DE19739722A1 - Rich fluid microengineered system - Google Patents

Rich fluid microengineered system

Info

Publication number
DE19739722A1
DE19739722A1 DE1997139722 DE19739722A DE19739722A1 DE 19739722 A1 DE19739722 A1 DE 19739722A1 DE 1997139722 DE1997139722 DE 1997139722 DE 19739722 A DE19739722 A DE 19739722A DE 19739722 A1 DE19739722 A1 DE 19739722A1
Authority
DE
Germany
Prior art keywords
fluids
boards
fluid
channels
structured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE1997139722
Other languages
German (de)
Inventor
Lienhard Prof Dr Pagel
Wolfgang Fredrich
Tobias Merkel
Michael Graeber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE1997139722 priority Critical patent/DE19739722A1/en
Publication of DE19739722A1 publication Critical patent/DE19739722A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44791Microapparatus
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0272Adaptations for fluid transport, e.g. channels, holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0874Three dimensional network
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1827Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using resistive heater
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids

Abstract

Rich fluid microengineered system comprises stacked and bonded structured copper-clad circuit boards. When etched (e.g.) printed circuit boards (PCBs) are stacked, intermediate spaces form channels for liquids and gases (fluids). Spaces may be adhesive-filled, preferably with wider tracks bordering the insulants. Multilayer construction includes non-structured boards, and boards of other materials. Holes interconnect fluid between planes. Connectors exchange flow with other systems. Recesses in boards form storage- and reaction chambers. Sensors in them, contact fluids directly. Electrical components, e.g. resistors, transfer energy. Channels filled by adhesive or lacquer prevent direct contact between fluid and track metal (2) and/or circuit board (1). Flat or structured sheets e.g. film, foil or membrane (10) may be located between boards. These can be designed as filters. As a valve, a membrane controls flow (12), when actuated by a control pressure (11). Tracks bordering channels may undertake electrical functions. They especially heat the fluid channels; they determine temperature; they determine conductivity and/or dielectric constant of the fluids. Thus can one and the same circuit board, combine both fluid applications and electronic circuitry.

Description

Es ist bekannt, daß fluidische Mikrosysteme aus siliziumbasierten Stoffen bestehen (S. Büttgenbach: Mikromechanik, B. G. Teubner, Stuttgart 1991; A. Heuberger: Mikrome­ chanik, Springer-Verlag, Berlin 1991; u. a.). Die Herstellung erfordert aufwendige tech­ nologische Einrichtungen und Ausstattungen.It is known that fluidic microsystems consist of silicon-based substances (S. Büttgenbach: Micromechanics, B.G. Teubner, Stuttgart 1991; A. Heuberger: Mikrome chanik, Springer-Verlag, Berlin 1991; u. a.). The production requires complex tech biological facilities and equipment.

Mit Hilfe der LIGA-Technik können ebenfalls fluidische Mikrosysteme hergestellt wer­ den (R. Rapp, W. K. Schomburg, P. Bley: Konzeption, Entwicklung und Realisierung einer Mikromembranpumpe in LIGA-Technik, Kernforschungszentrum Karlsruhe 1993).With the help of LIGA technology, fluidic microsystems can also be manufactured den (R. Rapp, W. K. Schomburg, P. Bley: Concept, Development and Realization a micromembrane pump using LIGA technology, Nuclear Research Center Karlsruhe 1993).

Miniaturisierte Systeme für Flüssigkeiten werden an der Technischen Universität Wien hergestellt, die aus einem Trägermaterial und mehreren, unterschiedlich strukturierten Laminatschichten bestehen. Als Trägermaterialen werden hier Keramiken, Glas und Leiterplatten (FR4) eingesetzt. (P. Svasek, G. Jobst, G. Urban, E. Svasek: Dreidimen­ sionale Mikrosystemtechnik mit Trockenresisten, Technische Universität Wien).Miniaturized systems for liquids are at the Technical University of Vienna produced from a carrier material and several, differently structured Laminate layers exist. Ceramics, glass and Printed circuit boards (FR4) used. (P. Svasek, G. Jobst, G. Urban, E. Svasek: Dreidimen sional microsystem technology with dry resist, Vienna University of Technology).

Es bestand das Problem, auch ohne aufwendige technologische Ausrüstung kostengün­ stige fluidische Mikrosysteme für viele Anwendungen zu schaffen, mit denen eine enge Kopplung von fluidischen und elektronischen Komponenten ermöglicht wird. Dieses bringt Vorteile, da für Sensoren und Aktoren als Bestandteile fluidischer Mikrosysteme meistens eine elektronische Ankopplung zur Energiezufuhr und Datenverarbeitung notwendig ist. Der Kostenaufwand ist für fast alle Anwendungsgebiete ein entscheiden­ des Kriterium und muß daher so niedrig wie möglich liegen.There was the problem of being cost-effective even without complex technological equipment to create fluidic microsystems for many applications with which close Coupling of fluidic and electronic components is made possible. This brings advantages because for sensors and actuators as components of fluidic microsystems mostly an electronic connection for energy supply and data processing necessary is. The cost is a decisive factor for almost all areas of application of the criterion and must therefore be as low as possible.

Dieses Problem wird durch die im Patentanspruch angeführte Vorrichtung gelöst. Er­ staunlicherweise können strukturierte Leiterplatten wesentliche Bestandteile fluidischer Mikrosysteme bilden.This problem is solved by the device specified in the claim. He Amazingly, structured circuit boards can be essential components of fluid Form microsystems.

Der Einsatz strukturierter Leiterplatten für eines fluidischen Mikrosystem ermöglicht eine Herstellung von fluidischen und elektronischen Systemkomponenten mit vielen gemeinsamen Herstellungsschritten. An die technologische Ausstattung werden dabei nur sehr moderate Anforderungen gestellt. Es wird möglich, mit im Vergleich z. B. zur Sili­ ziumtechnologie einfachen Mitteln fluidische Mikrosysteme zusammen mit notwendi­ gen elektronischen Baugruppen zu erzeugen. Als Ergebnis liegen kostengünstige fluidi­ sche Mikrosysteme für ein weites Anwendungsspektrum auf technischem, medizinisch­ biologischem Gebiet und in der Chemie vor.The use of structured printed circuit boards for a fluidic microsystem enables a production of fluidic and electronic system components with many common manufacturing steps. At the technological equipment only very moderate requirements. It becomes possible to compare z. B. for sili  technology simple means fluidic microsystems together with necessary generate electronic assemblies. The result is low-cost fluidi microsystems for a wide range of applications on technical, medical biological field and in chemistry.

AusführungsbeispieleEmbodiments

In Fig. 1 ist ein fluidisches Mikrosystem in Leiterplattentechnologie dargestellt, das aus einem Kanal besteht, der zwei Bohrungen miteinander verbindet. Zur besseren Über­ sicht wurde das System mit angehobener oberer Decklatte dargestellt. Als Ausgangsma­ terial dient handelsübliches Leiterplattenmaterial FR4 der Stärke 1,5 mm mit 35 µm Kup­ fer (2). In geeigneter Art und Weise ist die Kupferschicht so strukturiert, daß zwischen den beteiligten Platten (1) Hohlräume in Form eines Kanales (4) bestehen. Die Bohrun­ gen (3) mit einem Durchmesser von 0,6 mm dienen dem Zu- und Abfluß der Flüssigkeiten und Gase. Die Abdeckplatte wird durch eine plane Platten aus Glas gebildet, es können auch Keramiken oder Kunststoffen eingesetzt werden.In Fig. 1, a micro-fluidic system is shown in printed circuit board technology, which consists of a duct which connects two bores to each other. For a better overview, the system was shown with the top cover raised. Commercially available circuit board material FR4 with a thickness of 1.5 mm and 35 µm copper ( 2 ) serves as the starting material. The copper layer is structured in a suitable manner such that there are cavities in the form of a channel ( 4 ) between the plates ( 1 ) involved. The holes ( 3 ) with a diameter of 0.6 mm serve the inflow and outflow of liquids and gases. The cover plate is formed by a flat plate made of glass, ceramics or plastics can also be used.

Fig. 2 zeigt einen Querschnitt durch ein fluidisches Mikrosystem in Leiterplattentechno­ logie. Dieses ist hier in mehreren Ebenen ausgeprägt. Als Verbindung zwischen den Ebenen dienen Bohrungen (5). Die Kanäle für die Fluide sind 100 µm breit und an den Seiten durch Kupferbahnen (2) der strukturierten Leiterplatte begrenzt. Diese Kupfer­ bahnen können zusätzlich für sensorische und aktorische Aufgaben genutzt werden. Z.B. kann durch das Fließen eines starken elektrischen Stromes durch die Kanalwand der Kanal erwärmt oder durch Messung des elektrischen Widerstandes eines Teiles der Kanalwand auf eine Temperaturänderung rückgeschlossen werden. Die Kanalwände werden zur Messung von Ionenkonzentrationen in den Fluiden als Elektroden genutzt. Sind die Wände zum Fluid elektrisch isoliert, wird die Auswertung der Kapazität zweier gegenüberliegender Wände Informationen zu den Fluiden liefern. Fig. 2 shows a cross section through a fluidic microsystem in PCB technology. This is pronounced here on several levels. Holes ( 5 ) serve as a connection between the levels. The channels for the fluids are 100 µm wide and delimited on the sides by copper tracks ( 2 ) of the structured printed circuit board. These copper tracks can also be used for sensory and actuator tasks. For example, the channel can be heated by the flow of a strong electrical current through the channel wall or a change in temperature can be inferred by measuring the electrical resistance of a part of the channel wall. The channel walls are used as electrodes for measuring ion concentrations in the fluids. If the walls to the fluid are electrically isolated, the evaluation of the capacity of two opposite walls will provide information about the fluids.

Für den fluidischen Anschluß des Systems an die Außenwelt hat es über die Bohrung angebrachte Stutzen (6).For the fluidic connection of the system to the outside world, it has nozzles ( 6 ) attached via the bore.

Fig. 3 zeigt ein Vorratsvolumen (7) im Querschnitt, das durch Aussparung der Leiter­ platte zwischen den beiden Ebenen gebildet wird. Dieses Volumen dient dem Fluidsy­ stem als Vorratsvolumen bzw. als Kammer für sensorische oder aktorische Bauelemente (8). Diese Bauelemente haben elektrische Zuleitungen (9), die durch Kupferbahnen auf Leiterplatten einer angrenzenden Ebene gebildet werden. Fig. 3 shows a storage volume ( 7 ) in cross section, which is formed by cutting out the circuit board between the two levels. This volume serves the fluid system as a supply volume or as a chamber for sensor or actuator components ( 8 ). These components have electrical supply lines ( 9 ) which are formed by copper tracks on printed circuit boards of an adjacent level.

Fig. 4 zeigt ein aktives Ventil in Leiterplattentechnologie. Zwischen zwei übereinander angeordneten strukturierten Leiterplatten befindet sich eine Membran aus dünner Me­ tallfolie (10). Auch andere Materialien können verwendet werden. Über einen Steuer­ druck (11) wird der Durchfluß eines Fluides (12) in seiner Stärke geregelt. Wird anstelle der Membran ein geeigneter porenhaltiger Stoff gesetzt, wird ein durchströmendes Fluid gefiltert. Fig. 4 shows an active valve in printed circuit board technology. A membrane made of thin metal foil ( 10 ) is located between two structured printed circuit boards arranged one above the other. Other materials can also be used. Via a control pressure ( 11 ) the flow of a fluid ( 12 ) is regulated in its strength. If a suitable pore-containing substance is used instead of the membrane, a flowing fluid is filtered.

Fig. 5 zeigt den Querschnitt eines Kanales (4) aus Leiterplattenmaterialien. Von innen ist dieser Kanal mit einer Klebeschicht (13) beaufschlagt. Damit wird direkter Kontakt des Fluids mit den Kupferbahnen vermieden. In ähnlicher Art und Weise werden andere fluidische Elemente, z. B. Vorratskammern oder Sensoren, mit Klebstoff oder Lacken beschichtet. Fig. 5 shows the cross section of a channel ( 4 ) made of printed circuit board materials. An adhesive layer ( 13 ) is applied to this channel from the inside. This prevents direct contact of the fluid with the copper tracks. In a similar manner, other fluidic elements, e.g. B. pantries or sensors, coated with adhesive or paints.

Die elektronischen Schaltungen zur Ansteuerung der Aktoren und Sensoren, zur Daten­ verarbeitung und Stromversorgung sind zusätzlich auf einer oder mehreren beteiligten Leiterplatten untergebracht.The electronic circuits for controlling the actuators and sensors, for data processing and power supply are also involved on one or more Printed circuit boards.

Wurde beim Herstellungsprozeß als Verbundstoff Klebstoff verwendet, werden die Ka­ näle an den Stellen, wo die Kanalwand besonders breit ist, vom Klebstoff verschlossen. Dieses geschah beim Preßvorgang als Folge des Verdrängens von Klebstoff zwischen den Kupferbahnen und der darüber befindlichen Platte. Wesentlich dafür ist die Größe der Fläche, von der der Klebstoff verdrängt wurde, und der Druck, mit dem beim Zu­ sammenfügen gearbeitet wurde. Dieses Kanalverschließen kommt zum Einsatz, wenn Kupferstrukturen gleichzeitig mechanische Aufgaben (z. B. Kanalbegrenzung) und elek­ trische Aufgaben (z. B. kapazitiver Sensor) übernehmen und voneinander elektrisch iso­ liert sein müssen. An den Isolationsstellen kommt es durch den Verschluß nicht zu ei­ nem Entweichen von Fluiden. If adhesive was used as a composite material in the manufacturing process, the Ka The channels are sealed with adhesive at the points where the channel wall is particularly wide. This happened during the pressing process as a result of the displacement of adhesive between the copper tracks and the plate above. The size is essential the area from which the adhesive was displaced and the pressure with which the was put together. This channel sealing is used when Copper structures simultaneously mechanical tasks (e.g. channel limitation) and elec trical tasks (e.g. capacitive sensor) and electrically isolated from each other must be lined up. The closure does not result in egg closure escape of fluids.  

BezugszeichenlisteReference list

11

Leiterplattenmaterial
PCB material

22nd

strukturierte Kupferschicht
structured copper layer

33rd

Bohrung
drilling

44th

Kanal in einer Ebene
Channel in one level

55

Bohrung zwischen den Ebenen
Hole between the levels

66

Anschlußstutzen
Connecting piece

77

Volumen
volume

88th

elektronische Bauelement
electronic component

99

elektr. Zuleitungen
electr. Supply lines

1010th

Membran
membrane

1111

Steuerdruck
Control pressure

1212th

gesteuerter Strom
controlled current

1313

Versiegelung mit Klebstoff
Sealing with adhesive

Claims (1)

Vorrichtung, die aus ein- oder mehrlagigen kupferkaschierten, strukturierten Leiterplat­ ten besteht, die übereinander angeordnet und miteinander verbunden sind, gekennzeichnet dadurch, daß
Leiterzüge in geeigneter Weise so angeordnet sind, daß Zwischenräume entstehen,
die Zwischenräume als Kanäle für Flüssigkeiten und Gase (Fluide) genutzt werden kön­ nen,
die Zwischenräume mit isolierenden Stoffen, vorzugsweise Klebstoff, gefüllt sein kön­ nen, vorzugsweise dadurch, daß die begrenzenden Leiterzüge an den isolierenden Stof­ fen breiter sind,
ein mehrlagiger Aufbau aus strukturierten Leiterplatten und nicht strukturierten Leiter­ platten oder Platten aus anderen Materialien besteht,
Verbindungen für Fluide zwischen den Ebenen durch Bohrungen realisiert sind,
die Bohrungen über Anschlußstutzen mit anderen Fluidsystemen verbunden sein kön­ nen,
in einzelnen Platten Aussparungen eingebracht sein können, die als Vorratsvolumina und Reaktionskammern für die Fluide dienen,
in diesen Aussparungen Sensoren direkt Kontakt zu den Fluiden haben können und elektrische Bauteile (z. B. ein elektrischer Widerstand) Energie übertragen können,
die Kanäle von innen vollständig mit Klebstoff- oder Lackschichten ausgekleidet sein können, die den direkten Kontakt der Fluide zum Metall und zur Leiterplatte vermeiden, ebene oder strukturierte dünne Folien und Membranen zwischen den Platten als Ventile oder Filter dienen können,
die kanalbegrenzenden Leitbahnen elektrische Funktionen übernehmen können, vor­ zugsweise zum Heizen der Fluidkanäle, zum Bestimmen der Temperatur und der Leit­ fähigkeit der Fluide oder der Dielektrizitätskonstanten der Fluide,
ein und dieselbe Leiterplatte Leiterzüge für fluidische Anwendungen und elektronische Schaltungen besitzen kann,
die Strukturen verwendet werden können für
  • - Transport, Verteilung und Vermischung von Fluiden aller Art, vorzugsweise in Chemie, Biologie, Medizin, beispielsweise Medikamentendosierung und -zusammenstellung,
  • - Analyse von Fluiden aller Art, vorzugsweise in Chemie, Medizin, Biologie, Um­ weltanalytik, Katastrophenschutz,
  • - Veränderung von Fluiden aller Art, vorzugsweise durch chemische Reaktionen oder physikalische Prozesse.
Device consisting of single or multi-layer copper-clad, structured printed circuit boards which are arranged one above the other and connected to one another, characterized in that
Conductor tracks are arranged in a suitable manner so that gaps are created
the spaces can be used as channels for liquids and gases (fluids),
the spaces can be filled with insulating materials, preferably adhesive, preferably by virtue of the fact that the delimiting conductor lines on the insulating materials are wider,
a multilayer structure consisting of structured printed circuit boards and non-structured printed circuit boards or boards made of other materials,
Connections for fluids between the levels are realized through bores,
the holes can be connected to other fluid systems via connecting pieces,
recesses can be made in individual plates, which serve as storage volumes and reaction chambers for the fluids,
sensors can be in direct contact with the fluids in these recesses and electrical components (e.g. an electrical resistor) can transmit energy,
the channels can be completely lined with adhesive or lacquer layers from the inside, which avoid the direct contact of the fluids to the metal and the circuit board, flat or structured thin foils and membranes between the plates can serve as valves or filters,
the channel-delimiting interconnects can assume electrical functions, preferably for heating the fluid channels, for determining the temperature and the conductivity of the fluids or the dielectric constant of the fluids,
one and the same circuit board can have conductor tracks for fluidic applications and electronic circuits,
the structures can be used for
  • Transport, distribution and mixing of fluids of all kinds, preferably in chemistry, biology, medicine, for example drug dosage and composition,
  • - Analysis of all types of fluids, preferably in chemistry, medicine, biology, environmental analysis, civil protection,
  • - Change of fluids of all kinds, preferably through chemical reactions or physical processes.
DE1997139722 1997-09-10 1997-09-10 Rich fluid microengineered system Withdrawn DE19739722A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE1997139722 DE19739722A1 (en) 1997-09-10 1997-09-10 Rich fluid microengineered system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1997139722 DE19739722A1 (en) 1997-09-10 1997-09-10 Rich fluid microengineered system

Publications (1)

Publication Number Publication Date
DE19739722A1 true DE19739722A1 (en) 1999-04-01

Family

ID=7841863

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1997139722 Withdrawn DE19739722A1 (en) 1997-09-10 1997-09-10 Rich fluid microengineered system

Country Status (1)

Country Link
DE (1) DE19739722A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001025137A1 (en) * 1999-10-04 2001-04-12 Nanostream, Inc. Modular microfluidic devices comprising layered circuit board-type substrates
WO2001025138A1 (en) * 1999-10-04 2001-04-12 Nanostream, Inc. Modular microfluidic devices comprising sandwiched stencils
US6418968B1 (en) 2001-04-20 2002-07-16 Nanostream, Inc. Porous microfluidic valves
WO2002100543A1 (en) * 2001-06-07 2002-12-19 Nanostream, Inc. Microfluidic systems for combining discrete fluid volumes
WO2003018089A1 (en) * 2001-08-31 2003-03-06 Institute Of Materials Research And Engineering Liquid delivering device
WO2002055198A3 (en) * 2000-11-06 2003-03-13 Nanostream Inc. Microfluidic flow control devices
US6536477B1 (en) 2000-10-12 2003-03-25 Nanostream, Inc. Fluidic couplers and modular microfluidic systems
WO2004004906A1 (en) * 2002-07-03 2004-01-15 Nanostream, Inc. Microfluidic closed-end metering systems and methods
US6811695B2 (en) 2001-06-07 2004-11-02 Nanostream, Inc. Microfluidic filter
EP1542516A1 (en) * 2003-12-08 2005-06-15 Sentelic Corporation Heat dissipating microdevice and method of making the same
WO2006069730A1 (en) * 2004-12-28 2006-07-06 Hirschmann Laborgeräte GmbH & Co. KG Device for pumping fluids method for production thereof and pipette with said device
EP1834169A1 (en) * 2004-12-29 2007-09-19 Senseair AB A gas detecting arrangement
CN100364372C (en) * 2003-07-22 2008-01-23 陞达科技股份有限公司 Miniature circulating flow passage system and manufacturing method thereof
DE102008013857A1 (en) * 2008-03-12 2009-09-17 Ledon Lighting Jennersdorf Gmbh LED printed circuit board, has cooling fluid guide extending directly as through hole or extending indirectly from one side to another side of board, and active element i.e. nanomagnet, for active conveyance of cooling fluid in guide
WO2010086412A1 (en) * 2009-01-29 2010-08-05 Mgb Endoskopische Geräte Gmbh Berlin Insufflator
DE102011003007A1 (en) 2011-01-21 2012-07-26 Mgb Endoskopische Geräte Gmbh Berlin Printed circuit board with overpressure valve, insufflator
US9137895B2 (en) 2008-12-24 2015-09-15 Stmicroelectronics S.R.L. Micro-electro-mechanical systems (MEMS) and corresponding manufacturing process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2252844A (en) * 1991-02-14 1992-08-19 S B Services Pneumatic circuit track board
WO1992015408A1 (en) * 1991-02-28 1992-09-17 Dyconex Patente Ag Heinze & Co Specific microsieve, specific composite body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2252844A (en) * 1991-02-14 1992-08-19 S B Services Pneumatic circuit track board
WO1992015408A1 (en) * 1991-02-28 1992-09-17 Dyconex Patente Ag Heinze & Co Specific microsieve, specific composite body

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001025138A1 (en) * 1999-10-04 2001-04-12 Nanostream, Inc. Modular microfluidic devices comprising sandwiched stencils
WO2001025137A1 (en) * 1999-10-04 2001-04-12 Nanostream, Inc. Modular microfluidic devices comprising layered circuit board-type substrates
US6536477B1 (en) 2000-10-12 2003-03-25 Nanostream, Inc. Fluidic couplers and modular microfluidic systems
WO2002055198A3 (en) * 2000-11-06 2003-03-13 Nanostream Inc. Microfluidic flow control devices
US6748978B2 (en) 2001-04-20 2004-06-15 Nanostream, Inc. Microfluidic devices with porous regions
US6499499B2 (en) 2001-04-20 2002-12-31 Nanostream, Inc. Flow control in multi-stream microfluidic devices
US6418968B1 (en) 2001-04-20 2002-07-16 Nanostream, Inc. Porous microfluidic valves
WO2002100543A1 (en) * 2001-06-07 2002-12-19 Nanostream, Inc. Microfluidic systems for combining discrete fluid volumes
US6811695B2 (en) 2001-06-07 2004-11-02 Nanostream, Inc. Microfluidic filter
WO2003018089A1 (en) * 2001-08-31 2003-03-06 Institute Of Materials Research And Engineering Liquid delivering device
CN100356993C (en) * 2001-08-31 2007-12-26 新加坡科技研究局 Liquid delivering device
WO2004004906A1 (en) * 2002-07-03 2004-01-15 Nanostream, Inc. Microfluidic closed-end metering systems and methods
CN100364372C (en) * 2003-07-22 2008-01-23 陞达科技股份有限公司 Miniature circulating flow passage system and manufacturing method thereof
EP1542516A1 (en) * 2003-12-08 2005-06-15 Sentelic Corporation Heat dissipating microdevice and method of making the same
WO2006069730A1 (en) * 2004-12-28 2006-07-06 Hirschmann Laborgeräte GmbH & Co. KG Device for pumping fluids method for production thereof and pipette with said device
EP1834169A1 (en) * 2004-12-29 2007-09-19 Senseair AB A gas detecting arrangement
EP1834169A4 (en) * 2004-12-29 2010-07-07 Senseair Ab A gas detecting arrangement
AU2005322658B2 (en) * 2004-12-29 2012-01-19 Senseair Ab A gas detecting arrangement
US8257655B2 (en) 2004-12-29 2012-09-04 Senseair Ab Gas detecting arrangement
DE102008013857A1 (en) * 2008-03-12 2009-09-17 Ledon Lighting Jennersdorf Gmbh LED printed circuit board, has cooling fluid guide extending directly as through hole or extending indirectly from one side to another side of board, and active element i.e. nanomagnet, for active conveyance of cooling fluid in guide
DE102008013857B4 (en) * 2008-03-12 2017-03-23 Tridonic Jennersdorf Gmbh Actively cooled printed circuit board and LED module with such a printed circuit board
US9137895B2 (en) 2008-12-24 2015-09-15 Stmicroelectronics S.R.L. Micro-electro-mechanical systems (MEMS) and corresponding manufacturing process
US9642244B2 (en) 2008-12-24 2017-05-02 Stmicroelectronics S.R.L. Micro-electro-mechanical systems (MEMS) and corresponding manufacturing process
WO2010086412A1 (en) * 2009-01-29 2010-08-05 Mgb Endoskopische Geräte Gmbh Berlin Insufflator
US9138549B2 (en) 2009-01-29 2015-09-22 Mgb Endoskopische Geraete Gmbh Berlin Insufflator
DE102011003007A1 (en) 2011-01-21 2012-07-26 Mgb Endoskopische Geräte Gmbh Berlin Printed circuit board with overpressure valve, insufflator
WO2012098257A2 (en) 2011-01-21 2012-07-26 Mgb Endoskopische Geräte Gmbh Berlin Circuit board having a pressure-relief valve, insufflator

Similar Documents

Publication Publication Date Title
DE19739722A1 (en) Rich fluid microengineered system
Ibáñez-García et al. Green-tape ceramics. New technological approach for integrating electronics and fluidics in microsystems
AU714664B2 (en) Method of producing micro-electrical conduits
DE69906772T2 (en) Process for the production of integrated multilayer microfluidic components
EP0946861B1 (en) Method for applying a microsystem or a converter on a substrate, and device manufactured accordingly
EP1875181B1 (en) Thermoanalytic sensor
DE102007044889B4 (en) Diagnostic Test System
EP1541234B1 (en) Hybrid microfluidic chip and method of manufacture
EP1382952B1 (en) Micro mechanical pressure transducer with sensor at the separating diaphragm of the housing
DE10146545A1 (en) microcomponent
Vasilakis et al. High-performance PCB-based capillary pumps for affordable point-of-care diagnostics
US8414785B2 (en) Methods for fabrication of microfluidic systems on printed circuit boards
EP0620702A2 (en) Core for electrical interconnection substrates and electrical interconnection substrates with core, and method for manufacturing the same
WO2006005332A2 (en) Device for determining the characteristics of a gas
DE102019102836A1 (en) METHOD OF PANEL BONDING ACTIONS AND ELECTRONIC DEVICES WITH CAVES
Golonka et al. LTCC in microsystems application
DE10158416C1 (en) Multi-ball switch arrangement in layer / plate construction
DE102012023379B4 (en) Method for producing a mass spectrometer and corresponding mass spectrometer
DE102017205978B4 (en) Microfluidic system for cultivating or analyzing living cells or biomolecules and a process for its production
DE102016214883B4 (en) Valve made of a ceramic material and a method for its manufacture
DE19739717A1 (en) Circuit boards are bonded to form a fluidic micro-system
Fries et al. Liquid Crystalline Polymer-Based PCBMEMS
DE102013002667B4 (en) Microfluidic system with externally sealed cavities
Maeder et al. Integrated microfluidic devices based on low-temperature co-fired ceramic (LTCC) technology
DE102016124059B4 (en) DEVICE FOR MICROFLUIDICS

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8139 Disposal/non-payment of the annual fee
8170 Reinstatement of the former position
8139 Disposal/non-payment of the annual fee