glas und Plexiglas im Vergleich zu den unbeschichteten Substraten. Das Maximum der spektralen Transmission konnte in beiden Fällen von ca. 92% auf über 99% verbessert werden. Weiterhin können durch Variation der Brechungsindizes und Schichtdicken der Antireflex­ schichten auch sehr breitbandige Entspiegelungen hergestellt werden. Eine hohe Abscheide­ rate, PECVD-Anlagen mit kontinuierlicher Trägermaterialzuführung und das Fehlen jeglicher Temperaturbelastung und etwaiger Nachbehandlungen wie den Trocknungsschritt bei der naßchemischen Herstellung poröser SiOx-Schichten ermöglichen eine preiswerte Beschich­ tung auf beliebigen Trägersubstanzen.The layers produced by the process according to the invention are preferably suitable for single-layer and multi-layer anti-reflective coating of substrates with a refractive index <2.2, such as. B. glass or plexiglass. Fig. 4 shows the greatly increased spectral transmission of glass and plexiglass coated with porous PECVD-SiO x (PSO) on both sides compared to the uncoated substrates. The maximum of the spectral transmission could be improved in both cases from approx. 92% to over 99%. Furthermore, very wide-band anti-reflective coatings can also be produced by varying the refractive indices and layer thicknesses of the antireflection layers. A high deposition rate, PECVD systems with a continuous supply of carrier material and the lack of any thermal stress and any aftertreatments such as the drying step in the wet chemical production of porous SiO x layers enable inexpensive coating on any carrier substances.

Weitere Einzelheiten, Vorteile und Merkmale der Erfindung ergeben sich nicht nur aus den Ansprüchen und den diesen zu entnehmenden Merkmalen, sondern auch aus den nach­ folgenden Beschreibungen der Ausführungsbeispiele.Further details, advantages and features of the invention result not only from the Claims and the features to be extracted from them, but also from the following descriptions of the embodiments.

a) Bevorzugtes Ausführungsbeispiel für das Verfahren zur Herstellung von porösen SiOx- Schichtena) Preferred embodiment for the method for producing porous SiO x layers

Es zeigen:Show it:

Abb. 5: Remote-PECVD-Anlage. Fig. 5: Remote PECVD system.

Abb. 6: Brechungsindex von porösen SiOx-Schichten in Abhängigkeit vom Abstand zwi­ schen Entladungsröhre und Substratoberfläche. Fig. 6: Refractive index of porous SiO x layers depending on the distance between the discharge tube and the substrate surface.

Abb. 7: Brechungsindex von porösen SiOx Schichten in Abhängigkeit vom Gasdruck in der Beschichtungskammer. Fig. 7: Refractive index of porous SiO x layers depending on the gas pressure in the coating chamber.

In Abb. 5 ist in schematischer Darstellung ein Querschnitt durch eine Remote-PECVD- Anlage gezeigt. Sie besteht aus einer Beschichtungskammer (1) und einer Gasentladungsröhre (2), in denen durch eine Vakuumpumpe mit Regelventil (3) ein geeigneter Gasentladungsdruck im Feinvakuumbereich (1-1000 mTorr) aufrechterhalten wird. Die Gasentladungsröhre (2) ist von einem Hohlraumresonator (4) umgeben, so daß bei Einspeisung von Mikrowellenleistung und Zufuhr von Lachgas (N2O) (5) ein Plasma (6) gezündet wird. Es entstehen geladene und ungeladene Atom- und Molekülfragmente in erhöhtem energetischem Zustand, die, wie in Abb. 5 gezeigt, zum zu beschichtenden Substrat (7) auf dem (beheizbaren) Probenteller (8) diffundieren. Auf der Substratoberfläche reagieren insbesondere die entstandenen Sauerstoffatome mit ebenfalls in die Beschichtungskammer eingeleitetem Silan (SiH4) (9) zu SiOx. Bei dem erfindungsgemäßen Verfahren ist es nun entscheidend, daß die Beschichtungskammer so dimensioniert wird und die Prozeßparameter wie Gasdruck, Gasflüsse, Mikrowellenleistung, Substrattemperatur etc. so eingestellt werden, daß die Beweglichkeit der Atome und Moleküle auf der Oberfläche der entstehenden SiOx- Schicht herabgesetzt ist. In diesem Fall wachsen durch Selbstabschattung der Atome und Moleküle für das Verfahren typische dreieck- und baumartige SiOx-Partikel auf dem Substrat, siehe Abb. 1 und 2. Zur Verdeutlichung sind entsprechende unter der Annahme geringer Atom- bzw. Molekülbeweglichkeiten numerisch simulierte Schichtmorphologien ebenfalls in Abb. 1 und 2 im Kugelmodell dargestellt. Anhand der Abbildungen läßt sich erkennen, daß die SiOx-Partikel eine feste Verbindung zur Substratoberfläche haben und deswegen gut auf nahezu beliebigen Trägermaterialien haften. Weiterhin sind die Partikel so feinkörnig, daß sogar elektromagnetische Wellen im ultravioletten Spektralbereich nicht gestreut werden. Die Atome und Moleküle haben die gewünschte geringe Beweglichkeit auf der Substrat­ oberfläche, wenn sie die im Mikrowellenfeld aufgenommene Energie durch Lichtemission oder Stöße mit anderen Gasteilchen teilweise abgeben können. Dies geschieht um so ausgeprägter, je größer die mittlere Flugzeit der im Plasma angeregten Teilchen zum Substrat und je größer die Anzahl der Stöße mit anderen Gasteilchen ist. D. h., der Abstand zwischen Entladungsröhre und Substratoberfläche sowie die mittlere freie Weglänge und damit der Druck in der Beschichtungskammer haben entscheidenden Einfluß auf das Schichtwachstum und den Brechungsindex der hergestellten Schichten. Abb. 6 und 7 zeigen den Brechungsindex in Abhängigkeit vom Abstand (10) zwischen Entladungsröhre und Substratoberfläche bzw. vom Druck in der Beschichtungskammer, wenn alle weiteren Parameter geeignet gewählt sind und konstant gehalten werden. Entsprechend dem oben beschriebenen Schichtwachstum verringert sich der Brechungsindex mit größerem Abstand zwischen Entladungsröhre und Substratoberfläche und mit höherem Druck in der Beschichtungskammer. Letzteres bietet eine besonders bequeme Möglichkeit, den Brechungsindex in weiten Grenzen zu variieren. Die ebenfalls wichtige Schichtdicke der hergestellten porösen SiOx-Schichten ergibt sich einfach aus der Beschichtungszeit. Für dieses Ausführungsbeispiel sind folgende optimale Parameterbereiche ermittelt worden:
In Fig. 5 a cross-section through a remote PECVD system is shown in a schematic representation. It consists of a coating chamber ( 1 ) and a gas discharge tube ( 2 ), in which a suitable gas discharge pressure in the fine vacuum range (1-1000 mTorr) is maintained by a vacuum pump with control valve ( 3 ). The gas discharge tube ( 2 ) is surrounded by a cavity resonator ( 4 ), so that a plasma ( 6 ) is ignited when microwave power is fed in and nitrous oxide (N 2 O) ( 5 ) is supplied. There are charged and uncharged atom and molecule fragments in an elevated energetic state, which, as shown in Fig. 5, diffuse to the substrate ( 7 ) to be coated on the (heatable) sample plate ( 8 ). On the substrate surface in particular, the oxygen atoms formed react with silane (SiH 4 ) ( 9 ) likewise introduced into the coating chamber to form SiO x . In the method according to the invention, it is now crucial that the coating chamber is dimensioned and the process parameters such as gas pressure, gas flows, microwave power, substrate temperature etc. are set such that the mobility of the atoms and molecules on the surface of the SiO x layer formed is reduced . In this case, triangular and tree-like SiO x particles typical for the process grow on the substrate due to self-shadowing of the atoms and molecules, see Figs. 1 and 2. For clarification, numerical simulated layer morphologies are also assumed, assuming low atom or molecular mobility shown in Fig. 1 and 2 in the spherical model. From the figures it can be seen that the SiO x particles have a firm connection to the substrate surface and therefore adhere well to almost any substrate. Furthermore, the particles are so fine-grained that even electromagnetic waves in the ultraviolet spectral range are not scattered. The atoms and molecules have the desired low mobility on the substrate surface if they can partially release the energy absorbed in the microwave field by light emission or collisions with other gas particles. This happens the more pronounced the longer the mean flight time of the particles excited in the plasma to the substrate and the greater the number of collisions with other gas particles. In other words, the distance between the discharge tube and the substrate surface as well as the mean free path length and thus the pressure in the coating chamber have a decisive influence on the layer growth and the refractive index of the layers produced. Fig. 6 and 7 show the refractive index depending on the distance ( 10 ) between the discharge tube and the substrate surface or on the pressure in the coating chamber if all other parameters are selected appropriately and are kept constant. In accordance with the layer growth described above, the refractive index decreases with a greater distance between the discharge tube and the substrate surface and with a higher pressure in the coating chamber. The latter offers a particularly convenient way to vary the refractive index within wide limits. The also important layer thickness of the porous SiO x layers produced simply results from the coating time. The following optimal parameter ranges have been determined for this exemplary embodiment:

Abstand zwischen Entladungsröhre und Substratoberfläche: 4-9 cm
Druck: 100-1400 mTorr
Mikrowellenleistung: 50-150 Watt
N2O-Gasluß: 50-150 sccm
SiH4-Gasfluß: 5-25 sccm
Substrattemperatur: 0-450°C.
Distance between discharge tube and substrate surface: 4-9 cm
Pressure: 100-1400 mTorr
Microwave power: 50-150 watts
N 2 O gas flow: 50-150 sccm
SiH 4 gas flow: 5-25 sccm
Substrate temperature: 0-450 ° C.

Andere Ausführungsformen des erfindungsgemäßen Verfahrens verlangen unter Umständen andere Parameterbereiche. Other embodiments of the method according to the invention may require other parameter ranges.  

b) Ausführungsbeispiele für poröse SiOx-Schichtenb) Examples of porous SiO x layers

Querschnitte durch zwei verschiedene poröse SiOx-Schichten sind bereits in Abb. 1 und 2 gezeigt. Deutlich erkennbar sind die typischen dreieck- und baumartigen SiOx-Partikel.
Cross sections through two different porous SiO x layers are already shown in Fig. 1 and 2. The typical triangular and tree-like SiO x particles are clearly recognizable.

[1] I. M. Thomas, Proc. of the Spie 895, p. 278 (1988).
[2] I. F. Bokhonskaya et al., Sov. J. Opt. Technol. 59, p. 639 (1993).
[3] I. M. Thomas, Applied Optics 31, p. 6145 (1992).
[4] P. G. Pai et al., J. Vac. Sci. Technol. A 4, p. 689 (1986).
[5] A. Demsar et al., Thin Solid Films 281-282, p. 409 (1996).
[1] IM Thomas, Proc. of the Spie 895, p. 278 (1988).
[2] IF Bokhonskaya et al., Sov. J. Opt. Technol. 59, p. 639 (1993).
[3] IM Thomas, Applied Optics 31, p. 6145 (1992).
[4] PG Pai et al., J. Vac. Sci. Technol. A 4, p. 689 (1986).
[5] A. Demsar et al., Thin Solid Films 281-282, p. 409 (1996).

Claims (14)

1. Verfahren zur Herstellung von SiOx-Schichten, dadurch gekennzeichnet, daß die SiOx-Schichten mittels plasmaunterstützter Gasphasenabscheidung (PECVD) hergestellt werden und daß die Schichten durch Selbstabschattung der Atome und Moleküle während der Herstellung porös auf einem Trägermaterial aufwachsen.1. A process for the production of SiO x layers, characterized in that the SiO x layers are produced by means of plasma-assisted gas phase deposition (PECVD) and that the layers grow porously on a carrier material by self-shadowing of the atoms and molecules during production. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Brechungsindex der SiOx-Schichten zwischen 1,10 und 1,46 liegt.2. The method according to claim 1, characterized in that the refractive index of the SiO x layers is between 1.10 and 1.46. 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die SiOx-Schichten für elektromagnetische Wellen mit Wellenlängen größer als 200 nm keine streuende Wirkung haben.3. The method according to claim 1, characterized in that the SiO x layers for electromagnetic waves with wavelengths greater than 200 nm have no scattering effect. 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die SiOx-Schichten mittels direkter plasmaunterstützter Gasphasenabscheidung (DPECVD) hergestellt werden.4. The method according to claim 1, characterized in that the SiO x layers are produced by means of direct plasma-assisted gas phase deposition (DPECVD). 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die SiOx-Schichten mittels remote plasmaunterstützter Gasphasenabscheidung (RPECVD) hergestellt werden.5. The method according to claim 1, characterized in that the SiO x layers are produced by means of remote plasma-assisted gas phase deposition (RPECVD). 6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Prozeßgase Lachgas (N2O) und Silan (SiH4) verwendet werden.6. The method according to claim 1, characterized in that laughing gas (N 2 O) and silane (SiH 4 ) are used as process gases. 7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die SiOx-Schichten auf transparenten Substraten abgeschieden werden und ferner in ihrem Brechungsindex und ihrer Schichtdicke so gewählt werden, daß sie reflexionsmindernde Eigenschaften haben.7. The method according to claim 1, characterized in that the SiO x layers are deposited on transparent substrates and further selected in their refractive index and their layer thickness so that they have reflection-reducing properties. 8. SiOx Schichten, dadurch gekennzeichnet, daß sie mittels plasmaunterstützter Gasphasenabscheidung (PECVD) hergestellt werden und daß die Schichten durch Selbstabschattung der Atome und Moleküle während der Herstellung porös auf einem Trägermaterial aufwachsen.8. SiO x layers, characterized in that they are produced by means of plasma-assisted vapor deposition (PECVD) and that the layers grow porously on a carrier material by self-shadowing of the atoms and molecules during manufacture. 9. SiOx Schichten nach Anspruch 8, dadurch gekennzeichnet, daß der Brechungsindex der SiOx-Schichten zwischen 1,10 und 1,46 liegt.9. SiO x layers according to claim 8, characterized in that the refractive index of the SiO x layers is between 1.10 and 1.46. 10. SiOx-Schichten nach Anspruch 8, dadurch gekennzeichnet, daß die SiOx-Schichten für elektromagnetische Wellen mit Wellenlängen größer als 200 nm keine streuende Wirkung haben.10. SiO x layers according to claim 8, characterized in that the SiO x layers for electromagnetic waves with wavelengths greater than 200 nm have no scattering effect. 11. SiOx-Schichten nach Anspruch 8, dadurch gekennzeichnet, daß die SiOx-Schichten mittels direkter plasmaunterstützter Gasphasenabscheidung (DPECVD) hergestellt werden.11. SiO x layers according to claim 8, characterized in that the SiO x layers are produced by means of direct plasma-assisted gas phase deposition (DPECVD). 12. SiOx-Schichten nach Anspruch 8, dadurch gekennzeichnet, daß die SiOx-Schichten mittels remote plasmaunterstützter Gasphasenabscheidung (RPECVD) hergestellt werden.12. SiO x layers according to claim 8, characterized in that the SiO x layers are produced by means of remote plasma-assisted gas phase deposition (RPECVD). 13. SiOx-Schichten nach Anspruch 8, dadurch gekennzeichnet, daß als Prozeßgase Lachgas (N2O) und Silan (SiH4) verwendet werden.13. SiO x layers according to claim 8, characterized in that laughing gas (N 2 O) and silane (SiH 4 ) are used as process gases. 14. SiOx-Schichten nach Anspruch 8, dadurch gekennzeichnet, daß die SiOx-Schichten auf transparenten Substraten abgeschieden werden und ferner in ihrem Brechungsindex und ihrer Schichtdicke so gewählt werden, daß sie reflexions­ mindernde Eigenschaften haben.14. SiO x layers according to claim 8, characterized in that the SiO x layers are deposited on transparent substrates and further selected in their refractive index and their layer thickness so that they have reflection-reducing properties.
DE19912737A 1998-03-19 1999-03-17 Production of porous silicon oxide film useful as antireflection coating on glass or transparent plastics, involves using self-shading or atoms and molecules in plasma-enhanced chemical vapor deposition Withdrawn DE19912737A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19912737A DE19912737A1 (en) 1998-03-19 1999-03-17 Production of porous silicon oxide film useful as antireflection coating on glass or transparent plastics, involves using self-shading or atoms and molecules in plasma-enhanced chemical vapor deposition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19812002 1998-03-19
DE19912737A DE19912737A1 (en) 1998-03-19 1999-03-17 Production of porous silicon oxide film useful as antireflection coating on glass or transparent plastics, involves using self-shading or atoms and molecules in plasma-enhanced chemical vapor deposition

Publications (1)

Publication Number Publication Date
DE19912737A1 true DE19912737A1 (en) 2000-06-21

Family

ID=7861486

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19912737A Withdrawn DE19912737A1 (en) 1998-03-19 1999-03-17 Production of porous silicon oxide film useful as antireflection coating on glass or transparent plastics, involves using self-shading or atoms and molecules in plasma-enhanced chemical vapor deposition

Country Status (1)

Country Link
DE (1) DE19912737A1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005048361A1 (en) * 2005-10-10 2007-04-12 X-Fab Semiconductor Foundries Ag Method for passivating the surface of semiconductor silicon circuits and discrete components involves locally exposing surface of silicon and producing primary needle-like silicon structures by reactive ion etching
DE102009030303A1 (en) 2009-06-24 2010-12-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for the production of a coating having antireflexion layer on a movable substrate by a plasma-enhanced chemical vapor deposition, comprises providing a gas mixture having process-, carrier- and/or balance gas through a slit
US7985188B2 (en) 2009-05-13 2011-07-26 Cv Holdings Llc Vessel, coating, inspection and processing apparatus
US8058086B2 (en) 2005-10-10 2011-11-15 X-Fab Semiconductor Foundries Ag Self-organized pin-type nanostructures, and production thereof on silicon
US8350209B2 (en) 2005-10-10 2013-01-08 X-Fab Semiconductor Foundries Ag Production of self-organized pin-type nanostructures, and the rather extensive applications thereof
US8512796B2 (en) 2009-05-13 2013-08-20 Si02 Medical Products, Inc. Vessel inspection apparatus and methods
US9272095B2 (en) 2011-04-01 2016-03-01 Sio2 Medical Products, Inc. Vessels, contact surfaces, and coating and inspection apparatus and methods
US9458536B2 (en) 2009-07-02 2016-10-04 Sio2 Medical Products, Inc. PECVD coating methods for capped syringes, cartridges and other articles
US9545360B2 (en) 2009-05-13 2017-01-17 Sio2 Medical Products, Inc. Saccharide protective coating for pharmaceutical package
US9554968B2 (en) 2013-03-11 2017-01-31 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging
US9662450B2 (en) 2013-03-01 2017-05-30 Sio2 Medical Products, Inc. Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus
US9664626B2 (en) 2012-11-01 2017-05-30 Sio2 Medical Products, Inc. Coating inspection method
US9764093B2 (en) 2012-11-30 2017-09-19 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US9863042B2 (en) 2013-03-15 2018-01-09 Sio2 Medical Products, Inc. PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases
US9878101B2 (en) 2010-11-12 2018-01-30 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US9903782B2 (en) 2012-11-16 2018-02-27 Sio2 Medical Products, Inc. Method and apparatus for detecting rapid barrier coating integrity characteristics
US9937099B2 (en) 2013-03-11 2018-04-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging with low oxygen transmission rate
US10189603B2 (en) 2011-11-11 2019-01-29 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US10201660B2 (en) 2012-11-30 2019-02-12 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like
US11066745B2 (en) 2014-03-28 2021-07-20 Sio2 Medical Products, Inc. Antistatic coatings for plastic vessels
US11077233B2 (en) 2015-08-18 2021-08-03 Sio2 Medical Products, Inc. Pharmaceutical and other packaging with low oxygen transmission rate
US11116695B2 (en) 2011-11-11 2021-09-14 Sio2 Medical Products, Inc. Blood sample collection tube
US11624115B2 (en) 2010-05-12 2023-04-11 Sio2 Medical Products, Inc. Syringe with PECVD lubrication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Thin Solid Films, 236(1993)58-63 *

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8058086B2 (en) 2005-10-10 2011-11-15 X-Fab Semiconductor Foundries Ag Self-organized pin-type nanostructures, and production thereof on silicon
DE102005048361A1 (en) * 2005-10-10 2007-04-12 X-Fab Semiconductor Foundries Ag Method for passivating the surface of semiconductor silicon circuits and discrete components involves locally exposing surface of silicon and producing primary needle-like silicon structures by reactive ion etching
DE102005048361B4 (en) * 2005-10-10 2011-07-14 X-FAB Semiconductor Foundries AG, 99097 Method for locally coating semiconductor circuits and discrete components with a thermal SiO 2 layer whose surfaces contain areas with needle-shaped structures in nanometer dimensions
US8350209B2 (en) 2005-10-10 2013-01-08 X-Fab Semiconductor Foundries Ag Production of self-organized pin-type nanostructures, and the rather extensive applications thereof
US9572526B2 (en) 2009-05-13 2017-02-21 Sio2 Medical Products, Inc. Apparatus and method for transporting a vessel to and from a PECVD processing station
US7985188B2 (en) 2009-05-13 2011-07-26 Cv Holdings Llc Vessel, coating, inspection and processing apparatus
US8512796B2 (en) 2009-05-13 2013-08-20 Si02 Medical Products, Inc. Vessel inspection apparatus and methods
US8834954B2 (en) 2009-05-13 2014-09-16 Sio2 Medical Products, Inc. Vessel inspection apparatus and methods
US9545360B2 (en) 2009-05-13 2017-01-17 Sio2 Medical Products, Inc. Saccharide protective coating for pharmaceutical package
US10537273B2 (en) 2009-05-13 2020-01-21 Sio2 Medical Products, Inc. Syringe with PECVD lubricity layer
US10390744B2 (en) 2009-05-13 2019-08-27 Sio2 Medical Products, Inc. Syringe with PECVD lubricity layer, apparatus and method for transporting a vessel to and from a PECVD processing station, and double wall plastic vessel
DE102009030303A1 (en) 2009-06-24 2010-12-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for the production of a coating having antireflexion layer on a movable substrate by a plasma-enhanced chemical vapor deposition, comprises providing a gas mixture having process-, carrier- and/or balance gas through a slit
US9458536B2 (en) 2009-07-02 2016-10-04 Sio2 Medical Products, Inc. PECVD coating methods for capped syringes, cartridges and other articles
US11624115B2 (en) 2010-05-12 2023-04-11 Sio2 Medical Products, Inc. Syringe with PECVD lubrication
US11123491B2 (en) 2010-11-12 2021-09-21 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US9878101B2 (en) 2010-11-12 2018-01-30 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US9272095B2 (en) 2011-04-01 2016-03-01 Sio2 Medical Products, Inc. Vessels, contact surfaces, and coating and inspection apparatus and methods
US10189603B2 (en) 2011-11-11 2019-01-29 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11724860B2 (en) 2011-11-11 2023-08-15 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11116695B2 (en) 2011-11-11 2021-09-14 Sio2 Medical Products, Inc. Blood sample collection tube
US10577154B2 (en) 2011-11-11 2020-03-03 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11148856B2 (en) 2011-11-11 2021-10-19 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11884446B2 (en) 2011-11-11 2024-01-30 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US9664626B2 (en) 2012-11-01 2017-05-30 Sio2 Medical Products, Inc. Coating inspection method
US9903782B2 (en) 2012-11-16 2018-02-27 Sio2 Medical Products, Inc. Method and apparatus for detecting rapid barrier coating integrity characteristics
US9764093B2 (en) 2012-11-30 2017-09-19 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US10201660B2 (en) 2012-11-30 2019-02-12 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like
US10363370B2 (en) 2012-11-30 2019-07-30 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US11406765B2 (en) 2012-11-30 2022-08-09 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US9662450B2 (en) 2013-03-01 2017-05-30 Sio2 Medical Products, Inc. Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus
US10016338B2 (en) 2013-03-11 2018-07-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging
US10912714B2 (en) 2013-03-11 2021-02-09 Sio2 Medical Products, Inc. PECVD coated pharmaceutical packaging
US11298293B2 (en) 2013-03-11 2022-04-12 Sio2 Medical Products, Inc. PECVD coated pharmaceutical packaging
US11344473B2 (en) 2013-03-11 2022-05-31 SiO2Medical Products, Inc. Coated packaging
US10537494B2 (en) 2013-03-11 2020-01-21 Sio2 Medical Products, Inc. Trilayer coated blood collection tube with low oxygen transmission rate
US9937099B2 (en) 2013-03-11 2018-04-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging with low oxygen transmission rate
US11684546B2 (en) 2013-03-11 2023-06-27 Sio2 Medical Products, Inc. PECVD coated pharmaceutical packaging
US9554968B2 (en) 2013-03-11 2017-01-31 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging
US9863042B2 (en) 2013-03-15 2018-01-09 Sio2 Medical Products, Inc. PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases
US11066745B2 (en) 2014-03-28 2021-07-20 Sio2 Medical Products, Inc. Antistatic coatings for plastic vessels
US11077233B2 (en) 2015-08-18 2021-08-03 Sio2 Medical Products, Inc. Pharmaceutical and other packaging with low oxygen transmission rate

Similar Documents

Publication Publication Date Title
DE19912737A1 (en) Production of porous silicon oxide film useful as antireflection coating on glass or transparent plastics, involves using self-shading or atoms and molecules in plasma-enhanced chemical vapor deposition
DE60005225T2 (en) THIN LAYERS OF DIAMOND-LIKE GLASS
DE4445427C2 (en) Plasma CVD method for producing a gradient layer
EP0446596B1 (en) PCVD process for the production of approximately dome-shaped substrates provided on the inside and/or outside with dielectric and/or metallic coating systems
EP1088116B1 (en) Method for applying a coating system to surfaces
EP0529268B1 (en) Anti-reflex hard coating for plastic lenses
EP0523314B1 (en) Apparatus for evaporation of liquid
EP0177517B1 (en) Process for depositing a thin transparent layer on the surface of optical elements
DE60314634T2 (en) TITANIUM DIOXIDE COATINGS MADE BY PLASMA CVD AT ATMOSPHERIC PRESSURE
DE3316693A1 (en) METHOD FOR PRODUCING AMORPHOUS CARBON LAYERS ON SUBSTRATES AND SUBSTRATES COATED BY THE METHOD
DE2444898A1 (en) METHOD AND DEVICE FOR THE VAPORIZATION OF OXYDES IN THIN AND ADHESIVE LAYERS ON PLASTIC CARRIER
EP3561552A1 (en) Optical element with a high diffusion coating
DE60009570T2 (en) RADIATION-PURELY COATINGS ON GLASS MATERIALS
DE602004005137T2 (en) Process for the preparation of nanoparticles
DE3615627C2 (en) Process for coating optical components and optical components
WO1997023661A2 (en) Process for producing organically mofified oxide, oxynitride or nitride layers by vacuum deposition
AT403382B (en) METHOD FOR COATING WORKPIECES FROM A PLASTIC MATERIAL
DE4430363A1 (en) Optical lens made of a clear plastic
DE2916539A1 (en) PHOTOGRAPHICAL PROCESS FOR COPYING AN IMAGE STRUCTURE OF A CATHODE BEAM TUBE AND FILTER FOR CARRYING OUT SUCH A PROCESS
DE2625448C3 (en) Method and device for producing a protective layer on the surface of optical reflectors
DE10258681A1 (en) Process for applying alternating layers e.g. barrier layers onto a plastic bottle by chemical gas phase deposition comprises depositing an organic adhesion promoting layer on a substrate and applying an inorganic barrier layer
DE4414083C2 (en) Device for producing thin layers on plastic substrates and for etching such substrates
DE10012516C1 (en) Component with a transparent scratch-resistant protective gradient layer consisting of silicon, oxygen, hydrocarbon residues and a metal whose oxides absorb UV light
EP1655385B1 (en) Method for making optical coatings
DE102018132842A1 (en) Process for depositing an aluminum oxide layer and a plastic or glass substrate with an aluminum oxide layer deposited thereon

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8130 Withdrawal