DE102012020141A1 - Process for the synchronous absorption of carbon dioxide from flue gas and synthesis of dialkyl carbonates and alkylene carbonates - Google Patents

Process for the synchronous absorption of carbon dioxide from flue gas and synthesis of dialkyl carbonates and alkylene carbonates Download PDF

Info

Publication number
DE102012020141A1
DE102012020141A1 DE102012020141.9A DE102012020141A DE102012020141A1 DE 102012020141 A1 DE102012020141 A1 DE 102012020141A1 DE 102012020141 A DE102012020141 A DE 102012020141A DE 102012020141 A1 DE102012020141 A1 DE 102012020141A1
Authority
DE
Germany
Prior art keywords
carbonate
urea
carbonates
carbon dioxide
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102012020141.9A
Other languages
German (de)
Inventor
Hermann Büttner
Jürgen Müller
Raphael Jonker
Sebastian Doedt
Tobias Bosse
Sebastian Makran
Norbert Ebeling
Peter Dettmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE102012020141.9A priority Critical patent/DE102012020141A1/en
Priority to PCT/DE2013/000594 priority patent/WO2014059961A1/en
Publication of DE102012020141A1 publication Critical patent/DE102012020141A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • C07D317/36Alkylene carbonates; Substituted alkylene carbonates
    • C07D317/38Ethylene carbonate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/102Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20405Monoamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20421Primary amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20426Secondary amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20436Cyclic amines
    • B01D2252/20442Cyclic amines containing a piperidine-ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20436Cyclic amines
    • B01D2252/20447Cyclic amines containing a piperazine-ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

Die vorliegende Erfindung beschreibt ein synchrones CCU-Verfahren (Carbondioxide Capture and Utilization) zur Absorption von Kohlendioxid aus Rauchgas und anderen CO2-haltigen Substanzquellen und gleichzeitiger Synthese von Dialkylcarbonaten und Alkylencarbonaten. Allgemeiner Gegenstand der Innovation ist auf der einen Seite im Sinne eines „Carbondioxide-Capture” die Absorption von CO2 aus Rauchgas und anderen CO2-haltigen Substanzquellen mit Ammoniak und/oder Aminen unter Bildung von Ammoniumcarbamaten oder Ammoniumhydrogencarbonaten oder Harnstoffen oder Harnstoff-Intermediaten und auf der anderen Seite im Sinne einer „Carbondioxide-Utilization” die Umsetzung von Ammoniumcarbamaten oder Ammoniumhydrogencarbonaten oder Harnstoffen oder Harnstoff-Intermediaten mit aliphatischen, alicyclischen oder ungesättigten, auch ungesättigten, aromatischen Alkoholen zu Dialkylcarbonaten oder Alkylencarbonaten in der Form, dass das CO2-Absorptionsmittel wieder freigesetzt und in den repetierenden Prozess wieder eingespeist wird. Eine repetierende Prozessführung ist in herausragender Art und Weise Energie- und CO2-effizient.The present invention describes a synchronous CCU process (carbon dioxide capture and utilization) for the absorption of carbon dioxide from flue gas and other CO2-containing substance sources and the simultaneous synthesis of dialkyl carbonates and alkylene carbonates. The general subject of the innovation is on the one hand in the sense of a "carbon dioxide capture" the absorption of CO2 from flue gas and other CO2-containing substance sources with ammonia and / or amines with the formation of ammonium carbamates or ammonium hydrogen carbonates or ureas or urea intermediates and on the on the other hand, in the sense of a “carbon dioxide utilization”, the conversion of ammonium carbamates or ammonium hydrogen carbonates or ureas or urea intermediates with aliphatic, alicyclic or unsaturated, also unsaturated, aromatic alcohols to dialkyl carbonates or alkylene carbonates in the form that the CO2 absorbent is released again is fed back into the repetitive process. Repetitive process management is extremely energy and CO2 efficient.

Description

Die vorliegende Erfindung beschreibt ein synchrones CCU-Verfahren (Carbondioxide Capture and Utilization) zur Absorption von Kohlendioxid aus Rauchgas und anderen CO2-haltigen Substanzquellen und gleichzeitiger Synthese von Dialkylcarbonaten und Alkylencarbonaten. Allgemeiner Gegenstand der Innovation ist auf der einen Seite im Sinne eines „Carbondioxide-Capture” die Absorption von CO2 aus Rauchgas und anderen CO2-haltigen Substanzquellen mit Ammoniak und/oder Aminen unter Bildung von Ammoniumcarbamaten oder Ammoniumhydrogencarbonaten oder Harnstoffen oder Harnstoff-Intermediaten und auf der anderen Seite im Sinne einer „Carbondioxide-Utilization” die Umsetzung von Ammoniumcarbamaten oder Ammoniumhydrogencarbonaten oder Harnstoffen oder Harnstoff-Intermediaten mit aliphatischen, alicyclischen oder ungesättigten, auch ungesättigten, aromatischen Alkoholen zu Dialkylcarbonaten oder Alkylencarbonaten in der Form, dass das CO2-Absorptionsmittel wieder freigesetzt und in den repetierenden Prozess wieder eingespeist wird. Eine repetierende Prozessführung ist in herausragender Art und Weise Energie- und CO2-effizient.The present invention describes a synchronous CCU process (Carbondioxide Capture and Utilization) for the absorption of carbon dioxide from flue gas and other CO 2 -containing substance sources and simultaneous synthesis of dialkyl carbonates and alkylene carbonates. The general subject of the innovation is on the one hand in the sense of a "carbon dioxide capture" the absorption of CO 2 from flue gas and other CO 2 -containing substance sources with ammonia and / or amines to form ammonium carbamates or ammonium bicarbonates or ureas or urea intermediates and on the other hand, in the sense of a "carbon dioxide Utilization" the implementation of ammonium carbamates or ammonium bicarbonates or ureas or urea intermediates with aliphatic, alicyclic or unsaturated, also unsaturated, aromatic alcohols to dialkyl carbonates or alkylene in the form that the CO 2 absorbent released again and fed back into the repetitive process. Repetitive process management is outstandingly energy- and CO 2 -efficient.

Im Sinne dieser Erfindung ist eine besonders vorteilhafte Kombination der Absorption von Kohlendioxid aus Rauchgasen speziell mit Ammoniak und der Synthese von Dialkylcarbonaten oder Alkylencarbonaten aus Ammoniumcarbamat oder Ammoniumhydrogencarbonat oder Harnstoff oder Harnstoff-Intermediaten und aliphatischen, alicyclischen oder ungesättigten, auch aromatischen Alkoholen eine besonders vorteilhafte Kombination.For the purposes of this invention, a particularly advantageous combination of the absorption of carbon dioxide from flue gases, especially with ammonia and the synthesis of dialkyl carbonates or alkylene carbonates of ammonium carbamate or ammonium bicarbonate or urea or urea intermediates and aliphatic, alicyclic or unsaturated, and aromatic alcohols is a particularly advantageous combination.

Nach dem Stand der Technik wird die Abtrennung von Kohlendioxid aus Rauchgasen und anderen CO2-haltigen Substraten im Sinne von „Carbon-Capture and Storage(CCS)”-Anwendungen im Allgemeinen in der Form durchgeführt, dass das Kohlendioxid mit geeigneten Absorptionsmitteln physikalisch und/oder chemisch gebunden wird und diese Kohlendioxid-Absorbate dann aus dem Rauchgas- oder sonstigen CO2-haltigen Substratströmen abgetrennt werden. Dies ist beispielsweise die Grundlage des sogenannten „chilled ammonia process” des Unternehmens ALSTOM. Die abgetrennten Kohlendioxid-Absorbate werden entweder direkt eingelagert (z. B. als Calciumcarbonat) oder durch Erwärmen wieder in Kohlendioxid und Absorptionsmittel gespalten. Das dabei freigesetzte Kohlendioxid wird entweder eingelagert oder einer technischen Nutzung zugeführt. Das dabei freigesetzte Absorptionsmittel wird dann wieder in den CCS-Prozess eingespeist.According to the prior art, the separation of carbon dioxide from flue gases and other CO 2 -containing substrates in the sense of "carbon capture and storage (CCS)" applications is generally carried out in such a way that the carbon dioxide is physically and / or adequately absorbed by suitable absorbents. or chemically bound and these carbon dioxide absorbates are then separated from the flue gas or other CO 2 -containing substrate streams. This is for example the basis of the so-called "chilled ammonia process" of the company ALSTOM. The separated carbon dioxide absorbates are either incorporated directly (eg as calcium carbonate) or split again by heating into carbon dioxide and absorbent. The released carbon dioxide is either stored or supplied for technical use. The released absorbent is then fed back into the CCS process.

Nach dem Stand der Technik werden Dialkylcarbonate und Alkylencarbonate unter Verwendung von reaktiven Stoffen wie z. B. Kohlenmonoxid, Phosgen, Chlorameisensäureester, Ethylenoxid und Propylenoxid hergestellt. Auch wird die Herstellung von Dialkylcarbonaten und Alkylencarbonaten durch die Umesterung reaktiver Dialkylcarbonate wie z. B. Dimethylcarbonat oder Ethylencarbonat mit Alkoholen beschrieben. Die genannten Herstellungsverfahren sind energie- und CO2-ineffizient. Die benannten reaktiven Stoffe sind Gefahrstoffe mit erheblichen Gefahrenpotentialen für die Gesundheit und die Umwelt. Die CO2-effiziente Herstellung von Dialkylcarbonaten und Alkylencarbonaten direkt aus Alkoholen und Kohlendioxid an geeigneten Katalysatoren, ist Forschungsgegenstand vielfältiger wissenschaftlicher Studien, aber aktuell großtechnisch noch nicht umgesetzt.According to the prior art, dialkyl carbonates and alkylene carbonates using reactive substances such. As carbon monoxide, phosgene, chloroformate, ethylene oxide and propylene oxide produced. Also, the preparation of dialkyl and Alkylencarbonaten by the transesterification of reactive dialkyl carbonates such. As dimethyl carbonate or ethylene carbonate with alcohols described. The production methods mentioned are energy and CO 2 -inefficient. The named reactive substances are hazardous substances with considerable potential health and environmental hazards. The CO 2 -efficient production of dialkyl carbonates and alkylene carbonates directly from alcohols and carbon dioxide on suitable catalysts is the subject of many scientific studies but has not yet been implemented industrially.

Nach dem Stand der Technik gibt es kein synchrones CCU-Verfahren (Carbondioxide Capture and Utilisation), das auf der einen Seite die Absorption von CO2 aus Rauchgas oder anderen CO2-haltigen Substanzquellen mit geeigneten Absorptionsmitteln und auf der anderen Seite die Synthese von werthaltigen Chemikalien in einem repetierenden Prozess so miteinander verbindet, dass das chemisch mit geeigneten Absorptionsmitteln absorbierte CO2 stofflich mit geeigneten Chemikalien zu werthaltigen Chemikalien in der Art und Weise umgesetzt wird, dass das Absorptionsmittel wieder freigesetzt und funktional als Absorber wieder in den repetierenden Prozess eingebracht wird.According to the state of the art, there is no synchronous CCU process (Carbondioxide Capture and Utilization), which on the one hand the absorption of CO 2 from flue gas or other CO 2 -containing substance sources with suitable absorbents and on the other hand the synthesis of valuable Connecting chemicals in a repetitive process so that the CO 2 chemically absorbed with suitable absorbents is materially reacted with suitable chemicals to valuable chemicals in such a way that the absorbent is released again and functionally introduced as an absorber in the repetitive process.

Aufgabe der ErfindungObject of the invention

Es stellt sich somit die Aufgabe, ein repetierendes Verfahren zur Abtrennung und stofflichen Nutzung von Kohlendioxid aus Rauchgasen und anderen CO2-haltigen Substraten im Sinne einer CCU (Carbondioxide Capture and Utilisation) Anwendung zu entwickeln, in dem Kohlendioxid mit geeigneten Absorptionsmitteln gebunden, das chemisch gebundene Kohlendioxid unter Freisetzung des Absorptionsmittels mit geeigneten Stoffen zu werthaltigen Chemikalien umgesetzt, die werthaltigen Chemikalien abgetrennt und freigesetzte Absorptionsmittel dann wieder in den Absorptionsprozess eingespeist werden.It thus sets itself the task of developing a repetierendes process for the separation and material use of carbon dioxide from flue gases and other CO 2 -containing substrates in terms of a CCU (Carbondioxide Capture and Utilization) application in which carbon dioxide bound with suitable absorbents, the chemical bound carbon dioxide with release of the absorbent reacted with suitable substances to valuable chemicals, the valuable chemicals separated and liberated absorbent then fed back into the absorption process.

Es stellt sich ferner die Aufgabe, bei der Synthese zu werthaltigen Chemikalien ausschließlich solche reaktiven Stoffe zu verwenden, die keine Gefahrstoffe mit erheblichen Gefahrenpotenzialen für die Gesundheit und Umwelt sind. Es stellt sich darüber hinaus die Aufgabe, dass die Synthese zu werthaltigen Chemikalien sowohl CO2-effizient als auch möglichst energieeffizient ist.It is also the task, in the synthesis of valuable chemicals to use only those reactive substances that are not hazardous substances with significant health hazards and environment are. It is also the task that the synthesis of valuable chemicals is both CO 2 -efficient and energy-efficient.

Lösung der Aufgabe und Grundzüge der ErfindungSolution to the problem and features of the invention

Es hat sich herausgestellt, dass durch Inkontaktbringen von Rauchgasen oder anderen CO2-haltigen Substanzquellen mit Ammoniak und/oder Aminen, das enthaltene Kohlendioxid zu Ammoniumcarbamaten oder Ammoniumhydrogencarbonaten oder Harnstoffen oder Harnstoff-Intermediaten (gemeinsam: „Amin-Zwischenprodukte”) reagiert. Es hat sich ferner herausgestellt, dass die Amin-Zwischenprodukte mit gesättigten oder ein- oder mehrfach ungesättigten aliphatischen oder alicyclischen sowie aromatischen Mono-, Di-, Tri- oder Poly-olen unter Eliminierung von Ammoniak und/oder Aminen zu Dialkylcarbonaten oder Alkylencarbonaten reagieren.It has been found that by contacting flue gases or other CO 2 -containing substance sources with ammonia and / or amines, the carbon dioxide contained reacts to ammonium carbamates or ammonium bicarbonates or ureas or urea intermediates (collectively: "amine intermediates"). It has also been found that the amine intermediates react with saturated or mono- or polyunsaturated aliphatic or alicyclic and aromatic mono-, di-, tri- or poly-ols with elimination of ammonia and / or amines to form dialkyl carbonates or alkylene carbonates.

Zur sprachlichen Vereinfachung der vorliegenden Anmeldung werden die Stoffe Ammoniak und Amine im Rahmen dieser Anmeldung auch gemeinsam als „Amine” bezeichnet.For linguistic simplification of the present application, the substances ammonia and amines in the context of this application also collectively referred to as "amines".

Zur sprachlichen Vereinfachung der vorliegenden Anmeldung werden die Stoffe Ammoniumcarbamate oder Ammoniumhydrogencarbonate oder Harnstoffe oder Harnstoff-Intermediate im Rahmen dieser Anmeldung auch gemeinsam als „Amin-Zwischenprodukte” bezeichnet.For linguistic simplification of the present application, the substances ammonium carbamates or ammonium bicarbonates or ureas or urea intermediates are also referred to collectively as "amine intermediates" in the context of this application.

Darüber hinaus hat es sich herausgestellt, dass man das Inkontaktbringen von Rauchgasen oder anderen CO2-haltigen Substanzquellen mit Ammoniak und/oder Aminen, um das enthaltene Kohlendioxid chemisch zu Ammoniumcarbamaten oder Ammoniumhydrogencarbonaten oder Harnstoffen oder Harnstoff-Intermediaten (gemeinsam: „Amin-Zwischenprodukte”) umzusetzen, und die Umsetzung von Amin-Zwischenprodukten mit gesättigten oder ein- oder mehrfach ungesättigten aliphatischen oder alicyclischen sowie aromatischen Mono-, Di-, Tri- oder Poly-olen unter Freisetzung des Absorptionsmittels zu Dialkylcarbonaten oder Alkylencarbonaten in einem repetierenden Prozess kombinieren kann.In addition, it has been found that the contacting of flue gases or other CO 2 -containing substance sources with ammonia and / or amines to the carbon dioxide contained chemically to ammonium carbamates or ammonium bicarbonates or ureas or urea intermediates (collectively: "amine intermediates" ), and can combine the reaction of amine intermediates with saturated or mono- or polyunsaturated aliphatic or alicyclic and aromatic mono-, di-, tri- or poly-ols to give dialkyl carbonates or alkylene carbonates in a repetitive process with liberation of the absorbent.

Die vorgelegte Erfindung beschreibt daher ein synchrones CCU-Verfahren, das auf der einen Seite im Sinne eines „Carbondioxid-Capture” die Absorption von CO2 mit Ammoniak und/oder Aminen unter Bildung von Ammoniumcarbamaten oder Ammoniumhydrogencarbonaten oder Harnstoffen oder Harnstoff-Intermediaten und auf der anderen Seite im Sinne eines „Carbondioxide-Utilization” die Synthese von Dialkylcarbonaten oder Alkylencarbonaten in einem repetierenden Prozess so miteinander verbindet, dass das chemisch absorbierte CO2 stofflich mit aliphatischen, alicyclischen oder ungesättigten, auch aromatischen Alkoholen zu Dialkylcarbonaten oder Alkylencarbonaten umgesetzt wird und die Absorptionsmittel Ammoniak und/oder Amine im repetierenden Prozess verbleiben.The presented invention therefore describes a synchronous CCU process, which on the one hand in the sense of a "carbon dioxide capture" the absorption of CO 2 with ammonia and / or amines to form ammonium carbamates or ammonium bicarbonates or ureas or urea intermediates and on the the other side in the sense of a "Carbondioxide Utilization" the synthesis of dialkyl carbonates or alkylene carbonates in a repetitive process such that the chemically absorbed CO 2 is reacted materially with aliphatic, alicyclic or unsaturated, and aromatic alcohols to dialkyl carbonates or alkylene and the absorbents Ammonia and / or amines remain in the repetitive process.

Eine besondere Ausführungsform der Erfindung im Sinne einer in herausragender Art und Weise Energie- und CO2-effizienten CCU-Anwendung, ist eine Kombination der „Absorption von CO2 aus Rauchgasen speziell mit Ammoniak mit der „Synthese von Dialkylcarbonaten oder Dialkylcarbonaten aus Ammoniumcarbamat oder Ammoniumcarbonat oder Harnstoff oder Harnstoff-Intermediaten und aliphatischen, alicyclischen oder ungesättigten, auch aromatischen Alkoholen” im Sinne der in dieser Erfindung benannten repetierenden Prozessführung (siehe 4, „Ammonia Cycle”).A particular embodiment of the invention in terms of an outstandingly energy and CO 2 -efficient CCU application, is a combination of the "absorption of CO 2 from flue gases especially with ammonia with the" synthesis of dialkyl carbonates or dialkyl carbonates of ammonium carbamate or ammonium carbonate or urea or urea intermediates and aliphatic, alicyclic or unsaturated, including aromatic alcohols "within the meaning of the specified in this invention repetitive process control (see 4 , "Ammonia Cycle").

Im Rahmen dieser Anmeldung werden die genannten Stoffe „Ammoniumcarbamat” oder „Ammoniumcarbonat” oder Harnstoff oder Harnstoffintermediate als „Amin-Zwischenprodukte zusammengefasst”.In the context of this application, the said substances "ammonium carbamate" or "ammonium carbonate" or urea or urea intermediates are summarized as "amine intermediates".

Allgemeiner Gegenstand der Erfindung ist die verfahrenstechnische Kombination der Absorption von Kohlendioxid aus CO2-haltigen Substanzquellen mit Ammoniak und/oder Aminen und der Synthese von Dialkylcarbonaten und Alkylencarbonaten aus Ammoniumcarbamaten oder Ammoniumhydrogencarbonaten oder Harnstoffen oder Harnstoff-Intermediaten und aliphatischen, alicyclischen oder ungesättigten, auch aromatischen Alkoholen in der Form,

  • 1. dass Ammoniak und/oder Amine mit Kohlendioxid zuerst zu Ammoniumhydrogencarbonaten und dann unter Abspaltung von Wasser zu Ammoniumcarbamaten umgesetzt werden,
  • 2. dass entweder die gebildeten Ammoniumcarbamate unter Abspaltung von Wasser katalytisch mit aliphatischen, alicyclischen oder ungesättigten, auch aromatischen Alkoholen zu Dialkylcarbonaten oder Alkylencarbonaten und Ammoniak umgesetzt werden, oder dass die gebildeten Ammoniumcarbamate unter Abspaltung von Wasser erst zu Harnstoffen bzw. Harnstoff-Intermediaten umgesetzt, und diese Harnstoffe oder die Harnstoff-Intermediate dann mit aliphatischen, alicyclischen oder ungesättigten, auch aromatischen Alkoholen zu Dialkylcarbonaten oder Alkylencarbonaten und Ammoniak umgesetzt wird,
  • 3. dass das gebildete Reaktionswasser aus dem repetierenden Prozess abgetrennt wird,
  • 4. dass die aliphatischen, alicyclischen oder ungesättigten, auch aromatischen Alkohole in den repetierenden Prozess eingebracht werden,
  • 5. dass die gebildeten Dialkylcarbonate oder Alkylencarbonate aus dem repetierenden Prozess abgetrennt und außerhalb des repetierenden Prozesses auf erforderliche Qualitätsstandards aufgearbeitet werden,
  • 6. dass das bei der Umsetzung zu Dialkylcarbonaten oder Alkylencarbonate freigesetzte Ammoniak und/oder Amin im repetierenden Prozess verbleibt und wieder mit Kohlendioxid zu Ammoniumcarbamaten oder Ammoniumcarbonaten oder Harnstoffen oder Harnstoff-Intermediaten umgesetzt wird.
  • 7. dass der von 1. bis 6. beschriebene Prozess repetiert.
The general subject of the invention is the procedural combination of the absorption of carbon dioxide from CO 2 -containing substance sources with ammonia and / or amines and the synthesis of dialkyl carbonates and alkylene carbonates of ammonium carbamates or ammonium bicarbonates or ureas or urea intermediates and aliphatic, alicyclic or unsaturated, also aromatic Alcohols in the form,
  • 1. that ammonia and / or amines are reacted with carbon dioxide first to ammonium bicarbonates and then with elimination of water to ammonium carbamates,
  • 2. that either the ammonium carbamates formed are catalytically reacted with the elimination of water with aliphatic, alicyclic or unsaturated, and aromatic alcohols to give dialkyl carbonates or alkylene carbonates and ammonia, or that the ammonium carbamates formed with elimination of water only to ureas or urea intermediates, and these ureas or the urea intermediates is then reacted with aliphatic, alicyclic or unsaturated, and also aromatic alcohols to form dialkyl carbonates or alkylene carbonates and ammonia,
  • 3. that the formed reaction water is separated from the repetitive process,
  • 4. that the aliphatic, alicyclic or unsaturated, also aromatic, alcohols are introduced into the repetitive process,
  • 5. that the dialkyl carbonates or alkylene carbonates formed are separated from the repetitive process and worked up to the required quality standards outside of the repetitive process,
  • 6. that in the reaction to dialkyl carbonates or alkylene carbonate released ammonia and / or amine remains in the repetitive process and is reacted again with carbon dioxide to ammonium carbamates or ammonium carbonates or ureas or urea intermediates.
  • 7. that the process described from 1. to 6. repeats.

Ein spezieller Gegenstand der Erfindung ist die verfahrenstechnische Kombination der Absorption von Kohlendioxid aus Rauchgasen speziell mit Ammoniak mit der Synthese von Dimethylcarbonat aus Ammoniumcarbamat oder Ammoniumhydrogencarbonat oder Harnstoff oder Harnstoff-Intermediaten und Methanol in der Form,

  • 1. dass Ammoniak mit Kohlendioxid aus Rauchgasen zu Ammoniumcarbamat oder Ammoniumhydrogencarbonat oder Harnstoff oder Harnstoff-Intermediaten umgesetzt wird,
  • 2. dass entweder das gebildete Ammoniumcarbamat oder Ammoniumhydrogencarbonat unter Abspaltung von Wasser katalytisch mit Methanol zu Dimethylcarbonat und Ammoniak umgesetzt wird, oder dass das gebildete Ammoniumcarbamat oder Ammoniumhydrogencarbonat unter Abspaltung von Wasser erst zu Harnstoff bzw. einem Harnstoff-Intermediat umgesetzt, und dieser Harnstoff oder das Harnstoff-Intermediat dann mit Methanol zu Dimethylcarbonat und Ammoniak umgesetzt wird,
  • 3. dass das gebildete Reaktionswasser aus dem repetierenden Prozess abgetrennt wird,
  • 4. dass Methanol in den repetierenden Prozess eingebracht wird
  • 5. dass das gebildete Dimethylcarbonat aus dem repetierenden Prozess abgetrennt und außerhalb des repetierenden Prozesses auf erforderliche Qualitätsstandards aufgearbeitet wird,
  • 6. dass das bei der Umsetzung zu Dimethylcarbonat freigesetzte Ammoniak im repetierenden Prozess verbleibt, wieder in den Process eingespeist und wieder mit Kohlendioxid aus Rauchgasen zu Ammoniumcarbamat umgesetzt wird,
  • 7. dass der von 1. bis 6. beschriebene Prozess repetiert.
A special object of the invention is the procedural combination of the absorption of carbon dioxide from flue gases especially with ammonia with the synthesis of dimethyl carbonate from ammonium carbamate or ammonium bicarbonate or urea or urea intermediates and methanol in the mold,
  • 1. that ammonia is converted with carbon dioxide from flue gases to ammonium carbamate or ammonium bicarbonate or urea or urea intermediates,
  • 2. that either the ammonium carbamate formed or ammonium bicarbonate is catalytically reacted with methanol to dimethyl carbonate and ammonia with elimination of water, or that the ammonium carbamate formed or ammonium bicarbonate with elimination of water first reacted to urea or a urea intermediate, and this urea or Urea intermediate is then reacted with methanol to dimethyl carbonate and ammonia,
  • 3. that the formed reaction water is separated from the repetitive process,
  • 4. That methanol is introduced into the repetitive process
  • 5. that the dimethyl carbonate formed is separated from the repetitive process and worked up to required quality standards outside of the repetitive process,
  • 6. that the ammonia liberated in the reaction to give dimethyl carbonate remains in the repetitive process, is fed back into the process and is converted again with carbon dioxide from flue gases to ammonium carbamate,
  • 7. that the process described from 1. to 6. repeats.

Die im Prozess stofflich repetierenden Komponenten sind Ammoniak und/oder Amine.The components that repeat in the process are ammonia and / or amines.

Für das erfindungsgemäße Verfahren geeignete Amine sind insbesondere Ammoniak und primäre Alkylamine mit bis zu 6 Kohlenstoffatomen, wie beispielsweise Methylamin, Ethylamin oder Propylamin. Es können aber auch längerkettige primäre Amine, sekundäre Amine, wie beispielsweise Di-Methylamin, Di-Ethylamin oder Di-Propylamin verwendet werden. Weitere mögliche Amine sind Piperazin, N-2-Hydroxyethylpiperazin, N-(Hydroxypropyl)piperazin Diethanoltriamin (DETA), 2-((2-aminoethyl)amino)ethanol (AEEA), Monoethanolamin (MEA), Diethanolamin (DEA), Diisopropanolamin (DIPA), Methylaminopropylamin (MAPA), 3-Aminopropanol (AP), 2,2-Dimethyl-1,3-propanediamin (DMPDA), 3-Amino-1-cyclohexylaminopropan (ACHP), Diglycolamin (DGA), 2-Amino-2-methylpropanol (AMP), 1-Amino-2-propanol (MIPA), 2-Methyl-methanolamine (MMEA), Chitosane, Piperidin, Diaminocyclohexan, Ethylendiamin oder Mischungen daraus. Ergänzend oder alternativ ist das Amin ausgewählt aus der Gruppe enthaltend Mono-, Di- oder Oligoalkanolamine, Mono-, Di- oder Oligoalkylamine, Polyamine oder Mischungen daraus. Bei Verwendung anderer Amine als Ammoniak sind lediglich die Reaktionsbedingungen entsprechend anzupassen. Die Anpassung der Reaktionsbedingungen ist vom Fachmann auf dem Gebiet durch einfaches Ausprobieren einstellbar, ohne dass er erfinderisch tätig werden müsste. Für die angestrebte industrielle Verwendung ist zusätzlich die REACH-Zertifizierung der eingesetzten Amine von Bedeutung.Suitable amines for the process according to the invention are, in particular, ammonia and primary alkylamines having up to 6 carbon atoms, such as, for example, methylamine, ethylamine or propylamine. However, it is also possible to use relatively long-chain primary amines, secondary amines, for example di-methylamine, di-ethylamine or di-propylamine. Further possible amines are piperazine, N-2-hydroxyethylpiperazine, N- (hydroxypropyl) piperazine, diethanoltriamine (DETA), 2- ((2-aminoethyl) amino) ethanol (AEEA), monoethanolamine (MEA), diethanolamine (DEA), diisopropanolamine ( DIPA), methylaminopropylamine (MAPA), 3-aminopropanol (AP), 2,2-dimethyl-1,3-propanediamine (DMPDA), 3-amino-1-cyclohexylaminopropane (ACHP), diglycolamine (DGA), 2-amino- 2-methylpropanol (AMP), 1-amino-2-propanol (MIPA), 2-methyl-methanolamine (MMEA), chitosans, piperidine, diaminocyclohexane, ethylenediamine or mixtures thereof. Additionally or alternatively, the amine is selected from the group comprising mono-, di- or oligoalkanolamines, mono-, di- or Oligoalkylamine, polyamines or mixtures thereof. When using amines other than ammonia, only the reaction conditions are adjusted accordingly. The adaptation of the reaction conditions can be set by a person skilled in the art by simple trial and error, without him having to be inventive. For the intended industrial use, the REACH certification of the amines used is additionally important.

Die in den repetierenden Prozess notwendig einzubringenden Komponenten sind Kohlendioxid und aliphatische, alicyclische oder ungesättigten, auch aromatische Alkohole. Basis für die chemische Umsetzung zu Dialkylcarbonaten sind einwertige Alkohole und mehrwertige Alkohole in denen die Hydroxylgruppen nicht in 1,2 oder 1,3 oder 1,4-Stellung stehen. Basis für die chemische Umsetzung zu Alkylencarbonaten sind mehrwertige Alkohole in denen die Hydroxylgruppen in 1,2 oder 1,3 oder 1,4-Stellung stehen.The components to be introduced in the repetitive process are carbon dioxide and aliphatic, alicyclic or unsaturated, and also aromatic alcohols. The basis for the chemical conversion to dialkyl carbonates are monohydric alcohols and polyhydric alcohols in which the hydroxyl groups are not in the 1,2 or 1,3 or 1,4-position. The basis for the chemical conversion to alkylene carbonates are polyhydric alcohols in which the hydroxyl groups are in the 1,2 or 1,3 or 1,4-position.

Die aus dem repetierenden Prozess abzutrennenden Komponenten sind Dialkylcarbonate oder Alkylencarbonate und Wasser.The components to be separated from the repetitive process are dialkyl carbonates or alkylene carbonates and water.

Die CO2-Substanzquelle für das in diesen repetierenden Prozess einzubringende Kohlendioxid ist vornehmlich Rauchgas, z. B. aus Verbrennungsanlagen, Produktionsgasen, Synthesegasen, Erdgas oder auch Raumluft. Diese Gase entstehen u. a. bei Kraftwerken, Kraftfahrzeugen, Produktionsstätten, Ammoniakproduktion, Epoxidherstellung, Zementproduktion, Keramikindustrie, Kokereien, Metallverhüttung, Stahlindustrie, Treibmittelexposition, klimatisierten Arbeits- und Wohnbereichen. Das Verfahren ist aber nicht auf diese Gase beschränkt. Benannte weitere Substanzquellen für Kohlendioxid, die in den vorgestellten Prozess eingebracht werden können, sind Gärgase aus der Methanogenese von Biomassen, Faulgase aus der aeroben und/oder anaeroben Kompostierung von Biomassen, Verbrennungsgase, CO2-haltiges Erdgas, tierische Verdauungsgase in der Massentierhaltung und CO2-haltige Raumluft in der Gebäude- und Fahrzeugklimatechnik. Die benannten weiteren Substanzquellen für Kohlendioxid sind Anwendungsbeispiele. Die Erfindung ist aber in ihrem Anwendungspotential nicht auf diese benannten Anwendungsbeispiele begrenzt.The source of CO 2 for the carbon dioxide to be introduced in this repetitive process is primarily flue gas, e.g. As from incinerators, production gases, synthesis gas, natural gas or indoor air. These gases are produced, inter alia, in power plants, motor vehicles, production facilities, Ammonia production, epoxy production, cement production, ceramics industry, coking plants, metal smelting, steel industry, blowing agent exposure, air-conditioned working and living areas. The method is not limited to these gases. Named further sources of carbon dioxide that can be introduced into the process presented are fermentation gases from the methanogenesis of biomass, digestion gases from the aerobic and / or anaerobic composting of biomass, combustion gases, CO 2 -containing natural gas, animal digestive gases in factory farming and CO 2 -containing room air in the building and vehicle air conditioning. The named further sources of carbon dioxide are examples of use. However, the invention is not limited in its application potential to these named application examples.

Dem Fachmann auf dem Gebiet ist klar, dass in den CO2-Substanzquellen gegebenenfalls, enthaltene schwefelhaltige Verbindungen (z. B. SO2 oder H2S) bevorzugt in einem vorgelagerten Schritt zu entfernen sind. Derartige Schwefelabtrennungsverfahren sind hinreichend bekannt und bedürfen an dieser Stelle keiner weiteren Erläuterung.Those skilled in the art will appreciate that any sulfur-containing compounds (eg, SO 2 or H 2 S) present in CO 2 source sources may be preferentially removed in an upstream step. Such sulfur separation processes are well known and require no further explanation at this point.

„Alkylencarbonate” im Sinne der vorliegenden Erfindung sind insbesondere 1,3-Dioxolan-2-on, 4-Methyl-1,3-Dioxolan-2-on, 4-Hydroxymethyl-1,3-Dioxolan-2-on, 4,5-Dimethyl-1,3-Dioxolan-2-on, 4,4-Dimethyl-1,3-Dioxolan-2-on, 4-Ethyl-1,3-Dioxolan-2-on, 1,3-Dioxan-2-on, 5,5-Dimethyl-1,3-dioxan-2-on, Dibenzo[d,f]-[1,3]dioxepin-6-on, 5-Ethyl-5-(hydroxymethyl)-1,3-dioxan-2-on, 5-[(allyloxy)methyl]-5-ethyl-1,3-dioxan-2-on, 5,5'-[carbonyl bis-(oxymethylen)]-bis[5-ethyl-1,3-dioxan-2-on], 1,3,10,12-Tetraoxa-cyclooctadecan-2,11-dion."Alkylene carbonates" in the context of the present invention are in particular 1,3-dioxolan-2-one, 4-methyl-1,3-dioxolan-2-one, 4-hydroxymethyl-1,3-dioxolan-2-one, 4, 5-dimethyl-1,3-dioxolan-2-one, 4,4-dimethyl-1,3-dioxolan-2-one, 4-ethyl-1,3-dioxolan-2-one, 1,3-dioxane 2-one, 5,5-dimethyl-1,3-dioxan-2-one, dibenzo [d, f] - [1,3] dioxepin-6-one, 5-ethyl-5- (hydroxymethyl) -1, 3-dioxan-2-one, 5 - [(allyloxy) methyl] -5-ethyl-1,3-dioxan-2-one, 5,5 '- [carbonylbis (oxymethylene)] - bis [5-ethyl -1,3-dioxan-2-one], 1,3,10,12-tetraoxa-cyclooctadecane-2,11-dione.

„Ammoniumcarbamate” im Sinne der vorliegenden Erfindung sind Verbindungen, die sich aus Ammoniak und/oder Amin und CO2 bilden.

Figure DE102012020141A1_0002
"Ammonium carbamates" in the context of the present invention are compounds which form from ammonia and / or amine and CO 2 .
Figure DE102012020141A1_0002

Ammoniumcarbamat entsteht durch direkte Reaktion von Ammoniakgas und CO2 im Molverhältnis 2:1 unter Ausschluss von Wasser. Es ist auch eine wichtige Zwischenstufe bei der Herstellung von Harnstoff. Ammoniumcarbamat bildet ein farbloses Kristallpulver, das sich in Wasser gut (zu 790 g/l) löst. Durch Zugabe von Ammoniakgas wird die Löslichkeit noch erhöht. In wässriger Lösung hydrolysiert Ammoniumcarbamat ab 35°C teilweise, oberhalb von 60°C vollständig unter Bildung von Ammoniumhydrogencarbonat, das wiederum in Ammoniak und Kohlenstoffdioxid und Wasser zerfallen kann. Beim Erhitzen in einem geschlossenen System wandelt sich das Salz bei Temperaturen oberhalb von 130°C allmählich in Harnstoff und Wasser um. Die Umwandlungsgeschwindigkeit nimmt mit steigender Temperatur stark zu, wobei das gebildete Wasser katalytisch wirkt.Ammonium carbamate is formed by direct reaction of ammonia gas and CO 2 in a molar ratio of 2: 1 with the exclusion of water. It is also an important intermediate in the production of urea. Ammonium carbamate forms a colorless crystal powder that dissolves well in water (790 g / l). The addition of ammonia gas increases the solubility. In aqueous solution, ammonium carbamate partially hydrolyzes above 35 ° C., above 60 ° C. completely, with the formation of ammonium bicarbonate, which in turn can decompose into ammonia and carbon dioxide and water. When heated in a closed system, the salt gradually converts to urea and water at temperatures above 130 ° C. The conversion rate increases sharply with increasing temperature, with the water formed catalytically.

„Ammoniumhydrogencarbonate” im Sinne der vorliegenden Erfindung sind Verbindungen, die sich aus Ammoniak und/oder Aminen und Wasser und CO2 bilden. Ammoniumcarbamat bzw. Ammoniumhydrogencarbonat entsteht durch direkte Reaktion von Ammoniakgas, Wasser und CO2 im Molverhältnis 1:1:1. Es ist auch eine wichtige Zwischenstufe bei der Herstellung von Harnstoff. Beim Erhitzen im offenen System zerfällt Ammoniumhydrogencarbonat in Ammoniak und Kohlenstoffdioxid und Wasser."Ammonium hydrogencarbonates" in the context of the present invention are compounds which form from ammonia and / or amines and water and CO 2 . Ammonium carbamate or ammonium bicarbonate is formed by direct reaction of ammonia gas, water and CO 2 in a molar ratio of 1: 1: 1. It is also an important intermediate in the production of urea. When heated in an open system, ammonium bicarbonate decomposes into ammonia and carbon dioxide and water.

„Harnstoff-Intermediate” im Sinne der vorliegenden Erfindung sind insbesondere Guanidine."Urea intermediates" in the context of the present invention are, in particular, guanidines.

„Aliphatische, alicyclische und ungesättigten, auch aromatische Alkohole” im Sinne der vorliegenden Erfindung sind insbesondere Methanol, Ethanol, 1-Propanol, 2-Propanol, 1-Butanol, Isobutylalkohol, 1-Pentanol, Isopentylalkohol, 2-Methyl-1-pentanol, 4-Methyl-2-pentanol, 2-Ethyl-1-butanol, 1-Hexanol, Cyclohexanol, 1-Heptanol, 2-Ethylhexanol, 1-Octanol, 2,6-Dimethyl-4-heptanol, Decanol, Cetylalkohol, Isophoronalkohol, 3,3,5-Trimethylcyclohexanol, Ethandiol, 1,2-Propandiol, 2-Methyl-1,2-propandiol, 1,3-Propandiol, 1,3-Dihydroxy-2,2-dimethylpropan, 1,1,1-Tris(hydroxymethyl)propan, 1,2-Butandiol, 1,3-Butandiol, 2,3-Butandiol, 1,4-Butandiol, 1,2,3-Propantriol, Pentaerythrit, Benzylalkohol, Allylalkohol, 1,2-Cyclohexandiol, 1,6-Hexandiol, 2,2'-Bisphenol, 2-Allyloxymethyl-2-ethyl-1,3-propandiol, Diethylenglycolmonoalkylester, Diethylenglycol, Triethylenglycolmonoalkylester, Triethylenglycol, Allylalkohol, Monoethanolamin, Diethanolamin, Triethanolamin, Hydroxyethylmethacrylat, Fettalkohole, Oxoalkohole, Polyethylenglycole, Polyvinylalkohole."Aliphatic, alicyclic and unsaturated, including aromatic alcohols" in the context of the present invention are in particular methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, isobutyl alcohol, 1-pentanol, isopentyl alcohol, 2-methyl-1-pentanol, 4-methyl-2-pentanol, 2-ethyl-1-butanol, 1-hexanol, cyclohexanol, 1-heptanol, 2-ethylhexanol, 1-octanol, 2,6-dimethyl-4-heptanol, decanol, cetyl alcohol, isophorone alcohol, 3,3,5-trimethylcyclohexanol, ethanediol, 1,2-propanediol, 2-methyl-1,2-propanediol, 1,3-propanediol, 1,3-dihydroxy-2,2-dimethylpropane, 1,1,1- Tris (hydroxymethyl) propane, 1,2-butanediol, 1,3-butanediol, 2,3-butanediol, 1,4-butanediol, 1,2,3-propanetriol, pentaerythritol, benzyl alcohol, allyl alcohol, 1,2-cyclohexanediol, 1,6-hexanediol, 2,2'-bisphenol, 2-allyloxymethyl-2-ethyl-1,3-propanediol, diethylene glycol monoalkyl ester, diethylene glycol, triethylene glycol monoalkyl ester, triethylene glycol, allyl alcohol, monoethanolamine, diethanolamine, triethanolamine, hydroxyethyl methacrylate, fatty alcohol e, oxo alcohols, polyethylene glycols, polyvinyl alcohols.

In einer besonderen Ausführungsform der Erfindung können auch natürliche oder synthetische Polyole, insbesondere Kohlehydrate wie beispielsweise Zucker, Stärke und Zellulose als Alkohole verwendet werden, Aufgrund der besonderen Zusammensetzung der natürlichen Polyole wird dabei in der Regel kein einheitliches Produkt erzielt. Bei der Durchführung des erfindungsgemäßen Verfahrens fallen in der Regel mehr oder weniger lösliche Produktgemische (überwiegend bestehend aus Oligo- und Polycarbonaten) an, die gleichwohl für verschiedenste Anwendungen Verwendung finden können. Sie können nicht nur als Glasersatz sondern auch als Bausteine beispielsweise für Blockpolymerisate oder Propfpolymerisate dienen und zu Hochleistungswerkstoffen mit optimierten Eigenschaften verarbeitet werden. Polycarbonate bilden glasartige, transparente Kunststoffe, mit herausragenden Verarbeitungseigenschaften und besitzen eine hervorragende Oberflächen- und Kratzfestigkeit, eine große mechanische Stabilität, eine ausgezeichnete Schlagzähigkeit, eine ausgezeichnete Durchschlagsfestigkeit und eine hohe Glastemperatur. Derartige Verbindungen sind notwendig, um vorteilhafte Eigenschaften der daraus synthetisierten Kunststoffe zu nutzen.In a particular embodiment of the invention, it is also possible to use natural or synthetic polyols, in particular carbohydrates such as, for example, sugar, starch and cellulose, as alcohols. Because of the particular composition of the natural polyols, it is generally not uniform Product achieved. When carrying out the process according to the invention, as a rule, more or less soluble product mixtures (predominantly consisting of oligo- and polycarbonates) are obtained, which nevertheless can be used for a very wide variety of applications. They can serve not only as glass substitutes but also as building blocks, for example for block polymers or graft polymers, and can be processed into high-performance materials with optimized properties. Polycarbonates form glassy, transparent plastics, with outstanding processing properties and have excellent surface and scratch resistance, high mechanical stability, excellent impact resistance, excellent dielectric strength and a high glass transition temperature. Such compounds are necessary to utilize advantageous properties of the plastics synthesized therefrom.

„Dialkylcarbonate” im Sinne der vorliegenden Erfindung sind insbesondere Dimethylcarbonat, Diethylcarbonat, Diisopropylcarbonat, Dipropylcarbonat, Dibutylcarbonat, Diisobutylcarbonat, Di-(2-methyl-propyl)-carbonat, Di-(4-hydroxybutyl)-carbonat, Dipentylcarbonat, Diisopentylcarbonat, Dihexylcarbonat, Diheptylcarbonat, Didecylcarbonat, Dihexadecylcarbonat, Dicyclohexylcarbonat, Di-(2-ethylhexyl)-carbonat, 2-Pentanol-4-methyl-1,1'-carbonat, Bis(2-ethylbutyl)-carbonat, Diisophoroncarbonat, Bis(3,3,5-trimethylcyclohexyl)-carbonat Dioctylcarbonat, Dibenzylcarbonat, Diallylcarbonat."Dialkyl" within the meaning of the present invention are in particular dimethyl carbonate, diethyl carbonate, diisopropyl carbonate, dipropyl carbonate, dibutyl carbonate, diisobutyl carbonate, di (2-methyl-propyl) carbonate, di (4-hydroxybutyl) carbonate, dipentyl carbonate, diisopentyl carbonate, dihexyl carbonate, Diheptyl carbonate, didecyl carbonate, dihexadecyl carbonate, dicyclohexyl carbonate, di- (2-ethylhexyl) carbonate, 2-pentanol-4-methyl-1,1'-carbonate, bis (2-ethylbutyl) carbonate, diisophorone carbonate, bis (3,3, 5-trimethylcyclohexyl) carbonate dioctyl carbonate, dibenzyl carbonate, diallyl carbonate.

Das erfindungsgemäße Verfahren wird wie folgt durchgeführt: Das CO2-haltige Medium wird zunächst ein einen Reaktor geleitet in welchem die CO2-Aufnahme erfolgt, wie beispielsweise beschrieben in WO 2006 022 885 „Ultra Cleaning of Combustion Gas Including the Removal of CO2”. Anschließend erfolgt die Synthese der Dialkyl- bzw. Alkylencarbonate, wie nachfolgend geschildert, ohne jedoch das gebundene CO2 in einem separaten Schritt zu isolieren.The process according to the invention is carried out as follows: The CO 2 -containing medium is first passed to a reactor in which CO 2 uptake takes place, as described, for example, in US Pat WO 2006 022 885 "Ultra Cleaning of Combustion Gas Including the Removal of CO 2 ". Subsequently, the synthesis of the dialkyl or Alkylencarbonate, as described below, but without isolating the bound CO 2 in a separate step.

Eine beispielhafte Vorrichtung zur Durchführung des Verfahrens ist in der 1 dargestellt. Die Einzelkomponenten sind mit englischen Begriffen gekennzeichnet, die dem Fachmann vertraut sind. Diese werden bei der Beschreibung der Abbildungen gleichwohl nochmals übersetzt.An exemplary apparatus for carrying out the method is in the 1 shown. The individual components are marked with English terms familiar to the skilled person. These are nevertheless translated again in the description of the illustrations.

Umsetzungen von Ammoniak mit Kohlendioxid zu Ammoniumhydrogencarbonat oder Ammoniumcarbamat oder Harnstoff oder Harnstoff-Intermediaten sind u. a. in den folgenden Quellen beschrieben:Reactions of ammonia with carbon dioxide to ammonium bicarbonate or ammonium carbamate or urea or urea intermediates are u. a. described in the following sources:

Quellen für die Synthese von Harnstoff:Sources for the synthesis of urea:

  • Anita, K. K. (2010). Low pressure technological process of production of urea from water solution of ammonium hydroxide. (pp. 5 pp.): Slovenia . Anita, KK (2010). Low pressure technological process of production of ammonium hydroxide. (pp. 5 pp.): Slovenia ,
  • Barzagli, F., Mani, F., & Peruzzini, M. (2010). Selective production of solid ammonium bicarbonate and ammonium carbamate in the process of carbon dioxide capture by ammonia solutions: a feasible process to produce urea in mild conditions. Prepr. Symp. – Am. Chem. Soc., Div. Fuel Chem., 55 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 33 . Barzagli, F., Mani, F., & Peruzzini, M. (2010). Selective production of solid ammonium bicarbonate and ammonium carbamate in the process of carbon dioxide capture by ammonia solutions: a feasible process to produce urea in mild conditions. Prepr. Symp. - Am. Chem. Soc., Div. Fuel Chem., 55 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 33 ,
  • Bozzano, G., Dente, M., & Zardi, F. (2003). New internals for urea production reactors. [10.1002/jctb.694]. J. Chem. Technol. Biotechnol., 78 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 128–133, doi:10.1002/jctb.694 . Bozzano, G., Dente, M., & Zardi, F. (2003). New internals for urea production reactors. [10.1002 / jctb.694]. J. Chem. Technol. Biotechnol., 78 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 128-133, doi: 10.1002 / jctb.694 ,
  • Brunengo, P., & Zardi, F. (2005). Integrated process for urea and melamine production. (pp. 19 pp.): Urea Casale S. A., Switz. . Brunengo, P., & Zardi, F. (2005). Integrated process for urea and melamine production. (pp. 19 pp.): Urea Casale SA, Switz. ,
  • Chen, J., & Zhang, Y. (2006). Process technology for production of urea from melamine tail gas. Huafei Sheji, 44 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 33–35 . Chen, J., & Zhang, Y. (2006). Process technology for production of urea from melamine tail gas. Huafei Sheji, 44 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 33-35 ,
  • Gevers, L. W., Meessen, J. H., & Mennen, J. H. (2009a). Process for the production of urea from ammonia and carbon dioxide. (pp. 13 pp.; Chemical Indexing Equivalent to 152: 14338 (EP)): DSM IP Assets B. V., Neth. . Gevers, LW, Meessen, JH, & Mennen, JH (2009a). Process for the production of ammonia and carbon dioxide. (pp. 13 pp; Chemical Indexing Equivalent to 152: 14338 (EP)): DSM IP Assets BV, Neth. ,
  • Gevers, L. W., Meessen, J. H., & Mennen, J. H. (2009b). Process for the production of urea from ammonia and carbon dioxide. (pp. 12 pp.; Chemical Indexing Equivalent to 152: 14337 (EP)): DSM IP Assets B. V., Neth. . Gevers, LW, Meessen, JH, & Mennen, JH (2009b). Process for the production of ammonia and carbon dioxide. (pp. 12 pp; Chemical Indexing Equivalent to 152: 14337 (EP)): DSM IP Assets BV, Neth. ,
  • Gu, Q., Li, S., Zhu, J., Jin, S., Yang, G., & Zhang, L. (2007). Double high-pressure process for production of urea. (pp. 6 pp.): Shandong Hualu Hengsheng Chemical Co., Ltd., Peop. Rep. China . Gu, Q., Li, S., Zhu, J., Jin, S., Yang, G., & Zhang, L. (2007). Double high-pressure process for production of urea. (pp. 6 pp.): Shandong Hualu Hengsheng Chemical Co., Ltd., Peop. Rep. Of China ,
  • Korneeva, G. A., Noskov, Y. G., Kron, T. E., Rush, S. N., Temkin, O. N., Bruk, L. G., et al. (2011). Method for simultaneous production of ethylene glycol and urea. (pp. 9 pp.): OOO ”Ob'edinennyi Tsentr Issledovanii Razrabotok”, Russia; GOU VPO ”Moskovskaya Gosudarstvennaya Akademiya Tonkoi Khimicheskoi Tekhnologii” im. M. V. Lomonosova; GUP G. Moskvy ”Mezhdunarodnyi Nauchnyi Klinicheskii Tsentr” ”Intermedbiofizkhim” . Korneeva, GA, Noskov, YG, Kron, TE, Rush, SN, Temkin, ON, Bruk, LG, et al. (2011). Method for simultaneous production of ethylene glycol and urea. (pp. 9 pp.): OOO "Ob'edinennyi Tsentr Issledovanii Razrabotok", Russia; GOU VPO "Moskovskaya Gosudarstvennaya Akademiya Tonkoi Khimicheskoi Tekhnologii" in. MV Lomonosova; GUP G. Moskvy "Mezhdunarodnyi Nauchnyi Klinicheskii Tsentr""Intermedbiofizkhim" ,
  • Romiti, D., & Sticchi, P. (2006a). Process for urea production from ammonia and carbon dioxide. (pp. 15 pp.): Urea Casale S. A., Switz. . Romiti, D., & Sticchi, P. (2006a). Process for urea production from ammonia and carbon dioxide. (pp. 15 pp.): Urea Casale SA, Switz. ,
  • Romiti, D., & Sticchi, P. (2006b). Process for urea production from ammonia and carbon dioxide and a plant for its manufacture. (pp. 19 pp.): Urea Casale S. A., Switz. . Romiti, D., & Sticchi, P. (2006b). Process for urea production from ammonia and carbon dioxide and a plant for its manufacture. (pp. 19 pp.): Urea Casale SA, Switz. ,
  • Wang, D., Yang, B., Zhai, X., & Zhou, L. (2007). Synthesis of diethyl carbonate by catalytic alcoholysis of urea. Fuel Processing Technology, 88 (8), 807–812, doi:10.1016/j.fuproc.2007.04.003 . Wang, D., Yang, B., Zhai, X., & Zhou, L. (2007). Synthesis of diethyl carbonate by catalytic alcoholysis of urea. Fuel Processing Technology, 88 (8), 807-812, doi: 10.1016 / j.fuproc.2007.04.003 ,
  • Xia, Y., & Wang, Z. (2009). Production process of urea by CO2 stripping method with highly effective condensation and low installation level. Huafei Sheji, 47 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 12–14 . Xia, Y., & Wang, Z. (2009). Production process of urea by CO2 stripping method with highly effective and low installation level. Huafei Sheji, 47 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 12-14 ,
  • Xiaoding, X., & Moulijn, J. A. (1996). Mitigation of CO2 by Chemical Conversion: Plausible Chemical Reactions and Promising Products. Energy & Fuels, 10 (2), 305–325, doi:10.1021/ef9501511 . Xiaoding, X., & Moulijn, JA (1996). Mitigation of CO2 by Chemical Conversion: Plausible Chemical Reactions and Promising Products. Energy & Fuels, 10 (2), 305-325, doi: 10.1021 / ef9501511 ,
  • Zardi, F. (2004). Process and plant for the production of urea from ammonia and carbon dioxide. (pp. 11 pp.): Urea Casale S. A., Switz. . Zardi, F. (2004). Process and plant for the production of urea from ammonia and carbon dioxide. (pp. 11 pp.): Urea Casale SA, Switz. ,
  • Zardi, F., & Debernardi, S. (2009). Process and plant for urea production. (pp. 27 pp.): Urea Casale S. A., Switz. . Zardi, F., & Debernardi, S. (2009). Process and plant for urea production. (pp. 27 pp.): Urea Casale SA, Switz. ,
  • Zardi, F., Sticchi, P., & Brunengo, P. (2008). Integrated process for urea and melamine production. (pp. 17 pp.): Urea Casale S. A., Switz. . Zardi, F., Sticchi, P., & Brunengo, P. (2008). Integrated process for urea and melamine production. (pp. 17 pp.): Urea Casale SA, Switz. ,
  • Zhang, Q., Zhang, L., Li, F., Chen, P., Wang, Y., Wei, C., et al. (2010). Apparatus and process for joint production of urea from melamine tail gas. (pp. 6 pp.): Luxi Chemical Group Co., Ltd., Peop. Rep. China . Zhang, Q., Zhang, L., Li, F., Chen, P., Wang, Y., Wei, C., et al. (2010). Apparatus and process for joint production of urea from melamine tail gas. (pp. 6 pp.): Luxi Chemical Group Co., Ltd., Peop. Rep. Of China ,
  • Zhang, Y.-f., Li, Y., & Luan, Z.-y. (2009). Introduction of energy-efficient solution total recycle urea production technique. Liaoning Huagong, 38 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 203–205 . Zhang, Y.-f., Li, Y., & Luan, Z.-y. (2009). Introduction of energy-efficient solution totally recycle urea production technique. Liaoning Huagong, 38 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 203-205 ,

In sämtlichen bekannten Literaturquellen werden ausschließlich Synthesewege zu Ammoniumhydrogencarbonat oder Ammoniumcarbamat oder Harnstoff oder Harnstoff-Intermediaten beschrieben, die auf den stofflich isolierten Einsatz von Kohlendioxid und Ammoniak basieren. Der Einsatz von Ammoniumhydrogencarbonat oder Ammoniumcarbamat oder Harnstoff oder Harnstoff-Intermediaten als Reaktionspartner für aliphatische, alicyclische oder ungesättigten, auch aromatische Alkohole zur Herstellung von Dialkylcarbonaten oder Alkylencarbonaten im Sinne einer CCU (Carbondioxide Capture and Utilisation) Anwendung in einem synchronen Verfahren wird in keinem Fall benannt.In all known sources of literature only synthetic routes to ammonium bicarbonate or ammonium carbamate or urea or urea intermediates are described, which are based on the materially isolated use of carbon dioxide and ammonia. The use of ammonium bicarbonate or ammonium carbamate or urea or urea intermediates as reactants for aliphatic, alicyclic or unsaturated, even aromatic alcohols for the preparation of dialkyl carbonates or alkylene carbonates in terms of a CCU (Carbondioxide Capture and Utilization) application in a synchronous process is named in any case ,

Die stoffliche Umsetzung von Ammoniak mit Kohlendioxid aus Rauchgasen ist u. a. in den folgenden Quellen beschrieben:

  • Cupertino, E. G., & Jayaweera, I. Chilled Ammonia based CO2 Capture System with water wash system. ALSTOM TECHNOLOGY LTD.
  • Darde, V., Thomsen, K., van, W. W. J. M., & Stenby, E. H. (2009). Chilled ammonia process for CO2 capture. [10.1016/j.egypro.2009.01.137]. Energy Procedia, 1 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 1035–1042, doi:10.1016/j.egypro.2009.01.137 .
  • Darde, V., Thomsen, K., van, W. W. J. M., & Stenby, E. H. (2010). Chilled ammonia process for CO2 capture. [10.1016/j.ijggc.2009.10.005]. Int. J. Greenhouse Gas Control, 4 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 131–136, doi:10.1016/j.ijggc.2009.10.005 .
  • Jilvero, H., Normann, F., Andersson, K., & Johnsson, F. (2011). Thermal integration and modelling of the chilled ammonia process. [10.1016/j.egypro.2011.02.045]. Energy Procedia, 4 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 1713–1720, doi:10.1016/j.egypro.2011.02.045 .
  • Kozak, F., Petig, A., Morris, E., Rhudy, R., & Thimsen, D. (2009). Chilled Ammonia Process for CO2 capture. [10.1016/j.egypro.2009.01.186]. Energy Procedia, 1 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 1419–1426, doi:10.1016/j.egypro.2009.01.186 .
  • Mathias, P. M., Reddy, S., & O'Connell, J. P. (2010). Quantitative evaluation of the chilled-ammonia process for CO2 capture using thermodynamic analysis and process simulation. [10.1016/j.ijggc.2009.09.016]. Int. J. Greenhouse Gas Control, 4 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 174–179, doi:10.1016/j.ijggc.2009.09.016 .
  • Peltier, R. (2008). Alstom's chilled ammonia CO2-capture process advances toward commercialization. Power, 152 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 38–41 .
  • Valenti, G., Bonalumi, D., & Macchi, E. (2009). Energy and exergy analyses for the carbon capture with the Chilled Ammonia Process (CAP). [10.1016/j.egypro.2009.01.140]. Energy Procedia, 1 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 1059–1066, doi:10.1016/j.egypro.2009.01.140 .
The material conversion of ammonia with carbon dioxide from flue gases is described, inter alia, in the following sources:
  • Cupertino, EG, & Jayaweera, I. Chilled Ammonia based CO2 Capture System with water wash system. ALSTOM TECHNOLOGY LTD.
  • Darde, V., Thomsen, K., van, WWJM, & Stenby, EH (2009). Chilled ammonia process for CO2 capture. [10.1016 / j.egypro.2009.01.137]. Energy Procedia, 1 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 1035-1042, doi: 10.1016 / j.egypro.2009.01.137 ,
  • Darde, V., Thomsen, K., van, WWJM, & Stenby, EH (2010). Chilled ammonia process for CO2 capture. [10.1016 / j.ijggc.2009.10.005]. Int. J. Greenhouse Gas Control, 4 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 131-136, doi: 10.1016 / j.ijggc.2009.10.005 ,
  • Jilvero, H., Normann, F., Andersson, K., & Johnsson, F. (2011). Thermal integration and modeling of the chilled ammonia process. [10.1016 / j.egypro.2011.02.045]. Energy Procedia, 4 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 1713-1720, doi: 10.1016 / j.egypro.2011.02.045 ,
  • Kozak, F., Petig, A., Morris, E., Rhudy, R., & Thimsen, D. (2009). Chilled Ammonia Process for CO2 capture. [10.1016 / j.egypro.2009.01.186]. Energy Procedia, 1 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 1419-1426, doi: 10.1016 / j.egypro.2009.01.186 ,
  • Mathias, PM, Reddy, S., &O'Connell, JP (2010). Quantitative evaluation of the chilled-ammonia process for CO2 capture using thermodynamic analysis and process simulation. [10.1016 / j.ijggc.2009.09.016]. Int. J. Greenhouse Gas Control, 4 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 174-179, doi: 10.1016 / j.ijggc.2009.09.016 ,
  • Peltier, R. (2008). Alstom's chilled ammonia CO2 capture process advances towards commercialization. Power, 152 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 38-41 ,
  • Valenti, G., Bonalumi, D., & Macchi, E. (2009). Energy and exergy analysis for the carbon capture with the Chilled Ammonia Process (CAP). [10.1016 / j.egypro.2009.01.140]. Energy Procedia, 1 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 1059-1066, doi: 10.1016 / j.egypro.2009.01.140 ,

In sämtlichen bekannten Literaturquellen werden ausschließlich Synthesewege zu Ammoniumhydrogencarbonat oder Ammoniumcarbamat oder Harnstoff oder Harnstoff-Intermediaten beschrieben, die auf den stofflich isolierten Einsatz von Kohlendioxid und Ammoniak basieren. Der Einsatz von Ammoniumhydrogencarbonat oder Ammoniumcarbamat oder Harnstoff oder Harnstoff-Intermediaten als Reaktionspartner für aliphatische, alicyclische oder ungesättigte, auch aromatische Alkohole zur Herstellung von Dialkylcarbonaten oder Alkylencarbonaten im Sinne einer CCU (Carbondioxide Capture and Utilization) Anwendung in einem synchronen Verfahren wird in keinem Fall benannt.In all known literature sources are exclusively synthetic routes to Ammoniumhydrogencarbonat or ammonium carbamate or urea or urea intermediates described based on the isolated use of carbon dioxide and ammonia. The use of ammonium bicarbonate or ammonium carbamate or urea or urea intermediates as reactants for aliphatic, alicyclic or unsaturated, even aromatic alcohols for the preparation of dialkyl carbonates or alkylene carbonates in terms of a CCU (Carbondioxide Capture and Utilization) application in a synchronous process is named in any case ,

Katalytische Umsetzungen von Ammoniumcarbamat oder Ammoniumhydrogencarbonat oder Harnstoff oder Harnstoff-Intermediaten mit aliphatischen, alicyclischen oder ungesättigten, auch aromatischen Alkoholen zu Dialkylcarbonaten und Alkylencarbonaten im Allgemeinen und speziell die katalytische Umsetzungen von Ammoniumcarbamat oder Harnstoff oder Harnstoff-Intermediaten mit a) Methanol zu Dialkylcarbonaten und b) Glycerin zu Glycerincarbonat sind u. a. in den folgenden Quellen beschrieben:Catalytic reactions of ammonium carbamate or ammonium bicarbonate or urea or urea intermediates with aliphatic, alicyclic or unsaturated, also aromatic, alcohols to dialkyl carbonates and alkylene carbonates in general and especially the catalytic reactions of ammonium carbamate or urea or urea intermediates with a) methanol to dialkyl carbonates and b) Glycerol to Glycerincarbonat are u. a. described in the following sources:

Quellen für die Synthese von Dialkyl- & Alkenylcarbonaten:Sources for the synthesis of dialkyl & alkenyl carbonates:

  • Aresta, M., Dibenedetto, A., Devita, C., Bourova, O. A., & Chupakhin, O. N. (2004). New catalysts for the conversion of urea into carbamates and carbonates with C1 and C2 alcohols. In J.-S. C. a. K.-W. L. Sang-Eon Park (Ed.), Studies in Surface Science and Catalysis (Vol. Volume 153, pp. 213–220): Elsevier . Aresta, M., Dibenedetto, A., Devita, C., Bourova, OA, & Chupakhin, ON (2004). New catalysts for the conversion of carbamates and carbonates into C1 and C2 alcohols. In J.-SC a. K.-WL Sang-Eon Park (Ed.), Studies in Surface Science and Catalysis (Vol. Volume 153, pp. 213-220): Elsevier ,
  • Aresta, M., Dibenedetto, A., Nocito, F., & Ferragina, C. (2009). Valorization of bio-glycerol: New catalytic materials for the synthesis of glycerol carbonate via glycerolysis of urea. [10.1016/j.jcat.2009.09.008]. J. Catal., 268 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 106–114, doi:10.1016/j.jcat.2009.09.008 . Aresta, M., Dibenedetto, A., Nocito, F., & Ferragina, C. (2009). Valorization of bio-glycerol: New catalytic materials for the synthesis of glycerol carbonate via glycerolysis of urea. [10.1016 / j.jcat.2009.09.008]. J. Catal., 268 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 106-114, doi: 10.1016 / j.jcat.2009.09.008 ,
  • Bloodworth, A. J., Davies, A. G., & Vasishtha, S. C. (1968). Organometallic reactions. Part XIV. The decarboxylation of trialkyltin carbamates by isocyanates and isothiocyanates: a new route to carbodi-imides. Journal of the Chemical Society C: Organic, 2640–2646 . Bloodworth, AJ, Davies, AG, & Vasishtha, SC (1968). Organometallic reactions. Part XIV. The decarboxylation of trialkyltin carbamates by isocyanates and isothiocyanates: a new route to carbodiimides. Journal of the Chemical Society C: Organic, 2640-2646 ,
  • Buchold, H., Eberhardt, J., Wagner, U., & Woelk, H.-J. (2006). Method for producing carbonic acid esters. (pp. 13 pp.): Lurgi AG, Germany . Buchold, H., Eberhardt, J., Wagner, U., & Woelk, H.-J. (2006). Method for producing carbonic acid esters. (pp. 13 pp.): Lurgi AG, Germany ,
  • Claude, S., Mouloungui, Z., Yoo, J.-W., & Gaset, A. (1999). Process for the preparation of glycerol carbonate. (pp. 11 pp.): Organisation Nationale Interprofessionnelle Des Oleagineux-ONIDOL, Fr. . Claude, S., Mouloungui, Z., Yoo, J.-W., & Gaset, A. (1999). Process for the preparation of glycerol carbonate. (pp. 11 pp.): Organization National Interprofessionnelle des Oleagineux-ONIDOL, Fr. ,
  • Climent, M. J., Corma, A., De, F. P., Iborra, S., Noy, M., Velty, A., et al. (2010). Chemicals from biomass: Synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts. The role of acid-base pairs. [10.1016/j.jcat.2009.11.001]. J. Catal., 269 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 140–149, doi:10.1016/j.jcat.2009.11.001 . Climent, MJ, Corma, A., De, FP, Iborra, S., Noy, M., Velty, A., et al. (2010). Chemicals from biomass: Synthesis of glycerol carbonate by transesterification and carbonylation with hydrotalcite catalysts. The role of acid-base pairs. [10.1016 / j.jcat.2009.11.001]. J. Catal., 269 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 140-149, doi: 10.1016 / j.jcat.2009.11.001 ,
  • Darde, V., Thomsen, K., van, W. W. J. M., & Stenby, E. H. (2009). Chilled ammonia process for CO2 capture. [10.1016/j.egypro.2009.01.137]. Energy Procedia, 1 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 1035–1042, doi:10.1016/j.egypro.2009.01.137 . Darde, V., Thomsen, K., van, WWJM, & Stenby, EH (2009). Chilled ammonia process for CO2 capture. [10.1016 / j.egypro.2009.01.137]. Energy Procedia, 1 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 1035-1042, doi: 10.1016 / j.egypro.2009.01.137 ,
  • Darde, V., Thomsen, K., van, W. W. J. M., & Stenby, E. H. (2010). Chilled ammonia process for CO2 capture. [10.1016/j.ijggc.2009.10.005]. Int. J. Greenhouse Gas Control, 4 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 131–136, doi:10.1016/j.ijggc.2009.10.005 . Darde, V., Thomsen, K., van, WWJM, & Stenby, EH (2010). Chilled ammonia process for CO2 capture. [10.1016 / j.ijggc.2009.10.005]. Int. J. Greenhouse Gas Control, 4 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 131-136, doi: 10.1016 / j.ijggc.2009.10.005 ,
  • Dibenedetto, A., Angelini, A., Aresta, M., Ethiraj, J., Fragale, C., & Nocito, F. (2011). Converting wastes into added value products: from glycerol to glycerol carbonate, glycidol and epichlorohydrin using environmentally friendly synthetic routes. [10.1016/j.tet.2010.11.070]. Tetrahedron, 67 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 1308–1313, doi:10.1016/j.tet.2010.11.070 . Dibenedetto, A., Angelini, A., Aresta, M., Ethiraj, J., Fragale, C., & Nocito, F. (2011). Converting wastes into added value products: from glycerol to glycerol carbonate, glycidol and epichlorohydrin using environmentally friendly synthetic routes. [10.1016 / j.tet.2010.11.070]. Tetrahedron, 67 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 1308-1313, doi: 10.1016 / j.tet.2010.11.070 ,
  • Dobrichovsky, M., & Majer, I. (2009). Process and catalysts for producing alkylene and/or dialkyl carbonates. (pp. 22 pp.): Majer Laboratory, S. R. O, Czech Rep. . Dobrichovsky, M., & Majer, I. (2009). Process and catalysts for producing alkylene and / or dialkyl carbonate. (pp. 22 pp.): Majer Laboratory, SR O, Czech Rep. ,
  • Du, Z., Liu, L., Yuan, H., Xiong, J., Zhou, B., & Wu, Y. (2010). Synthesis of propylene carbonate from alcoholysis of urea catalyzed by modified hydroxyapatites. [10.1016/S1872-2067(09)60053-X]. Cuihua Xuebao, 31 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 371–373, doi:10.1016/s1872-2067(09)60053-x . You, Z., Liu, L., Yuan, H., Xiong, J., Zhou, B., & Wu, Y. (2010). Synthesis of propylene carbonate from alcoholysis of urea catalyzed by modified hydroxyapatites. [10.1016 / S1872-2067 (09) 60053-X]. Cuihua Xuebao, 31 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 371-373, doi: 10.1016 / s1872-2067 (09) 60053-x ,
  • Dubois, J.-L., Aresta, M., Dibenedetto, A., Ferragina, C., & Nocito, F. (2010). Synthesis process of polyol carbonate from polyols and urea. (pp. 24 pp.; Chemical Indexing Equivalent to 152: 457307 (EP)): Arkema France, Fr. . Dubois, J.-L., Aresta, M., Dibenedetto, A., Ferragina, C., & Nocito, F. (2010). Synthesis process of polyol carbonate from polyols and urea. (pp. 24 pp .; Chemical Indexing Equivalent to 152: 457307 (EP)): Arkema France, Fr. ,
  • Gao, Z.-w., Wang, S.-f., & Xia, C.-g. (2009). Synthesis of propylene carbonate from urea and 1,2-propanediol over a magnetic nanoparticle. Fenzi Cuihua, 23 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 304–307 . Gao, Z., Wang, S.-f., & Xia, C.-g. (2009). Synthesis of propylene carbonate from urea and 1,2-propanediol over a magnetic nanoparticle. Fenzi Cuihua, 23 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 304-307 ,
  • Gao, Z. W., Wang, S. F., & Xia, C. G. (2009). Synthesis of propylene carbonate from urea and 1,2-propanediol. [10.1016/j.cclet.2008.10.038]. Chin. Chem. Lett., 20 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 131–135, doi:10.1016/j.cclet.2008.10.038 . Gao, ZW, Wang, SF, & Xia, CG (2009). Synthesis of propylene carbonate from urea and 1,2-propanediol. [10.1016 / j.cclet.2008.10.038]. Chin. Chem. Lett., 20 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 131-135, doi: 10.1016 / j.cclet.2008.10.038 ,
  • Guo, H.-f., He, L., Zhao, X.-q., & Zhao, B. (2007). Influence of nano-sized ZnOs different preparation methods on the performance of DMC synthesis. Shandong Huagong, 36 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 1–4, 24 . Guo, H.-f., He, L., Zhao, X.-q., & Zhao, B. (2007). Influence of nano-sized ZnOs different preparation methods on the performance of DMC synthesis. Shandong Huagong, 36 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 1-4, 24 ,
  • Guo, X.-j., Wang, A.-p., Wei, C.-h., Zhang, L., & Yan, J. (2010). Synthesis of dimethyl carbonate from urea and methanol over ZnO-TiO2 composite catalyst. Huaxue Gongchengshi, 24 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 24–27 . Guo, X.-j., Wang, A.-p., Wei, C.-h., Zhang, L., & Yan, J. (2010). Synthesis of dimethyl carbonate from urea and methanol over ZnO-TiO2 composite catalyst. Huaxue Gongchengshi, 24 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 24-27 ,
  • Guo, X.-j., Zhang, R., Zhang, L., Yan, J., Lu, Y.-q., & Li, Z.-l. (2009). Synthesis of dimethyl carbonate over ZnO-TiO2-SiO2 composite catalysts. Xibei Shifan Daxue Xuebao, Ziran Kexueban, 45 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 69–73 . Guo, X.-j., Zhang, R., Zhang, L., Yan, J., Lu, Y.-q., & Li, Z.-l. (2009). Synthesis of dimethyl carbonate over ZnO-TiO2-SiO2 composite catalysts. Xibei Shifan Daxue Xuebao, Ziran Kexueban, 45 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 69-73 ,
  • Guo, Y., Li, W., Wu, D., & Zhou, J. (2011). Study on synthesis of propylene carbonate from urea and 1,2-propylene glycol in monolithic stirrer reactor. Jingxi Shiyou Huagong Jinzhan, 12 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 47–49 . Guo, Y., Li, W., Wu, D., & Zhou, J. (2011). Study on the synthesis of propylene carbonate from urea and 1,2-propylene glycol in monolithic stirrer reactor. Jingxi Shiyou Huagong Jinzhan, 12 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 47-49 ,
  • Hammond, C., Lopez-Sanchez, J. A., Ab, R. M. H., Dimitratos, N., Jenkins, R. L., Carley, A. F., et al. (2011). Synthesis of glycerol carbonate from glycerol and urea with gold-based catalysts. [10.1039/c0dt01389g]. Dalton Trans., 40 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 3927–3937, doi:10.1039/c0dt01389g . Hammond, C., Lopez-Sanchez, JA, Ab, RMH, Dimitratos, N., Jenkins, RL, Carley, AF, et al. (2011). Synthesis of glycerol carbonate from glycerol and urea with gold-based catalysts. [10.1039 / c0dt01389g]. Dalton Trans., 40 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 3927-3937, doi: 10.1039 / c0dt01389g ,
  • Ion, A., Parvulescu, V., Jacobs, P., & Vos, D. D. (2007). Synthesis of symmetrical or asymmetrical urea compounds from CO2 via base catalysis. Green Chemistry, 9 (2), 158–161 . Ion, A., Parvulescu, V., Jacobs, P., & Vos, DD (2007). Synthesis of symmetrical or asymmetrical urea compounds from CO2 via base catalysis. Green Chemistry, 9 (2), 158-161 ,
  • Jiang, T., Ma, X., Zhou, Y., Liang, S., Zhang, J., & Han, B. (2008). Solvent-free synthesis of substituted ureas from CO2 and amines with a functional ionic liquid as the catalyst. Green Chemistry, 10 (4), 465–469 . Jiang, T., Ma, X., Zhou, Y., Liang, S., Zhang, J., & Han, B. (2008). Solvent-free synthesis of substituted ureas from CO2 and amines with a functional ionic liquid as the catalyst. Green Chemistry, 10 (4), 465-469 ,
  • Jilvero, H., Normann, F., Andersson, K., & Johnsson, F. (2011). Thermal integration and modelling of the chilled ammonia process. [10.1016/j.egypro.2011.02.045]. Energy Procedia, 4 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 1713–1720, doi:10.1016/j.egypro.2011.02.045 . Jilvero, H., Normann, F., Andersson, K., & Johnsson, F. (2011). Thermal integration and modeling of the chilled ammonia process. [10.1016 / j.egypro.2011.02.045]. Energy Procedia, 4 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 1713-1720, doi: 10.1016 / j.egypro.2011.02.045 ,
  • Kim, D.-W., Park, M.-S., Selvaraj, M., Park, G.-A., Lee, S.-D., & Park, D.-W. (2011). Catalytic performance of polymer-supported ionic liquids in the synthesis of glycerol carbonate from glycerol and urea. [10.1007/s11164-011-0398-4]. Res. Chem. Intermed., 37 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 1305–1312, doi:10.1007/s11164-011-0398-4 . Kim, D.-W., Park, M.-S., Selvaraj, M., Park, G.-A., Lee, S.-D., & Park, D.-W. (2011). Synthesis of glycerol carbonate from glycerol and urea. [10.1007 / s11164-011-0398-4]. Res. Chem. Intermed., 37 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 1305-1312, doi: 10.1007 / s11164-011-0398-4 ,
  • Kong, D.-L., He, L.-N., & Wang, J.-Q. (2010). Synthesis of urea derivates from CO2 and amines catalyzed by polyethylene glycol-supported potassium hydroxide without dehydrating agents. Synlett, 2010 (8), 1276–1280, doi:10.1055/s-0029-1219799 . Kong, D.-L., He, L.-N., & Wang, J.-Q. (2010). Synthesis of urea derivatives from CO2 and amines catalyzed by polyethylene glycol-supported potassium hydroxides without dehydrating agents. Synlett, 2010 (8), 1276-1280, doi: 10.1055 / s-0029-1219799 ,
  • Kozak, F., Petig, A., Morris, E., Rhudy, R., & Thimsen, D. (2009). Chilled Ammonia Process for CO2 capture. [10.1016/j.egypro.2009.01.186]. Energy Procedia, 1 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 1419–1426, doi:10.1016/j.egypro.2009.01.186 . Kozak, F., Petig, A., Morris, E., Rhudy, R., & Thimsen, D. (2009). Chilled Ammonia Process for CO2 capture. [10.1016 / j.egypro.2009.01.186]. Energy Procedia, 1 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 1419-1426, doi: 10.1016 / j.egypro.2009.01.186 ,
  • Kraus, G. A., Bougie, D., Jacobson, R. A., & Su, Y. (1989). The urea connection. Intramolecular Diels-Alder reactions of ureas. The Journal of Organic Chemistry, 54 (10), 2425–2428, doi:10.1021/jo00271a035 . Kraus, GA, Bougie, D., Jacobson, RA, & Su, Y. (1989). The urea connection. Intramolecular Diels-Alder reactions of ureas. The Journal of Organic Chemistry, 54 (10), 2425-2428, doi: 10.1021 / jo00271a035 ,
  • Li, Q., Zhao, N., Wei, W., & Sun, Y. (2004). Synthesis of propylene carbonate from urea and propylene glycol. Stud. Surf. Sci. Catal., 153 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 573–576 . Li, Q., Zhao, N., Wei, W., & Sun, Y. (2004). Synthesis of propylene carbonate from urea and propylene glycol. Stud. Surf. Sci. Catal., 153 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 573-576 ,
  • Liang, W., Yang, J., Shen, G., & Xie, X. (2010). Method for synthesizing glycerol carbonate from glycerol and urea with Zn-hydroxyapatite as catalyst. (pp. 6 pp.): Zhejiang Huanuo Chemical Engineering Co., Ltd., Peop. Rep. China . Liang, W., Yang, J., Shen, G., & Xie, X. (2010). Method for synthesizing glycerol carbonate from glycerol and urea with Zn-hydroxyapatite as catalyst. (pp. 6 pp.): Zhejiang Huanuo Chemical Engineering Co., Ltd., Peop. Rep. Of China ,
  • Lin, H., Yang, B., Sun, J., Wang, X., & Wang, D. (2004). Kinetics studies for the synthesis of dimethyl carbonate from urea and methanol. Chemical Engineering Journal, 103 (1–3), 21–27, doi:10.1016/j.cej.2004.07.003 . Lin, H., Yang, B., Sun, J., Wang, X., & Wang, D. (2004). Kinetics studies on the synthesis of dimethyl carbonate from urea and methanol. Chemical Engineering Journal, 103 (1-3), 21-27, doi: 10.1016 / j.cej.2004.07.003 ,
  • Liu, X., Chu, Z., & Liu, Z. (2009). Synthesis of glycidol from glycerol. Huagong Jinzhan, 28 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 1445–1448 . Liu, X., Chu, Z., & Liu, Z. (2009). Synthesis of glycidol from glycerol. Huagong Jinzhan, 28 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 1445-1448 ,
  • Lopez, S. J. A., & Hutchings, G. J. (2010). Method for making organic carbonates and sulphur analogues. (pp. 32 pp.): University College Cardiff Consultants Limited, UK . Lopez, SJA, & Hutchings, GJ (2010). Method for making organic carbonates and sulfur analogues. (pp. 32 pp.): University College Cardiff Consultants Limited, UK ,
  • Lunsford, C. D., Mays, R. P., Richman, J. A., Jr., & Murphey, R. S. (1960). 5-Aryloxymethyl-2-oxazolidinones. J. Am. Chem. Soc., 82 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 1166–1171 . Lunsford, CD, Mays, RP, Richman, JA, Jr., & Murphey, RS (1960). 5-aryloxymethyl-2-oxazolidinones. J. Am. Chem. Soc., 82 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 1166-1171 ,
  • Mathias, P. M., Reddy, S., & O'Connell, J. P. (2010). Quantitative evaluation of the chilled-ammonia process for CO2 capture using thermodynamic analysis and process simulation. [10.1016/j.ijggc.2009.09.016]. Int. J. Greenhouse Gas Control, 4 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 174–179, doi:10.1016/j.ijggc.2009.09.016 . Mathias, PM, Reddy, S., &O'Connell, JP (2010). Quantitative evaluation of the chilled-ammonia process for CO2 capture using thermodynamic analysis and process simulation. [10.1016 / j.ijggc.2009.09.016]. Int. J. Greenhouse Gas Control, 4 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 174-179, doi: 10.1016 / j.ijggc.2009.09.016 ,
  • Mickova, R., & Trojanek, J. (1990). Reaction of 3-(2-methoxyphenoxy)propane derivatives with urea in melt. Cesk. Farm., 39 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 261–265 . Mickova, R., & Trojanek, J. (1990). Reaction of 3- (2-methoxyphenoxy) propane derivatives with urea in melt. Cesk. Farm., 39 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 261-265 ,
  • Qi, Z., Wang, H., & Xia, D. (2006). Preparation of zinc oxide and its catalytic behavior in synthesis of dimethyl carbonate (DMC). Gongye Cuihua, 14 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 26–29 . Qi, Z., Wang, H., & Xia, D. (2006). Preparation of zinc oxide and its catalytic behavior in synthesis of dimethyl carbonate (DMC). Gongye Cuihua, 14 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 26-29 ,
  • Rubio-Marcos, F., Calvino-Casilda, V., Banares, M. A., & Fernandez, J. F. (2010). Novel hierarchical Co3O4/ZnO mixtures by dry nanodispersion and their catalytic application in the carbonylation of glycerol. [10.1016/j.jcat.2010.08.009]. J. Catal., 275 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 288–293, doi:10.1016/j.jcat.2010.08.009 . Rubio-Marcos, F., Calvino-Casilda, V., Banares, MA, & Fernandez, JF (2010). Novel hierarchical Co3O4 / ZnO mixtures by dry nanodispersion and their catalytic application in the carbonylation of glycerol. [10.1016 / j.jcat.2010.08.009]. J. Catal., 275 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 288-293, doi: 10.1016 / j.jcat.2010.08.009 ,
  • Ryu, J. Y., & Gelbein, A. P. (2005). Process for making dialkyl carbonates. (pp. 18 pp.): Catalytic Distillation Technologies, USA . Ryu, JY, & Yellow, AP (2005). Process for making dialkyl carbonate. (pp. 18 pp.): Catalytic Distillation Technologies, USA ,
  • Sasa, T., Okutsu, M., & Uno, M. (2008). Preparation of glycerin carbonate from glycerin and urea in water content-controlled condition. (pp. 6 pp.): Kao Corp., Japan . Sasa, T., Okutsu, M., & Uno, M. (2008). Preparation of glycerin carbonate from glycerol and urea in water content-controlled condition. (pp. 6 pp.): Kao Corp., Japan ,
  • Sasa, T., Okutsu, M., & Uno, M. (2009). Preparation of high-purity glycerin carbonate and glycidol. (pp. 10 pp.): Kao Corp., Japan . Sasa, T., Okutsu, M., & Uno, M. (2009). Preparation of high-purity glycerol carbonate and glycidol. (pp. 10 pp.): Kao Corp., Japan ,
  • Shim, Y. N., Lee, J. K., Im, J. K., Mukherjee, D. K., Nguyen, D. Q., Cheong, M., et al. (2011). Ionic liquid-assisted carboxylation of amines by CO2: a mechanistic consideration. Physical Chemistry Chemical Physics, 13 (13), 6197–6204 . Shim, YN, Lee, JK, Im, JK, Mukherjee, DK, Nguyen, DQ, Cheong, M., et al. (2011). Ionic liquid-assisted carbonation of amines by CO2: a mechanistic consideration. Physical Chemistry Chemical Physics, 13 (13), 6197-6204 ,
  • Shu, T., Mo, W., Xiong, H., & Li, G. (2006). Synthesis of propylene carbonate from urea and 1,2-propanediol catalyzed by hydrotalcite-like compounds. Shiyou Huagong, 35 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 11–14 . Shu, T., Mo, W., Xiong, H., & Li, G. (2006). Synthesis of propylene carbonate from urea and 1,2-propanediol catalyzed by hydrotalcite-like compounds. Shiyou Huagong, 35 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 11-14 ,
  • Sun, W., Wang, S., & Xia, C. (2009). Process for preparation of organic carbonates. (pp. 6 pp.): Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Peop. Rep. China . Sun, W., Wang, S., & Xia, C. (2009). Process for the preparation of organic carbonates. (pp. 6 pp.): Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Peop. Rep. Of China ,
  • Sun, Y., Wei, W., Li, Q., Zhao, N., Wang, M., Wu, Y., et al. (2003). Process for preparation of propylene or ethylene carbonate. (pp. 7 pp.): Institute of Coal Chemistry, Chinese Academy of Sciences, Peop. Rep. China . Sun, Y., Wei, W., Li, Q., Zhao, N., Wang, M., Wu, Y., et al. (2003). Process for the preparation of propylene or ethylene carbonate. (pp. 7 pp.): Institute of Coal Chemistry, Chinese Academy of Sciences, Peop. Rep. Of China ,
  • Valenti, G., Bonalumi, D., & Macchi, E. (2009). Energy and exergy analyses for the carbon capture with the Chilled Ammonia Process (CAP). [10.1016/j.egypro.2009.01.140]. Energy Procedia, 1 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 1059–1066, doi:10.1016/j.egypro.2009.01.140 . Valenti, G., Bonalumi, D., & Macchi, E. (2009). Energy and exergy analysis for the carbon capture with the Chilled Ammonia Process (CAP). [10.1016 / j.egypro.2009.01.140]. Energy Procedia, 1 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 1059-1066, doi: 10.1016 / j.egypro.2009.01.140 ,
  • Wang, D., Yang, B., Zhai, X., & Zhou, L. (2007). Synthesis of diethyl carbonate by catalytic alcoholysis of urea. Fuel Processing Technology, 88 (8), 807–812, doi:10.1016/j.fuproc.2007.04.003 . Wang, D., Yang, B., Zhai, X., & Zhou, L. (2007). Synthesis of diethyl carbonate by catalytic alcoholysis of urea. Fuel Processing Technology, 88 (8), 807-812, doi: 10.1016 / j.fuproc.2007.04.003 ,
  • Wang, H., Lu, B., Wang, X., Zhang, J., & Cai, Q. (2009). Highly selective synthesis of dimethyl carbonate from urea and methanol catalyzed by ionic liquids. Fuel Processing Technology, 90 (10), 1198–1201, doi:10.1016/j.fuproc.2009.05.020 . Wang, H., Lu, B., Wang, X., Zhang, J., & Cai, Q. (2009). Highly selective synthesis of dimethyl carbonate from urea and methanol catalyzed by ionic liquids. Fuel Processing Technology, 90 (10), 1198-1201, doi: 10.1016 / j.fuproc.2009.05.020 ,
  • Wang, H., Wang, M., Zhao, W., Wei, W., & Sun, Y. (2010). Reaction of zinc oxide with urea and its role in urea methanolysis. Reaction Kinetics, Mechanisms and Catalysis, 99 (2), 381–389, doi:10.1007/s11144-009-0134-x . Wang, H., Wang, M., Zhao, W., Wei, W., & Sun, Y. (2010). Reaction of zinc oxide with urea and its role in urea methanolysis. Reaction Kinetics, Mechanisms and Catalysis, 99 (2), 381-389, doi: 10.1007 / s11144-009-0134-x ,
  • Wang, H.-b., Qi, Z.-z., & Xia, D.-k. (2006). Thermodynamic analysis of dimethyl carbonate synthesis from methanol and urea. Tianranqi Huagong, 31 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 75–78 . Wang, H.-b., Qi, Z.-z., & Xia, D.-k. (2006). Thermodynamic analysis of dimethyl carbonate synthesis from methanol and urea. Tianranqi Huagong, 31 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 75-78 ,
  • Wang, L., Ma, Y., Wang, Y., Liu, S., & Deng, Y. (2011). Efficient synthesis of glycerol carbonate from glycerol and urea with lanthanum oxide as a solid base catalyst. [10.1016/j.catcom.2011.05.027]. Catal. Commun., 12 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 1458–1462, doi:10.1016/j.catcom.2011.05.027 . Wang, L., Ma, Y., Wang, Y., Liu, S., & Deng, Y. (2011). Efficient synthesis of glycerol carbonate from glycerol and urea with lanthanum oxide as a solid base catalyst. [10.1016 / j.catcom.2011.05.027]. Catal. Commun., 12 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 1458-1462, doi: 10.1016 / j.catcom.2011.05.027 ,
  • Wang, M., Wei, T., Wei, W., Yang, J., Wang, X., & Sun, Y. Synthesis of dimethyl carbonate from urea and methanol over herterogeneous cataylsts. State Key Laboratory of Coal conversion, Institute of Coal Chemistry . Wang, M., Wei, T., Wei, W., Yang, J., Wang, X., & Sun, Y. Synthesis of dimethyl carbonate from urea and methanol over herterogeneous cataylsts. State Key Laboratory of Coal Conversion, Institute of Coal Chemistry ,
  • Wang, M., Zhao, N., Wei, & Sun, Y. (2005). Synthesis of Dimethyl Carbonate from Urea and Methanol over ZnO. Industrial & Engineering Chemistry Research, 44 (19), 7596–7599, doi:10.1021/ie0504553 . Wang, M., Zhao, N., Wei, & Sun, Y. (2005). Synthesis of dimethyl carbonates from urea and methanol over ZnO. Industrial & Engineering Chemistry Research, 44 (19), 7596-7599, doi: 10.1021 / ie0504553 ,
  • Wershofen, S., Klein, S., Zhou, Z., Wang, X., Wang, J., & Kang, M. (2009). Rare earth based catalyst for the synthesis of organic carbonates, process for preparing the same and application thereof. (pp. 20 pp.): Bayer Materialscience AG, Germany Wershofen, S., Klein, S., Zhou, Z., Wang, X., Wang, J., & Kang, M. (2009). Rare earth based catalyst for the synthesis of organic carbonates, process for preparing the same and application thereof. (pp. 20 pp.): Bayer MaterialScience AG, Germany
  • Wu, C., Cheng, H., Liu, R., Wang, Q., Hao, Y., Yu, Y., et al. (2010). Synthesis of urea derivatives from amines and CO2 in the absence of catalyst and solvent. Green Chemistry, 12 (10), 1811–1816 . Wu, C., Cheng, H., Liu, R., Wang, Q., Hao, Y., Yu, Y., et al. (2010). Synthesis of urine derivatives from amines and CO2 in the absence of catalyst and solvent. Green Chemistry, 12 (10), 1811-1816 ,
  • Wu, S., Liu, S.-y., & Wang, G.-y. (2009). Catalytic synthesis of propylene carbonate by heteropolyacid salt. Hecheng Huaxue, 17 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 23–27 . Wu, S., Liu, S.- y., & Wang, G.-y. (2009). Catalytic synthesis of propylene carbonate by heteropolyacid salt. Hecheng Huaxue, 17 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 23-27 ,
  • Xia, C., Gao, Z., Wang, S., & Sun, W. (2010). Method for synthesizing carbonic acid ester by alcoholysis of urea. (pp. 5 pp.): Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Peop. Rep. China . Xia, C., Gao, Z., Wang, S., & Sun, W. (2010). Method for synthesizing carbonic acid esters by alcoholysis of urea. (pp. 5 pp.): Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Peop. Rep. Of China ,
  • Xiao, X., Lu, H., Lu, B., Wang, X.-g., & Cai, Q.-h. (2010). Highly selective synthesis of dimethyl carbonate from urea and methanol over nano-sized α-Fe2O3. Tianranqi Huagong, 35 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 22–27 . Xiao, X., Lu, H., Lu, B., Wang, X.-g., & Cai, Q.-h. (2010). Highly selective synthesis of methanol and methanol over nano-sized α-Fe2O3. Tianranqi Huagong, 35 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 22-27 ,
  • Xiaoding, X., & Moulijn, J. A. (1996). Mitigation of CO2 by Chemical Conversion: Plausible Chemical Reactions and Promising Products. Energy & Fuels, 10 (2), 305–325, doi:10.1021/ef9501511 . Xiaoding, X., & Moulijn, JA (1996). Mitigation of CO2 by Chemical Conversion: Plausible Chemical Reactions and Promising Products. Energy & Fuels, 10 (2), 305-325, doi: 10.1021 / ef9501511 ,
  • Xu, X., Zhan, J., Wei, W., & Zhao, N. (2006). Synthesis of propylene carbonate from urea and propanediol. Shihua Jishu Yu Yingyong, 24 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 366–368 . Xu, X., Zhan, J., Wei, W., & Zhao, N. (2006). Synthesis of propylene carbonate from urea and propanediol. Shihua Jishu Yu Yingyong, 24 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 366-368 ,
  • Yang, B., Qiu, P., & Zhai, X. (2008). Method for preparing diethyl carbonate by two-step coupling reaction. (pp. 9 pp.): Xi'an Jiaotong University, Peop. Rep. China Yang, B., Qiu, P., & Zhai, X. (2008). Method for preparing diethyl carbonate by two-step coupling reaction. (pp. 9 pp.): Xi'an Jiaotong University, Peop. Rep. Of China
  • Yang, B., & Sun, J. (2005a). Process for preparation of dimethyl carbonate in the presence of polyphosphoric acids. (pp. 11 pp.): Xi'an Jiaotong University, Peop. Rep. China . Yang, B., & Sun, J. (2005a). Process for the preparation of dimethyl carbonate in the presence of polyphosphoric acids. (pp. 11 pp.): Xi'an Jiaotong University, Peop. Rep. Of China ,
  • Yang, B., & Sun, J. (2005b). Process for preparation of dimethyl carbonate under normal pressure. (pp. 11 pp.): Xi'an Jiaotong University, Peop. Rep. China . Yang, B., & Sun, J. (2005b). Process for the preparation of dimethyl carbonate under normal pressure. (pp. 11 pp.): Xi'an Jiaotong University, Peop. Rep. Of China ,
  • Yoo, J. W., & Mouloungui, Z. (2003). Catalytic carbonylation of glycerin by urea in the presence of zinc mesoporous system for the synthesis of glycerol carbonate. Stud. Surf. Sci. Catal., 146 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 757–760 . Yoo, JW, & Mouloungui, Z. (2003). Catalytic carbonylation of glycerin by urea in the presence of zinc mesoporous system for the synthesis of glycerol carbonate. Stud. Surf. Sci. Catal., 146 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 757-760 ,
  • Zhao, W., Peng, W., Wang, D., Zhao, N., Li, J., Xiao, F., et al. (2009). Zinc oxide as the precursor of homogenous catalyst for synthesis of dialkyl carbonate from urea and alcohols. Catalysis Communications, 10 (5), 655–658, doi:10.1016/j.catcom.2008.11.018 . Zhao, W., Peng, W., Wang, D., Zhao, N., Li, J., Xiao, F., et al. (2009). Zinc oxide as the precursor of homogeneous catalyst for synthesis of dialkyl carbonate from urea and alcohols. Catalysis Communications, 10 (5), 655-658, doi: 10.1016 / j.catcom.2008.11.018 ,
  • Zhao, Y.-m., Chen, T., Lei, Y.-c., Wang, G.-y., Yao, J., & Wang, Y. (2005). Synthesis of propylene carbonate from urea and 1,2-propylene glycol catalyzed by lead and zinc compounds. Jingxi Huagong, 22 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 638–640 . Zhao, Y.-m., Chen, T., Lei, Y.-c., Wang, G.-y., Yao, J., & Wang, Y. (2005). Synthesis of propylene carbonate from urea and 1,2-propylene glycol catalyzed by lead and zinc compounds. Jingxi Huagong, 22 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 638-640 ,
  • Zheng, S., Li, F., Liu, J., & Xia, C. (2007). A novel and efficient (NHC)CuI (NHC = N-heterocyclic carbene) catalyst for the oxidative carbonylation of amino compounds. Tetrahedron Letters, 48 (33), 5883–5886, doi:10.1016/j.tetlet.2007.06.049 . Zheng, S., Li, F., Liu, J., & Xia, C. (2007). A novel and efficient (NHC) CuI (NHC = N-heterocyclic carbene) catalyst for the oxidative carbonylation of amino compounds. Tetrahedron Letters, 48 (33), 5883-5886, doi: 10.1016 / j.tetlet.2007.06.049 ,

Im Rahmen der geschilderten Synthese von Dialkyl- & Alkenylcarbonaten werden bevorzugt Katalysatoren verwendet, die insbesondere im Rahmen der vorgenannten Literaturstellen beschrieben sind. Metalloxide, Metallcarbonate und Metallsulfate sind als Katalysatoren besonders geeignet wobei deren Nanopartikelcharakter eine besondere Bedeutung hat. Insbesondere geeignet für die erfindungsgemäße Verfahrensführung sind die in den Beispielen genannten an katalytisch wirksamen Silikat-Partikeln mit Korngrößen zwischen 200 und 0,5 μm, bevorzugt zwischen 50 und 0,5 μm, insbesondere zwischen 10 und 0,5 μm.In the context of the described synthesis of dialkyl & Alkenylcarbonaten catalysts are preferably used, which are described in particular in the context of the aforementioned references. Metal oxides, metal carbonates and metal sulfates are particularly suitable as catalysts whose nanoparticle character has a special meaning. Particularly suitable for the process according to the invention are those mentioned in the examples of catalytically active silicate particles with particle sizes between 200 and 0.5 .mu.m, preferably between 50 and 0.5 .mu.m, in particular between 10 and 0.5 .mu.m.

In sämtlichen bekannten Literaturquellen werden ausschließlich Synthesewege zu Dialkylcarbonaten und Alkylencarbonaten beschrieben, die auf den stofflich isolierten Einsatz von Ammoniumcarbamat oder Ammoniumhydrogencarbonate oder Harnstoff oder Harnstoff-Intermediaten und aliphatischen, alicyclischen oder ungesättigten, auch aromatischen Alkoholen unter Freisetzung von Ammoniak basieren. Der Einsatz des freigesetzten Ammoniaks als Absorber für Kohlendioxid aus Rauchgasen oder anderen CO2-Quellen im Sinne einer CCU (Carbondioxide Capture and Utilisation) Anwendung in einem synchronen Verfahren wird in sämtlichen bekannten Literaturquellen nicht benannt.In all known sources of literature only synthetic routes to dialkyl carbonates and alkylene are described based on the materially isolated use of ammonium carbamate or ammonium bicarbonates or urea or urea intermediates and aliphatic, alicyclic or unsaturated, and aromatic alcohols to release ammonia. The use of the liberated ammonia as an absorber for carbon dioxide from flue gases or other CO 2 sources in terms of a CCU (Carbondioxide Capture and Utilization) application in a synchronous process is not named in all known literature sources.

Dialkylcarbonate dienen nicht nur als Reagenzien sondern als „Green Solvents” zum Ersatz für Aromaten wie Benzol, Toluol, Xylole, Cumol und als Ersatz für Nitroverdünner, Essigsäureethyl- oder -butylester. Durch Verwendung geeigneter Carbonate ist die Zeit des Verdunstens je nach Bedarf steuerbar.Dialkyl carbonates serve not only as reagents but as "green solvents" to replace aromatics such as benzene, toluene, xylenes, cumene and as a substitute for nitro thinner, ethyl acetate or butyl ester. By using suitable carbonates, the time of evaporation is controllable as needed.

ExperimentellesExperimental

Ethylencarbonatethylene

Gemäß einer vorteilhaften Ausführungsform der Erfindung wird die Umsetzung von Ammoniumcarbonat oder Harnstoff oder Harnstoff-Intermediaten und Ethylenglycol zu Ethylencarbonat bei Temperaturen zwischen 90 und 180°C, bevorzugt zwischen 125 und 165°, insbesondere 135–155°C und Prozessdrücken zwischen 0,1 und 2 atm, bevorzugt zwischen 0,1 und 1 atm, insbesondere zwischen 0,1 und 0,8 atm an katalytisch wirksamen Silikat-Partikeln mit Korngrößen zwischen 200 und 0,5 μm, bevorzugt zwischen 50 und 0,5 μm, insbesondere zwischen 10 und 0,5 μm durchgeführt.According to an advantageous embodiment of the invention, the reaction of ammonium carbonate or urea or urea intermediates and ethylene glycol to ethylene carbonate at temperatures between 90 and 180 ° C, preferably between 125 and 165 °, in particular 135-155 ° C and process pressures between 0.1 and 2 atm, preferably between 0.1 and 1 atm, in particular between 0.1 and 0.8 atm of catalytically active silicate particles with grain sizes between 200 and 0.5 .mu.m, preferably between 50 and 0.5 .mu.m, in particular between 10 and 0.5 microns performed.

Das FT-MIR-ATR Spektrum des erfindungsgemäß erzeugten Ethylencarbonats wird in 5 wiedergegeben.The FT-MIR-ATR spectrum of the ethylene carbonate produced according to the invention is described in 5 played.

Ethylencarbonat, 1,3-Dioxolan-2-on, ist ein gelbliches festes Produkt mit fruchtartigen Geruch. Ethylencarbonat wird in der chemischen Industrie als Ausgangsstoff für Synthesen und als Lösungsmittel bei höheren Temperaturen verwendet, u. a. als Ausgangsprodukt für die Synthese von Oxazoliinonen, Imidazolidonen, Pyrimidinen und Purinen, als ein Vernetzungsagenz in der Polymerproduktion für Superabsorber, als Hochtemperatur-Lösungsmittel bei der Verspinnung von Polyacrylnitril-Fasern, als Dispersionsadditiv für die Produktion von Schmiermitteln, als Solvent für die Gaswäsche, als Zwischenprodukt in der Synthese von Polycarbonatdiolanwendungen. Gerade vor dem Hintergrund der Entwicklung von Elektro- und Hybrid-Fahrzeugen ist die Anwendung als Komponente in nichtwässrigen Elektrolytlösungen für Litiumionenbatterien von besonderer Bedeutung. Die Eignung als nichtwässrige Elektrolyt-Komponente für Litiumionenbatterien gilt auch für 1,3-Propylencarbonat, 1,2-Propylencarbonat und 4-Hydroxymethyl-1,3-dioxolan-2-on.Ethylene carbonate, 1,3-dioxolan-2-one, is a yellowish solid product with a fruity odor. Ethylene carbonate is used in the chemical industry as a raw material for syntheses and as a solvent at higher temperatures, including as a starting material for the synthesis of oxazoliinones, imidazolidones, pyrimidines and purines, as a crosslinking agent in polymer production for superabsorbents, as a high-temperature solvent in the spinning of Polyacrylonitrile fibers, as a dispersion additive for the production of lubricants, as a solvent for gas scrubbing, as an intermediate in the synthesis of polycarbonate diol applications. Especially against the background of the development of electric and hybrid vehicles, the use as a component in non-aqueous electrolyte solutions for lithium ion batteries of special Importance. The suitability as a non-aqueous electrolyte component for lithium ion batteries also applies to 1,3-propylene carbonate, 1,2-propylene carbonate and 4-hydroxymethyl-1,3-dioxolan-2-one.

1,2-Propylencarbonat1,2-propylene carbonate

Gemäß einer vorteilhaften Ausführungsform der Erfindung wird die Umsetzung von Ammoniumcarbonat oder Harnstoff oder Harnstoff-Intermediaten und 1,2-Propylenglycol zu 1,2-Propylencarbonat bei Temperaturen zwischen 90 und 180°C, bevorzugt zwischen 125 und 165°, insbesondere 135–155°C und Prozessdrücken zwischen 0,1 und 2 atm, bevorzugt zwischen 0,1 und 1 atm, insbesondere zwischen 0,1 und 0,8 atm an katalytisch wirksamen Silikat-Partikeln mit Korngrößen zwischen 200 und 0,5 μm, bevorzugt zwischen 50 und 0,5 μm, insbesondere zwischen 10 und 0,5 μm durchgeführt.According to an advantageous embodiment of the invention, the reaction of ammonium carbonate or urea or urea intermediates and 1,2-propylene glycol to 1,2-propylene carbonate at temperatures between 90 and 180 ° C, preferably between 125 and 165 °, in particular 135-155 ° C and process pressures between 0.1 and 2 atm, preferably between 0.1 and 1 atm, in particular between 0.1 and 0.8 atm of catalytically active silicate particles with particle sizes between 200 and 0.5 .mu.m, preferably between 50 and 0.5 microns, in particular between 10 and 0.5 microns performed.

1,3-Propylencarbonat1,3-propylene carbonate

Gemäß einer vorteilhaften Ausführungsform der Erfindung wird die Umsetzung von Ammoniumcarbonat oder Harnstoff oder Harnstoff-Intermediaten und 1,3-Propylenglycol zu 1,3-Propylencarbonat bei Temperaturen zwischen 90 und 180°C, bevorzugt zwischen 125 und 165°, insbesondere 135–155°C und Prozessdrücken zwischen 0,1 und 2 atm, bevorzugt zwischen 0,1 und 1 atm, insbesondere zwischen 0,1 und 0,8 atm an katalytisch wirksamen Silikat-Partikeln mit Korngrößen zwischen 200 und 0,5 μm, bevorzugt zwischen 50 und 0,5 μm, insbesondere zwischen 10 und 0,5 μm durchgeführt.According to an advantageous embodiment of the invention, the reaction of ammonium carbonate or urea or urea intermediates and 1,3-propylene glycol to 1,3-propylene carbonate at temperatures between 90 and 180 ° C, preferably between 125 and 165 °, in particular 135-155 ° C and process pressures between 0.1 and 2 atm, preferably between 0.1 and 1 atm, in particular between 0.1 and 0.8 atm of catalytically active silicate particles with particle sizes between 200 and 0.5 .mu.m, preferably between 50 and 0.5 microns, in particular between 10 and 0.5 microns performed.

4-Hydroxymethyl-1,3-dioxolan-2-on4-hydroxymethyl-1,3-dioxolan-2-one

Gemäß einer vorteilhaften Ausführungsform der Erfindung wird die Umsetzung von Ammoniumcarbonat oder Harnstoff oder Harnstoff-Intermediaten und Glycerin zu 4-Hydroxy-1,3-dioxolan-2-on bei Temperaturen zwischen 90 und 200°C, bevorzugt zwischen 125 und 175°, insbesondere 135–165°C und Prozessdrücken zwischen 0,1 und 2 atm, bevorzugt zwischen 0,1 und 1 atm, insbesondere zwischen 0,1 und 0,8 atm an katalytisch wirksamen Silikat-Partikeln mit Korngrößen zwischen 200 und 0,5 μm, bevorzugt zwischen 50 und 0,5 μm, insbesondere zwischen 10 und 0,5 μm durchgeführt.According to an advantageous embodiment of the invention, the reaction of ammonium carbonate or urea or urea intermediates and glycerol to 4-hydroxy-1,3-dioxolan-2-one at temperatures between 90 and 200 ° C, preferably between 125 and 175 °, in particular 135-165 ° C and process pressures between 0.1 and 2 atm, preferably between 0.1 and 1 atm, in particular between 0.1 and 0.8 atm of catalytically active silicate particles with grain sizes between 200 and 0.5 microns, preferably carried out between 50 and 0.5 .mu.m, in particular between 10 and 0.5 .mu.m.

Das FT-MIR-ATR Spektrum des erfindungsgemäß erzeugten 4-Hydroxymethyl-1,2-dioxolan-3-ones wird in 6 wiedergegeben.The FT-MIR-ATR spectrum of the inventively produced 4-hydroxymethyl-1,2-dioxolan-3-ones is in 6 played.

Dimethylcarbonatdimethyl

Gemäß einer vorteilhaften Ausführungsform der Erfindung wird die Umsetzung von Ammoniumcarbonat oder Harnstoff oder Harnstoff-Intermediaten und Methanol zu Dimethylcarbonat bei Temperaturen zwischen 85 und 200°C, bevorzugt zwischen 110 und 170°, insbesondere 125–150°C und Prozessdrücken zwischen 2 und 40 atm, bevorzugt zwischen 5 und 20 atm, insbesondere zwischen 8 und 13 atm an katalytisch wirksamen Silikat-Partikeln mit Korngrößen zwischen 200 und 0,5 μm, bevorzugt zwischen 50 und 0,5 μm, insbesondere zwischen 10 und 0,5 μm durchgeführt. Dimethylcarbonat DMC ist ein Reagenz für Acylierungen oder Alkylierungen. Es kann wegen seiner Antiklopfeigenschaften als Benzinadditiv und als Ersatz für Methyl-tert-butylether (MTBE) verwendet werden.According to an advantageous embodiment of the invention, the reaction of ammonium carbonate or urea or urea intermediates and methanol to dimethyl carbonate at temperatures between 85 and 200 ° C, preferably between 110 and 170 °, in particular 125-150 ° C and process pressures between 2 and 40 atm , preferably between 5 and 20 atm, in particular between 8 and 13 atm, of catalytically active silicate particles having grain sizes between 200 and 0.5 μm, preferably between 50 and 0.5 μm, in particular between 10 and 0.5 μm. Dimethyl carbonate DMC is a reagent for acylations or alkylations. It can be used as a gasoline additive because of its anti-knocking properties and as a substitute for methyl tert-butyl ether (MTBE).

Das FT-MIR-ATR Spektrum des erfindungsgemäß erzeugten Dimethylcarbonates wird in 7 wiedergegeben.The FT-MIR-ATR spectrum of the dimethyl carbonate according to the invention is generated in 7 played.

Diethylcarbonatdiethyl

Gemäß einer vorteilhaften Ausführungsform der Erfindung wird die Umsetzung von Ammoniumcarbonat oder Harnstoff oder Harnstoff-Intermediaten und Ethanol zu Diethylcarbonat bei Temperaturen zwischen 100 und 200°C, bevorzugt zwischen 125 und 180°, insbesondere 135–160°C und Prozessdrücken zwischen 2 und 32 atm, bevorzugt zwischen 5 und 20 atm, insbesondere zwischen 8 und 13 atm an katalytisch wirksamen Silikat-Partikeln mit Korngrößen zwischen 200 und 0,5 μm, bevorzugt zwischen 50 und 0,5 μm, insbesondere zwischen 10 und 0,5 μm durchgeführt.According to an advantageous embodiment of the invention, the reaction of ammonium carbonate or urea or urea intermediates and ethanol to diethyl carbonate at temperatures between 100 and 200 ° C, preferably between 125 and 180 °, in particular 135-160 ° C and process pressures between 2 and 32 atm , preferably between 5 and 20 atm, in particular between 8 and 13 atm, of catalytically active silicate particles having grain sizes between 200 and 0.5 μm, preferably between 50 and 0.5 μm, in particular between 10 and 0.5 μm.

Di-n-propylcarbonatDi-n-propyl carbonate

Gemäß einer vorteilhaften Ausführungsform der Erfindung wird die Umsetzung von Ammoniumcarbonat oder Harnstoff oder Harnstoff-Intermediaten und n-Propanol zu Di-n-propylcarbonat bei Temperaturen zwischen 115 und 200°C, bevorzugt zwischen 125 und 185°, insbesondere 150–175°C und Prozessdrücken zwischen 2 und 18 atm, bevorzugt zwischen 3 und 13 atm, insbesondere zwischen 5 und 10 atm an katalytisch wirksamen Silikat-Partikeln mit Korngrößen zwischen 200 und 0,5 μm, bevorzugt zwischen 50 und 0,5 μm, insbesondere zwischen 10 und 0,5 μm durchgeführt.According to an advantageous embodiment of the invention, the reaction of ammonium carbonate or urea or urea intermediates and n-propanol to di-n-propyl carbonate at temperatures between 115 and 200 ° C, preferably between 125 and 185 °, in particular 150-175 ° C and process pressures between 2 and 18 atm, preferably between 3 and 13 atm, in particular between 5 and 10 atm of catalytically active silicate particles with particle sizes between 200 and 0.5 .mu.m, preferably between 50 and 0.5 .mu.m, in particular between 10 and 0.5 .mu.m performed.

Dicyclohexylcarbonatdicyclohexyl

Gemäß einer vorteilhaften Ausführungsform der Erfindung wird die Umsetzung von Ammoniumcarbonat oder Harnstoff oder Harnstoff-Intermediaten und Cyclohexanol zu Di-n-Cyclohexylcarbonat bei Temperaturen zwischen 175 und 235°C, bevorzugt zwischen 185 und 235°, insbesondere 200–235°C und Prozessdrücken zwischen 2 und 6 atm, bevorzugt zwischen 3 und 6 atm, insbesondere zwischen 4 und 5 atm an katalytisch wirksamen Silikat-Partikeln mit Korngrößen zwischen 200 und 0,5 μm, bevorzugt zwischen 50 und 0,5 μm, insbesondere zwischen 10 und 0,5 μm durchgeführt.According to an advantageous embodiment of the invention, the reaction of ammonium carbonate or urea or urea intermediates and cyclohexanol to di-n-cyclohexyl carbonate at temperatures between 175 and 235 ° C, preferably between 185 and 235 °, in particular 200-235 ° C and process pressures between 2 and 6 atm, preferably between 3 and 6 atm, in particular between 4 and 5 atm of catalytically active silicate particles with particle sizes between 200 and 0.5 .mu.m, preferably between 50 and 0.5 .mu.m, in particular between 10 and 0.5 μm performed.

Di-(3,3,5-tri-methyl-cyclohexyl)carbonat (Di-isophoronylcarbonat)Di- (3,3,5-tri-methyl-cyclohexyl) carbonate (di-isophoronyl carbonate)

Gemäß einer vorteilhaften Ausführungsform der Erfindung wird die Umsetzung von Ammoniumcarbonat oder Harnstoff oder Harnstoff-Intermediaten und Isophoronalkohol zu Diisophoronylcarbonat bei Temperaturen zwischen 215 und 250°C, bevorzugt zwischen 225 und 250°, insbesondere 235–250°C und Prozessdrücken zwischen 1 und 3 atm, bevorzugt zwischen 2 und 3 atm, insbesondere zwischen 2,5 und 3 atm an katalytisch wirksamen Silikat-Partikeln mit Korngrößen zwischen 200 und 0,5 μm, bevorzugt zwischen 50 und 0,5 μm, insbesondere zwischen 10 und 0,5 μm durchgeführt.According to an advantageous embodiment of the invention, the reaction of ammonium carbonate or urea or urea intermediates and isophorone alcohol to Diisophoronylcarbonat at temperatures between 215 and 250 ° C, preferably between 225 and 250 °, especially 235-250 ° C and process pressures between 1 and 3 atm , preferably between 2 and 3 atm, in particular between 2.5 and 3 atm carried out on catalytically active silicate particles with particle sizes between 200 and 0.5 .mu.m, preferably between 50 and 0.5 .mu.m, in particular between 10 and 0.5 .mu.m ,

Dibenzylcarbonatdibenzyl

Gemäß einer vorteilhaften Ausführungsform der Erfindung wird die Umsetzung von Ammoniumcarbonat oder Harnstoff oder Harnstoff-Intermediaten und Benzylalkohol zu Dibenzylcarbonat bei Temperaturen zwischen 210 und 250°C, bevorzugt zwischen 225 und 250°, insbesondere 235–250°C und Prozessdrücken zwischen 1 und 4 atm, bevorzugt zwischen 2 und 4 atm, insbesondere zwischen 3 und 4 atm an katalytisch wirksamen Silikat-Partikeln mit Korngrößen zwischen 200 und 0,5 μm, bevorzugt zwischen 50 und 0,5 μm, insbesondere zwischen 10 und 0,5 μm durchgeführt.According to an advantageous embodiment of the invention, the reaction of ammonium carbonate or urea or urea intermediates and benzyl alcohol to dibenzyl carbonate at temperatures between 210 and 250 ° C, preferably between 225 and 250 °, especially 235-250 ° C and process pressures between 1 and 4 atm , preferably between 2 and 4 atm, in particular between 3 and 4 atm of catalytically active silicate particles having particle sizes between 200 and 0.5 .mu.m, preferably between 50 and 0.5 .mu.m, in particular between 10 and 0.5 .mu.m performed.

Verzeichnis der Figuren:List of figures:

1: Carbondioxide Capture and Utilization Process ”Synchrone Absorption von CO2 aus Rauchgas und Synthese von Dialkylcarbonaten und Alkylencarbonaten” Die folgenden Bezeichnungen wurden verwendet: Flue gas CO2-reiches Gas Lean gas CO2-armes Gas Gas srubber Gaswäscher Absorber Absorber Ammonia absorber recycle Ammoniak Absorber Rückfluss Absorber reflux Absorber Rückfluss Ammonia reflux Ammoniak Rückfluss Urea reactor Harnstoffreaktor Carbone dioxide Kohlendioxid (CO2) Desorber Desorber Urea synthesis Harnstoffsynthese Water reflux Wasser-Rückfluss Cristallizer Reaktor zur Kristallisation Urea separation Harnstoffabtrennung Methanol Methanol Azeotropic distillation azeotrope Destillation DMC for purification Dimethylcarbonat zur Reinigung 1 : Carbon Dioxide Capture and Utilization Process "Synchronous absorption of CO 2 from flue gas and synthesis of dialkyl carbonates and alkylene carbonates" The following designations were used: Flue gas CO 2 -rich gas Lean gas CO 2 low-gas Gas scrubber gas scrubber absorber absorber Recycle ammonia absorber Ammonia absorber reflux Absorber reflux Absorber reflux Ammonia reflux Ammonia reflux Urea reactor urea reactor Carbone dioxide Carbon dioxide (CO 2 ) desorber desorber Urea synthesis urea synthesis Water reflux Water backflow Cristallizer Reactor for crystallization Urea separation urea separation methanol methanol Azeotropic distillation azeotropic distillation DMC for purification Dimethyl carbonate for cleaning

2: Reaktionsnetzwerk der Umsetzung von Ammoniak, Kohlendioxid und Wasser 2 : Reaction network of the reaction of ammonia, carbon dioxide and water

3: Reaktionsnetzwerk der Synthese von Dialkylcarbamaten und Alkylencarbamaten aus Ammoniumcarbamat oder Harnstoff oder Harnstoff-Intermediaten und aliphatischen, alicyclischen oder ungesättigten, auch aromatischen Alkoholen 3 : Reaction network of the synthesis of dialkyl carbamates and alkylene carbamates from ammonium carbamate or urea or urea intermediates and aliphatic, alicyclic or unsaturated, also aromatic alcohols

4: Kombination der Absorption von Kohlendioxid aus Rauchgasen speziell mit Ammoniak und der Synthese von Dialkylcarbonaten oder Alkylencarbonaten aus Ammoniumcarbamat oder Ammoniumhydrogencarbonat oder Harnstoff oder Harnstoff-Intermediaten und aliphatischen, alicyclischen oder ungesättigten, auch aromatischen Alkoholen. Die folgenden Bezeichnungen wurden verwendet: Ammonia Cycle Ammoniak-Kreislauf Chilled Ammonia Process gekühlter Ammoniak Prozess Dimethylcarbonate Syntheses Dimethylcarbonat-Synthese Dimethylcarbonate Dimethylcarbonat 4 Combination of the absorption of carbon dioxide from flue gases specifically with ammonia and the synthesis of dialkyl carbonates or alkylene carbonates of ammonium carbamate or ammonium bicarbonate or urea or urea intermediates and aliphatic, alicyclic or unsaturated, even aromatic alcohols. The following terms were used: Ammonia cycle Ammonia cycle Chilled Ammonia Process cooled ammonia process Dimethyl carbonates Syntheses Dimethyl carbonate synthesis dimethyl carbonates dimethyl

5: FT-MIR-ATR Spektrum erfindungsgemäß erzeugtes Ethylencarbonat 5 : FT-MIR-ATR spectrum according to the invention produced ethylene carbonate

6: FT-MIR-ATR Spektrum erfindungsgemäß erzeugtes 4-Hydroxymethyl-1,2-dioxolan-3-one 6 : FT-MIR-ATR Spectrum produced according to the invention 4-hydroxymethyl-1,2-dioxolan-3-one

7: FT-MIR-ATR Spektrum erfindungsgemäß erzeugtes Dimethylcarbonat 7 : FT-MIR-ATR spectrum according to the invention produced dimethyl carbonate

ZITATE ENTHALTEN IN DER BESCHREIBUNG QUOTES INCLUDE IN THE DESCRIPTION

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents listed by the applicant has been generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.

Zitierte PatentliteraturCited patent literature

  • WO 2006022885 [0031] WO 2006022885 [0031]

Zitierte Nicht-PatentliteraturCited non-patent literature

  • Cupertino, E. G., & Jayaweera, I. Chilled Ammonia based CO2 Capture System with water wash system. ALSTOM TECHNOLOGY LTD. [0036] Cupertino, EG, & Jayaweera, I. Chilled Ammonia based CO2 Capture System with water wash system. ALSTOM TECHNOLOGY LTD. [0036]
  • Darde, V., Thomsen, K., van, W. W. J. M., & Stenby, E. H. (2009). Chilled ammonia process for CO2 capture. [10.1016/j.egypro.2009.01.137]. Energy Procedia, 1 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 1035–1042, doi:10.1016/j.egypro.2009.01.137 [0036] Darde, V., Thomsen, K., van, WWJM, & Stenby, EH (2009). Chilled ammonia process for CO2 capture. [10.1016 / j.egypro.2009.01.137]. Energy Procedia, 1 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 1035-1042, doi: 10.1016 / j.egypro.2009.01.137 [0036]
  • Darde, V., Thomsen, K., van, W. W. J. M., & Stenby, E. H. (2010). Chilled ammonia process for CO2 capture. [10.1016/j.ijggc.2009.10.005]. Int. J. Greenhouse Gas Control, 4 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 131–136, doi:10.1016/j.ijggc.2009.10.005 [0036] Darde, V., Thomsen, K., van, WWJM, & Stenby, EH (2010). Chilled ammonia process for CO2 capture. [10.1016 / j.ijggc.2009.10.005]. Int. J. Greenhouse Gas Control, 4 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 131-136, doi: 10.1016 / j.ijggc.2009.10.005 [0036]
  • Jilvero, H., Normann, F., Andersson, K., & Johnsson, F. (2011). Thermal integration and modelling of the chilled ammonia process. [10.1016/j.egypro.2011.02.045]. Energy Procedia, 4 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 1713–1720, doi:10.1016/j.egypro.2011.02.045 [0036] Jilvero, H., Normann, F., Andersson, K., & Johnsson, F. (2011). Thermal integration and modeling of the chilled ammonia process. [10.1016 / j.egypro.2011.02.045]. Energy Procedia, 4 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 1713-1720, doi: 10.1016 / j.egypro.2011.02.045 [0036]
  • Kozak, F., Petig, A., Morris, E., Rhudy, R., & Thimsen, D. (2009). Chilled Ammonia Process for CO2 capture. [10.1016/j.egypro.2009.01.186]. Energy Procedia, 1 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 1419–1426, doi:10.1016/j.egypro.2009.01.186 [0036] Kozak, F., Petig, A., Morris, E., Rhudy, R., & Thimsen, D. (2009). Chilled Ammonia Process for CO2 capture. [10.1016 / j.egypro.2009.01.186]. Energy Procedia, 1 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 1419-1426, doi: 10.1016 / j.egypro.2009.01.186 [0036]
  • Mathias, P. M., Reddy, S., & O'Connell, J. P. (2010). Quantitative evaluation of the chilled-ammonia process for CO2 capture using thermodynamic analysis and process simulation. [10.1016/j.ijggc.2009.09.016]. Int. J. Greenhouse Gas Control, 4 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 174–179, doi:10.1016/j.ijggc.2009.09.016 [0036] Mathias, PM, Reddy, S., &O'Connell, JP (2010). Quantitative evaluation of the chilled-ammonia process for CO2 capture using thermodynamic analysis and process simulation. [10.1016 / j.ijggc.2009.09.016]. Int. J. Greenhouse Gas Control, 4 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 174-179, doi: 10.1016 / j.ijggc.2009.09.016 [0036]
  • Peltier, R. (2008). Alstom's chilled ammonia CO2-capture process advances toward commercialization. Power, 152 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 38–41 [0036] Peltier, R. (2008). Alstom's chilled ammonia CO2 capture process advances towards commercialization. Power, 152 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 38-41 [0036]
  • Valenti, G., Bonalumi, D., & Macchi, E. (2009). Energy and exergy analyses for the carbon capture with the Chilled Ammonia Process (CAP). [10.1016/j.egypro.2009.01.140]. Energy Procedia, 1 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 1059–1066, doi:10.1016/j.egypro.2009.01.140 [0036] Valenti, G., Bonalumi, D., & Macchi, E. (2009). Energy and exergy analysis for the carbon capture with the Chilled Ammonia Process (CAP). [10.1016 / j.egypro.2009.01.140]. Energy Procedia, 1 (Copyright (C) 2012 American Chemical Society (ACS), All Rights Reserved.), 1059-1066, doi: 10.1016 / j.egypro.2009.01.140 [0036]

Claims (14)

Verfahren zur Abtrennung von CO2 aus gasförmigen Medien durch Umsetzung mit Aminen, dadurch gekennzeichnet, dass die aus CO2 und Aminen gebildeten Amin-Zwischenprodukte mit Alkoholen zu organischen Carbonaten unter Wiederfreisetzung der Amine erfolgt.Process for the separation of CO 2 from gaseous media by reaction with amines, characterized in that the amine intermediates formed from CO 2 and amines with alcohols to give organic carbonates with re-release of the amines. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass die Amine ausgewählt sind aus Ammoniak, Methylamin, Dimethylamin, Ethylamin, Diethylamin, Propylamin, Di-Propylamin oder Mischungen hiervon.A method according to claim 1, characterized in that the amines are selected from ammonia, methylamine, dimethylamine, ethylamine, diethylamine, propylamine, di-propylamine or mixtures thereof. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass die Amine ausgewählt sind aus Piperazin, N-2-Hydroxyethylpiperazin, N-(Hydroxypropyl)piperazin Diethanoltriamin (DETA), 2-((2-aminoethyl)amino)ethanol (AEEA), Monoethanolamin (MEA), Diethanolamin (DEA), Diisopropanolamin (DIPA), Methylaminopropylamin (MAPA), 3-Aminopropanol (AP), 2,2-Dimethyl-1,3-propanediamin (DMPDA), 3-Amino-1-cyclohexylaminopropan (ACHP), Diglycolamin (DGA), 2-Amino-2-methylpropanol (AMP), 1-Amino-2-propanol (MIPA), 2-Methyl-methanolamine (MMEA), Chitosane, Piperidin, Diaminocyclohexan, EthylendiaminA method according to claim 1, characterized in that the amines are selected from piperazine, N-2-hydroxyethylpiperazine, N- (hydroxypropyl) piperazine diethanoltriamine (DETA), 2- ((2-aminoethyl) amino) ethanol (AEEA), monoethanolamine ( MEA), diethanolamine (DEA), diisopropanolamine (DIPA), methylaminopropylamine (MAPA), 3-aminopropanol (AP), 2,2-dimethyl-1,3-propanediamine (DMPDA), 3-amino-1-cyclohexylaminopropane (ACHP) , Diglycolamine (DGA), 2-amino-2-methylpropanol (AMP), 1-amino-2-propanol (MIPA), 2-methylmethanolamine (MMEA), chitosans, piperidine, diaminocyclohexane, ethylenediamine Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass die Alkohole ausgewählt sind aus gesättigten oder ein- oder mehrfach ungesättigten aliphatischen oder alicyclischen sowie aromatischen Mono-, Di-, Tri- oder Poly-olen.A method according to claim 1, characterized in that the alcohols are selected from saturated or mono- or polyunsaturated aliphatic or alicyclic and aromatic mono-, di-, tri- or poly-ols. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass die Alkohole ausgewählt sind aus Zucker, Stärke, Chitosan oder Zellulose.A method according to claim 1, characterized in that the alcohols are selected from sugar, starch, chitosan or cellulose. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, dass die Alkohole ausgewählt sind aus Methanol, Ethanol, 1-Propanol, 2-Propanol, 1-Butanol, Isobutylalkohol, 1-Pentanol, Isopentylalkohol, 2-Methyl-1-pentanol, 4-Methyl-2-pentanol, 2-Ethyl-1-butanol, 1-Hexanol, Cyclohexanol, 1-Heptanol, 2-Ethylhexanol, 1-Octanol, 2,6-Dimethyl-4-heptanol, Decanol, Cetylalkohol, Isophoronalkohol, 3,3,5-Trimethylcyclohexanol, Ethandiol, 1,2-Propandiol, 2-Methyl-1,2-propandiol, 1,3-Propandiol, 1,3-Dihydroxy-2,2-dimethylpropan, 1,1,1-Tris(hydroxymethyl)propan, 1,2-Butandiol, 1,3-Butandiol, 2,3-Butandiol, 1,4-Butandiol, 1,2,3-Propantriol, Pentaerythrit, Benzylalkohol, Allylalkohol, 1,2-Cyclohexandiol, 1,6-Hexandiol, 2,2'-Bisphenol, 2-Allyloxymethyl-2-ethyl-1,3-propandiol, Diethylenglycolmonoalkylester, Diethylenglycol, Triethylenglycolmonoalkylester, Triethylenglycol, Allylalkohol, Monoethanolamin, Diethanolamin, Triethanolamin, Hydroxyethylmethacrylat, Fettalkohole, Oxoalkohole, Polyethylenglycole, Polyvinylalkohole.A method according to claim 3, characterized in that the alcohols are selected from methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, isobutyl alcohol, 1-pentanol, isopentyl alcohol, 2-methyl-1-pentanol, 4-methyl 2-pentanol, 2-ethyl-1-butanol, 1-hexanol, cyclohexanol, 1-heptanol, 2-ethylhexanol, 1-octanol, 2,6-dimethyl-4-heptanol, decanol, cetyl alcohol, isophorone alcohol, 3,3, 5-trimethylcyclohexanol, ethanediol, 1,2-propanediol, 2-methyl-1,2-propanediol, 1,3-propanediol, 1,3-dihydroxy-2,2-dimethylpropane, 1,1,1-tris (hydroxymethyl) propane, 1,2-butanediol, 1,3-butanediol, 2,3-butanediol, 1,4-butanediol, 1,2,3-propanetriol, pentaerythritol, benzyl alcohol, allyl alcohol, 1,2-cyclohexanediol, 1,6- Hexanediol, 2,2'-bisphenol, 2-allyloxymethyl-2-ethyl-1,3-propanediol, diethylene glycol monoalkyl ester, diethylene glycol, triethylene glycol monoalkyl ester, triethylene glycol, allyl alcohol, monoethanolamine, diethanolamine, triethanolamine, hydroxyethyl methacrylate, fatty alcohols, oxo alcohols, polyethylene glycols, poly vinyl alcohols. Verfahren gemäß Anspruch 1, gekennzeichnet, durch eine Temperatur von 90°–250°C.Process according to claim 1, characterized by a temperature of 90 ° -250 ° C. Verfahren gemäß Anspruch 1, gekennzeichnet, durch einen Druck von 1–40° atm.Process according to claim 1, characterized by a pressure of 1-40 ° atm. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass die Umsetzung des Amin-Zwischenproduktes mit dem Alkohol unter Anwendung eines Katalysators erfolgt.A method according to claim 1, characterized in that the reaction of the amine intermediate with the alcohol is carried out using a catalyst. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, dass der Katalysator ausgewählt ist, aus Metalloxiden, Metallcarbonaten und Metallsulfaten, insbesondere als Nanopartikel.A method according to claim 7, characterized in that the catalyst is selected from metal oxides, metal carbonates and metal sulfates, in particular as nanoparticles. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, dass der Katalysator ausgewählt ist, aus katalytisch wirksamen Silikat-Partikeln mit Korngrößen zwischen 200 und 0,5 μm, bevorzugt zwischen 50 und 0,5 μm, insbesondere zwischen 10 und 0,5 μmA method according to claim 7, characterized in that the catalyst is selected from catalytically active silicate particles having particle sizes between 200 and 0.5 .mu.m, preferably between 50 and 0.5 .mu.m, in particular between 10 and 0.5 .mu.m Verwendung des Verfahrens gemäß mindestens einem der Ansprüche 1–9 zur Abtrennung CO2 aus Rauchgas, Verbrennungsgasen, Produktionsgasen, Synthesegasen, Gärgasen, Faulgasen, CO2-haltigem Erdgas, tierischen Verdauungsgasen oder CO2-haltiger Raum- oder Fahrzeugluft, auch in umluftunabhängigen Systemen.Use of the method according to at least one of claims 1-9 for the separation of CO 2 from flue gas, combustion gases, production gases, synthesis gases, fermentation gases, fermentation gases, CO 2 -containing natural gas, animal digestive gases or CO 2 -containing room or vehicle air, even in systems independent of air , Verwendung des Verfahrens gemäß mindestens einem der Ansprüche 1–9 zur Herstellung von Dialkylcarbonaten oder von Alkylencarbonaten.Use of the process according to at least one of claims 1-9 for the preparation of dialkyl carbonates or of alkylene carbonates. Verwendung des Verfahrens gemäß Anspruch 13 zur Herstellung von Dimethylcarbonat, Diethylcarbonat, Diisopropylcarbonat, Dipropylcarbonat, Dibutylcarbonat, Diisobutylcarbonat, Di-(2-methyl-propyl)-carbonat, Di-(4-hydroxybutyl)-carbonat, Dipentylcarbonat, Diisopentylcarbonat, Dihexylcarbonat, Diheptylcarbonat, Didecylcarbonat, Dihexadecylcarbonat, Dicyclohexylcarbonat, Di-(2-ethylhexyl)-carbonat, 2-Pentanol-4-methyl-1,1'-carbonat, Bis(2-ethylbutyl)-carbonat, Diisophoroncarbonat, Bis(3,3,5-trimethylcyclohexyl)-carbonat Dioctylcarbonat, Dibenzylcarbonat, Diallylcarbonat, oder von 1,3-Dioxolan-2-on, 4-Methyl-1,3-Dioxolan-2-on, 4-Hydroxymethyl-1,3-Dioxolan-2-on, 4,5-Dimethyl-1,3-Dioxolan-2-on, 4,4-Dimethyl-1,3-Dioxolan-2-on, 4-Ethyl-1,3-Dioxolan-2-on, 1,3-Dioxan-2-on, 5,5-Dimethyl-1,3-dioxan-2-on, Dibenzo[d,f]-[1,3]dioxepin-6-on, 5-Ethyl-5-(hydroxymethyl)-1,3-dioxan-2-on, 5-[(allyloxy)methyl]-5-ehyl-1,3-dioxan-2-on, 5,5'-[carbonyl bis-(oxymethylen)]-bis[5-ehyl-1,3-dioxan-2-on], 1,3,10,12-Tetraoxa-cyclooctadecan-2,11-dion.Use of the process according to claim 13 for the preparation of dimethyl carbonate, diethyl carbonate, diisopropyl carbonate, dipropyl carbonate, dibutyl carbonate, diisobutyl carbonate, di (2-methyl-propyl) carbonate, di (4-hydroxybutyl) carbonate, dipentyl carbonate, diisopentyl carbonate, dihexyl carbonate, diheptyl carbonate , Didecyl carbonate, dihexadecyl carbonate, dicyclohexyl carbonate, di (2-) ethylhexyl) carbonate, 2-pentanol-4-methyl-1,1'-carbonate, bis (2-ethylbutyl) carbonate, diisophorone carbonate, bis (3,3,5-trimethylcyclohexyl) carbonate, dioctyl carbonate, dibenzyl carbonate, diallyl carbonate, or of 1,3-dioxolan-2-one, 4-methyl-1,3-dioxolan-2-one, 4-hydroxymethyl-1,3-dioxolan-2-one, 4,5-dimethyl-1,3-dioxolane -2-one, 4,4-dimethyl-1,3-dioxolan-2-one, 4-ethyl-1,3-dioxolan-2-one, 1,3-dioxan-2-one, 5,5-dimethyl -1,3-dioxan-2-one, dibenzo [d, f] - [1,3] dioxepin-6-one, 5-ethyl-5- (hydroxymethyl) -1,3-dioxan-2-one, 5 [(allyloxy) methyl] -5-ethyl-1,3-dioxan-2-one, 5,5 '- [carbonyl bis (oxymethylene)] - bis [5-ethyl-1,3-dioxan-2-one on], 1,3,10,12-tetraoxa-cyclooctadecane-2,11-dione.
DE102012020141.9A 2012-10-15 2012-10-15 Process for the synchronous absorption of carbon dioxide from flue gas and synthesis of dialkyl carbonates and alkylene carbonates Withdrawn DE102012020141A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102012020141.9A DE102012020141A1 (en) 2012-10-15 2012-10-15 Process for the synchronous absorption of carbon dioxide from flue gas and synthesis of dialkyl carbonates and alkylene carbonates
PCT/DE2013/000594 WO2014059961A1 (en) 2012-10-15 2013-10-15 Method for the synchronous absorption of carbon dioxide from flue gas and synthesis of dialkyl carbonates and alkylene carbonates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012020141.9A DE102012020141A1 (en) 2012-10-15 2012-10-15 Process for the synchronous absorption of carbon dioxide from flue gas and synthesis of dialkyl carbonates and alkylene carbonates

Publications (1)

Publication Number Publication Date
DE102012020141A1 true DE102012020141A1 (en) 2014-04-17

Family

ID=49679264

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102012020141.9A Withdrawn DE102012020141A1 (en) 2012-10-15 2012-10-15 Process for the synchronous absorption of carbon dioxide from flue gas and synthesis of dialkyl carbonates and alkylene carbonates

Country Status (2)

Country Link
DE (1) DE102012020141A1 (en)
WO (1) WO2014059961A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105536437A (en) * 2016-01-19 2016-05-04 北京化工大学 MDEA compound absorbent for acid gas separation and separation method
CN105709566A (en) * 2016-01-19 2016-06-29 北京化工大学 Method using high-viscosity absorbent to separate CO2 based on dissolution assisting effect
US10322367B2 (en) 2016-02-12 2019-06-18 University Of Kentucky Research Foundation Method of development and use of catalyst-functionalized catalytic particles to increase the mass transfer rate of solvents used in acid gas cleanup
DE102018205635A1 (en) 2018-04-13 2019-10-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for using CO2-containing gases using organic bases

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3609879A1 (en) 2017-04-11 2020-02-19 SABIC Global Technologies B.V. Integrated process for production of glycerol carbonate (4-hydroxymethyl-2-oxo-1, 3-dioxolane) and urea
CN108636078B (en) * 2018-05-17 2021-01-29 中国石油天然气股份有限公司 Pretreatment agent and pretreatment method for organic waste gas of oil and gas operation station
CN114478249A (en) * 2022-02-15 2022-05-13 四川天人能源科技有限公司 Improved process for producing dimethyl carbonate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022885A1 (en) 2004-08-06 2006-03-02 Eig, Inc. Ultra cleaning of combustion gas including the removal of co2

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3524722A (en) * 1966-06-08 1970-08-18 Continental Oil Co Removal of carbon dioxide from natural gas
FR2934175B1 (en) * 2008-07-22 2010-11-19 Inst Francais Du Petrole AQUEOUS EXTRACTION MEDIUM CONTAINING CARBONATE AND THIOL FOR USE IN CARBON DIOXIDE SEPARATION PROCESS CONTAINED IN GASEOUS EFFLUENT
FR2936429B1 (en) * 2008-09-30 2011-05-20 Rhodia Operations PROCESS FOR TREATING GAS TO DECREASE CARBON DIOXIDE CONTENT
US8663564B2 (en) * 2010-05-21 2014-03-04 Sartec Corporation Sequestration of carbon dioxide using metal oxides

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022885A1 (en) 2004-08-06 2006-03-02 Eig, Inc. Ultra cleaning of combustion gas including the removal of co2

Non-Patent Citations (86)

* Cited by examiner, † Cited by third party
Title
Anita, K. K. (2010). Low pressure technological process of production of urea from water solution of ammonium hydroxide. (pp. 5 pp.): Slovenia
Aresta, M., Dibenedetto, A., Devita, C., Bourova, O. A., & Chupakhin, O. N. (2004). New catalysts for the conversion of urea into carbamates and carbonates with C1 and C2 alcohols. In J.-S. C. a. K.-W. L. Sang-Eon Park (Ed.), Studies in Surface Science and Catalysis (Vol. Volume 153, pp. 213-220): Elsevier
Aresta, M., Dibenedetto, A., Nocito, F., & Ferragina, C. (2009). Valorization of bio-glycerol: New catalytic materials for the synthesis of glycerol carbonate via glycerolysis of urea. [10.1016/j.jcat.2009.09.008]. J. Catal., 268 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 106-114, doi:10.1016/j.jcat.2009.09.008
Aresta, Michele ; Dibenedetto, Angela; "Utilisation of CO2 as a chemical feedstock: opportunities and challenges"Dalton Trans., 2007, 28, S. 2975-2992doi 10.1039/B700658F
Aresta, Michele ; Dibenedetto, Angela; "Utilisation of CO2 as a chemical feedstock: opportunities and challenges"Dalton Trans., 2007, 28, S. 2975-2992doi 10.1039/B700658F *
Barzagli, F., Mani, F., & Peruzzini, M. (2010). Selective production of solid ammonium bicarbonate and ammonium carbamate in the process of carbon dioxide capture by ammonia solutions: a feasible process to produce urea in mild conditions. Prepr. Symp. - Am. Chem. Soc., Div. Fuel Chem., 55 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 33
Bloodworth, A. J., Davies, A. G., & Vasishtha, S. C. (1968). Organometallic reactions. Part XIV. The decarboxylation of trialkyltin carbamates by isocyanates and isothiocyanates: a new route to carbodi-imides. Journal of the Chemical Society C: Organic, 2640-2646
Bozzano, G., Dente, M., & Zardi, F. (2003). New internals for urea production reactors. [10.1002/jctb.694]. J. Chem. Technol. Biotechnol., 78 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 128-133, doi:10.1002/jctb.694
Brunengo, P., & Zardi, F. (2005). Integrated process for urea and melamine production. (pp. 19 pp.): Urea Casale S. A., Switz.
Buchold, H., Eberhardt, J., Wagner, U., & Woelk, H.-J. (2006). Method for producing carbonic acid esters. (pp. 13 pp.): Lurgi AG, Germany
Chen, J., & Zhang, Y. (2006). Process technology for production of urea from melamine tail gas. Huafei Sheji, 44 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 33-35
Claude, S., Mouloungui, Z., Yoo, J.-W., & Gaset, A. (1999). Process for the preparation of glycerol carbonate. (pp. 11 pp.): Organisation Nationale Interprofessionnelle Des Oleagineux-ONIDOL, Fr.
Climent, M. J., Corma, A., De, F. P., Iborra, S., Noy, M., Velty, A., et al. (2010). Chemicals from biomass: Synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts. The role of acid-base pairs. [10.1016/j.jcat.2009.11.001]. J. Catal., 269 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 140-149, doi:10.1016/j.jcat.2009.11.001
Cupertino, E. G., & Jayaweera, I. Chilled Ammonia based CO2 Capture System with water wash system. ALSTOM TECHNOLOGY LTD.
Darde, V., Thomsen, K., van, W. W. J. M., & Stenby, E. H. (2009). Chilled ammonia process for CO2 capture. [10.1016/j.egypro.2009.01.137]. Energy Procedia, 1 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 1035-1042, doi:10.1016/j.egypro.2009.01.137
Darde, V., Thomsen, K., van, W. W. J. M., & Stenby, E. H. (2010). Chilled ammonia process for CO2 capture. [10.1016/j.ijggc.2009.10.005]. Int. J. Greenhouse Gas Control, 4 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 131-136, doi:10.1016/j.ijggc.2009.10.005
Dibenedetto, A., Angelini, A., Aresta, M., Ethiraj, J., Fragale, C., & Nocito, F. (2011). Converting wastes into added value products: from glycerol to glycerol carbonate, glycidol and epichlorohydrin using environmentally friendly synthetic routes. [10.1016/j.tet.2010.11.070]. Tetrahedron, 67 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 1308-1313, doi:10.1016/j.tet.2010.11.070
Dobrichovsky, M., & Majer, I. (2009). Process and catalysts for producing alkylene and/or dialkyl carbonates. (pp. 22 pp.): Majer Laboratory, S. R. O, Czech Rep.
Du, Z., Liu, L., Yuan, H., Xiong, J., Zhou, B., & Wu, Y. (2010). Synthesis of propylene carbonate from alcoholysis of urea catalyzed by modified hydroxyapatites. [10.1016/S1872-2067(09)60053-X]. Cuihua Xuebao, 31 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 371-373, doi:10.1016/s1872-2067(09)60053-x
Dubois, J.-L., Aresta, M., Dibenedetto, A., Ferragina, C., & Nocito, F. (2010). Synthesis process of polyol carbonate from polyols and urea. (pp. 24 pp.; Chemical Indexing Equivalent to 152: 457307 (EP)): Arkema France, Fr.
Gao, Z. W., Wang, S. F., & Xia, C. G. (2009). Synthesis of propylene carbonate from urea and 1,2-propanediol. [10.1016/j.cclet.2008.10.038]. Chin. Chem. Lett., 20 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 131-135, doi:10.1016/j.cclet.2008.10.038
Gao, Z.-w., Wang, S.-f., & Xia, C.-g. (2009). Synthesis of propylene carbonate from urea and 1,2-propanediol over a magnetic nanoparticle. Fenzi Cuihua, 23 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 304-307
Gevers, L. W., Meessen, J. H., & Mennen, J. H. (2009a). Process for the production of urea from ammonia and carbon dioxide. (pp. 13 pp.; Chemical Indexing Equivalent to 152: 14338 (EP)): DSM IP Assets B. V., Neth.
Gevers, L. W., Meessen, J. H., & Mennen, J. H. (2009b). Process for the production of urea from ammonia and carbon dioxide. (pp. 12 pp.; Chemical Indexing Equivalent to 152: 14337 (EP)): DSM IP Assets B. V., Neth.
Gu, Q., Li, S., Zhu, J., Jin, S., Yang, G., & Zhang, L. (2007). Double high-pressure process for production of urea. (pp. 6 pp.): Shandong Hualu Hengsheng Chemical Co., Ltd., Peop. Rep. China
Guo, H.-f., He, L., Zhao, X.-q., & Zhao, B. (2007). Influence of nano-sized ZnOs different preparation methods on the performance of DMC synthesis. Shandong Huagong, 36 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 1-4, 24
Guo, X.-j., Wang, A.-p., Wei, C.-h., Zhang, L., & Yan, J. (2010). Synthesis of dimethyl carbonate from urea and methanol over ZnO-TiO2 composite catalyst. Huaxue Gongchengshi, 24 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 24-27
Guo, X.-j., Zhang, R., Zhang, L., Yan, J., Lu, Y.-q., & Li, Z.-l. (2009). Synthesis of dimethyl carbonate over ZnO-TiO2-SiO2 composite catalysts. Xibei Shifan Daxue Xuebao, Ziran Kexueban, 45 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 69-73
Guo, Y., Li, W., Wu, D., & Zhou, J. (2011). Study on synthesis of propylene carbonate from urea and 1,2-propylene glycol in monolithic stirrer reactor. Jingxi Shiyou Huagong Jinzhan, 12 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 47-49
Hammond, C., Lopez-Sanchez, J. A., Ab, R. M. H., Dimitratos, N., Jenkins, R. L., Carley, A. F., et al. (2011). Synthesis of glycerol carbonate from glycerol and urea with gold-based catalysts. [10.1039/c0dt01389g]. Dalton Trans., 40 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 3927-3937, doi:10.1039/c0dt01389g
Ion, A., Parvulescu, V., Jacobs, P., & Vos, D. D. (2007). Synthesis of symmetrical or asymmetrical urea compounds from CO2 via base catalysis. Green Chemistry, 9 (2), 158-161
Jiang, T., Ma, X., Zhou, Y., Liang, S., Zhang, J., & Han, B. (2008). Solvent-free synthesis of substituted ureas from CO2 and amines with a functional ionic liquid as the catalyst. Green Chemistry, 10 (4), 465-469
Jilvero, H., Normann, F., Andersson, K., & Johnsson, F. (2011). Thermal integration and modelling of the chilled ammonia process. [10.1016/j.egypro.2011.02.045]. Energy Procedia, 4 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 1713-1720, doi:10.1016/j.egypro.2011.02.045
Kim, D.-W., Park, M.-S., Selvaraj, M., Park, G.-A., Lee, S.-D., & Park, D.-W. (2011). Catalytic performance of polymer-supported ionic liquids in the synthesis of glycerol carbonate from glycerol and urea. [10.1007/s11164-011-0398-4]. Res. Chem. Intermed., 37 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 1305-1312, doi:10.1007/s11164-011-0398-4
Kong, D.-L., He, L.-N., & Wang, J.-Q. (2010). Synthesis of urea derivates from CO2 and amines catalyzed by polyethylene glycol-supported potassium hydroxide without dehydrating agents. Synlett, 2010 (8), 1276-1280, doi:10.1055/s-0029-1219799
Korneeva, G. A., Noskov, Y. G., Kron, T. E., Rush, S. N., Temkin, O. N., Bruk, L. G., et al. (2011). Method for simultaneous production of ethylene glycol and urea. (pp. 9 pp.): OOO "Ob'edinennyi Tsentr Issledovanii Razrabotok", Russia; GOU VPO "Moskovskaya Gosudarstvennaya Akademiya Tonkoi Khimicheskoi Tekhnologii" im. M. V. Lomonosova; GUP G. Moskvy "Mezhdunarodnyi Nauchnyi Klinicheskii Tsentr" "Intermedbiofizkhim"
Kozak, F., Petig, A., Morris, E., Rhudy, R., & Thimsen, D. (2009). Chilled Ammonia Process for CO2 capture. [10.1016/j.egypro.2009.01.186]. Energy Procedia, 1 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 1419-1426, doi:10.1016/j.egypro.2009.01.186
Kraus, G. A., Bougie, D., Jacobson, R. A., & Su, Y. (1989). The urea connection. Intramolecular Diels-Alder reactions of ureas. The Journal of Organic Chemistry, 54 (10), 2425-2428, doi:10.1021/jo00271a035
Li, Q., Zhao, N., Wei, W., & Sun, Y. (2004). Synthesis of propylene carbonate from urea and propylene glycol. Stud. Surf. Sci. Catal., 153 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 573-576
Liang, W., Yang, J., Shen, G., & Xie, X. (2010). Method for synthesizing glycerol carbonate from glycerol and urea with Zn-hydroxyapatite as catalyst. (pp. 6 pp.): Zhejiang Huanuo Chemical Engineering Co., Ltd., Peop. Rep. China
Lin, H., Yang, B., Sun, J., Wang, X., & Wang, D. (2004). Kinetics studies for the synthesis of dimethyl carbonate from urea and methanol. Chemical Engineering Journal, 103 (1-3), 21-27, doi:10.1016/j.cej.2004.07.003
Liu, X., Chu, Z., & Liu, Z. (2009). Synthesis of glycidol from glycerol. Huagong Jinzhan, 28 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 1445-1448
Lopez, S. J. A., & Hutchings, G. J. (2010). Method for making organic carbonates and sulphur analogues. (pp. 32 pp.): University College Cardiff Consultants Limited, UK
Lunsford, C. D., Mays, R. P., Richman, J. A., Jr., & Murphey, R. S. (1960). 5-Aryloxymethyl-2-oxazolidinones. J. Am. Chem. Soc., 82 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 1166-1171
Mathias, P. M., Reddy, S., & O'Connell, J. P. (2010). Quantitative evaluation of the chilled-ammonia process for CO2 capture using thermodynamic analysis and process simulation. [10.1016/j.ijggc.2009.09.016]. Int. J. Greenhouse Gas Control, 4 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 174-179, doi:10.1016/j.ijggc.2009.09.016
Mickova, R., & Trojanek, J. (1990). Reaction of 3-(2-methoxyphenoxy)propane derivatives with urea in melt. Cesk. Farm., 39 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 261-265
Peltier, R. (2008). Alstom's chilled ammonia CO2-capture process advances toward commercialization. Power, 152 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 38-41
Qi, Z., Wang, H., & Xia, D. (2006). Preparation of zinc oxide and its catalytic behavior in synthesis of dimethyl carbonate (DMC). Gongye Cuihua, 14 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 26-29
Romiti, D., & Sticchi, P. (2006a). Process for urea production from ammonia and carbon dioxide. (pp. 15 pp.): Urea Casale S. A., Switz.
Romiti, D., & Sticchi, P. (2006b). Process for urea production from ammonia and carbon dioxide and a plant for its manufacture. (pp. 19 pp.): Urea Casale S. A., Switz.
Rubio-Marcos, F., Calvino-Casilda, V., Banares, M. A., & Fernandez, J. F. (2010). Novel hierarchical Co3O4/ZnO mixtures by dry nanodispersion and their catalytic application in the carbonylation of glycerol. [10.1016/j.jcat.2010.08.009]. J. Catal., 275 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 288-293, doi:10.1016/j.jcat.2010.08.009
Ryu, J. Y., & Gelbein, A. P. (2005). Process for making dialkyl carbonates. (pp. 18 pp.): Catalytic Distillation Technologies, USA
Sasa, T., Okutsu, M., & Uno, M. (2008). Preparation of glycerin carbonate from glycerin and urea in water content-controlled condition. (pp. 6 pp.): Kao Corp., Japan
Sasa, T., Okutsu, M., & Uno, M. (2009). Preparation of high-purity glycerin carbonate and glycidol. (pp. 10 pp.): Kao Corp., Japan
Shim, Y. N., Lee, J. K., Im, J. K., Mukherjee, D. K., Nguyen, D. Q., Cheong, M., et al. (2011). Ionic liquid-assisted carboxylation of amines by CO2: a mechanistic consideration. Physical Chemistry Chemical Physics, 13 (13), 6197-6204
Shu, T., Mo, W., Xiong, H., & Li, G. (2006). Synthesis of propylene carbonate from urea and 1,2-propanediol catalyzed by hydrotalcite-like compounds. Shiyou Huagong, 35 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 11-14
Sun, W., Wang, S., & Xia, C. (2009). Process for preparation of organic carbonates. (pp. 6 pp.): Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Peop. Rep. China
Sun, Y., Wei, W., Li, Q., Zhao, N., Wang, M., Wu, Y., et al. (2003). Process for preparation of propylene or ethylene carbonate. (pp. 7 pp.): Institute of Coal Chemistry, Chinese Academy of Sciences, Peop. Rep. China
Valenti, G., Bonalumi, D., & Macchi, E. (2009). Energy and exergy analyses for the carbon capture with the Chilled Ammonia Process (CAP). [10.1016/j.egypro.2009.01.140]. Energy Procedia, 1 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 1059-1066, doi:10.1016/j.egypro.2009.01.140
Wang, D., Yang, B., Zhai, X., & Zhou, L. (2007). Synthesis of diethyl carbonate by catalytic alcoholysis of urea. Fuel Processing Technology, 88 (8), 807-812, doi:10.1016/j.fuproc.2007.04.003
Wang, H., Lu, B., Wang, X., Zhang, J., & Cai, Q. (2009). Highly selective synthesis of dimethyl carbonate from urea and methanol catalyzed by ionic liquids. Fuel Processing Technology, 90 (10), 1198-1201, doi:10.1016/j.fuproc.2009.05.020
Wang, H., Wang, M., Zhao, W., Wei, W., & Sun, Y. (2010). Reaction of zinc oxide with urea and its role in urea methanolysis. Reaction Kinetics, Mechanisms and Catalysis, 99 (2), 381-389, doi:10.1007/s11144-009-0134-x
Wang, H.-b., Qi, Z.-z., & Xia, D.-k. (2006). Thermodynamic analysis of dimethyl carbonate synthesis from methanol and urea. Tianranqi Huagong, 31 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 75-78
Wang, L., Ma, Y., Wang, Y., Liu, S., & Deng, Y. (2011). Efficient synthesis of glycerol carbonate from glycerol and urea with lanthanum oxide as a solid base catalyst. [10.1016/j.catcom.2011.05.027]. Catal. Commun., 12 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 1458-1462, doi:10.1016/j.catcom.2011.05.027
Wang, M., Wei, T., Wei, W., Yang, J., Wang, X., & Sun, Y. Synthesis of dimethyl carbonate from urea and methanol over herterogeneous cataylsts. State Key Laboratory of Coal conversion, Institute of Coal Chemistry
Wang, M., Zhao, N., Wei, & Sun, Y. (2005). Synthesis of Dimethyl Carbonate from Urea and Methanol over ZnO. Industrial & Engineering Chemistry Research, 44 (19), 7596-7599, doi:10.1021/ie0504553
Wershofen, S., Klein, S., Zhou, Z., Wang, X., Wang, J., & Kang, M. (2009). Rare earth based catalyst for the synthesis of organic carbonates, process for preparing the same and application thereof. (pp. 20 pp.): Bayer Materialscience AG, Germany
Wu, C., Cheng, H., Liu, R., Wang, Q., Hao, Y., Yu, Y., et al. (2010). Synthesis of urea derivatives from amines and CO2 in the absence of catalyst and solvent. Green Chemistry, 12 (10), 1811-1816
Wu, S., Liu, S.-y., & Wang, G.-y. (2009). Catalytic synthesis of propylene carbonate by heteropolyacid salt. Hecheng Huaxue, 17 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 23-27
Xia, C., Gao, Z., Wang, S., & Sun, W. (2010). Method for synthesizing carbonic acid ester by alcoholysis of urea. (pp. 5 pp.): Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Peop. Rep. China
Xia, Y., & Wang, Z. (2009). Production process of urea by CO2 stripping method with highly effective condensation and low installation level. Huafei Sheji, 47 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 12-14
Xiao, X., Lu, H., Lu, B., Wang, X.-g., & Cai, Q.-h. (2010). Highly selective synthesis of dimethyl carbonate from urea and methanol over nano-sized alpha-Fe2O3. Tianranqi Huagong, 35 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 22-27
Xiaoding, X., & Moulijn, J. A. (1996). Mitigation of CO2 by Chemical Conversion: Plausible Chemical Reactions and Promising Products. Energy & Fuels, 10 (2), 305-325, doi:10.1021/ef9501511
Xu, X., Zhan, J., Wei, W., & Zhao, N. (2006). Synthesis of propylene carbonate from urea and propanediol. Shihua Jishu Yu Yingyong, 24 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 366-368
Yang, B., & Sun, J. (2005a). Process for preparation of dimethyl carbonate in the presence of polyphosphoric acids. (pp. 11 pp.): Xi'an Jiaotong University, Peop. Rep. China
Yang, B., & Sun, J. (2005b). Process for preparation of dimethyl carbonate under normal pressure. (pp. 11 pp.): Xi'an Jiaotong University, Peop. Rep. China
Yang, B., Qiu, P., & Zhai, X. (2008). Method for preparing diethyl carbonate by two-step coupling reaction. (pp. 9 pp.): Xi'an Jiaotong University, Peop. Rep. China
Yoo, J. W., & Mouloungui, Z. (2003). Catalytic carbonylation of glycerin by urea in the presence of zinc mesoporous system for the synthesis of glycerol carbonate. Stud. Surf. Sci. Catal., 146 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 757-760
Zardi, F. (2004). Process and plant for the production of urea from ammonia and carbon dioxide. (pp. 11 pp.): Urea Casale S. A., Switz.
Zardi, F., & Debernardi, S. (2009). Process and plant for urea production. (pp. 27 pp.): Urea Casale S. A., Switz.
Zardi, F., Sticchi, P., & Brunengo, P. (2008). Integrated process for urea and melamine production. (pp. 17 pp.): Urea Casale S. A., Switz.
Zhang, Q., Zhang, L., Li, F., Chen, P., Wang, Y., Wei, C., et al. (2010). Apparatus and process for joint production of urea from melamine tail gas. (pp. 6 pp.): Luxi Chemical Group Co., Ltd., Peop. Rep. China
Zhang, Y.-f., Li, Y., & Luan, Z.-y. (2009). Introduction of energy-efficient solution total recycle urea production technique. Liaoning Huagong, 38 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 203-205
Zhao, W., Peng, W., Wang, D., Zhao, N., Li, J., Xiao, F., et al. (2009). Zinc oxide as the precursor of homogenous catalyst for synthesis of dialkyl carbonate from urea and alcohols. Catalysis Communications, 10 (5), 655-658, doi:10.1016/j.catcom.2008.11.018
Zhao, Y.-m., Chen, T., Lei, Y.-c., Wang, G.-y., Yao, J., & Wang, Y. (2005). Synthesis of propylene carbonate from urea and 1,2-propylene glycol catalyzed by lead and zinc compounds. Jingxi Huagong, 22 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 638-640
Zheng, S., Li, F., Liu, J., & Xia, C. (2007). A novel and efficient (NHC)CuI (NHC = N-heterocyclic carbene) catalyst for the oxidative carbonylation of amino compounds. Tetrahedron Letters, 48 (33), 5883-5886, doi:10.1016/j.tetlet.2007.06.049

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105536437A (en) * 2016-01-19 2016-05-04 北京化工大学 MDEA compound absorbent for acid gas separation and separation method
CN105709566A (en) * 2016-01-19 2016-06-29 北京化工大学 Method using high-viscosity absorbent to separate CO2 based on dissolution assisting effect
CN105709566B (en) * 2016-01-19 2018-08-03 北京化工大学 One kind detaching CO based on hydrotropy effect application high viscosity absorbent2Method
CN105536437B (en) * 2016-01-19 2018-10-23 北京化工大学 A kind of MDEA composite absorbers and separation method for sour gas separation
US10322367B2 (en) 2016-02-12 2019-06-18 University Of Kentucky Research Foundation Method of development and use of catalyst-functionalized catalytic particles to increase the mass transfer rate of solvents used in acid gas cleanup
DE102018205635A1 (en) 2018-04-13 2019-10-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for using CO2-containing gases using organic bases

Also Published As

Publication number Publication date
WO2014059961A1 (en) 2014-04-24

Similar Documents

Publication Publication Date Title
DE102012020141A1 (en) Process for the synchronous absorption of carbon dioxide from flue gas and synthesis of dialkyl carbonates and alkylene carbonates
DE112018005746B4 (en) Fully quantified resource system for capturing, converting and applying flue gas at factories, power plants and refineries
Pan et al. Advances in state-of-art valorization technologies for captured CO2 toward sustainable carbon cycle
EP2059327B1 (en) Removal of carbon dioxide from combustion exhaust gases
CN106031844B (en) Desulfurization and denitrification agent
CN103467435B (en) A kind of method preparing glycerol carbonate
US20140151240A1 (en) Electroylytic reduction of carbon capture solutions
EP3045219B1 (en) Method for removing sox from gas using modified polyethylene glycol
RU2013128473A (en) METHOD FOR PRODUCING ETHYLENE GLYCOL
CN103627024A (en) Method for recycling waste polyurethane
US20130165669A1 (en) Reactive Recovery of Dimethyl Carbonate from Dimethyl Carbonate/Methanol Mixtures
CN109319736B (en) Ammonia tank purge gas recovery device and process thereof
CN102442992B (en) Method for synthesizing glycerol carbonate with biodiesel based crude glycerine and dimethyl carbonate
BRPI0907067B1 (en) METHOD FOR THE ALKILATION OF ANhydrous Sugar Compound
CN108976124B (en) CO (carbon monoxide)2Method for trapping and directly synthesizing dialkyl carbonate
CN100357268C (en) Process for synthesizing sec-butyl urea
CN110201540A (en) The technique of methyl mercaptan in a kind of carbon dioxide removal gas
DE102018205635A1 (en) Process for using CO2-containing gases using organic bases
JP2021151986A (en) Method and device for producing carbonate ester
CN103554060A (en) Catalyst used for synthesizing glycidol from glycerol and dimethyl carbonate by employing one-step method
Kafi et al. Grand Challenges in CO2 Capture and Conversion
KR101494497B1 (en) Method for absorbing carbon dioxide and Synthesis of alkali metal ethyl carbonate via the Same and Method for generation of ethanol
KR102638462B1 (en) Highly efficient CO2 absorbent composition and method for preparing the same
DE102007051072B4 (en) Process for the production of methanol
CN103570551B (en) Device and method for synthesizing nitrite used for oxalate

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R016 Response to examination communication
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee