DE19530376A1 - Biosensor - Google Patents

Biosensor

Info

Publication number
DE19530376A1
DE19530376A1 DE19530376A DE19530376A DE19530376A1 DE 19530376 A1 DE19530376 A1 DE 19530376A1 DE 19530376 A DE19530376 A DE 19530376A DE 19530376 A DE19530376 A DE 19530376A DE 19530376 A1 DE19530376 A1 DE 19530376A1
Authority
DE
Germany
Prior art keywords
electrode
measuring
biosensor
biosensor according
glassy carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19530376A
Other languages
English (en)
Other versions
DE19530376C2 (de
Inventor
Petra Abel
Wolfgang Allendoerfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fresenius SE and Co KGaA
Original Assignee
Fresenius SE and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fresenius SE and Co KGaA filed Critical Fresenius SE and Co KGaA
Priority to DE19530376A priority Critical patent/DE19530376C2/de
Priority to US08/698,120 priority patent/US5842983A/en
Priority to DE59609222T priority patent/DE59609222D1/de
Priority to EP96113118A priority patent/EP0759553B1/de
Priority to ES96113118T priority patent/ES2176382T3/es
Priority to JP8234758A priority patent/JPH09127042A/ja
Publication of DE19530376A1 publication Critical patent/DE19530376A1/de
Application granted granted Critical
Publication of DE19530376C2 publication Critical patent/DE19530376C2/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/817Enzyme or microbe electrode

Description

Die Erfindung betrifft einen Biosensor zur amperometrischen Bestimmung eines in einer wässerigen Lösung, insbesondere Blut, gelösten Substrats mit einem Enzym zur Umsetzung des Substrats, einer Arbeitselektrode, an deren Oberfläche eines der Produkte umgesetzt wird und die einen elektrisch leitenden Träger aus Kohlenstoff und ein auf dem elektrisch leitenden Träger aufgebrachtes Metall der 8. Nebengruppe aufweist, einem Ableitkontakt, der von der Arbeitselektrode abgeht und mit einer Gegenelektrode.
Biosensoren dienen zur Bestimmung eines Substrats, das mit Hilfe des im Biosensor vorgesehenen Enzyms in ein Umsetzungsprodukt katalytisch umgesetzt wird, das der Biosensor qualitativ und quantitativ bestimmen kann. Solche Enzymelektroden werden üblicherweise zur Bestimmung der Glukose in Blut eingesetzt, bei denen als Enzym Glukoseoxidase eingesetzt wird, mit deren Hilfe Glukose katalytisch in Glukonolakton/Glukonsäure und H₂O₂ umgesetzt wird. Bei der Amperometrie wird dann das Wasserstoffperoxid oxidiert nach folgender Gleichung:
H₂O₂-2H⁺+2e⁻+O₂.
Die an der Elektrode freigesetzten Elektronen werden als Oxidationsstrom abgeführt und sind in einem bestimmten Bereich proportional zur Glukosekonzentration.
Das vorstehende genannte Glukose- Biosensorsystem läßt sich ohne weiteres auf andere Systeme übertragen, beispielsweise auf das System Alkohol/Alkoholoxidase, Laktat/Laktatoxidase, Harnsäure/Urikase, Wasserstoffperoxid/Katalase und dergleichen.
Die üblicherweise eingesetzten Arbeitselektroden, die ein Enzym als Katalysator für die Umsetzung eines in Wasser gelösten Substrats aufweisen, arbeiten bei Referenzspannungen von 600 mV und mehr, was jedoch bei sämtlichen Meßsystemen bisher zu unerwünschten Korrosionen und anderen unerwünschten Nebenreaktionen geführt hat. Insofern wurde bereits versucht, diese Referenzspannung herabzusetzen, indem das Substratzersetzungsprodukt ebenfalls mit Hilfe eines Katalysators in dessen Folgeprodukt umgewandelt wird, wie dies vorstehend in der Umsetzungsgleichung gezeigt ist.
In der GB-PS 2,191,003 (EP 0 247 850) ist ein Biosensor in Form einer Enzymelektrode beschrieben, die in der Arbeitselektrode ein Metall der Platingruppe einsetzt. Um eine möglichst große Umsetzungsfläche zu erreichen, ist das Platinmetall in kolloider Form einheitlich verteilt auf einem elektrisch leitenden Träger vorgesehen. Dieses Trägermaterial liegt ebenfalls fein verteilt vor, üblicherweise als Kohlenstoffpulver, das mit Hilfe eines wasserabweisenden Bindemittelharzes verfestigt ist.
Eine derartig hergestellte Arbeitselektrode verfügt über hohe Stromdichten pro Flächeneinheit und weist üblicherweise eine Betriebsspannung von 300-350 mV gegenüber den vorstehend genannten Spannungen von 600-700 mV auf.
Auf dieser porösen Arbeitselektrode ist das Enzym entweder adsorbiert oder aber kovalent gebunden vorgesehen, wobei die Frontfläche der Arbeitselektrode mit einer porösen Membran abgedeckt sein kann, die gegenüber den zu bestimmenden Enzymsubstrat durchlässig ist.
Von dieser bekannten Arbeitselektrode gehen elektrische Kontakte, wie Platin, Silber und dergleichen ab.
Es hat sich nun herausgestellt, daß selbst ein elektrischer Kontakt aus dem üblicherweise eingesetzten Platin dem Biosensor keine lange Lebensdauer (maximal 1 Monat) garantiert, da er nach Ablauf dieser Periode korrodiert ist, so daß die gesamte Elektrode ausgetauscht werden muß. Auch andere Materialien, wie Gold oder Kupfer, haben sich bei dieser Elektrode als nicht einsetzbar erwiesen, da sie innerhalb weniger Wochen korrodiert waren.
Ähnliche Elektrodenanordnungen sind in der EP-470 290, EP-136 362, EP-127 958, EP-197 747, EP-48 090, EP-359 831, US 4 655 880, US 4 950 379, PCT-WO 89/05454 oder DD 2 97 713 beschrieben.
So weist die Arbeitselektrode gemäß EP 0 470 290 Glaskohlenstoff als Sensormaterial auf, das unmittelbar mit der Enzymschicht verbunden ist. Da es sich hier um keinen katalytisch wirksamen Sensor handelt, treten unterhalb einer Arbeitsspannung von 600 mV keine Effekte bei einer Glukose/Glukoseoxidase-Elektrodenanordnung auf, so daß auch dort die eingangs erwähnten unerwünschten Spannungen auftreten.
Der Erfindung liegt daher die Aufgabe zu Grunde, die eingangs erwähnte Elektrodenanordnung so zu verbessern, daß sie bei möglichst niedriger Arbeitsspannung, d. h. unterhalb 500 mV arbeitet und darüber hinaus langzeitstabil ist, also keine Korrosionseffekte zeigt.
Die Lösung der Aufgabe gelingt dadurch, daß man das Material für den Ableitkontakt Glaskohlenstoff einsetzt.
Der Einsatz von Glaskohlenstoff, der mit der Arbeitselektrode elektrisch­ leitend verbunden ist, hat zunächst den Vorteil, daß die Elektrode keinerlei Korrosionserscheinungen während der Lebensdauer der Elektrode unterzogen wird, die praktisch nur durch die Enzymaktivität bestimmt wird. Die Lebensdauer des Enzyms liegt üblicherweise bei 4-6 Monaten, also einer Zeitperiode, bei der sich keinerlei korrosive Veränderungen an der Glaskohlenstoffoberfläche zeigen. Es treten nur minimale oder gar keine Störpotentiale oder -spannungen an der Elektrode auf, so daß das gesamte Meßverfahren hierdurch erheblich vereinfacht wird. Dies führt dazu, daß mit der erfindungsgemäßen Elektrode direkt Messungen in unverdünnten Vollblut möglich sind, was unter anderem an Dauermessungen mit Humanblut nachvollzogen worden ist. Neben Vollblut können jedoch auch andere wässerige Körperflüssigkeiten, wie Serum, Plasma, Urin, Speichel, Dialyseflüssigkeiten, Elektrolytlösungen und dergleichen mehr auf das zu untersuchende Substrat, das in einer derartigen Lösung enthalten ist, mit dem erfindungsgemäßen Sensor untersucht worden.
Der erfindungsgemäße Biosensor wird vorteilhafterweise zur Bestimmung von Glukose eingesetzt, wobei als Enzym in diesem Fall Glukoseoxidase (GOD) zum Einsatz kommt. Jedoch können auch andere Oxidoreduktasen eingesetzt werden, zu denen beispielsweise Laktatoxidase, Cholesterinoxidase, Galaktoseoxidase sowie andere Peroxid produzierende Enzyme und Kombinationen solcher Enzyme gehören. Auf die bereits vorstehend erwähnten Substrat/Oxidasesysteme wird ebenfalls Bezug genommen (Harnsäure/Urikase; Ascorbinsäure/Ascorbatoxidase; Pyruvat/Pyruvatoxidase).
Die einsetzbaren Enzyme können entweder an dem elektrisch leitenden Trägermaterial adsorbiert werden oder aber unmittelbar mittels einer chemischen Reaktion kovalent an diesen Träger gebunden, d. h. immobilisiert werden.
Was zunächst den Träger selbst betrifft, so wird auf die vorstehend genannte EP 0 247 850 aus Offenbarungsgründen Bezug genommen, deren Inhalt zum Gegenstand dieser Anmeldung gemacht wird.
Das erfindungsgemäß eingesetzte Trägermaterial besteht aus einer porösen Schicht kohlenstoffhaltiger Partikel, die untereinander mit einem Harz-Bindemittel gebunden sind. Die Größe dieser Partikel beträgt bis zu 50 nm.
Die Partikel selbst weisen ein Kohlenstoff- oder Graphitpulver auf, das eine hohe Dichte funktioneller Gruppen (Carboxylate, amino- und schwefelenthaltende Gruppen) auf der Oberfläche aufweisen kann. Dieses Pulver kann auf Grund seiner großen Oberfläche sehr leicht die vorstehend genannten eingesetzten Enzyme binden.
Auf diesem Pulver wird vorteilhafterweise vor dessen Kompatieren mit Hilfe eines Bindemittels das Metall der 8. Nebengruppe in kolloider Suspension bis zu 20 Gewichtsprozent bezogen auf den Kohlenstoffträger aufgetragen, so daß sich eine einheitliche Verteilung des Platins oder Palladiums als Metall der Platingruppe vorteilhafterweise in den Kohlenstoffträger ergibt. Nach dem Vermischen mit dem platinhaltigen Material wird der Kohlenstoffträger mit einem üblicherweise wasserabstoßenden Harzbindemittel vermischt und in eine vorbestimmte Form überführt. Vorteilhafterweise werden fluorhaltige Harze, beispielsweise auf der Basis von PTFE als harzhaltige Bindemittel eingesetzt, wie dies in der vorstehend genannten EP-Schrift erläutert ist, worauf Bezug genommen wird. Dieses Bindemittel liegt in einer Menge bis zu 70 Gewichtsprozent vor, wobei dessen Gewichtsanteil üblicherweise nicht kritisch ist.
Das Bindemittel soll dabei eine minimale Sauerstoffdurchlässigkeit unter atmosphärischen Bedingungen, wenigstens 2 × 10-3 cm³ O₂/cm³ bezogen auf das Polymer, haben.
Desweiteren soll die Partikelgröße des kolloidalen Platin-Metalls in einem Bereich von etwa 1-3 nm liegen, das an die Oberfläche des Kohlenstoffpulver adsorbiert ist.
Vorteilhafterweise kann das elektrisch leitende Trägergemisch mit dem Platinmetall in eine Folie geformt werden, die vorteilhafterweise auf einer Kohlenstoffolie als Trägermaterial fixiert ist.
Bevorzugte Enzymelektrodensubstrate werden unter der Bezeichnung PACE von der Firma E-TEK vertrieben und werden üblicherweise als elektro­ katalytische Gasdiffusionselektroden in Brennstoffzellen eingesetzt.
Wie vorstehend erwähnt, kann das Enzym am Träger adsorbiert oder aber unmittelbar immobilisiert werden. Erfindungsgemäß ist die Adsorption eines Enzyms dann bevorzugt, wenn die Oberfläche des so behandelten Trägers mit einer mikroporösen, semipermeablen Membran gegenüber dem wässerigen Meßgut geschützt ist. Andererseits kann natürlich das Enzym durch eine Immobilisierungsbehandlung physikalischer oder chemischer Natur so fest an dem Träger haften, daß ein derartiger Schutz durch eine Membran nicht notwendig ist.
Bei der reinen Adsorption wird das Enzym in einer wässerigen Lösung oder Suspension vorgelegt, wobei diese Lösung auf den porösen Träger aufgetragen wird. Eine derart mit Enzym beschichtete Folie wird dann mit dem nachstehend erläuterten Ableitkontakt verbunden.
Andererseits kann das Enzym auf der Oberfläche des Trägers nach bekannten Immobilisierungstechniken, beispielsweise durch kovalente Bindung mit Carbodiimid oder Glutaraldehyd verbunden werden, wie dies in der vorstehenden EP-Schrift erläutert ist, worauf wiederum Bezug genommen wird.
Der elektrische Ableitkörper oder -kontakt besteht aus Glaskohlenstoff, der durch Pyrolyse von Polymeren mit dreidimensionaler vernetzter Struktur gebildet wird. Im Makrobereich hat glashaltiger Kohlenstoff praktisch keine Poren, besitzt jedoch in seinen Schichten zahlreich Hohlräume. Er ist außerordentlich korrosionsbeständig gegen Säuren und Alkalien sowie Schmelzen und wird erst oberhalb von etwa 550°C durch Sauerstoff bzw. oxidierende Schmelzen angegriffen.
Weitere Einzelheiten zu Glaskohlenstoff sind in der Zeitschrift für Werkstofftechnik 15 (1984) Seite 331-338 beschrieben, worauf bezug genommen wird. Erfindungsgemäß einsetzbare Glaskohlenstoffe werden in Form von platt-, ring-, stäbchen- und scheibenförmigen Elektroden für die chemische Analytik vertrieben. Darüberhinaus läßt sich die Oberfläche des Glaskohlenstoffs mechanisch bearbeiten, beispielsweise lassen sich Ringnuten und Bohrungen in zylindrische Körper einarbeiten.
Sofern erwünscht, kann die Oberflächenstruktur von Glaskohlenstoff durch Behandlung bei erhöhten Temperaturen, beispielsweise etwa 500°C, oder chemisch durch Einwirken von Salpetersäure aktiviert werden.
Erfindungsgemäß wird speziell für die Gegenelektrode im erfindungsgemäßen Meßverfahren aktivierte Glaskohlenstoff eingesetzt, während der Ableitkontakt der Arbeitselektrode aus üblicherweise nicht aktiviertem Glaskohlenstoff besteht.
Bei der Arbeitselektrode wird als Ableitkontakt ein stäbchenförmiger oder zylinderförmiger Körper eingesetzt, dessen Frontteil als Träger für den elektrisch leitenden Träger der Platinmetallelektrode dient. Sie nimmt weiterhin an ihrem rückwärtigen Ende einen Ableitdraht auf, der vorteilhafterweise in eine Axialbohrung des Glaskohlenstoffkörpers festsitzend und elektrisch leitend eingeführt ist.
Die erfindungsgemäße Arbeitselektrode wird vorteilhafterweise in Durchflußmeßzellen in Form einer 2- oder 3-Elektrodenanordnung eingesetzt.
Bei der 2-Elektrodenanordnung dient die Gegenelektrode zugleich auch als Bezugselektrode, während bei der 3-Elektrodenanordnung neben der Gegenelektrode eine Bezugselektrode vorliegt.
Bevorzugt ist bei der erfindungsgemäßen Meßzelle eine 3-Elektroden­ anordnung, die neben der erfindungsgemäßen Meßelektrode eine Ag/AgCl-Elektrode als Bezugselektrode und eine Gegenelektrode aus aktiviertem Glaskohlenstoff enthält.
Desweiteren können Sensoren für die Temperaturmessung oder weitere Elektroden zur Korrektur von Störstoffen, wie Rinderserumalbumin - Hilfselektroden eingesetzt werden.
Die Beispiele erläutern die Erfindung.
Es zeigen
Fig. 1 die Seitenansicht eines Glaskohlenstoffstiftes der Arbeitselektrode, teilweise aufgerissen, im Bereich des Kontaktstiftes;
Fig. 2 eine Meßzelle mit 3 Elektroden, wobei die Arbeitselektrode und Meßelektrode im Ausschnitt und im Aufriß gezeigt sind;
Fig. 3 eine vergrößerte Darstellung des Detail A von Fig. 2, wobei die Meßelektrode und die Referenzelektrode geschnitten dargestellt sind; und
Fig. 4 einen Schnitt durch die Meßzelle von Fig. 2 entlang der Linie IV-IV, wobei lediglich die Gegenelektrode eingesetzt ist.
Aus Fig. 1 ist der Elektrodenkörper 10 aus Glaskohlenstoff ersichtlich, der im wesentlichen eine zylinderförmige Struktur aufweist. Das Frontteil 12 des Elektrodenkörpers 10 ist gemäß der in Fig. 1 gezeigten Ausführungsform nach außen gewölbt ausgebildet, was - wie speziell bei der Meßzelle gemäß Fig. 2 nachstehend erläutert wird - die Anströmung der zu untersuchenden Lösung begünstigt. Benachbart zu dieser Wölbung 14 ist eine erste Ringnut 16 im Elektrodenkörper vorgesehen, in die ein erster O-Ring, wie aus Fig. 3 ersichtlich ist, eingelegt werden kann.
Im Anschluß an diese erste Ringnut sind weitere Ringnuten 20 und 22 über den Elektrodenkörper verteilt vorgesehen, in die weitere O-Ringe 24 und 26 eingelegt werden können.
Am rückwärtigen Ende des zylinderförmigen Elektrodenkörpers 10 ist vorteilhafterweise ein zylinderförmiger Absatz 28 vorgesehen, der gegenüber dem Elektrodenkörper 10 einen geringeren Durchmesser aufweist.
Desweiteren ist von der Rückseite her eine axiale Bohrung 30 im Elektrodenkörper 10 vorgesehen, innerhalb der ein Kontaktstift 32 elektrisch leitend vorgesehen ist, beispielsweise mit Hilfe eines elektrisch leitenden Klebers.
Wie ebenfalls auf Fig. 3 ersichtlich ist, unterscheiden sich die Elektrodenkörper 10 der Meßelektrode 34 und der Bezugselektrode 36 in ihrer Struktur nur dadurch, daß die Wölbung der Bezugselektrode 36 in ihrem Frontbereich 38 stärker ausgebildet ist.
Die Referenzelektrode besteht jedoch nicht - wie vorstehend erwähnt - aus Kohlenstoff, sondern aus einem Silber/Silberchlorid-Stift, der die entsprechenden Ringnuten 40-44 und O-Ringe 46-50 aufweist.
Gemäß Fig. 2 und 3 ist eine Meßzelle 52 dargestellt, die aus einem Elektrodenblock 54, üblicherweise aus einem transparenten Kunststoffmaterial, wie Acrylglas, besteht, der einen Meßkanal 56 aufweist, der sich quer durch den Elektrodenblock 54 erstreckt. Senkrecht von oben sind erste, zweite und dritte Bohrungen im Elektrodenblock 54 vorgesehen, von denen die erste und die zweite Bohrung 58, 60 bis zum Meßkanal 56 geführt sind, wobei die Durchgangsöffnung 64 bzw. 66 der ersten Bohrung 58 bzw. der zweiten Bohrung 60 zum Meßkanal 56 hin gegenüber dem Durchmesser dieser beiden Bohrungen 58 und 60 verengt ist, d. h. einen geringeren Durchmesser im Vergleich zum Bohrungsdurchmesser aufweist.
Dabei ist der Durchmesser der Bohrungen 58 und 60 so dimensioniert, daß dieser geringfügig größer ist als der Durchmesser des Elektrodenkörpers 10 der Meßelektrode 34 bzw. der Bezugselektrode 36. Andererseits sind jedoch die Außendurchmesser der O-Ringe 24 und 26 bzw. 48 und 50 etwas größer als der Durchmesser der Bohrungen 58 und 60, so daß es hier zu einer radialen Dichtung zwischen O-Ring/Bohrungswand kommt.
Wie weiterhin aus Fig. 3 ersichtlich ist, ist auf der Frontseite 12 der Arbeits- oder Meßelektrode 34 der vorstehend erwähnte elektrisch leitende Träger 68 mit einem Platinmetall vorgesehen, der weiterhin mit einer Enzym-Lösung getränkt ist. Soll Glukose, beispielsweise im Blut mit der Meßelektrode 34 bestimmt werden, so ist als Enzym Glukoseoxidase in dem Träger 68 vorgesehen, der aus einer mit kolloidalem Platin aktivierten Kohlenstoffolie besteht.
Um den Frontbereich 12 des Elektrodenkörpers 10 und den auf dem Frontbereich vorgesehenen Pace-Träger 68 ist eine semipermeable Membran 70 umhüllend angeordnet, die sich nach rückwärts bis über die erste Ringnut 16 hinaus erstreckt und vom O-Ring 18 in der Ringnut dicht gegenüber der Umgebung fixiert ist. Die in der Pace-Folie 68 vorgesehene Enzym-Lösung befindet sich innerhalb der Membran 70. Insofern ist die Glukoselösung in dem von der Membran 70 durch die Wirkung des O-Rings 18 gebildeten Raums dicht eingeschlossen und somit vor Einflüssen der Umgebung, insbesondere des zu messenden Guts, geschützt. Gleiches gilt für die Bezugselektrode 36, deren Frontbereich 38 ebenfalls von einer Membran 72 durch die Wirkung des O-Rings 46 geschützt ist.
Gemäß Fig. 2 ist der Einbau der Meßelektrode 34 und 36 in den Elektrodenblock 54 ersichtlich. Wie bereits vorstehend erläutert, werden die Elektroden radial mit Hilfe der O-Ringe 24, 26 bzw. 48 und 50 innerhalb der Bohrungen 58 bzw. 60 dicht angeordnet und außerdem geführt. Desweiteren erfolgt eine axiale Spannung der Elektroden 34 und 36 gegen die Durchtrittsöffnungen 64 und 66 mit Hilfe von Federn 74 bzw. 76, die auf den rückwärtigen Bereich des Elektrodenkörpers 10 bzw. 37 drücken, wobei der Absatz 28 als Führung für die Feder 74 dient. Die Spannung der Federn 74 und 76 innerhalb der Bohrungen 48 und 60 erfolgt dabei über hohle Stopfen oder Schrauben 78 bzw. 80, wie diese ebenfalls auf Fig. 2 ersichtlich ist. Um eine Beschädigung des Frontbereichs 12 bzw. 38 und der diesen Frontbereich 12, 38 überziehenden Membran 70 und 72 zu verhindern, ist jeweils in die Bohrung 60 und 62 benachbart zur Durchtrittsöffnung 64 und 66 jeweils ein O-Ring 82 und 84 eingelegt, gegen den sich der Außenrand des Frontbereichs 12, 38 dichtend federnd legt, wobei die Wölbungen der Frontseiten 14 und 38 in den Meßkanal 56 hineinragen, so daß durch die so erzielten, günstigen Anströmverhältnisse ein optimaler Probenkontakt erzielt wird. Durch die Vorwölbung in den Probenkanal kommt es zu einer totzonenfreien Anordnung, so daß hierdurch eine besonders probenverschleppungsarme Probenbehandlung gegeben ist.
Gemäß Fig. 4 ist lediglich die Gegenelektrode 86 dargestellt, die, wie in Verbindung mit der Darstellung von Fig. 2 ersichtlich ist, zylinderförmig ausgebildet ist. Die Längsachse dieser Gegenelektrode 86 läuft parallel zur Längsachse des Meßkanals 56, der auf seiner Unterseite einen entsprechend langen Schlitz 88 aufweist, gegen den die Außenfläche der Gegenelektrode 86 mit Hilfe eines Federelements 90 gedrückt ist. Dieses Federelement ist mit einer Schraube 92 am Elektrodenblock 54 befestigt, in dem zum Zwecke der Befestigung eine senkrechte Bohrung 94 vorgesehen ist, innerhalb der die Schraube mittels eines in der Bohrung vorgesehenen Gewindes 96 befestigt ist. Sowohl das Federelement 90 als auch die Schraube 92 sind elektrisch leitend, wobei die Schraube 92 über einen Kontaktstift 98 nach außen an den Meßstromkreis angeschlossen werden kann.
Wie aus Fig. 4 ersichtlich ist, wird zu Montagezwecken die Gegenelektrode 86, das metallische Federelement 90 und Schraube 92 von der Unterseite des Elektrodenblocks 54 her in eine im wesentlichen rechteckige Öffnung 87 eingeführt, die nach der Montage mit einem Gießharz 100 verschlossen wird. Die Gegenelektrode 86 selbst besteht - wie vorstehend erläutert - vorteilhaft aus aktiviertem Glaskohlenstoff.
Wie aus Fig. 2 weiterhin ersichtlich ist, ragen aus dem Elektrodenblock 2 weitere Kontaktstifte 102 und 104 heraus, die über elektrische Leitungen, von denen in Fig. 2 nur die Leitung 106 (Meßelektrodenleitung) gezeigt ist, mit der Meßelektrode 34 bzw. der Bezugselektrode 36 verbunden sind. Die entsprechende Bohrung 108 für den Elektrodenstift 102 ist aus Fig. 4 ersichtlich.
Beispiel 1
Eine mit kolloidalem Platin aktivierte Kohlenstoffolie wird mit einer Glukoseoxidase-Lösung derart betropft, daß die Folie etwa einen Glukosoxidasegehalt von etwa 10 Enzymeinheiten je mm² aufweist. Anschließend wird diese Folie in der Elektrodenanordnung gemäß Fig. 2-4 verwendet.
Diese Folie wird mit einer hydrophilen semipermeablen Membran umhüllt, wobei die Membran einen mittleren Porendurchmesser von etwa 30 nm besitzt. Durch den Meßkanal 56 werden unterschiedliche Glukose-Konzentrationen in Wasser/Blut geführt, wobei sich folgende Strom-Spannungs-Kurve (Voltamogramm) ergibt. Der Diffusionsgrenzstrom liegt dabei für eine Glukosekonzentration von 20 mmol/l bei etwa 3 A. Es treten nur minimale oder keine Störpotentiale/Polarisation auf. Desgleichen wird auch während der mittleren Lebensdauer der Elektrode (etwa 6 Monate), die nur durch den Verbrauch des Enzyms bestimmt ist, keine Korrosion beobachtet. Auf Grund der minimalen Probenverschleppung und des optimalen Probenkontakts treten deutliche, störungsfreie Signale auf. Die Meßwerte sind genauer und reproduzierbarer als bei den bisher eingesetzten Elektroden (2-Elektrodensystem vom Ag/Pt-Typ). Desgleichen ist die Linearität der Meßsignale bei unterschiedlichen Meßkonzentrationen verbessert und der Meßbereich selbst erweitert.
Vergleichsversuch 1
Anstelle von Glaskohlenstoff wird in der Meßelektrode Platin als Elektrodenkörper 10 zur Stromableitung benutzt.
Schon nach kurzer Zeit treten Korrosionseffekte durch die üblicherweise zusätzlich auftretenden Batteriepotentiale auf.
Vergleichsversuch 2
Anstelle der platinierten Kohlenstoff-Folie (Pace) wird eine nur aus Kohlenstoff bestehende Folie, die also nicht platiniert ist, eingesetzt. Ansonsten wird wiederum das Beispiel 1 wiederholt. Gegenüber den bei der Pace-Folie eintretenden Meßeffekten, zu deren Erzeugung ein Potential von etwa 330 mV anzulegen ist, tritt hier erst ein Meßeffekt bei etwa 845 mV auf, dabei ist die Messung begleitet von Elektrolyse-Störeffekten, so daß diese Elektrode nur bedingt eingesetzt werden kann.

Claims (12)

1. Biosensor zur amperometischen Bestimmung eines in einer wässerigen Lösung, insbesondere Blut, gelösten Substrats mit einem Enzym zur Umsetzung des Substrats, einer Meßelektrode (34), deren Oberfläche sich für eine Redoxreaktion der Substratumsetzungsprodukte eignet, und die einen elektrisch leitenden Träger aus Kohlenstoff (68) und ein auf den elektrisch leitenden Träger aufgebrachtes Metall der 8. Nebengruppe aufweist, einem Ableitkontakt (10), der von dem elektrisch leitenden Träger (68) abgeht, und mit einer Gegenelektrode (86), dadurch gekennzeichnet, daß der Ableitkontakt (10) aus Glaskohlenstoff besteht.
2. Biosensor nach Anspruch 1 dadurch gekennzeichnet, daß der Glaskohlenstoff aktiviert ist.
3. Biosensor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Ableitkontakt (10) ein Zylinderteil aufweist, auf dessen Frontseite die Arbeitselektrode angeordnet ist.
4. Biosensor nach einem der Ansprüche 1-3, dadurch gekennzeichnet, daß die Frontseite (12) nach außen gewölbt ist.
5. Biosensor nach einem der Ansprüche 1-4, dadurch gekennzeichnet, daß die Arbeitselektrode mit einer semipermeablen Membran (70) abgedeckt ist, die am Ableitkontakt (10) fixiert ist.
6. Biosensor nach einem der Ansprüche 1-5, dadurch gekennzeichnet, daß der zylinderförmige Elektrodenkörper auf seiner Oberfläche eine erste Ringnut (16) zur Aufnahme eines O-Rings (18) aufweist, mit dem die Membran (70) am Elektrodenkörper (10) fixierbar ist.
7. Bionsensor nach einem der Ansprüche 1-3, dadurch gekennzeichnet, daß der zylinderförmige Elektrodenkörper weitere Ringnuten (20, 22) zur Aufnahme von weiteren O-Ringen (24, 26) aufweist, mit denen der Elektrodenkörper (10) gegen eine in einem Elektrodenblock (54) vorgesehene Bohrung (58) radial fixierbar ist.
8. Biosensor nach Anspruch 1, dadurch gekennzeichnet, daß die Gegenelektrode (86) aus Glaskohlenstoff besteht, der vorzugsweise aktiviert ist.
9. Biosensor nach Anspruch 1, dadurch gekennzeichnet, durch eine Bezugselektrode (36) aus Silber/Silberchlorid.
10. Meßzelle (52) mit einem Meßkanal (56), einer ersten Bohrung (58), in der die Meßelektrode (34) gemäß Anspruch 1 vorgesehen ist, einer zweiten Bohrung (60), in der die Referenzelektrode (36) gemäß Anspruch 9 vorgesehen ist, wobei die erste und zweite Bohrung (58) und (60) im wesentlichen senkrecht zum Meßkanal (56) angeordnet sind, und mit einer zylinderförmigen Gegenelektrode (86) gemäß Anspruch 8.
11. Meßzelle nach Anspruch 10, dadurch gekennzeichnet, daß die Gegenelektrode (86) zumindest einen Teil der Wand des Meßkanals (56) bildet.
12. Meßzelle nach Anspruch 11, dadurch gekennzeichnet, daß die Längsachse der Gegenelektrode (86) zur Längsachse des Meßkanals (56) im wesentlichen parallel ist und die Gegenelektrode (86) gegen einen am Meßkanal (56) angeordneten Schlitz (88), der im Elektrodenblock (54) vorgesehen ist, gedrückt ist.
DE19530376A 1995-08-18 1995-08-18 Biosensor Expired - Fee Related DE19530376C2 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE19530376A DE19530376C2 (de) 1995-08-18 1995-08-18 Biosensor
US08/698,120 US5842983A (en) 1995-08-18 1996-08-15 Biosensor
DE59609222T DE59609222D1 (de) 1995-08-18 1996-08-15 Amperometrischer Biosensor
EP96113118A EP0759553B1 (de) 1995-08-18 1996-08-15 Amperometrischer Biosensor
ES96113118T ES2176382T3 (es) 1995-08-18 1996-08-15 Biosensor amperimetrico.
JP8234758A JPH09127042A (ja) 1995-08-18 1996-08-16 バイオセンサー

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19530376A DE19530376C2 (de) 1995-08-18 1995-08-18 Biosensor

Publications (2)

Publication Number Publication Date
DE19530376A1 true DE19530376A1 (de) 1997-02-20
DE19530376C2 DE19530376C2 (de) 1999-09-02

Family

ID=7769773

Family Applications (2)

Application Number Title Priority Date Filing Date
DE19530376A Expired - Fee Related DE19530376C2 (de) 1995-08-18 1995-08-18 Biosensor
DE59609222T Expired - Lifetime DE59609222D1 (de) 1995-08-18 1996-08-15 Amperometrischer Biosensor

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE59609222T Expired - Lifetime DE59609222D1 (de) 1995-08-18 1996-08-15 Amperometrischer Biosensor

Country Status (5)

Country Link
US (1) US5842983A (de)
EP (1) EP0759553B1 (de)
JP (1) JPH09127042A (de)
DE (2) DE19530376C2 (de)
ES (1) ES2176382T3 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19813870A1 (de) * 1998-03-29 1999-09-30 Mario Strobl Nichtimmobilisierte Bioelektrode
WO1999053258A1 (de) 1998-04-08 1999-10-21 Modine Manufacturing Company Wärmespeicher, insbesondere latentwärmespeicher

Families Citing this family (140)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5593852A (en) 1993-12-02 1997-01-14 Heller; Adam Subcutaneous glucose electrode
DE69809391T2 (de) 1997-02-06 2003-07-10 Therasense Inc Kleinvolumiger sensor zur in-vitro bestimmung
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US6134461A (en) 1998-03-04 2000-10-17 E. Heller & Company Electrochemical analyte
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6251260B1 (en) 1998-08-24 2001-06-26 Therasense, Inc. Potentiometric sensors for analytic determination
US6591125B1 (en) 2000-06-27 2003-07-08 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6338790B1 (en) 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
JP4801301B2 (ja) 1999-06-18 2011-10-26 アボット ダイアベティス ケア インコーポレイテッド 物質移動が制限された生体内分析物センサー
US6616819B1 (en) 1999-11-04 2003-09-09 Therasense, Inc. Small volume in vitro analyte sensor and methods
DE10009467A1 (de) * 2000-02-28 2001-09-20 Bcs Bio Und Chemosensoren Gmbh Enzymatisch-elektrochemische Durchflußmeßeinrichtung (EED)
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
US7041468B2 (en) 2001-04-02 2006-05-09 Therasense, Inc. Blood glucose tracking apparatus and methods
US7749174B2 (en) 2001-06-12 2010-07-06 Pelikan Technologies, Inc. Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge
US7682318B2 (en) 2001-06-12 2010-03-23 Pelikan Technologies, Inc. Blood sampling apparatus and method
US7025774B2 (en) 2001-06-12 2006-04-11 Pelikan Technologies, Inc. Tissue penetration device
ATE485766T1 (de) 2001-06-12 2010-11-15 Pelikan Technologies Inc Elektrisches betätigungselement für eine lanzette
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
EP1404234B1 (de) 2001-06-12 2011-02-09 Pelikan Technologies Inc. Gerät zur erhöhung der erfolgsrate im hinblick auf die durch einen fingerstich erhaltene blutausbeute
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7175642B2 (en) 2002-04-19 2007-02-13 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7226461B2 (en) 2002-04-19 2007-06-05 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7381184B2 (en) 2002-11-05 2008-06-03 Abbott Diabetes Care Inc. Sensor inserter assembly
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US7811231B2 (en) 2002-12-31 2010-10-12 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US8771183B2 (en) 2004-02-17 2014-07-08 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
DK1633235T3 (da) 2003-06-06 2014-08-18 Sanofi Aventis Deutschland Apparat til udtagelse af legemsvæskeprøver og detektering af analyt
US8066639B2 (en) 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
US7146202B2 (en) * 2003-06-16 2006-12-05 Isense Corporation Compound material analyte sensor
US7529574B2 (en) * 2003-08-14 2009-05-05 Isense Corporation Method of constructing a biosensor
US8282576B2 (en) 2003-09-29 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
EP1680014A4 (de) 2003-10-14 2009-01-21 Pelikan Technologies Inc Verfahren und gerät für eine variable anwenderschnittstelle
USD914881S1 (en) 2003-11-05 2021-03-30 Abbott Diabetes Care Inc. Analyte sensor electronic mount
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
EP1706026B1 (de) 2003-12-31 2017-03-01 Sanofi-Aventis Deutschland GmbH Verfahren und vorrichtung zur verbesserung der fluidströmung und der probennahme
US8828203B2 (en) 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
EP1765194A4 (de) 2004-06-03 2010-09-29 Pelikan Technologies Inc Verfahren und gerät für eine flüssigkeitsentnahmenvorrichtung
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US8571624B2 (en) 2004-12-29 2013-10-29 Abbott Diabetes Care Inc. Method and apparatus for mounting a data transmission device in a communication system
US8029441B2 (en) 2006-02-28 2011-10-04 Abbott Diabetes Care Inc. Analyte sensor transmitter unit configuration for a data monitoring and management system
US7883464B2 (en) 2005-09-30 2011-02-08 Abbott Diabetes Care Inc. Integrated transmitter unit and sensor introducer mechanism and methods of use
US7697967B2 (en) 2005-12-28 2010-04-13 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US8512243B2 (en) 2005-09-30 2013-08-20 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
US7731657B2 (en) 2005-08-30 2010-06-08 Abbott Diabetes Care Inc. Analyte sensor introducer and methods of use
US9788771B2 (en) 2006-10-23 2017-10-17 Abbott Diabetes Care Inc. Variable speed sensor insertion devices and methods of use
US10226207B2 (en) 2004-12-29 2019-03-12 Abbott Diabetes Care Inc. Sensor inserter having introducer
US9743862B2 (en) 2011-03-31 2017-08-29 Abbott Diabetes Care Inc. Systems and methods for transcutaneously implanting medical devices
US9259175B2 (en) 2006-10-23 2016-02-16 Abbott Diabetes Care, Inc. Flexible patch for fluid delivery and monitoring body analytes
US9398882B2 (en) 2005-09-30 2016-07-26 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor and data processing device
US20090105569A1 (en) 2006-04-28 2009-04-23 Abbott Diabetes Care, Inc. Introducer Assembly and Methods of Use
US8333714B2 (en) 2006-09-10 2012-12-18 Abbott Diabetes Care Inc. Method and system for providing an integrated analyte sensor insertion device and data processing unit
US9572534B2 (en) 2010-06-29 2017-02-21 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US7556724B2 (en) * 2005-02-10 2009-07-07 Bionime Corporation Electrochemical sensor strip and manufacturing method thereof
US8112240B2 (en) 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
US9521968B2 (en) 2005-09-30 2016-12-20 Abbott Diabetes Care Inc. Analyte sensor retention mechanism and methods of use
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US11298058B2 (en) 2005-12-28 2022-04-12 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
EP1968432A4 (de) 2005-12-28 2009-10-21 Abbott Diabetes Care Inc Einführung eines medizinischen gerätes
US7885698B2 (en) 2006-02-28 2011-02-08 Abbott Diabetes Care Inc. Method and system for providing continuous calibration of implantable analyte sensors
US8226891B2 (en) 2006-03-31 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US7620438B2 (en) 2006-03-31 2009-11-17 Abbott Diabetes Care Inc. Method and system for powering an electronic device
WO2007143225A2 (en) 2006-06-07 2007-12-13 Abbott Diabetes Care, Inc. Analyte monitoring system and method
US8732188B2 (en) 2007-02-18 2014-05-20 Abbott Diabetes Care Inc. Method and system for providing contextual based medication dosage determination
US8930203B2 (en) 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
US8123686B2 (en) 2007-03-01 2012-02-28 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US7928850B2 (en) 2007-05-08 2011-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8665091B2 (en) 2007-05-08 2014-03-04 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8461985B2 (en) 2007-05-08 2013-06-11 Abbott Diabetes Care Inc. Analyte monitoring system and methods
WO2008150917A1 (en) 2007-05-31 2008-12-11 Abbott Diabetes Care, Inc. Insertion devices and methods
CN101978260B (zh) * 2008-03-17 2014-12-17 美迪恩斯生命科技株式会社 电分析方法
US8483792B2 (en) * 2008-03-17 2013-07-09 Isense Corporation Analyte sensor subassembly and methods and apparatuses for inserting an analyte sensor associated with same
WO2009126900A1 (en) 2008-04-11 2009-10-15 Pelikan Technologies, Inc. Method and apparatus for analyte detecting device
JP5481822B2 (ja) * 2008-10-06 2014-04-23 ソニー株式会社 酵素電極及び該酵素電極を用いた燃料電池
US8103456B2 (en) 2009-01-29 2012-01-24 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US9402544B2 (en) 2009-02-03 2016-08-02 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
US20100213057A1 (en) 2009-02-26 2010-08-26 Benjamin Feldman Self-Powered Analyte Sensor
US9226701B2 (en) 2009-04-28 2016-01-05 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
US9184490B2 (en) 2009-05-29 2015-11-10 Abbott Diabetes Care Inc. Medical device antenna systems having external antenna configurations
EP3923295A1 (de) 2009-08-31 2021-12-15 Abbott Diabetes Care, Inc. Medizinische vorrichtungen und verfahren
WO2011026148A1 (en) 2009-08-31 2011-03-03 Abbott Diabetes Care Inc. Analyte monitoring system and methods for managing power and noise
US9314195B2 (en) 2009-08-31 2016-04-19 Abbott Diabetes Care Inc. Analyte signal processing device and methods
WO2011041469A1 (en) 2009-09-29 2011-04-07 Abbott Diabetes Care Inc. Method and apparatus for providing notification function in analyte monitoring systems
WO2011041531A1 (en) 2009-09-30 2011-04-07 Abbott Diabetes Care Inc. Interconnect for on-body analyte monitoring device
USD924406S1 (en) 2010-02-01 2021-07-06 Abbott Diabetes Care Inc. Analyte sensor inserter
ES2881798T3 (es) 2010-03-24 2021-11-30 Abbott Diabetes Care Inc Insertadores de dispositivos médicos y procedimientos de inserción y uso de dispositivos médicos
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US11064921B2 (en) 2010-06-29 2021-07-20 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
JP6321540B2 (ja) * 2011-07-26 2018-05-09 グリセンス インコーポレイテッド 気密密閉された筐体を備える埋め込み型分析物センサおよび該センサを製造する方法
US9980669B2 (en) 2011-11-07 2018-05-29 Abbott Diabetes Care Inc. Analyte monitoring device and methods
FI3300658T3 (fi) 2011-12-11 2024-03-01 Abbott Diabetes Care Inc Analyyttianturimenetelmiä
US10660550B2 (en) 2015-12-29 2020-05-26 Glysens Incorporated Implantable sensor apparatus and methods
US10561353B2 (en) 2016-06-01 2020-02-18 Glysens Incorporated Biocompatible implantable sensor apparatus and methods
US9968306B2 (en) 2012-09-17 2018-05-15 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
US10213139B2 (en) 2015-05-14 2019-02-26 Abbott Diabetes Care Inc. Systems, devices, and methods for assembling an applicator and sensor control device
WO2016183493A1 (en) 2015-05-14 2016-11-17 Abbott Diabetes Care Inc. Compact medical device inserters and related systems and methods
US10638962B2 (en) 2016-06-29 2020-05-05 Glysens Incorporated Bio-adaptable implantable sensor apparatus and methods
CN110461217B (zh) 2017-01-23 2022-09-16 雅培糖尿病护理公司 用于分析物传感器插入的系统、装置和方法
US10638979B2 (en) 2017-07-10 2020-05-05 Glysens Incorporated Analyte sensor data evaluation and error reduction apparatus and methods
US11278668B2 (en) 2017-12-22 2022-03-22 Glysens Incorporated Analyte sensor and medicant delivery data evaluation and error reduction apparatus and methods
US11255839B2 (en) 2018-01-04 2022-02-22 Glysens Incorporated Apparatus and methods for analyte sensor mismatch correction
USD1002852S1 (en) 2019-06-06 2023-10-24 Abbott Diabetes Care Inc. Analyte sensor device
USD999913S1 (en) 2020-12-21 2023-09-26 Abbott Diabetes Care Inc Analyte sensor inserter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227042A (en) * 1992-05-15 1993-07-13 The United States Of America As Represented By The United States Department Of Energy Catalyzed enzyme electrodes

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356074A (en) * 1980-08-25 1982-10-26 The Yellow Springs Instrument Company, Inc. Substrate specific galactose oxidase enzyme electrodes
WO1984003562A1 (en) * 1983-03-11 1984-09-13 Matsushita Electric Ind Co Ltd Biosensor
CA1226036A (en) * 1983-05-05 1987-08-25 Irving J. Higgins Analytical equipment and sensor electrodes therefor
US4655880A (en) * 1983-08-01 1987-04-07 Case Western Reserve University Apparatus and method for sensing species, substances and substrates using oxidase
GB8508053D0 (en) * 1985-03-28 1985-05-01 Genetics Int Inc Graphite electrode
GB8612861D0 (en) * 1986-05-27 1986-07-02 Cambridge Life Sciences Immobilised enzyme biosensors
US4950379A (en) * 1987-04-09 1990-08-21 Nova Biomedical Corporation Polarographic cell
US5286364A (en) * 1987-06-08 1994-02-15 Rutgers University Surface-modified electochemical biosensor
GB8729002D0 (en) * 1987-12-11 1988-01-27 Iq Bio Ltd Electrode material
JPH01221653A (ja) * 1988-02-29 1989-09-05 Shimadzu Corp 酵素電極
EP0359831B2 (de) * 1988-03-31 2007-06-20 Matsushita Electric Industrial Co., Ltd. Biosensor und dessen herstellung
US5269891A (en) * 1989-03-09 1993-12-14 Novo Nordisk A/S Method and apparatus for determination of a constituent in a fluid
US5089112A (en) * 1989-03-20 1992-02-18 Associated Universities, Inc. Electrochemical biosensor based on immobilized enzymes and redox polymers
CA2034734A1 (en) * 1990-03-02 1991-09-03 Mark L. Bowers Amperometric detection cell
DE4014109A1 (de) * 1990-05-02 1991-11-07 Siemens Ag Elekrochemische bestimmung der sauerstoffkonzentration
DD297713A5 (de) * 1990-08-31 1992-01-16 Akademie Der Wissenschaften Der Ddr,Dd Enzymmembran zur bestimmung hoher substratkonzentrationen mit enzymsensoren

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227042A (en) * 1992-05-15 1993-07-13 The United States Of America As Represented By The United States Department Of Energy Catalyzed enzyme electrodes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHINDLER, Johannes Georg, SCHINDLER, Maria M.: Eine neue Konstruktion von Durchflußsensoren mit tubulären ionenselektiven Carrier-PVC-Membranen und Zementfestableitung. In: Fresenius Z.Anal. Chem. (1989) 335:553-556 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19813870A1 (de) * 1998-03-29 1999-09-30 Mario Strobl Nichtimmobilisierte Bioelektrode
WO1999053258A1 (de) 1998-04-08 1999-10-21 Modine Manufacturing Company Wärmespeicher, insbesondere latentwärmespeicher

Also Published As

Publication number Publication date
JPH09127042A (ja) 1997-05-16
DE19530376C2 (de) 1999-09-02
ES2176382T3 (es) 2002-12-01
EP0759553A1 (de) 1997-02-26
US5842983A (en) 1998-12-01
DE59609222D1 (de) 2002-06-27
EP0759553B1 (de) 2002-05-22

Similar Documents

Publication Publication Date Title
EP0759553B1 (de) Amperometrischer Biosensor
EP0470290B1 (de) Elektrochemisch-enzymatischer Sensor
EP0790498B1 (de) Elektrochemische Sensoren mit verbesserter Selektivität und erhöhter Empfindlichkeit
Yang et al. Development of needle-type glucose sensor with high selectivity
EP0714985B1 (de) Elektrochemischer Enzymbiosensor
EP1307583B1 (de) Elektrochemischer einwegbiosensor für die quantitative bestimmung von analytkonzentrationen in flüssigkeiten
EP2017352B1 (de) Elektrochemischer Sensor mit kovalent gebundenem Enzym
DE69635589T2 (de) Elektrochemische bestimmung von fructosamin
DE102006014713B3 (de) Elektrochemischer Gassensor
EP2163190A1 (de) Elektrodensystem für Messung einer Analytkonzentration in-vivo
EP0603154B1 (de) Amperometrische Enzymelektrode
EP1141691B1 (de) Elektrodensystem
EP0550455B1 (de) Verfahren zur wasserreinigung
DE2010169C2 (de) Elektrochemisches Verfahren zum Einbringen von Spurenmengen eines Materials in die Oberflächenschicht eines Trägers
Motta et al. Activated carbon paste electrodes for biosensors
EP2544582B1 (de) Verfahren zur elektrochemischen Messung einer Analytkonzentration in-vivo und Brennstoffzelle hierfür
Rodriguez et al. Glucose biosensor prepared by the deposition of iridium and glucose oxidase on glassy carbon transducer
DE60216626T2 (de) Amperometrischer sensor
Redondo et al. 3D-printed nanocarbon sensors for the detection of chlorophenols and nitrophenols: Towards environmental applications of additive manufacturing
DE102008063727A1 (de) Elektrochemisches Verfahren zur Reduktion molekularen Sauerstoffs
DE19745486A1 (de) Elektrochemische Meßzelle zum Nachweis von Arsin und Phosphin
EP0666981A1 (de) Sensor zur erfassung von biologisch umsetzbaren substanzen
EP0693180B1 (de) Ammoniaksensor
Kulys et al. Glucose biosensor based on chitosan-gold and Prussian blue-gold nanoparticles
Wang et al. Anodic stripping voltammetry at mercury “films” deposited on conducting poly (3‐methylthiophene) electrodes

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
D2 Grant after examination
8364 No opposition during term of opposition
R082 Change of representative

Representative=s name: MAI DOERR BESIER PATENTANWAELTE, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20150303