DE10217351B3 - Interpenetrierende Netzwerke - Google Patents

Interpenetrierende Netzwerke Download PDF

Info

Publication number
DE10217351B3
DE10217351B3 DE10217351A DE10217351A DE10217351B3 DE 10217351 B3 DE10217351 B3 DE 10217351B3 DE 10217351 A DE10217351 A DE 10217351A DE 10217351 A DE10217351 A DE 10217351A DE 10217351 B3 DE10217351 B3 DE 10217351B3
Authority
DE
Germany
Prior art keywords
polyester
segments
polyester urethane
pentadecalactone
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE10217351A
Other languages
English (en)
Inventor
Andreas Lendlein
Annette Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MnemoScience GmbH
Original Assignee
MnemoScience GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MnemoScience GmbH filed Critical MnemoScience GmbH
Priority to DE10217351A priority Critical patent/DE10217351B3/de
Priority to DE50309517T priority patent/DE50309517D1/de
Priority to ES03008058T priority patent/ES2303877T3/es
Priority to EP03008058A priority patent/EP1362879B1/de
Priority to AT03008058T priority patent/ATE391145T1/de
Priority to CA002425816A priority patent/CA2425816C/en
Priority to US10/418,885 priority patent/US7037984B2/en
Application granted granted Critical
Publication of DE10217351B3 publication Critical patent/DE10217351B3/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/06Unsaturated polyesters
    • C08L67/07Unsaturated polyesters having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2270/00Compositions for creating interpenetrating networks
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2280/00Compositions for creating shape memory
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/06Polyurethanes from polyesters

Abstract

Die vorliegende Erfindung betrifft interpenetrierende Netzwerke aus einer kovalent vernetzten Polymerkomponente und einer Polyesterurethankomponente. DOLLAR A Die Materialien der vorliegenden Erfindung eignen sich insbesondere als Materialien auf dem medizinischen Gebiet, als Implantate, zur zielgesteuerten, stimuli-sensitiven Wirkstofffreisetzung, zur Bandaugmentation, als Bandscheibenersatz.

Description

  • Die vorliegende Erfindung betrifft interpenetrierende Netzwerke aus einer kovalent vernetzten Polymerkomponente und einer Polyesterurethankomponente.
  • Polymere Werkstoffe sind wichtige Bausteine in vielen Anwendungsbereichen, in denen die klassischen Werkstoffe, wie Metalle, Keramik und Holz, aufgrund ihrer beschränkten physikalischen Eigenschaften nicht mehr ausreichend sind. Polymere Werkstoffe haben sich daher ein breites Anwendungsgebiet erobert, nicht zuletzt auch dadurch, dass sich durch Variation der monomeren Bausteine der polymeren Werkstoffe die Werkstoffeigenschaften variieren lassen. Eine insbesonders faszinierende Klasse an polymeren Werkstoffen, die in den vergangenen Jahren entwickelt wurden, sind die sogenannten Form-Gedächtnis-Polymere (im folgenden auch Shape Memory Polymere, SMP oder SMP-Materialien genannt), d.h. polymere Werkstoffe, die eine oder sogar mehrere Formen m „Gedächtnis" behalten können, wodurch gezielte Formveränderungen durch äußere Reize, wie Temperaturveränderung, ausgelöst werden können. Solche Materialien sind beispielsweise in den internationalen Patentanmeldungen WO-A-99-42528 und WO-A-99-42147 beschrieben. Ein Nachteil der dort z. B. beschriebenen thermoplastischen Materialien ist aber, dass beim wiederholten Durchlaufen eines Zyklus von Formveränderungen häufig nicht die erwünschte genaue Wiederherstellung der Ausgangsform erreicht wird. Darüber hinaus neigen diese Materialien des Stands der Technik aufgrund von irreversiblen Kriechprozessen bei wiederholtem Verformen häufig zum „Ausleiern", so dass erwünschte physikalische Eigenschaften im Verlauf von einigen Zyklen verloren gehen. US-A-6,160,084 beschreibt bioabbaubare Formgedächtnispolymer, die Caprolactoneinheiten aufweisen können. IPN, erhalten durch Photovernetzung sind auch offenbart. WO 01/91822 beschreibt Formgedächtnisthermoplaste und IPN, die Caprolactoneinheiten enthalten können.
  • Es ist daher die Aufgabe der vorliegenden Erfindung polymere Werkstoffe anzugeben, die die Nachteile des Stands der Technik überwinden. Die polymeren Werkstoffe sollten darüber hinaus die Möglichkeit eröffnen, dass durch einfache Variation der Zusammensetzung eine Eigenschaftensteuerung möglich wird, wodurch gezielt Materialien mit einem erwünschten Werkstoffprofil erhalten werden können.
  • Die vorliegende Erfindung löst diese Aufgabe durch das interpenetrierende Netzwerk nach. Anspruch 1. Bevorzugte Ausführungsformen sind in den Unteransprüchen angegeben. Darüber hinaus stellt die vorliegende Erfindung ein Verfahren zur Herstellung des erfindungsgemäßen interpenetrierenden Netzwerks zur Verfügung, wie in Anspruch 5 definiert. Bevorzugte Ausführungsformen sind wiederum in den Unteransprüchen angegeben.
  • 1 zeigt Zug-Dehnungs-Messungen mit einem erfindungsgemäßen Netzwerk (Versuch 9). 2 und 3 zeigen jeweils dreidimensionale Darstellungen von Zug-Dehnungs-Messungen unter Berücksichtigung der Temperatur für erfindungsgemäße Materialien (Versuch 8 bzw. Versuch 9).
  • Im folgenden wird die vorliegende Erfindung detailliert beschrieben.
  • Die interpenetrierenden Netzwerke im Sinne der Erfindung umfassen kovalent vernetzte Polymere, die von einer getrennt davon vorliegenden weiteren polymeren Komponente durchdrungen sind. Diese weitere polymere Komponente lässt sich durch physikalische Methoden nicht von dem Netzwerk abtrennen, ist selbst allerdings nicht vernetzt, weder mit Molekülen der eigenen Art noch mit der vernetzten Komponente. Die beiden wesentlichen polymeren Komponenten des erfindungsgemäßen Netzwerks werden im folgenden erläutert.
  • 1. Kovalent vernetzte Komponente
  • Das erfindungsgemäße Netzwerk umfasst eine Pofymerkomponente, die nicht lediglich physikalische Interaktionen zeigt sondern kovalent vernetzt vorliegt und die wie in Anspruch 1 definiert ist.
  • Diese Komponente wird erhalten durch Vernetzen von funktionalisierten Makromonomeren. Die Funktionalisierung erlaubt bevorzugt eine kovalente Verknüpfung der Makromonomere durch Reaktionen, die keine Nebenprodukte ergeben. Diese Funktionalisierung wird durch. ethylenisch ungesättigte Einheiten zur Verfügung gestellt, insbesondere bevorzugt durch Acrylatgruppen und Methacrylatgruppen, wobei letztere insbesondere bevorzugt sind. Die Makromonomere sind bevorzugt Polyestermakromonomere, insbesondere bevorzugt Polyestermakromonomere auf der Basis von Caprolacton. Andere mögliche Polyestermakromonomere basieren auf Lactideinheiten, Glycolideinheiten, p-Dioxanoneinheiten und deren Mischungen und Mischungen mit Caprolactoneinheiten, wobei Polyestermakromonomere mit Caprolactoneinheiten insbesondere bevorzugt sind.
  • Werden die oben beschriebenen Makromonomere vernetzt, so entstehen Netzwerke mit einer einheitlichen Struktur, wenn lediglich eine Art an Makromonomer eingesetzt wird. Werden zwei Arten an Makromonomeren eingesetzt, so werden Netzwerke vom AB-Typ erhalten. Solche Netzwerke vom AB-Typ können auch erhalten werden, wenn die funktionalisierten Makromonomere mit geeigneten niedermeolekularen oder oligomeren Verbindungen copolymerisiert werden. Sind die Makromonomere mit Acrylatgruppen oder Methacrylatgruppen funktionalisiert, so sind geeignete Verbindungen, die copolymersisiert werden können, niedermolekulare Acrylate, Metharylate, Diacrylate oder Dimethacrylate. Bevorzugte Verbindungen dieser Art sind Acrylate, wie Butylacrylat oder Hexylacrylat, und Methacrylate, wie Methylmethacrylat und Hydroxyethylmethacrylat.
  • Diese Verbindungen, die mit den Makromonomeren copolymerisiert werden können, können in einer Menge von 5 bis 70 Gew.-%, bezogen auf das Netzwerk aus Makromonomer und der niedermolekularen Verbindung vorliegen, bevorzugt in einer Menge von 15 bis 60 Gew.-%. Der Einbau von variierenden Mengen der niedermolekularen Verbindung erfolgt durch Zugabe entsprechender Mengen an Verbindung zur zu vernetzenden Mischung. Der Einbau der niedermolekularen Verbindung in das erfindungsgemäße Netzwerk erfolgt in einer Menge, die der in der Vernetzungsmischung enthaltenen Menge entspricht.
  • Die erfindungsgemäß zu verwendenden Makromonomere werden im folgenden detailliert beschrieben.
  • Die kovalent zu vernetzenden Makromonomere weisen bevorzugt ein Zahlenmittel des Molgewichts, bestimmt durch GPC-Analyse von 2000 bis 30000 g/mol, bevorzugt von 5000 bis 20000 g/mol und insbesondere bevorzugt von 7500 bis 15000 g/mol auf. Die kovalent zu vernetzenden Makromonomere weisen bevorzugt an beiden Enden der Makromonomerkette eine Methacrylatgruppe auf. Eine derartige Funktionalisierung erlaubt die Vernetzung der Makromonomere durch einfache Photoinitiation (Bestrahlung).
  • Insbesondere bevorzugt sind die erfindungsgemäß einzusetzenden Makromonomere Polyester, umfassend die vernetzbaren Endgruppen. Ein insbesondere bevorzugter, erfindungsgemäß einzusetzenden Polyester ist ein Polyester auf der Basis von Caprolacton, für den die oben aufgeführten Angaben über das Molgewicht gelten. Die Herstellung eines solchen Polyestermakromonomeren, an den Enden funktionalisiert, bevorzugt mit Methacrylatgruppen, kann durch einfache Synthesen, die dem Fachmann bekannt sind hergestellt werden. Diese Netzwerke, ohne Berücksichtigung der weiteren wesentlichen polymeren Komponente der vorliegenden Erfindung, zeigen semikristalline Eigenschaften und weisen einen Schmelzpunkt der Polyesterkomponente auf (bestimmbar durch DSC-Messungen), der abhängig von der Art der eingesetzten Polyesterkomponente ist und darüber somit auch steuerbar ist. Im allgemeinen liegt diese Temperatur (Tm1) jedoch in der Nähe von 50°C.
  • 2. Nicht-kovalent vernetzte Komponente
  • Das erfindungsgemäße interpenetrierende Netzwerk umfasst weiter eine Komponente aus Polyesterurethanen. Diese Polyesterurethane liegen im erfindungsgemäßen Netzwerk nicht kovalent vernetzt vor, sondern es liegen zwischen den verschiedenen Bereichen der Polyesterurethane allenfalls physikalische Wechselwirkungen vor.
  • Die im erfindungsgemäßen interpenetrierenden Netzwerk vorliegenden Polyesterurethane umfassen als Esterkomponente Einheiten, abgeleitet von Pentadecalacton. Insbesondere bevorzugte Polyesterurethane sind solche, die neben Einheiten aus Pentadecalacton auch Einheiten aus Caprolacton aufweisen. Weitere mögliche zusätzliche Esterkomponenten sind Einheiten auf der Basis von p-Dioxanon und anderen Estersegmente formenden Verbindungen, die für Form-Gedächtnis-Materialien bekannt sind und schon oben im Zusammenhang mit den Makromonomeren aufgelistet wurden. Bevorzugt sind jedoch in dieser Erfindung die Polyesterurethane die als Esterkomponente Einheiten, abgeleitet von Pentadecalacton aufweisen, insbesondere bevorzugt Einheiten aus Caprolacton und Einheiten aus Pentadecalacton.
  • Die Esterkomponente in den Polyesterurethanen hat ein Zahlenmittel des Molgewicht von 1000 bis 20000, insbesondere bevorzugt von 1500 bis 15000 g/mol, betimmt durch GPC.
  • Die Esterkomponente kann in Form von Homopolyesterblöcken oder Copolyesterblöcken vorliegen, bevorzugt sind Homopolyesterblöcke. Liegen Caprolactoneinheiten und Pentadecalactoneinheiten gemeinsam im erfindungsgemäß eingesetzten Polyesterurethan vor, so ist es bevorzugt, in Übereinstimmung mit dem oben Gesagten, wenn die Caprolactoneinheiten bzw. die Pentadecalactoneinheiten jeweils als Homopolyesterblöcke (im folgenden auch Segmente genannt) im Polyesterurethan vorliegen.
  • In bevorzugten Ausführungsformen werden Polypentadecalactonsegmente in Polyesterurethanen eingesetzt. Bei bevorzugten Ausführungsformen der vorliegenden Erfindung werden die Polypentadecalactonsegmente als Hartsegment in Polyesterurethanen eingesetzt, die neben den Polypentadecalactonsegmenten noch andere Polyestersegmente, bevorzugt Polycaprolactonsegmente, als Weichsegmente enthalten.
  • Das Polypentadecalactonsegment, enthalten im erfindungsgemäß eingesetzten Polyesterurethan wird üblicherweise in Form eines Makrodiols in das Polyesterurethan eingeführt. Dieses Segment kann durch ringöffnende Polymerisation aus ω-Pentadecalacton unter Zinnkatalyse und Einsatz von Ethylenglycol als Initiator erhalten werden. Durch das Verhältnis von Initiator zu Monomer kann das Molgewicht des Segments eingestellt werden. Das Molgewicht der Polypentadecalactonsegmente im erfindungsgemäßen Polyesterurethan ist nicht kritisch. Üblicherweise beträgt das Zahlenmittel des Molgewichts jedoch 1000 bis 20000 g/mol, bevorzugt 2000 bis 11000 g/mol, bestimmt durch GPC-Analyse. Das Makrodiol aus Pentadecalacton kann mit den bei der Herstellung von Polyurethanen üblichen Diisocyanaten zu Polyesterurethanen umgesetzt werden. Bevorzugte Diisocyanate sind dabei Verbindungen der Formel O=C=N-R-N=C=O, wobei R aromatisch oder aliphatisch sein kann. Bevorzugt ist R jedoch aliphatisch, mit einer Kohlenstoffkette mit 1 bis 10, bevorzugt 2 bis 8, insbesondere bevorzugt 4 bis 7 Kohlenstoffatomen. Diese Kohlenstoffkette kann mit Wasserstoff abgesättigt sein oder weitere Substituenten aufweisen. Diese Substituenten umfassen kurzkettige Alkylgruppen, insbesondere Methylgruppen. Ein insbesondere bevorzugtes Diisocyanat ist ein Trimethylhexan-1,6-diisocyanat.
  • Durch die Variation des Molgewichts des Polypentadecalactonsegments lassen sich die Eigenschaften des Polyesterurethans variieren. Das Molgewicht des Polyesterurethans ist nicht kritisch und kann in Abhängigkeit vom erwünschten Verwendungszweck gewählt werden. Typische Molgewichte (Zahlenmittel, bestimmt durch GPC) sind im Bereich von 100000 und 250000 g/mol, bevorzugt im Bereich von 150000 bis 200000 g/mol.
  • Die oben gemachten Ausführungen gelten auch für Polyesterurethane die als Esterkomponenete zusätzlich Polycaprolactonsegmente umfassen.
  • Bevorzugt enthält das Polyesterurethan, wenn ein Polypentadecalactonsegment vorliegt, noch mindestens ein weiteres Polyestersegment, insbesondere bevorzugt ein Polycaprolactonsegment. Diese Polyesterurethane sind Blockcopolymere mit Polypentadecalactonsegmenten, verknüpft mit anderen Polyestersegmenten, bevorzugt Polycaprolactonsegmenten. Das Polycaprolactonsegment kann, wie oben für das Polypentadecalactonsegment beschrieben, in Form eines Makrodiols in das erfindungsgemäße Polyesterurethan eingeführt werden. Dieses Makrodiol kann durch ringöffnende Polymerisation von ?-Caprolacton, analog dem oben beschriebenen Verfahren erhalten werden. Das Molgewicht des Polycaprolactonsegments ist nicht kritisch, üblicherweise weist dieses Segment jedoch ein Zahlenmittel des Molgewichts, bestimmt durch GPC, von 1000 bis 20000 g/mol auf, bevorzugt von 2000 bis 11000 g/mol. Die Polyesterurethane mit Polycaprolactonsegmenten weisen bevorzugt ein Molgewicht von 100000 bis 250000 g/mol (Zahlenmittel, bestimmt durch GPC) auf, stärker bevorzugt von 120000 bis 190000 g/mol. Der Anteil an Pentadecalactoneinheiten kann über einen breiten Bereich variieren, der Anteil an Pentadecalactoneinheiten liegt dann im Bereich von 10 bis 80 Gew.-%, insbesondere bevorzugt im Bereich von 20 bis 60 Gew.-%.
  • Werden die beiden oben beschriebenen Polyestersegmente durch Polyaddition mit den oben beschriebenen Diisocyanaten zu erfindungsgemäßen Polyesterurethanen umgesetzt, so lässt sich durch Variation der jeweiligen Anteile und Molmassen der Polyestersegmente das Eigenschaftsprofil der resultierenden Polyesterurethane über einen breiten Bereich einstellen. In dieser bevorzugten Ausführungsform der vorliegenden Erfindung wird also ein polymeres System zur Verfügung gestellt, das durch Variation einfacher Ausgangsmaterialien eine gezielte Eigenschaftenmodifizierung ermöglicht. Die erfindungsgemäßen Netzwerke weisen durch die Modifikationsmöglichkeiten des einzusetzenden Polyesterurethans eine Reihe von Variablen zur Eigenschaftsmodifizierung auf, wie Länge der Segmente im Polyesterurethan, Gehalt an Polyesterurethan im Netzwerk und chemische Zusammensetzung des Polyesterurethans.
  • Die bevorzugten Polyesterurethane der vorliegenden Erfindung, die neben den Polypentadecalactonsegmenten noch Polycaprolatonsegmente aufweisen, zeichnen sich durch weitere bevorzugte Eigenschaftsprofile aus.
  • Die Verwendung von Polyesterurethanen mit Polycaprolactonsegmenten hat für die erfindungsgemäßen Netzwerke den Vortei, dass identische Segmente im kovalent vernetzten Teil und im Polyesterurethan vorliegen (wenn auch das Netzwerk Caprolactoneinheiten umfasst), die eine gemeinsame kristalline Phase bilden können. Durch diese Cokristallisation wird die Durchdringung im interpenetrierenden Netzwerk der vorliegenden Erfindung auf molekularer Ebene gewährleistet und verbessert, so dass auch bei der Herstellung der erfindungsgemäßen bevorzugten interpenetrierenden Netzwerke weniger Probleme auftreten können.
  • Der Einsatz von Polyesterurethanen mit Polypentadecalactonsegmenten hat für die erfindungsgemäßen interpenetrierenden Netzwerke weitere Vorteile. In erfindungsgemäßen Materialien, die beispielsweise Polycaprolactonsegmente aufweisen, mit einer Schmelztemperatur bei 50°C (siehe oben), kann durch die Einführung der Polypentadecalactonsegmente eine zweite Schmelztemperatur (bestimmbar durch DSC-Messungen) eingeführt werden. Diese zweite Temperatur (Tm2) liegt in der Nähe von 90°C. Die Polycaprolactonsegmente und die Polypentadecalactonsegmente bilden drüber hinaus keine Mischkristalle sondern jeweils eigenen Phasen.
  • Weiterhin können die mechanischen Eigenschaften gezielt über einen weiten Bereich variiert werden. Mit steigendem Anteil an Polypentadeclacton kann der Wert für das E-Modul des Polyesterurethans gesteigert werden. Der Wert für die Bruchdehnung kann in einem Bereich von 600 bis 1200% mit steigendem Polypentadecalactongehalt eingestellt werden und auch die Zugfestigkeit lässt sich mit steigendem Gehalt an Polypentadecalactonsegment über einen Bereich von 4 bis 10 MPa einstellen (alle Werte bestimmt bei 70°C). Durch die geringere, d.h. langsamere Bioabbaubarkeit der Polypentadecalactonsegmente, verglichen mit z.B. Polyparadioxanonsegmenten, können auch die bevorzugten Polyesterurethane der vorliegenden Erfindung in Anwendungen zum Einsatz kommen in denen die Polyesterurethane mit Polyparadioxanonsegmenten aufgrund der schnellen Abbaubarkeit und der damit verbundenen ungenügenden mechanischen Stabilität nicht einsetzbar sind. Im Vergleich mit den Polyesterurethanen mit Polycaprolactonsegmenten und Polyparadioxanonsegmenten zeichnen sich die bevorzugten Polyesterurethane darüber hinaus durch eine vergrößerte Produktionsstabilität und Granulierfähigkeit aus, was die Herstellung und Handhabung der erfindungsgemäßen Netzwerke vereinfacht.
  • In den erfindnungsgemäßen Netzwerken, so haben Untersuchungen gezeigt, führt eine Erhöhung des Anteils an Polyesterurethan zu einer Erhöhung der Bruchdehnung, bei 22°C z.B. von 250% auf 450%. Gleichzeitig steigt die Differenz zwischen Streckspannung und Zugfestigkeit.
  • Insbesondere bevorzugte Polyesterurethane, verwendet in der vorliegenden Erfindung, die sowohl Polypentadecalactonsegmente als auch Polycaprolactonsegemente aufweisen zeigen darüber hinaus Form-Gedächnis-Eigenschaften, so dass diese bevorzugten Materialien schon selbst als Shape-Memory-Polymere (SMP) bezeichnet werden können.
  • Die erfindungsgemäßen, interpenetrierenden Netzwerke werden erhalten durch das Vernetzen der endgruppenfunktionalisierten Makromonomere in der Gegenwart der Polyesterurethane. Zusätzlich zu den Makromonomeren können, wie bereits vorstehend ausgeführt, niedermolekulare Comonomere, wie Acrylate oder Methacrylate, beispielsweise Alkylacrylate oder Alkylmethacrylate eingesetzt werden, so dass kovalent vernetzte AB-Netzwerke entstehen. Diese Vernetzung kann erreicht werden durch das Bestrahlen einer Mischung, umfassend die Polyesterurethankomponente und die endgruppenfunktionalisierte Makromonomerkomponnente und ggf. ein niedermolekulares Comonomer. Geeignete Verfahrensbedingungen dafür sind das Bestrahlen der Mischung in Schmelze, mit Licht einer Wellenlänge von vorzugsweise 308 nm. Die zu vernetzende Mischung wird vorzugsweise vor dem Aufschmelzen und Vernetzen erhalten durch Lösen der einzusetzenden Ausgangskomponenten in einem geeigneten Lösungsmittel und Ausfällen der Mischung aus der Lösung in einem Fällmittel. Bevorzugte Lösungsmittel sind inerte, polare Lösungsmittel, insbesondere Chloroform. Die herzustellende Lösung weist bevorzugt eine Feststoffkonzentration von 2 bis 20 Gew.-% auf, insbesondere bevorzugt 8 bis 12 Gew.-%. Die Ausfällung erfolgt bevorzugt durch Eintropfen der Lösung in ein geeignetes inertes, unpolares Fällmittel, bevorzugt ein aliphatisches Kohlenwasserstofffällmittel, insbesondere bevorzugt die Hexanfraktion. Die Ausfällung erfolgt quantitativ, so dass bei der Lösungsherstellung die gewünschten Mischungsverhältnisse an Polyesterurethankomponete und funktionalisierter Makromonomerkomponente eingestellt werden können. Vor der Umsetzung in der Schmelze wird die ausgefällte Mischung bevorzugt noch getrocknet, insbesondere bevorzugt bei vergleichsweise milden Bedingungen, wie 25 bis 40°C und Umgebungsdruck.
  • Die Vernetzung, die wie oben beschrieben erfolgen kann, ergibt ein interpenetrierendes Netzwerk aus kovalent verknüpfter Makromonomerkomponente, darin verteilt die nicht kovalent verknüpften Polyesterurethane. Diese Polyesterurethane können jedoch physikalisch interagierende Bereiche ausbilden, die durch die gegebenenfalls kristallin vorliegenden Polyestersegmente der Polyesterurethane gebildet werden.
  • Die erfindungsgemäßen interpenetrierenden Netzwerke können variierende Mengen der einzelnen Bestandteile aufweisen.
  • Geeignete Mengen an endgruppenfunktionalisierter Makromonomerkomponente liegen zwischen 5 und 99 Gew.-%, bezogen auf die Mischung aus Makromonomerkomponente und Polyesterurethankomponente, bevorzugt zwischen 40 und 95 Gew.-% und insbesondere bevorzugt zwischen 60 und 90 Gew.-%.
  • Die Polyesterurethankomponente liegt somit im Allgemeinen in einer Menge von 1 bis 95 Gew.-% vor, bevorzugt von 5 bis 60 Gew.-%, insbesondere bevorzugt von 10 bis 40 Gew.-%, bezogen auf die Mischung aus Makromonomerkomponente und Polyesterurethankomponente.
  • Die Polyesterurethankomponete umfasst bevorzugt Polyesterurethane auf Basis von Caprolacton und Pentadecalacton. Die Gesamtmenge, im interpenetrierenden Netzwerk der Erfindung, an Pentadecalacton liegt bevorzugt im Bereich von 2 bis 30 Gew.-%, insbesondere bevorzugt im Bereich von 6 bis 25 Gew.-%, bezogen auf die Mischung aus Makromonomerkomponente und Polyesterurethankomponente.
  • Die interpenetrierenden Netzwerke der vorliegenden Erfindung zeichnen sich durch die folgenden Eigenschaften aus.
  • Insgesamt sind die interpenetrierenden Netzwerke der vorliegenden Erfindung gute SMP-Materialien, mit hohen Rückstellwerten, d.h. die ursprüngliche Form wird auch bei mehrfachem Durchlaufen eines Zyklus an Formänderungen zu einem hohen Prozentsatz, üblicherweise oberhalb von 90%, erneut erhalten. Dabei tritt auch kein nachteiliger Verlust an mechanischen Eigenschaftswerten auf. Die erfindungsgemäßen interpenetrierenden Netzwerke mit Polyesterurethanen auf Basis von Caprolacton zeigen einen Schmelzpunkt (Umwandlungspunkt), assoziiert mit einem Formveränderungspunkt. Die Netzwerke mit Polyesterurethanen auf Basis von Caprolacton und Pentadecalacton zeigen dagegen zwei solcher Schmelzpunkte, so dass diese bevorzugten erfindungsgemäßen Materialien zwei unterschiedliche Formen im „Gedächtnis" behalten können. Die Form-Gedächtnis-Eigenschaften der Materialien der vorliegenden Erfindung werden nachfolgend kurz definiert.
  • Form-Gedächtnis-Polymere im Sinne der vorliegenden Erfindung sind Materialien, die durch ihre chemisch-physikalische Struktur in der Lage sind, gezielte Formänderungen durchzuführen. Die Materialien besitzen neben ihrer eigentlichen permanenten Form eine weitere Form, die dem Material temporär aufgeprägt werden kann. Solche Materialien sind durch zwei Merkmale charakterisiert. Sie umfassen sogenannte Schaltsegmente, die einen extern stimulierten Übergang auslösen können, üblicherweise durch eine Temperaturänderung. Darüber hinaus umfassen diese Materialien kovalente Vernetzungspunkte, die für die sogenannte permanente Form verantwortlich sind. Diese permanente Form wird durch die dreidimensionale Struktur eines Netzwerks gekennzeichnet. Die in der vorliegenden Erfindung im erfindungsgemäßen Netzwerk vorliegenden Vernetzungspunkte sind kovalenter Natur und werden in den bevorzugten Ausführungsformen der vorliegenden Erfindung erhalten durch die Polymerisation der Methacrylatendgruppen. Die Schaltsegmente, die den thermisch induzierten Übergang (Formveränderung) auslösen, sind in der vorliegenden Erfindung, bezogen auf die bevorzugten Ausführungsformen, die Polycaprolactonsegmente bzw. Polypentadecalactonsegmente, die durch Änderung der kristallinen bzw. nichtkristallinen Struktur eine Formveränderung initiieren. Der thermische Übergangspunkt wird definiert durch die Schmelztemperaturen der kristallinen Bereiche (Tm). Oberhalb von Tm befindet sich das Material im amorphen Zustand und ist elastisch. Wird also eine Probe über die Übergangstemperatur Tm erwärmt, im flexiblen Zustand dann deformiert und wieder unter die Übergangstemperatur abgekühlt, so werden die Kettensegmente durch Einfrieren von Freiheitsgraden im deformierten Zustand fixiert (Programmierung). Es werden temporäre Vernetzungsstellen (nichtkovalent) geformt, so dass die Probe auch ohne äußere Last nicht mehr in ihre ursprüngliche Form zurück kehren kann. Beim erneuten Erwärmen auf eine Temperatur oberhalb der Übergangstemperatur werden diese temporären Vernetzungsstellen wieder aufgelöst und die Probe kehrt zu ihrer ursprünglichen Form zurück. Durch erneutes Programmieren kann die temporäre Form wieder hergestellt werden. Die Genauigkeit, mit der die ursprüngliche Form wieder erhalten wird, wird als Rückstellverhältnis bezeichnet. Bei interpenetrierenden Netzwerken der Erfindung die zwei Übergangstemperaturen (Tm) aufweisen, d.h. den bevorzugten Systemen in denen Caprolactonsegmente und Pentadecalactonsegmente vorliegen, können in der Art und Weise wie oben geschildert nacheinander zwei temporäre Formen programmiert werden. Die erste, permanente Form wird dabei wie gehabt durch die kovalenten Vernetzungsstellen fixiert. Die zweite temporäre Form wird durch Verformung des Materials oberhalb der oberen Übergangstemperatur Tm2 und Abkühlen einprogrammiert. Für die Fixierung dieser Form sind kristalline Vernetzungspunkte der Pentadecalactonsegmente verantwortlich. Die dritte, wiederum temporäre Form wird bestimmt durch die untere Übergangstemperatur Tm1 (Programmierung durch Verformung oberhalb dieser Temperatur und Abkühlen). Für die Fixierung dieser Form sind die kristallinen Vernetzungspunkte der Caprolactonsegmente verantwortlich. Durch geeignete Zug-Dehnungsexperimente kann der Form-Gedächtnis-Effekt gezeigt werden. Ein Beispiel solchen Zug-Dehnungs-Messungen ist in 1 gezeigt. Das dort untersuchte Material, ein interpenetrierendes Netzwerk mit kovalent vernetzten Polycaprolactonsegmenten und eine Polyesterurethankomponente auf der Basis von Caprolacton und Pentadecalacton, zeigt zwei abrufbare Formänderungen, angezeigt durch die beiden Stufen im Diagramm. Die Tatsache, dass die drei Wiederholungen der Messung sehr ähnliche Ergebnisse zeigen (kaum Abweichung der Meßdaten) zeigt an, dass das Material auch ein sehr gutes Rückstellverhältnis aufweist, sowie eine gute Beibehaltung des Form-Gedächtnis-Effekts.
  • Die erfindungsgemäßen interpenetrierenden Netzwerke der vorliegenden Erfindung können, neben den oben diskutierten wesentlichen Komponenten weitere Stoffe enthalten, solange die Funktion der Netzwerke nicht beeinträchtigt wird. Solche zusätzlichen Materialien können beispielsweise Färbmittel, Füllstoffe oder zusätzliche polymere Materialien sein, die für verschiedene Zwecke eingesetzt werden können. Insbesondere für medizinische Zwecke einzusetzende interpenetrierende Netzwerke der vorliegenden Erfindung können medizinische Wirkstoffe und Diagnostika, wie Kontrastmittel umfassen. Die Materialien der vorliegenden Erfindung eignen sich insbesondere als Materialien auf dem medizinischen Gebiet, als Implantate, zur zielgesteuerten, stimuli-sensitiven Wirkstofffreisetzung, zur Bandaugmentation, als Bandscheibenersatz.
  • Die folgenden Anwendungsbeispiele erläutern die Erfindung.
  • Herstellung interpenetrierender Netzwerke
  • Netzwerke wurden erhalten durch Bestrahlung von geschmolzenen Mischungen mit UV-Licht einer Wellenlänge von 308 nm. Die Mischungen umfassten jeweils ein Dimethacrylatpolycaprolacton (DMPC) (Mn = 10000 g/mol), erhalten durch ringöffnende Polykondensation von Caprolacton und anschließende Umsetzung der Endgruppen, so dass beide Enden mit Methacrylatgruppen versehen waren. Darüber hinaus enthielten die Mischungen jeweils Polyesterurethane (PU) unterschiedlicher Ausgestaltung (d.h. mit unterschiedlichem Gehalt an Pentadecalacton (PDL)), wie in der nachfolgenden Tabelle angegeben. Die Mischungen wurden erhalten durch Lösen der jeweiligen Komponenten in Chloroform, um eine Lösung mit einer Konzentration von 10 Gew.-% zu erhalten. Anschließend wurde diese Lösung in Hexanfraktion getropft, um die Ausgangsmaterialien in der erwünschten innigen Durchmischung auszufällen. Die Mischungen wurden bei 35°C bis zur Gewichtskonstanz getrocknet, dann bei 120°C geschmolzen. Die Polyesterurethane wurden erhalten durch ringöffnende Polymerisation von Caprolacton bzw. Pentadecalacton und Koppeln der erhaltenen Blöcke, die Diolendgruppen-funktionalisiert waren, durch Isocyanatverbindungen. Die Blöcke hatten jeweils ein Zahlenmittel des Molgewichts von 10000 g/mol.
  • Die Form in der die Vernetzung erfolgt entspricht der permanenten Form.
  • Figure 00130001
  • Die polymeren interpenetrierenden Netzwerke wurden im Hinblick auf ihre weiteren thermischen und mechanischen Eigenschaften untersucht. Die Ergebnisse dieser Untersuchungen sind in der folgenden Tabelle zusammengefasst.
  • Figure 00130002
  • Diese Experimente demonstrieren die überlegenen Eigenschaften der interpenetrierenden Netzwerke der vorliegenden Erfindung. Die Netzwerke zeichnen sich durch gute Werte für das die SMP-Eigenschaften kennzeichnende Gesamtrückstellverhältnis nach 5 Zyklen aus. Materialien des Stands der Technik zeigen hier häufig Werte von weniger als 80%. 2 zeigt entsprechende Messungen für ein erfindungsgemäßes interpenetrierendes Netzwerk, wobei die Untersuchung im Hinblick auf den Form-Gedächtnis-Effekt bei Tm1 durchgeführt wurde.
  • 3 zeigt entsprechende Daten für ein Experiment bei Tm2, wobei Rückstellverhältnisse von > 99% erhalten werden.
  • Die in den bevorzugten Materialien vorliegende zweite, höhere Schmelztemperatur ermöglicht, dass die Materialien zwei Formen im „Gedächtnis" behalten. Durch die einfachen Grundbausteine der erfindungsgemäßen Netzwerke ist darüber hinaus eine gewisse Einfachheit der Synthese sichergestellt. Durch Variieren der Zusammensetzung, wie oben demonstriert, können gezielt polymere Materialien erhalten werden, die sich durch erwünschte Eigenschaftskombinationen auszeichnen. 1 kann in diesem Zusammenhang noch einmal angeführt werden, da dort die beiden nacheinander ausgelösten Form-Gedächtnis-Effekte ersichtlich sind.

Claims (8)

  1. Interpenetrierendes Netzwerk, erhältlich durch Vernetzen einer Polymerkomponente, in der Gegenwart von Polyesterurethan, wobei das Polyesterurethan mindestens Segmente umfasst, abgeleitet von Pentadecalacton, wobei die Polymerkomponente auf Polyester basiert und ethylenisch ungesättigte Einheiten aufweist, wobei die Esterkomponente im Polyesterurethan ein Molgewicht von 1000 bis 20000 g/mol aufweist und wobei, wenn das Polyesterurethan neben den Pentadecalactoneinheiten noch weitere, von Pentadecalacton verschiedene Einheiten aufweist, der Anteil an Pentadecalactoneinheiten 10 bis 80 Gew.% beträgt, bezogen auf das Polyesterurethan.
  2. Interpenetrierende Netzwerk nach Anspruch 1, wobei die Polymerkomponente mit Methacrylatgruppen an den Enden funktionalisiert ist.
  3. Interpenetrierendes Netzwerk nach Anspruch 1 oder 2, wobei das Polyesterurethan Segmente aufweist, abgeleitet von Caprolacton und Pentadecalacton.
  4. Interpenetrierendes Netzwerk nach Anspruch 1, 2 oder 3, wobei die Polymerkomponente ein Dimethacralytderivat eines Polycaprolactons ist.
  5. Verfahren zur Herstellung eine interpenetrierenden Netzwerks umfassend die Bestrahlung einer Schmelze, umfassend eine Polymerkomponete und Polyesterurethan, wie in Anspruch 1 definiert, mit UV-Licht.
  6. Verfahren nach Anspruch 5, wobei die Polymerkomponente mit Methacrylatgruppen an den Enden funktionalisiert ist.
  7. Erfahren nach Anspruch 5, oder 6, wobei das Polyesterurethan Segmente aufweist, abgeleitet von Caprolacton und Pentadecalacton.
  8. Verfahren nach Anspruch 5, 6 oder 7, wobei die Polymerkomponente ein Dimethacralytderivat eines Polycaprolactons ist.
DE10217351A 2002-04-18 2002-04-18 Interpenetrierende Netzwerke Expired - Fee Related DE10217351B3 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE10217351A DE10217351B3 (de) 2002-04-18 2002-04-18 Interpenetrierende Netzwerke
DE50309517T DE50309517D1 (de) 2002-04-18 2003-04-14 Interpenetrierende Netzwerke
ES03008058T ES2303877T3 (es) 2002-04-18 2003-04-14 Redes interpenetrantes.
EP03008058A EP1362879B1 (de) 2002-04-18 2003-04-14 Interpenetrierende Netzwerke
AT03008058T ATE391145T1 (de) 2002-04-18 2003-04-14 Interpenetrierende netzwerke
CA002425816A CA2425816C (en) 2002-04-18 2003-04-17 Interpenetrating networks
US10/418,885 US7037984B2 (en) 2002-04-18 2003-04-17 Interpenetrating networks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10217351A DE10217351B3 (de) 2002-04-18 2002-04-18 Interpenetrierende Netzwerke

Publications (1)

Publication Number Publication Date
DE10217351B3 true DE10217351B3 (de) 2004-02-12

Family

ID=29264772

Family Applications (2)

Application Number Title Priority Date Filing Date
DE10217351A Expired - Fee Related DE10217351B3 (de) 2002-04-18 2002-04-18 Interpenetrierende Netzwerke
DE50309517T Expired - Lifetime DE50309517D1 (de) 2002-04-18 2003-04-14 Interpenetrierende Netzwerke

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE50309517T Expired - Lifetime DE50309517D1 (de) 2002-04-18 2003-04-14 Interpenetrierende Netzwerke

Country Status (6)

Country Link
US (1) US7037984B2 (de)
EP (1) EP1362879B1 (de)
AT (1) ATE391145T1 (de)
CA (1) CA2425816C (de)
DE (2) DE10217351B3 (de)
ES (1) ES2303877T3 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004110515A1 (de) * 2003-06-13 2004-12-23 Mnemoscience Gmbh Bioabbaubare stents
WO2007096708A2 (en) 2005-12-22 2007-08-30 Mnemoscience Gmbh Macro-diacrylates and macro-polyacrylates

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6241747B1 (en) 1993-05-03 2001-06-05 Quill Medical, Inc. Barbed Bodily tissue connector
US8795332B2 (en) 2002-09-30 2014-08-05 Ethicon, Inc. Barbed sutures
US5931855A (en) 1997-05-21 1999-08-03 Frank Hoffman Surgical methods using one-way suture
US7056331B2 (en) 2001-06-29 2006-06-06 Quill Medical, Inc. Suture method
US6848152B2 (en) 2001-08-31 2005-02-01 Quill Medical, Inc. Method of forming barbs on a suture and apparatus for performing same
US20040030062A1 (en) * 2002-05-02 2004-02-12 Mather Patrick T. Castable shape memory polymers
US6773450B2 (en) 2002-08-09 2004-08-10 Quill Medical, Inc. Suture anchor and method
US8100940B2 (en) 2002-09-30 2012-01-24 Quill Medical, Inc. Barb configurations for barbed sutures
US20040088003A1 (en) 2002-09-30 2004-05-06 Leung Jeffrey C. Barbed suture in combination with surgical needle
US7794494B2 (en) * 2002-10-11 2010-09-14 Boston Scientific Scimed, Inc. Implantable medical devices
US7524914B2 (en) * 2002-10-11 2009-04-28 The University Of Connecticut Shape memory polymers based on semicrystalline thermoplastic polyurethanes bearing nanostructured hard segments
JP4530990B2 (ja) * 2002-10-11 2010-08-25 ユニバーシティ オブ コネチカット 形状記憶特性を有するアモルファス及び半結晶質ポリマーのブレンド
US7976936B2 (en) * 2002-10-11 2011-07-12 University Of Connecticut Endoprostheses
WO2004033553A1 (en) * 2002-10-11 2004-04-22 University Of Connecticut Crosslinked polycyclooctene
AU2003277332B2 (en) * 2002-10-11 2009-03-12 University Of Connecticut Shape memory polymers based on semicrystalline thermoplastic polyurethanes bearing nanostructured hard segments
DE10300271A1 (de) * 2003-01-08 2004-07-22 Mnemoscience Gmbh Photosensitive polymere Netzwerke
US7624487B2 (en) 2003-05-13 2009-12-01 Quill Medical, Inc. Apparatus and method for forming barbs on a suture
NZ588140A (en) 2004-05-14 2012-05-25 Quill Medical Inc Suture methods and device using an enlongated body with cut barbs and a needle at one end and a loop at the other
US20090088846A1 (en) 2007-04-17 2009-04-02 David Myung Hydrogel arthroplasty device
AU2005322398A1 (en) * 2004-12-10 2006-07-06 University Of Connecticut Shape memory polymer orthodontic appliances, and methods of making and using the same
US8043361B2 (en) * 2004-12-10 2011-10-25 Boston Scientific Scimed, Inc. Implantable medical devices, and methods of delivering the same
EP1871306A4 (de) * 2005-04-01 2012-03-21 Univ Colorado Transplantat-fixiervorrichtung und-verfahren
DE102006012169B4 (de) * 2006-03-14 2007-12-13 Gkss-Forschungszentrum Geesthacht Gmbh Formgedächtnispolymer mit Polyester- und Polyethersegmenten, Verfahren zu seiner Herstellung und Formprogrammierung und Verwendung
DE102006017759A1 (de) 2006-04-12 2007-10-18 Gkss-Forschungszentrum Geesthacht Gmbh Formgedächtnispolymer mit Polyester- und Polyacrylsegmenten und Verfahren zu seiner Herstellung und Programmierung
US7846361B2 (en) 2006-07-20 2010-12-07 Orbusneich Medical, Inc. Bioabsorbable polymeric composition for a medical device
US20080085946A1 (en) * 2006-08-14 2008-04-10 Mather Patrick T Photo-tailored shape memory article, method, and composition
EP2073754A4 (de) 2006-10-20 2012-09-26 Orbusneich Medical Inc Bioresorbierbare polymerzusammensetzung und hintergrund für eine medizinische vorrichtung
US7959942B2 (en) 2006-10-20 2011-06-14 Orbusneich Medical, Inc. Bioabsorbable medical device with coating
DE102007010564A1 (de) 2007-02-22 2008-08-28 Gkss-Forschungszentrum Geesthacht Gmbh Verfahren zur Einschritt-Programmierung von Dreiformenkunststoffen
US20080236601A1 (en) * 2007-03-28 2008-10-02 Medshape Solutions, Inc. Manufacturing shape memory polymers based on deformability peak of polymer network
US8915943B2 (en) 2007-04-13 2014-12-23 Ethicon, Inc. Self-retaining systems for surgical procedures
WO2009042841A2 (en) 2007-09-27 2009-04-02 Angiotech Pharmaceuticals, Inc. Self-retaining sutures including tissue retainers having improved strength
US7923486B2 (en) * 2007-10-04 2011-04-12 Board Of Regents, The University Of Texas System Bio-polymer and scaffold-sheet method for tissue engineering
US8916077B1 (en) 2007-12-19 2014-12-23 Ethicon, Inc. Self-retaining sutures with retainers formed from molten material
EP2222233B1 (de) 2007-12-19 2020-03-25 Ethicon, LLC Selbsthaltendes chirurgisches nahtmaterial mit wärmekontaktvermittelten halterungen
US8118834B1 (en) 2007-12-20 2012-02-21 Angiotech Pharmaceuticals, Inc. Composite self-retaining sutures and method
EP2075272A1 (de) 2007-12-28 2009-07-01 Mnemoscience GmbH Formspeicherpolymernetzwerke aus vernetzbaren Thermoplasten
EP2075279A1 (de) 2007-12-28 2009-07-01 Mnemoscience GmbH Herstellung von Formspeicherpolymerartikeln mittels Formvorgängen
EP2075273A1 (de) * 2007-12-28 2009-07-01 Mnemoscience GmbH Mehrfach-Formspeicherpolymernetzwerke
DE102008004574A1 (de) * 2008-01-09 2009-07-16 Aesculap Ag Chirurgisches Nahtmaterial mit Verankerungselementen
US8615856B1 (en) 2008-01-30 2013-12-31 Ethicon, Inc. Apparatus and method for forming self-retaining sutures
EP2242430B1 (de) 2008-01-30 2016-08-17 Ethicon, LLC Vorrichtung und verfahren zur bildung von selbstfixierenden nähten
BRPI0907787B8 (pt) 2008-02-21 2021-06-22 Angiotech Pharm Inc método para formar uma sutura de autorretenção e aparelho para elevar os retentores em um fio de sutura a um ângulo desejado
US8216273B1 (en) 2008-02-25 2012-07-10 Ethicon, Inc. Self-retainers with supporting structures on a suture
US8641732B1 (en) 2008-02-26 2014-02-04 Ethicon, Inc. Self-retaining suture with variable dimension filament and method
CA2718718A1 (en) * 2008-03-21 2009-09-24 Biomimedica, Inc Methods, devices and compositions for adhering hydrated polymer implants to bone
US8128983B2 (en) * 2008-04-11 2012-03-06 Abbott Cardiovascular Systems Inc. Coating comprising poly(ethylene glycol)-poly(lactide-glycolide-caprolactone) interpenetrating network
EP2282681B1 (de) 2008-04-15 2018-12-12 Ethicon, LLC Selbsthaltende nähte mit bidirektionalen halteelementen oder unidirektionalen halteelementen
US8961560B2 (en) 2008-05-16 2015-02-24 Ethicon, Inc. Bidirectional self-retaining sutures with laser-marked and/or non-laser marked indicia and methods
EP2297217B1 (de) * 2008-07-07 2021-10-20 Hyalex Orthopaedics, Inc. Aus hydrophoben polymeren abgeleitete netzwerke aus interpenetrierenden hydrophilen polymeren
US8883915B2 (en) 2008-07-07 2014-11-11 Biomimedica, Inc. Hydrophobic and hydrophilic interpenetrating polymer networks derived from hydrophobic polymers and methods of preparing the same
US20120209396A1 (en) 2008-07-07 2012-08-16 David Myung Orthopedic implants having gradient polymer alloys
US20100170521A1 (en) * 2008-07-24 2010-07-08 Medshape Solutions, Inc. Method and apparatus for deploying a shape memory polymer
US8430933B2 (en) * 2008-07-24 2013-04-30 MedShape Inc. Method and apparatus for deploying a shape memory polymer
US8069858B2 (en) * 2008-07-24 2011-12-06 Medshape Solutions, Inc. Method and apparatus for deploying a shape memory polymer
WO2010017282A1 (en) 2008-08-05 2010-02-11 Biomimedica, Inc. Polyurethane-grafted hydrogels
DE102008055870A1 (de) 2008-10-31 2010-05-06 Gkss-Forschungszentrum Geesthacht Gmbh Multiphasen Polymernetzwerk mit Triple-Shape-Eigenschaften und Formgedächtniseffekt
BRPI0921810B8 (pt) 2008-11-03 2021-06-22 Angiotech Pharm Inc montagem para inserir um comprimento de sutura no interior do corpo de um mamífero
EP3400882A1 (de) 2010-05-04 2018-11-14 Ethicon LLC Laserschneidsystem und verfahren zur herstellung selbsthaltender nähte
MX337815B (es) 2010-06-11 2016-03-18 Ethicon Llc Herramientas para dispensar suturas para cirugía endoscópica y asistida por robot y métodos.
JP2014504894A (ja) 2010-11-03 2014-02-27 アンジオテック ファーマシューティカルズ, インコーポレイテッド 薬剤を溶出する留置縫合材及びこれに関する方法
EP2637574B1 (de) 2010-11-09 2016-10-26 Ethicon, LLC Selbsthaltende notfallnähte
US9427493B2 (en) 2011-03-07 2016-08-30 The Regents Of The University Of Colorado Shape memory polymer intraocular lenses
JP6125488B2 (ja) 2011-03-23 2017-05-10 エシコン・エルエルシーEthicon LLC 自己保持可変ループ縫合材
US20130172931A1 (en) 2011-06-06 2013-07-04 Jeffrey M. Gross Methods and devices for soft palate tissue elevation procedures
US20130103157A1 (en) 2011-10-03 2013-04-25 Lampros Kourtis Polymeric adhesive for anchoring compliant materials to another surface
EP2782524B1 (de) 2011-11-21 2017-12-20 Biomimedica, Inc Systeme zum verankern orthopädischer implantate in knochen
US9465127B2 (en) * 2013-05-07 2016-10-11 Pgs Geophysical As Disposable antifouling covers for geophysical survey equipment
EP3281995B1 (de) * 2015-04-08 2022-05-11 Nitto Denko Corporation Klebeband zur verhütung des anhaftens von wasserorganismen
US11077228B2 (en) 2015-08-10 2021-08-03 Hyalex Orthopaedics, Inc. Interpenetrating polymer networks
US10869950B2 (en) 2018-07-17 2020-12-22 Hyalex Orthopaedics, Inc. Ionic polymer compositions
CN112225873B (zh) * 2020-09-15 2022-04-22 万华化学集团股份有限公司 一种高透明快成型的可降解热塑性聚氨酯弹性体及其制备方法
CN112245664B (zh) * 2020-10-16 2021-09-17 浙江大学 用于食道支架的形状记忆聚合物材料及制备、应用方法
CN113817310B (zh) * 2021-07-26 2023-03-24 广州大学 一种形状记忆复合材料及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6160084A (en) * 1998-02-23 2000-12-12 Massachusetts Institute Of Technology Biodegradable shape memory polymers
WO2001091822A1 (en) * 2000-05-31 2001-12-06 Mnemoscience Gmbh Shape memory thermoplastics and polymer networks for tissue engineering

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7003277A (de) * 1970-03-07 1971-09-09
US4035548A (en) * 1974-05-30 1977-07-12 Ppg Industries, Inc. Laminated articles prepared from transparent, non-blooming poly(lactone-urethane) interlayers
US4085092A (en) * 1974-05-30 1978-04-18 Ppg Industries, Inc. Transparent, optically clear poly(lactone-urethane) interlayers for laminated safety glass
US4857579A (en) * 1980-11-24 1989-08-15 Union Carbide Corporation Thermosettable fiber reinforced resin compositions
KR870700372A (ko) 1985-01-04 1987-12-28 원본미기재 미리 결정된 온도에서 부드러운 조성물 및 그의 제법
US4923934A (en) * 1987-05-29 1990-05-08 Werner Todd A Interpenetrating polymer network of blocked urethane prepolymer, polyol, epoxy resin and anhydride
JPH02118178A (ja) 1988-10-28 1990-05-02 Mitsubishi Heavy Ind Ltd 形状記憶性を有する繊維製シート及び繊維製シート製品への形状記憶性付与方法
JPH02121907A (ja) * 1988-10-31 1990-05-09 Mitsubishi Heavy Ind Ltd 人用化粧料
JPH0747642B2 (ja) 1990-06-18 1995-05-24 旭化成工業株式会社 形状記憶樹脂エマルジョンおよびその製法
US5442037A (en) * 1994-09-07 1995-08-15 Tong Yang Nylon Co., Ltd. Polyester prepolymer showing shape-memory effect
DE69426882T2 (de) 1994-10-06 2001-10-04 Tongyang Nylon Co Polyesterprepolymer mit Formgedächtniseffekt
JP3732404B2 (ja) * 1998-02-23 2006-01-05 ニーモサイエンス ゲーエムベーハー 形状記憶ポリマー組成物、形状記憶製品を形成する方法、および形状を記憶する組成物を形成する方法
AU3077999A (en) * 1998-03-11 1999-09-27 Dow Chemical Company, The Structures and fabricated articles having shape memory made from alpha-olefin/vinyl or vinylidene aromatic and/or hindered aliphatic vinyl or vinylidene interpolymers
US6479222B1 (en) * 2000-07-21 2002-11-12 Eastman Kodak Company Protective overcoat for photographic elements
DE10215858A1 (de) 2002-04-10 2004-03-18 Mnemoscience Gmbh Verfahren zur Haarbehandlung mit Formgedächtnispolymeren
JP2005527571A (ja) 2002-04-10 2005-09-15 ネモサイエンス、ゲーエムベーハー 陽イオン系試剤を使用して毛髪において形状記憶効果を達成する方法
DE10217350C1 (de) * 2002-04-18 2003-12-18 Mnemoscience Gmbh Polyesterurethane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6160084A (en) * 1998-02-23 2000-12-12 Massachusetts Institute Of Technology Biodegradable shape memory polymers
WO2001091822A1 (en) * 2000-05-31 2001-12-06 Mnemoscience Gmbh Shape memory thermoplastics and polymer networks for tissue engineering

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004110515A1 (de) * 2003-06-13 2004-12-23 Mnemoscience Gmbh Bioabbaubare stents
WO2007096708A2 (en) 2005-12-22 2007-08-30 Mnemoscience Gmbh Macro-diacrylates and macro-polyacrylates

Also Published As

Publication number Publication date
US20040024143A1 (en) 2004-02-05
CA2425816C (en) 2007-11-20
EP1362879A3 (de) 2004-01-07
DE50309517D1 (de) 2008-05-15
ES2303877T3 (es) 2008-09-01
US7037984B2 (en) 2006-05-02
ATE391145T1 (de) 2008-04-15
EP1362879A2 (de) 2003-11-19
CA2425816A1 (en) 2003-10-18
EP1362879B1 (de) 2008-04-02

Similar Documents

Publication Publication Date Title
DE10217351B3 (de) Interpenetrierende Netzwerke
EP2342066B1 (de) Polymernetzwerk mit drei-formengedächtnis-effekt und dazugehörige programmierverfahren
DE10217350C1 (de) Polyesterurethane
DE102006012169B4 (de) Formgedächtnispolymer mit Polyester- und Polyethersegmenten, Verfahren zu seiner Herstellung und Formprogrammierung und Verwendung
WO2004046221A1 (de) Amorphe polymere netzwerke
EP1338613B1 (de) Polymere Netzwerke
EP1611205B1 (de) Blends mit form-gedächtnis-eigenschaften
EP1581271B1 (de) Photosensitive polymere netzwerke
EP1660552B1 (de) Amorphe polyesterurethan-netzwerke mit form-gedächtnis-eigenschaften
EP2121836B1 (de) Verfahren zur einschritt-programmierung von dreiformenkunststoffen
DE112017006358T5 (de) Formgedächtnis-Polymerverbundmaterial für den 3D-Druck von medizinischen Gegenständen
EP2238190B1 (de) Verfahren zur programmierung eines formgedächtnispolymers unter festlegung der schalttemperatur durch wahl der programmierungstemperatur
EP2004749A1 (de) Formgedächtnispolymer mit polyester- und polyacrylatsegmenten und verfahren zu seiner herstellung und programmierung
EP0492405A1 (de) Acrylat-Methacrylat-Propfpolymerisate
WO2008068072A1 (de) Verfahren zur herstellung eines alternierenden multiblockcopolymers mit formgedächtnis
DE102009024452A1 (de) Polymerisierbare Masse
EP2925816A1 (de) Mischung zur herstellung eines duromers mit verbesserter zähigkeit
DE102007003622A1 (de) Stabilisierte Suspensionen von SiO2-Partikeln

Legal Events

Date Code Title Description
8100 Publication of patent without earlier publication of application
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee