DE19838945A1 - Process for producing a low-defect, single-crystal silicon carbide layer - Google Patents

Process for producing a low-defect, single-crystal silicon carbide layer

Info

Publication number
DE19838945A1
DE19838945A1 DE19838945A DE19838945A DE19838945A1 DE 19838945 A1 DE19838945 A1 DE 19838945A1 DE 19838945 A DE19838945 A DE 19838945A DE 19838945 A DE19838945 A DE 19838945A DE 19838945 A1 DE19838945 A1 DE 19838945A1
Authority
DE
Germany
Prior art keywords
substrate
layer
surface layer
sic
porous surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE19838945A
Other languages
German (de)
Inventor
Klaus Heyers
Wilhelm Frey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE19838945A priority Critical patent/DE19838945A1/en
Priority to PCT/DE1999/002671 priority patent/WO2000012784A1/en
Publication of DE19838945A1 publication Critical patent/DE19838945A1/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Abstract

The invention relates to a method for producing a defect-free, monocrystalline, preferably large-surface, silicon carbide (SiC) layer on a substrate, preferably on an Si substrate, especially for use in power electronics and sensors. The method consists of the anodization of a porous surface layer (14) on the substrate (10) on which an SiC layer (16) is precipitated from a gas phase comprising the parent substances Si and C in a carrier gas. Alternatively, it is possible to carry out the precipitation of the SiC layer (16) using molecular beam epitaxy.

Description

Stand der TechnikState of the art

Die Erfindung geht aus von einem Verfahren zur Herstellung einer defektarmen Silizium-Carbid-Schicht nach der Gattung des Hauptanspruchs, welche bislang nur als Oberflächenschichten von aus Silizium-Carbid-Einkristallen hergestellten Wafern zur Verfügung stehen. Der Einsatz von SiC-Bauelemente wird durch die derzeit extrem hohen Kosten für die SiC-Einkristalle beschränkt. Es wird daher seit längerem versucht, defektarme SiC-Schichten auf preisgünstigen Siliziumwafern abzuscheiden, damit der Kostenvorteil eines billigen Substrates mit den physikalischen Vorteilen von Halbleitern mit großem Bandabstand, wie z. B. SiC, verbunden wird. Bei allen direkten Abscheideverfahren führt jedoch die große Gitterfehlanpassung von nahezu 20% zwischen dem Siliziumsubstrat und der SiC Epitaxie-Schicht zu sehr großen Defektdichten, die eine Anwendung dieses Materials bei Elektronikbauteilen bisher nicht erlaubten. The invention is based on a method of manufacture a low defect silicon carbide layer of the type of the main claim, which so far only as Surface layers of silicon carbide single crystals manufactured wafers are available. The use of SiC components is due to the currently extremely high costs for the SiC single crystals. It is therefore since tried longer, low-defect SiC layers to deposit inexpensive silicon wafers so that Cost advantage of a cheap substrate with the physical advantages of semiconductors with great Bandgap such. B. SiC is connected. At all however, the direct deposition process leads to the big one Lattice mismatch of almost 20% between that Silicon substrate and the SiC epitaxial layer to very large Defect densities that an application of this material Electronic components not previously allowed.  

Vorteile der ErfindungAdvantages of the invention

Das erfindungsgemäße Verfahren des unabhängigen Verfahrensanspruchs 1 hat den Vorteil, daß dank der porösen Substratoberfläche die durch Anodisierung (elektrochemisches Ätzen) erzeugt wird, die elastischen Eigenschaften des Substrats, insbesondere eines Si-Substrats, modifiziert sind, die Kristallstruktur jedoch nicht geschädigt ist. Ähnlich einer Schwammstruktur ist die poröse Siliziumschicht in der Lage, Verspannungen durch elastische Verformung abzubauen. Wenn auf dieser porösen Substratoberfläche SiC abgeschieden wird, dient die poröse Substratoberflächenschicht als Nukleationskeim für ein kubisches Kristallgitter einer einkristallinien SiC-Schicht und ist in der Lage, die Gitterfehlanpassung zu einem großen Teil aufzufangen und somit die Entstehung von gitterfehlanpassungsbedingten Defekten stark zu verringern. Dadurch, daß poröse Schichten auf großen Siliziumscheiben erzeugt werden können und die Abscheidung von SiC auf großen Siliziumscheiben möglich ist, wird durch dieses Verfahren eine Herstellung von großflächigen SiC-Schichten mit geringer Defektdichte möglich.The inventive method of independent Process claim 1 has the advantage that thanks to the porous Substrate surface by anodization (electrochemical Etching) is generated, the elastic properties of the Modified substrate, in particular a Si substrate are, but the crystal structure is not damaged. The porous silicon layer is similar to a sponge structure able to relieve tension due to elastic deformation dismantle. If SiC on this porous substrate surface is deposited, the porous serves Substrate surface layer as a nucleation seed for a cubic crystal lattice of a single crystal SiC layer and is able to lattice mismatch to a large extent Part and thus the emergence of greatly reduce defects due to lattice mismatch. The fact that porous layers on large silicon wafers can be generated and the deposition of SiC on large Silicon wafers is possible through this process a production of large-area SiC layers with low defect density possible.

Zeichnungdrawing

Die Fig. 1 zeigt ein beim erfindungsgemäßen Herstellungsverfahren eingesetztes Ätzbecken. Die Fig. 2 stellt einen erfindungsgemäß erzeugten Halbleiter dar. Fig. 1 shows a manufacturing process employed in the inventive etching tank. Fig. 2 illustrates a semiconductor according to the invention produced.

Beschreibung von AusführungsbeispielenDescription of exemplary embodiments

Die in der vergrößerten Darstellung gemäß Fig. 2 gezeigte poröse Oberflächenschicht auf der Oberfläche 12 einer Substratscheibe 10 wird durch Anodisierung erzeugt. Die Substratscheibe 10 wird rückseitig elektrisch kontaktiert und vorderseitig einem Elektrolyten in Form von verdünnter Flußsäure (5-25% in Wasser mit Ethanol oder Methanol) ausgesetzt. Die Kontaktierung kann wahlweise über Elektrolyt im Ätzbecken 101, wie in Fig. 1 abgebildet, erfolgen oder über Metallkontakt mittels einem Metallring, der durch Metallisierung der Rückseite der Substratscheibe 10, beispielsweise mit Al, Pt, Cr oder Cu erzeugt wird.The porous surface layer shown in the enlarged representation according to FIG. 2 on the surface 12 of a substrate wafer 10 is produced by anodization. The substrate wafer 10 is electrically contacted on the back and exposed on the front to an electrolyte in the form of dilute hydrofluoric acid (5-25% in water with ethanol or methanol). The contact can optionally be made via electrolyte in the etching basin 101 , as shown in FIG. 1, or via metal contact by means of a metal ring, which is produced by metallizing the back of the substrate wafer 10 , for example with Al, Pt, Cr or Cu.

Wie Fig. 1 zeigt, wird ein Stromfluß zwischen dem Elektrolyten des Ätzmediums 108 und der Substratscheibe 104 aufgeprägt, dessen typische Werte zwischen 1 und 50 mA/cm2 liegen. Je nach angelegtem elektrischem Potential wird nun die Substratoberfläche 12 der Substratscheibe 103 mittels Elektropolitur gleichmäßig abgetragen oder, bei Einhaltung der zuvor genannten Obergrenze des Strombelags, startend von Oberflächendefekten lokal in Form dünner Kanäle angeätzt. Zur Herstellung von porösem Si können sowohl p-dotiertes Silizium als n-dotiertes Silizium als Substrat eingesetzt werden. Da das Ätzen des Siliziums dank Defektelektronen (Löchern) erfolgt, müssen jedoch im n-dotierten Si Löcher erzeugt werden, insbesondere durch Beleuchtung.As shown in FIG. 1, a current flow is impressed between the electrolyte of the etching medium 108 and the substrate wafer 104 , the typical values of which are between 1 and 50 mA / cm 2 . Depending on the applied electrical potential, the substrate surface 12 of the substrate disk 103 is now evenly removed by means of electropolishing or, if the abovementioned upper limit of the current coating is observed, locally etched from surface defects in the form of thin channels. For the production of porous Si, both p-doped silicon and n-doped silicon can be used as the substrate. Since the silicon is etched thanks to defect electrons (holes), holes must be created in the n-doped Si, in particular by illumination.

Die Porengröße der porösen Oberflächenschicht 14 reicht von wenigen nm bis zu ca. 100 nm. Die Dichte dieser Kanäle ist im allgemeinen so groß, daß eine poröse Schicht mit Porositätsgraden bis über 90% entsteht, deren Dichte von der Ätzdauer abhängt. Hierbei kann durch die Konzentration der Flußsäure-Lösung und das gewählte Potential- bzw. die Stromdichte sowohl die Porosität (von < 10 bis über 90%) als auch die Geometrie der verbleibenden Subtratbereiche beeinflußt werden. Eine Vergrößerung der Poren ermöglicht eine effektive Streßaufnahme bei der erfindungsgemäßen SiC-Abscheidung 16 auf der porösen Oberflächenschicht 14. Aber die mechanische Stabilität einer hochporösen Schicht ist relativ gering, wodurch ein mechanisches Abheben einer Schicht, die sich über einer hochporösen Schicht befindet, stattfinden kann. Eine niedrigporöse Schicht ist zur Streßaufnahme weniger geeignet, ermöglicht aber die Abscheidung qualitativ guter epitaktischer Schichten, da in diesem Falle mehr Keimzellen zur Verfügung stehen, um eine hochwertige Schicht wachsen zu lassen. Deswegen wird eine Porosität der porösen Oberflächenschicht 14 von 10 bis 60% bevorzugt, insbesondere von 20 bis 50%.The pore size of the porous surface layer 14 ranges from a few nm to about 100 nm. The density of these channels is generally so great that a porous layer with degrees of porosity of over 90% is formed, the density of which depends on the etching time. The concentration of the hydrofluoric acid solution and the chosen potential or current density can influence both the porosity (from <10 to over 90%) and the geometry of the remaining substrate areas. Enlarging the pores enables effective stress absorption in the SiC deposition 16 according to the invention on the porous surface layer 14 . However, the mechanical stability of a highly porous layer is relatively low, which means that a layer that is located above a highly porous layer can be lifted off mechanically. A low-porosity layer is less suitable for stress absorption, but enables the deposition of high-quality epitaxial layers, since in this case more germ cells are available to grow a high-quality layer. For this reason, a porosity of the porous surface layer 14 of 10 to 60% is preferred, in particular 20 to 50%.

Der Einbau eines Porositätsgradienten von niedriger Porosität an der Oberfläche 12 der Substratscheibe 10 bis zu großen Porositätsgraden am Übergang zum Bulksilizium ist vorteilhaft, um sowohl gute Streßentkopplung zu gewährleisten als auch unmittelbar an der Oberfläche, auf der epitaktisch abgeschieden werden soll, eine hohe Keimzellendichte für hochwertige Schichten zu haben. Die porösen Bereiche sind monokristallin und haben die gleiche Kristallstruktur wie das darunterliegende kompakte Substrat 10. Die Dicke der erzeugten porösen Oberflächenschicht 14 liegt im Bereich von 100 nm, vorzugsweise von 500 nm bis 5 µm.The incorporation of a porosity gradient from low porosity on the surface 12 of the substrate wafer 10 to large degrees of porosity at the transition to bulk silicon is advantageous in order to ensure good stress decoupling as well as a high germ cell density for high-quality ones directly on the surface on which epitaxial deposition is to be carried out To have layers. The porous areas are monocrystalline and have the same crystal structure as the underlying compact substrate 10 . The thickness of the porous surface layer 14 produced is in the range from 100 nm, preferably from 500 nm to 5 μm.

Aufgrund der hohen Reaktivität des porösen Siliziums wird dieses kurz vor Epitaxie vorteilhaft z. B. in Flußsäure getaucht, um das native Oxid zu entfernen. Alternativ dazu kann mit Wasserstoff als Trägergas während des Abscheidungsverfahren gearbeitet werden.Due to the high reactivity of the porous silicon this advantageous shortly before epitaxy z. B. in hydrofluoric acid dipped to remove the native oxide. Alternatively can with hydrogen as a carrier gas during the Deposition process to be worked.

Die Abscheidung der SiC-Schicht 16 aus der Gasphase erfolgt folgendermaßen: The SiC layer 16 is deposited from the gas phase as follows:

Die Substratscheibe 10 wird einer Atmosphäre ausgesetzt, die neben einem Trägergas Gase enthält, die die Ausgangsstoffe Si und C enthalten. Die Gase werden thermisch oder mittels Plasmaunterstützung aufgespalten und gelangen mittels Diffusion zur Oberflächenschicht 14. Das Substrat 10 wird ebenfalls auf erhöhter Temperatur gehalten (< 200-1000°C), um derart die Abscheidereaktion nahe am thermodynamischen Gleichgewicht zu betreiben. Gleichzeitig ermöglicht die erhöhte Oberflächendiffusion der Si- und C-Atome den Aufbau epitaktischer Schichten. Die Reduzierung der Substrattemperatur ist möglich durch einen Beschuß der Oberfläche 12 mit niederenergetischen Ionen, die z. B. in einem Plasma erzeugt werden und mittels einer Substratvorspannung auf die Probe geleitet werden. Durch die Wechselwirkung der Ionen mit den Kristallatomen des Substrates wird oberflächennah Energie eingekoppelt, die zu einer Aufheizung nur der Substratoberfläche 12 führt, ohne das gesamte Gefüge thermisch zu belasten. Durch diese Methode ist es möglich, die im allgemeinen notwendige hohe Substrattemperatur, die für gute Schichtqualität erforderlich ist, zu reduzieren, und damit einer Schädigung der empfindlichen porösen Siliziumschicht vorzubeugen.The substrate wafer 10 is exposed to an atmosphere which, in addition to a carrier gas, contains gases which contain the starting materials Si and C. The gases are split up thermally or by means of plasma support and reach the surface layer 14 by means of diffusion. The substrate 10 is also kept at an elevated temperature (<200-1000 ° C.) in order to operate the deposition reaction close to the thermodynamic equilibrium. At the same time, the increased surface diffusion of the Si and C atoms enables the formation of epitaxial layers. The reduction of the substrate temperature is possible by bombarding the surface 12 with low-energy ions, the z. B. generated in a plasma and passed onto the sample by means of a substrate bias. As a result of the interaction of the ions with the crystal atoms of the substrate, energy is coupled in close to the surface, which leads to heating of only the substrate surface 12 without thermally stressing the entire structure. With this method it is possible to reduce the generally high substrate temperature required for good layer quality and thus prevent damage to the sensitive porous silicon layer.

Die Abscheidung der SiC-Schicht 16 kann auch mittels Molekularstrahl-Epitaxie (MBE) erfolgen. Diese Weiterentwicklung der Aufdampftechnik, deren gesamter Vorgang im Ultrahochvakuum abläuft, erhöht die freie Weglänge der von der Elektronenkanone abgedampften Substratatome so stark, daß keine Kollisionen der Teilchen vorkommen. Deshalb ist der Transport der abgedampften Atome ausschließlich von der thermischen Energie der Quelle bestimmt. Die Substrattemperatur kann auf wenige hundert Grad reduziert werden, bis herab zu Temperaturen um 400°C, gleichzeitig werden hochwertige Schichten realisiert. Als Substrat für das erfindungsgemäße Verfahren zur Herstellung von defektarmen SiC-Schichten können neben Scheiben aus Si, insbesondere p-dotiertem Si, auch Substrate aus Ge eingesetzt werden, denn sie haben ähnliche Kristallstrukturen.The SiC layer 16 can also be deposited by means of molecular beam epitaxy (MBE). This further development of vapor deposition technology, the entire process of which takes place in an ultra-high vacuum, increases the free path length of the substrate atoms evaporated by the electron gun so much that there are no collisions between the particles. The transport of the evaporated atoms is therefore determined exclusively by the thermal energy of the source. The substrate temperature can be reduced to a few hundred degrees, down to temperatures around 400 ° C, at the same time high-quality layers are realized. In addition to disks made of Si, in particular p-doped Si, substrates made of Ge can also be used as the substrate for the method according to the invention for producing low-defect SiC layers, since they have similar crystal structures.

Die poröse Oberflächenschicht 14 wird bei einer Vorrichtung gemäß Fig. 1 in einem Ätzbecken 101 erzeugt. Die Siliziumscheibe 103 wird mittels einer Halterung 102 befestigt und teilt das Ätzbecken 101 in zwei Teilbecken 111 und 112. Das erste Teilbecken 111 ist über die Kathode 109 mit dem Minuspol 106 einer Spannungsquelle verbunden. Der Pluspols 107 dieser Spannungsquelle ist mit der Anode 110, die sich im zweiten Teilbecken befindet, elektrisch verbunden. Die Elektroden sind aus einer Palladium-Platin-Le­ gierung oder vorzugsweise aus reinem Platin. Die Teilbecken 111, 112 sind mit der Ätzlösung ausgefüllt, deren typische Zusammensetzung 25% Flußsäure, 25% Wasser und 50% Ethanol ist. Bei Stromdichten von einigen 10 mA/cm2, nach Anodisierung von wenigen Minuten, werden typische poröse Schichtdicken im Bereich einiger Mikrometer erzeugt.The porous surface layer 14 is produced in an apparatus according to FIG. 1 in an etching basin 101 . The silicon wafer 103 is fastened by means of a holder 102 and divides the etching basin 101 into two basins 111 and 112 . The first sub-basin 111 is connected via the cathode 109 to the negative pole 106 of a voltage source. The positive pole 107 of this voltage source is electrically connected to the anode 110 , which is located in the second sub-basin. The electrodes are made of a palladium-platinum alloy or preferably of pure platinum. The partial pools 111 , 112 are filled with the etching solution, the typical composition of which is 25% hydrofluoric acid, 25% water and 50% ethanol. At current densities of a few 10 mA / cm 2 , after anodizing for a few minutes, typical porous layer thicknesses in the range of a few micrometers are generated.

Die Siliziumscheibe 103 wird dann einer Atmosphäre ausgesetzt, die neben einem Trägergas, z. B. Wasserstoff, Gase enthält, die die Ausgangsstoffe Si und C enthalten, üblicherweise SiH4, SiCl2H2 und C2H2 oder ähnliche Kohlenwasserstoffe. Die Gase werden thermisch oder mittels Plasmaunterstützung aufgespalten und das Substrat 10, 103 auf hoher Temperatur gehalten, die bei 200° bis 1000°C liegt.The silicon wafer 103 is then exposed to an atmosphere which, in addition to a carrier gas, e.g. B. hydrogen, contains gases containing the starting materials Si and C, usually SiH 4 , SiCl 2 H 2 and C 2 H 2 or similar hydrocarbons. The gases are split up thermally or by means of plasma support and the substrate 10 , 103 is kept at a high temperature, which is from 200 ° to 1000 ° C.

Claims (13)

1. Verfahren zur Herstellung einer defektarmen, einkristallinen, vorzugsweise großflächigen Siliziumcarbid(SiC)-Schicht auf einem Substrat, vorzugsweise auf einem Si-Substrat, insbesondere für Anwendungen in der Leistungselektronik und Sensorik, dadurch gekennzeichnet, daß durch Anodisierung eine poröse Oberflächenschicht (14) auf dem Substrat (10) erzeugt wird, auf welcher eine SiC-Schicht (16) aus einer Gasphase mit den Ausgangsstoffen Si und C in einem Trägergas abgeschieden wird.1. A method for producing a low-defect, single-crystal, preferably large-area silicon carbide (SiC) layer on a substrate, preferably on a Si substrate, in particular for applications in power electronics and sensor technology, characterized in that a porous surface layer ( 14 ) by anodization is produced on the substrate ( 10 ), on which an SiC layer ( 16 ) is deposited from a gas phase with the starting materials Si and C in a carrier gas. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Aufspalten der Silizium und Kohlenstoff enthaltenden Gase thermisch oder mittels Plasmaunterstützung erfolgt.2. The method according to claim 1, characterized in that splitting the silicon and carbon containing gases thermally or by means Plasma support takes place. 3. Verfahren zur Herstellung einer defektarmen, einkristallinen, vorzugsweise großflächigen SiC-Schicht auf einem Substrat, vorzugsweise auf einem Siliziumsubstrat, insbesondere für Anwendung in der Leistungselektronik und -sensorik, dadurch gekennzeichnet, daß durch Anodisierung eine poröse Oberflächenschicht (14) auf dem Substrat (10) erzeugt wird, auf welcher die Abscheidung der SiC-Schicht mittels Molekularstrahl-Epitaxie realisiert wird.3. A method for producing a low-defect, single-crystal, preferably large-area SiC layer on a substrate, preferably on a silicon substrate, in particular for use in power electronics and sensors, characterized in that a porous surface layer ( 14 ) on the substrate (anodization) 10 ) is generated on which the SiC layer is deposited by means of molecular beam epitaxy. 4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als Substrat (10) Silizium, insbesondere p-dotiertes Silizium, oder Germanium eingesetzt wird.4. The method according to any one of the preceding claims, characterized in that silicon, in particular p-doped silicon, or germanium is used as the substrate ( 10 ). 5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Ätzmedium (108) für die Anodisierung eine verdünnte Flußsäure, vorzugsweise ein Gemisch aus Flußsäure mit Wasser und Ethanol oder Methanol ist.5. The method according to any one of the preceding claims, characterized in that the etching medium ( 108 ) for the anodization is a dilute hydrofluoric acid, preferably a mixture of hydrofluoric acid with water and ethanol or methanol. 6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Ätzmedium (108) 5-25% Flußsäure enthält.6. The method according to any one of the preceding claims, characterized in that the etching medium ( 108 ) contains 5-25% hydrofluoric acid. 7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Anodisierungsstrom zwischen 1 und 50 mA/cm2 liegt.7. The method according to any one of the preceding claims, characterized in that the anodizing current is between 1 and 50 mA / cm 2 . 8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Porengröße der porösen Oberflächenschicht (14) von einigen nm bis 100 nm reicht. 8. The method according to any one of the preceding claims, characterized in that the pore size of the porous surface layer ( 14 ) ranges from a few nm to 100 nm. 9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Porösität der porösen Oberflächenschicht in einem Bereich von 10 bis 60%, vorzugsweise von 20 bis 50% liegt.9. The method according to any one of the preceding claims, characterized in that the porosity of the porous Surface layer in a range of 10 to 60%, is preferably from 20 to 50%. 10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein Porösitätsgradient von hoher zu niedriger Porösität vom Substrat (10) zur Oberfläche der porösen Oberflächenschicht (14) erzeugt wird.10. The method according to any one of the preceding claims, characterized in that a porosity gradient from high to low porosity from the substrate ( 10 ) to the surface of the porous surface layer ( 14 ) is generated. 11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Dicke der porösen Oberflächenschicht (14) einen Bereich von 100 nm bis 5 µm, vorzugsweise von 500 nm bis 5 µm, hat.11. The method according to any one of the preceding claims, characterized in that the thickness of the porous surface layer ( 14 ) has a range from 100 nm to 5 µm, preferably from 500 nm to 5 µm. 12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Oxid, das sich an der Oberfläche der porösen Oberflächenschicht (14) bildet, durch Reduktion gelöst wird, bevor die einkristalline SiC-Schicht (16) aufgebracht wird.12. The method according to any one of the preceding claims, characterized in that the oxide which forms on the surface of the porous surface layer ( 14 ) is dissolved by reduction before the single-crystal SiC layer ( 16 ) is applied. 13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Oberflächenschicht (14) vor und/oder während des Abscheidens der SiC-Schicht (16) mit niederenergetischen Ionen beschossen wird.13. The method according to any one of the preceding claims, characterized in that the surface layer ( 14 ) is bombarded with low-energy ions before and / or during the deposition of the SiC layer ( 16 ).
DE19838945A 1998-08-27 1998-08-27 Process for producing a low-defect, single-crystal silicon carbide layer Ceased DE19838945A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE19838945A DE19838945A1 (en) 1998-08-27 1998-08-27 Process for producing a low-defect, single-crystal silicon carbide layer
PCT/DE1999/002671 WO2000012784A1 (en) 1998-08-27 1999-08-25 Method for producing a defect-free monocrystalline silicon carbide layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19838945A DE19838945A1 (en) 1998-08-27 1998-08-27 Process for producing a low-defect, single-crystal silicon carbide layer

Publications (1)

Publication Number Publication Date
DE19838945A1 true DE19838945A1 (en) 2000-03-09

Family

ID=7878879

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19838945A Ceased DE19838945A1 (en) 1998-08-27 1998-08-27 Process for producing a low-defect, single-crystal silicon carbide layer

Country Status (2)

Country Link
DE (1) DE19838945A1 (en)
WO (1) WO2000012784A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087983A2 (en) * 2004-03-05 2005-09-22 University Of North Carolina At Charlotte Alternative methods for fabrication of substrates and heterostructures made of silicon compounds and alloys
US20130256143A1 (en) * 2012-03-30 2013-10-03 GM Global Technology Operations LLC Anodized inserts for coulomb damping or frictional damping

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4028149A (en) * 1976-06-30 1977-06-07 Ibm Corporation Process for forming monocrystalline silicon carbide on silicon substrates
US5466631A (en) * 1991-10-11 1995-11-14 Canon Kabushiki Kaisha Method for producing semiconductor articles

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331180A (en) * 1992-04-30 1994-07-19 Fujitsu Limited Porous semiconductor light emitting device
US5272096A (en) * 1992-09-29 1993-12-21 Motorola, Inc. Method for making a bipolar transistor having a silicon carbide layer
EP0797258B1 (en) * 1996-03-18 2011-07-20 Sony Corporation Method for making thin film semiconductor, solar cell, and light emitting diode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4028149A (en) * 1976-06-30 1977-06-07 Ibm Corporation Process for forming monocrystalline silicon carbide on silicon substrates
US5466631A (en) * 1991-10-11 1995-11-14 Canon Kabushiki Kaisha Method for producing semiconductor articles

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ISHIDA Y. e.al.: Atomically Flat 3C-SIC Epilayers by Low Vressare Vapour Deposition. In: Jpn. 7. Appl. Phys. Vol. 36, 1997, S. 6633-6637 *
KERN, R.S. et.al.:Depodition and doping of ciliconcarbide by gas-souree molcular beam epitaxy. In: Appl. Phys. Lett. 71(10), 1997, S. 1356-58 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087983A2 (en) * 2004-03-05 2005-09-22 University Of North Carolina At Charlotte Alternative methods for fabrication of substrates and heterostructures made of silicon compounds and alloys
WO2005087983A3 (en) * 2004-03-05 2006-06-08 Univ North Carolina Alternative methods for fabrication of substrates and heterostructures made of silicon compounds and alloys
US7718469B2 (en) 2004-03-05 2010-05-18 The University Of North Carolina At Charlotte Alternative methods for fabrication of substrates and heterostructures made of silicon compounds and alloys
US20130256143A1 (en) * 2012-03-30 2013-10-03 GM Global Technology Operations LLC Anodized inserts for coulomb damping or frictional damping

Also Published As

Publication number Publication date
WO2000012784A1 (en) 2000-03-09

Similar Documents

Publication Publication Date Title
DE19543723C2 (en) Process for the production of single crystal diamond films
Kirchheim et al. Hydrogen in amorphous metals—I
Veerasamy et al. Nitrogen doping of highly tetrahedral amorphous carbon
US4024029A (en) Electrodeposition
DE112011102010B4 (en) Process for producing diamond layers, diamonds produced by the process and their use
US6136704A (en) Method for forming porous platinum films
D'agostino et al. LEED/electrochemical analysis of Au single crystals: Stability of the UHV prepared surfaces of Au (111) and Au (100) in aqueous electrolyte
DE19838945A1 (en) Process for producing a low-defect, single-crystal silicon carbide layer
US3511714A (en) Chemical source of electrical current,catalyst suitable for use therein and method for the manufacturing thereof
CA1278274C (en) Coated blade for microtome and method for the preparation thereof
Corish et al. The growth and dissolution of silver whiskers
Meieran Reflection X‐Ray Topography of GaAs Deposited on Ge
Colibaba et al. Features of nanotemplates manufacturing on the II-VI compound substrates
CN114516615A (en) Preparation method of high-stability graphene nanopore
Hasegawa et al. Growth and characterization of GaAs films on porous Si
Mercier Properties of Low‐Temperature Heteroepitaxial Thin Silicon Films Grown in Helium Atmosphere
CH711275A2 (en) A method for producing a spiral spring and a corresponding spiral spring.
Corish et al. Electrochemically controlled growth and dissolution of silver whiskers
EP0993029A2 (en) Process for the fabrication of crystalline semiconductor layers
Javadova et al. Electrodeposition of Bi-Se thin films involving ethylene glycol based electrolytes
Okuyama A simple technique to deposit molybdenum thin films
CN114232010B (en) Wafer-level noble metal monoatomic layer catalyst and preparation and application thereof
KR102217844B1 (en) Hydrogen storage substrate and a device with the same
Ross LDEED/ELECTROCHEMICAL ANALYSIS OF Au SINGLE CRYSTALS: STABILITY OF THE UHV PREPARED SURFACES OF Au (lll) AND (100) IN AQUEOUS ELECTROLYTE
CN116791201A (en) High-conductivity ruthenium metal film and preparation method thereof

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8131 Rejection