DE10039401C2 - Mindestens teilweise implantierbares Hörsystem - Google Patents

Mindestens teilweise implantierbares Hörsystem

Info

Publication number
DE10039401C2
DE10039401C2 DE10039401A DE10039401A DE10039401C2 DE 10039401 C2 DE10039401 C2 DE 10039401C2 DE 10039401 A DE10039401 A DE 10039401A DE 10039401 A DE10039401 A DE 10039401A DE 10039401 C2 DE10039401 C2 DE 10039401C2
Authority
DE
Germany
Prior art keywords
transducer
arrangement
coupling
switchable
implantable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE10039401A
Other languages
English (en)
Other versions
DE10039401A1 (de
Inventor
Friedemann Stoeckert
Hans Leysieffer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sonova Holding AG
Original Assignee
Implex AG Hearing Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Implex AG Hearing Technology filed Critical Implex AG Hearing Technology
Priority to DE10039401A priority Critical patent/DE10039401C2/de
Priority to DK01118052.8T priority patent/DK1179969T3/da
Priority to EP01118052A priority patent/EP1179969B1/de
Priority to AT01118052T priority patent/ATE513423T1/de
Priority to AU57971/01A priority patent/AU778293B2/en
Priority to US09/927,504 priority patent/US6592512B2/en
Publication of DE10039401A1 publication Critical patent/DE10039401A1/de
Application granted granted Critical
Publication of DE10039401C2 publication Critical patent/DE10039401C2/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/75Electric tinnitus maskers providing an auditory perception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/60Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles
    • H04R25/604Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers
    • H04R25/606Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers acting directly on the eardrum, the ossicles or the skull, e.g. mastoid, tooth, maxillary or mandibular bone, or mechanically stimulating the cochlea, e.g. at the oval window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/67Implantable hearing aids or parts thereof not covered by H04R25/606

Abstract

Mindestens teilweise implantierbares Hörsystem mit mindestens einem schallaufnehmenden Sensor (38) zur Aufnahme von Schallsignalen und deren Umwandlung in entsprechende elektrische Signale, einer elektronischen Signalverarbeitungseinheit (40, 62) zur Audiosignalverarbeitung und -verstärkung, einer elektrischen Energieversorgungseinheit (54), die einzelne Komponenten des Systems mit Strom versorgt, sowie mindestens einem ein aktives elektromechanisches Element (12, 13) aufweisenden, von einer treibenden Elektronikbaugruppe (44) der Signalverarbeitungseinheit angesteuerten ausgangsseitigen elektromechanischen Wandler (10) zur Stimulation eines beliebigen Mittelohr-Zielossikels über ein passives Koppelelement (21). Zwischen dem aktiven elektromechanischen Element (12, 13) des Wandlers (10) und dem passiven Koppelelement (21) ist eine schaltbare Kupplungsanordnung (22) angeordnet, die im inaktiven Zustand der den Wandler treibenden Elektronikbaugruppe (44) das passive Koppelelement von dem ausgangsseitigen Teil (12) des Wandlers so weitgehend abkuppelt, daß die mechanische Ausgangsimpedanz des Wandlers im wesentlichen keinen Einfluß auf die natürliche Schwingfähigkeit der Ossikelkette des Mittelohres hat und somit die natürliche Resthörfähigkeit für Luftschall weitgehend erhalten bleibt.

Description

Die vorliegende Erfindung betrifft ein mindestens teilweise implantierbares Hörsystem mit mindestens einem schallaufnehmenden Sensor zur Aufnahme von Schallsignalen und deren Umwandlung in entsprechende elektrische Signale, einer elektronischen Signalver­ arbeitungseinheit zur Audiosignalverarbeitung und -verstärkung, einer elektrischen Energieversorgungseinheit, die einzelne Komponenten des Systems mit Strom versorgt, sowie mindestens einem ein aktives elektromechanisches Element aufweisenden, von einer treibenden Elektronikbaugruppe der Signalverarbeitungseinheit angesteuerten ausgangs­ seitigen elektromechanischen Wandler zur Stimulation eines beliebigen Mittelohr-Zielossikels über ein passives Ankoppelelement.
Unter mindestens teilweise implantierbaren Hörsystemen sollen vorliegend Systeme verstanden werden, bei denen das Schallsignal mit mindestens einem Sensor, der ein Schallsignal in ein elektrisches Signal umwandelt (Mikrofonfunktion), aufgenommen und elektronisch weiterverarbeitet und verstärkt wird und deren ausgangsseitiges Signal das geschädigte Gehör auf elektromechanische Weise stimuliert.
Unter dem Begriff "Hörstörung" sollen vorliegend alle Arten von Innenohrschäden sowie auch zeitweise auftretende oder permanente Ohrgeräusche (Tinnitus) verstanden werden.
Elektronische Maßnahmen zur Rehabilitation eines operativ nicht behebbaren Innenohrscha­ dens haben heute einen wichtigen Stellenwert erreicht. Bei totalem Ausfall des Innenohres sind Cochlea Implantate mit direkter elektrischer Reizung des verbleibenden Hörnerven im routinemäßigen klinischen Einsatz. Bei mittleren bis schweren Innenohrschäden kommen derzeit erstmals volldigitale Hörgeräte zur Anwendung, die eine neue Welt der elektroni­ schen Audiosignalverarbeitung eröffnen und erweiterte Möglichkeiten der gezielten audiologischen Feinanpassung der Hörgeräte an den individuellen Innenohrschaden bieten. Trotz dieser in den letzten Jahren erreichten, erheblichen Verbesserungen der apparativen Hörgeräteversorgung bleiben bei konventionellen Hörgeräten grundsätzliche Nachteile bestehen, die durch das Prinzip der akustischen Verstärkung bedingt sind, das heißt insbesondere durch die Rückwandlung des elektronisch verstärkten Signals in Luftschall. Zu diesen Nachteilen zählen Aspekte wie die Sichtbarkeit der Hörgeräte, mangelnde Klangqua­ lität aufgrund der elektromagnetischen Wandler (Lautsprecher), verschlossener äußerer Gehörgang sowie Rückkoplungseffekte bei hoher akustischer Verstärkung.
Aufgrund dieser prinzipiellen Nachteile besteht seit langem der Wunsch, von konventionellen Hörgeräten mit akustischer Anregung des geschädigten Innenohres abzuweichen und diese durch teil- oder vollimplantierbare Hörsysteme mit einer direkten mechanischen Stimulation zu ersetzen. Implantierbare Hörsysteme unterscheiden sich von konventionellen Hörgeräten: zwar wird das Schallsignal mit einem adäquaten Mikrofon in ein elektrisches Signal umgewandelt und in einer elektronischen Signalverarbeitungsstufe verstärkt; dieses verstärkte elektrische Signal wird jedoch nicht einem elektroakustischen Wandler (Lautspre­ cher) zugeführt, sondern einem implantierten elektromechanischen Wandler, dessen ausgangsseitige mechanische Schwingungen unmittelbar, also mit direktem mechanischem Kontakt, dem Mittel- beziehungsweise Innenohr zugeführt werden oder mittelbar durch einen Kraftschluß über einen Luftspalt bei zum Beispiel elektromagnetischen Wandlersyste­ men. Dieses Prinzip gilt unabhängig von einer teilweisen oder vollständigen Implantation aller notwendigen Systemelemente sowie auch unabhängig davon, ob eine reine Innenohr­ schwerhörigkeit bei vollständig intaktem Mittelohr oder eine kombinierte Schwerhörigkeit (Mittel- und Innenohr geschädigt) rehabilitiert werden soll. Daher sind in der jüngeren wissenschaftlichen Literatur sowie in zahlreichen Patentschriften implantierbare elektrome­ chanische Wandler sowie Verfahren zur Ankopplung der mechanischen Wandlerschwingun­ gen an das intakte Mittelohr beziehungsweise das Innenohr direkt zur Rehabilitation einer reinen Innenohrschwerhörigkeit sowie auch an verbleibende Ossikel des Mittelohres bei artifiziell oder pathologisch verändertem Mittelohr zur Versorgung einer Schalleitungs­ schwerhörigkeit sowie deren Kombinationen beschrieben worden.
Als elektromechanisches Wandlerverfahren kommen grundsätzlich alle physikalischen Wandlungsprinzipien in Frage wie elektromagnetisch, elektrodynamisch, magnetostriktiv, dielektrisch und piezoelektrisch. Verschiedene Forschungsgruppen haben sich in den letzten Jahren im wesentlichen auf zwei dieser Verfahren konzentriert: elektromagne­ tisch und piezoelektrisch. Beim piezoelektrischen Verfahren ist eine mechanisch direkte Kopplung der ausgangsseitigen Wandlerschwingungen an die Mittelohrossikel oder direkt an das ovale Fenster notwendig; beim elektromagnetischen Prinzip kann die Kraftkopplung einerseits über einen Luftspalt erfolgen ("kontaktlos"), das heißt, nur der Permanentmagnet wird durch dauerhafte Fixation in direkten mechanischen Kontakt mit einem Mittelohrossikel gebracht. Andererseits besteht die Möglichkeit, den Wandler vollständig in einem Gehäuse zu realisieren (Spule und Magnet sind mit kleinstmögli­ chem Luftspalt gekoppelt) und die ausgangsseitigen Schwingungen über ein mechanisch steifes Koppelelement mit direktem Kontakt auf die Mittelohrossikel zu übertragen.
Bei den beschriebenen Wandler- und Ankopplungsvarianten sind grundsätzlich zwei Implan­ tationsprinzipien zu unterscheiden:
  • a) Bei dem einen befindet sich der elektromechanische Wandler mit seinem aktiven Wand­ lerelement selbst im Mittelohrbereich in der Paukenhöhle, und er ist dort mit einem Ossikel oder dem Innenohr direkt verbunden.
  • b) Bei dem anderen befindet sich der elektromechanische Wandler mit seinem aktiven Wandlerelement außerhalb des Mittelohrbereiches in einer artifiziell geschaffenen Mastoidhöhle; die ausgangsseitigen mechanischen Schwingungen werden dann mittels mechanisch passiver Koppelelemente über geeignete operative Zugänge (natürlicher aditus ad antrum, Eröffnung des chorda-facialis-Winkels oder über eine artifizielle Bohrung vom Mastoid aus) zum Mittel- beziehungsweise Innenohr übertragen.
Ein Vorteil der Varianten nach a) besteht darin, daß der Wandler als so genannter "Floating Mass"-Wandler ausgeführt sein kann, das heißt, das Wandlerelement benötigt keine "Reaktio" über eine feste Verschraubung mit dem Schädelknochen, sondern es schwingt aufgrund von Massenträgheitsgesetzen mit seinem Wandlergehäuse und überträgt diese direkt auf ein Mittelohrossikel (u. a. US-A-5 624 376). Dies bedeutet einerseits, daß vorteilhaft auf ein implantierbares Fixationssystem an der Schädelkalotte verzichtet werden kann; andererseits bedeutet diese Variante nachteilig, daß voluminöse artifizielle Elemente in die Paukenhöhle eingebracht werden müssen und deren Langzeit- und Biostabilität insbesondere bei temporären pathologischen Veränderungen des Mittelohres (zum Beispiel otits media) heute nicht bekannt beziehungsweise gewährleistet sind. Ein weiterer wesentlicher Nachteil besteht darin, daß die Wandler vom Mastoid aus mit ihrer elektrischen Zuleitung ins Mittelohr gebracht werden und dort mit Hilfe geeigneter operativer Werkzeuge fixiert werden müssen; dies erfordert einen erweiterten Zugang durch den chorda-facialis-Winkel und bringt somit eine latente Gefährdung des in unmittelbarer Nachbarschaft gelegenen Gesichtsnerven (nervus facialis) mit sich. Weiterhin sind solche "Floating-Mass-Wandler" dann nur noch sehr eingeschränkt oder überhaupt nicht mehr einsetzbar, wenn das Innenohr zum Beispiel über das ovale Fenster direkt stimuliert werden soll, weil aufgrund pathologischer Veränderungen zum Beispiel der Amboß wesentlich geschädigt ist beziehungsweise gar nicht mehr vorhan­ den ist und somit ein derartiger Wandler nicht mehr mit einem schwingfähigen und mit dem Innenohr in Verbindung stehenden Ossikel mechanisch verbunden werden kann.
Ein gewisser Nachteil der Wandlervarianten nach b) ist der Umstand, daß die Wandlerge­ häuse mit implantierbaren Positionier- und Fixationssystemen an der Schädelkalotte befestigt werden müssen. Ein weiterer Nachteil der Varianten nach b) besteht darin, daß, vorzugs­ weise mittels geeigneter Laser, Vertiefungen in die Zielossikel eingebracht werden müssen, in welche die Spitze einer Koppelstange eingesetzt wird, um für eine dauerhafte und mecha­ nisch sichere Schwingungsübertragung von dem schwingenden Wandlerteil zu dem Amboß­ körper zu sorgen. Dies ist einerseits technisch aufwendig und teuer und bringt andererseits Risiken für den Patienten mit sich. Es wird davon ausgegangen, daß die Koppelstangenspitze langfristig eine Osseointegration erfährt, das heißt, daß die Koppelstange mit dem Ossikel fest verwächst und so eine sichere Übertragung dynamischer Druck- und Zugkräfte gewährleistet. Dieser Langzeiteffekt ist zur Zeit jedoch noch nicht wissenschaftlich gesichert. Weiterhin besteht bei dieser Ankopplungsart bei einem technischen Wandlerdefekt der Nachteil, daß eine Entkopplung vom Ossikel zur Entfernung des Wandlers nur mit mecha­ nisch basierten operativen Methoden vorgenommen werden kann, was eine erhebliche Gefährdung des Mittelohres und insbesondere des Innenohres bedeuten kann. Der wesent­ liche Vorteil dieser Wandlerausführungsformen nach b) besteht jedoch darin, daß das Mittelohr weitgehend frei bleibt und der Koppelzugang zum Mittelohr ohne größeres Gefährdungspotential des nervus facialis erfolgen kann.
In den letzten Jahren wurden solche beschriebenen teil- und vollimplantierbaren Hörsysteme chronisch im Menschen implantiert. Bei den Langzeitergebnissen zeigen sich folgende Effekte:
  • - bei der Implantation des "Floating Mass Transducers (FMT)" und der Verwendung eines Teilimplantates konnte statistisch signifikant nachgewiesen werden, daß das Resthör­ vermögen durch die Implantation des FMT bei ausgeschalteter Treiberelektronik des Implantates nicht oder nur unwesentlich verschlechtert wird, da dieser Wandler eine sehr geringe Masse aufweist, die im Bereich der Masse der Ossikel selbst liegt, und daß eine Versteifung der Ossikelkette aufgrund des "floatenden" Prinzips des Wandlers nicht oder nur unwesentlich auftritt (zum Beispiel aufgrund der Steifigkeit der Wandlerzuleitung).
  • - bei der Implantation von mechanisch direktgekoppelten Wandlern gemäß den oben genannten Varianten nach b) zeigt sich, daß insbesondere bei Wandlern auf der Basis des piezoelektrischen Prinzips und mit hoher mechanischer Ausgangsimpedanz (US-A-5 277 694) das Resthörvermögen bei ausgeschalteter Treiberelektronik des Implantatsystems deutlich herabgesetzt sein kann, da in diesem Fall die hohe mechanische Ausgangsimpedanz des Wandlers an der Ankoppelstelle an der Ossikelkette dominiert und somit die über das Trommelfell eingestrahlte akustische Energie an der Koppelstelle weitgehend reflektiert wird.
Der Aspekt der weitgehenden Erhaltung des akustischen Resthörvermögens wird heute als wichtig angesehen, insbesondere dann, wenn aufgrund der gesamten Implantatsystemausle­ gung eine Ossikelkettenunterbrechung zur Vermeidung von Rückkopplungen oder/und zur Optimierung der Energieeintragung ins Innenohr nicht vorgesehen ist. Eine diesbezügliche Implantatauslegung kann zum Beispiel darin bestehen, bei Verwendung eines digitalen Signalprozessors softwarebasierte Algorithmen zur Vermeidung beziehungsweise weitge­ henden Minimierung von Rückkopplungseffekten einzusetzen.
Grundsätzlich besteht also der Wunsch, insbesondere bei Verwendung von mechanisch direkt gekoppelten elektromechanischen Wandlern für implantierbare Hörsysteme mit einer mechanischen Ausgangsimpedanz, die höher ist als die mechanische Lastimpedanz der angekoppelten biologischen Mittel- und/oder Innenohrstruktur eine Vorrichtung zu verwenden, die dafür sorgt, daß durch Vermeidung einer "Festbremsung" der Ossikel durch den angekoppelten Wandler das Resthörvermögen weitestgehend erhalten bleibt, wenn das elektronische Implantatsystem nicht in Betrieb ist. Die Erhaltung des Resthörvermögens ist hier so zu verstehen, daß die über das Außenohr einfallende Schallenergie möglichst unver­ mindert über das Trommelfell aufgenommen und als mechanische Schwingungsenergie an das Innenohr weitergeleitet wird.
Mögliche Lösungsvorschläge hierzu sind den älteren Patentanmeldungen DE 199 23 403 A1 und DE 199 35 029 A1 angegeben, bei denen das schwingende Ausgangselement eines elek­ tromechanischen Wandlers mit hoher mechanischer Ausgangsimpedanz nicht direkt metallisch hart an das Zielossikel gekoppelt wird, sondern eine Ankopplung über Adhäsions­ kräfte oder über eine entropieelastische Zwischenschicht, wie zum Beispiel Silikone, erfolgt. Dadurch wird die mechanische Quellimpedanz des Wandlers reduziert. Ein weiterer Vorteil einer solchen zum Beispiel Adhäsionskopplung ist, daß das Ossikel nicht hauptsächlich in Schwingungsrichtung des antreibenden Wandlers "zwangsgeführt" wird, was zu einer nicht­ optimalen Schwingungsform der Steigbügelfußplatte im ovalen Fenster führen kann (optimale Schwingungsform: kolbenförmige Schwingung der Steigbügelfußplatte senkrecht zu ihrer Ebene), sondern seine (frequenzabhängige) Schwingungsrichtung selbst aufgrund der dynamischen Eigenschaften des intakten Mittelohres einstellt. Dieser Vorteil gilt auch bei nicht-intakter, (teil-)abgebauter Ossikelkette und Ankopplung an den dem Innenohr zuge­ wandten "Rest" der Kette auch im Extremfall bei nur verbleibendem Steigbügel oder nur Steigbügelfußplatte, da diese(r) durch das so genannte Ligament (elastisches Ringband, das den Steigbügel im ovalen Fenster "hält") aufgehängt ist. Praktische Erfahrungen dazu liegen jedoch noch nicht vor.
Der Erfindung liegt die Aufgabe zugrunde, ein mindestens teilweise implantierbares Hörsystem zu schaffen, das auf besonders zuverlässige Weise ein Resthörvermögen des Hörsystemträgers bei nicht in Betrieb befindlichem elektronischem Implantatsystem aufrechterhält.
Diese Aufgabe wird dadurch gelöst, daß bei einem mindestens teilweise implantierbaren Hörsystem mit mindestens einem schallaufnehmenden Sensor zur Aufnahme von Schallsignalen und deren Umwandlung in entsprechende elektrische Signale, einer elektronischen Signalverarbeitungseinheit zur Audiosignalverarbeitung und -verstär­ kung, einer elektrischen Energieversorgungseinheit, die einzelne Komponenten des Systems mit Strom versorgt, sowie mindestens einem ein aktives elektromechanisches Element aufweisenden, von einer treibenden Elektronikbaugruppe der Signalverarbeitungs­ einheit angesteuerten ausgangsseitigen elektromechanischen Wandler zur Stimulation eines beliebigen Mittelohr-Zielossikels über ein passives Koppelelement, erfindungsgemäß zwischen dem aktiven elektromechanischen Element des Wandlers und dem passiven Koppelelement eine schaltbare Kupplungsanordnung vorgesehen ist, die im inaktiven Zustand der den Wandler treibenden Elektronikbaugruppe das passive Koppelelement von dem ausgangsseitigen Teil des elektromechanischen Wandlers so weitgehend abkoppelt, daß die mechanische Ausgangsimpedanz des Wandlers keinen oder nur einen geringfügigen Einfluß auf die natürliche Schwingfähigkeit der Ossikelkette des Mittelohres hat und somit die natürliche Resthörfähigkeit für Luftschall möglichst weitgehend erhalten bleibt.
Ist bei dem Hörsystem nach der Erfindung das elektronische Implantatsystem aus welchen Gründen auch immer inaktiv (das heißt nicht in Betrieb), wird über die schaltbare Kupp­ lungsanordnung das aktive elektromechanische Element des Wandlers von dem passiven Koppelelement und damit von der Ossikelkette abgekoppelt. Auf diese Weide wird vermie­ den, daß auf akustische Signale zurückgehende Schwingungen der Ossikelkette von dem sonst, das heißt im normalen Betrieb des Hörsystems, mit der Ossikelkette mechanisch direkt gekoppelten elektromechanischen Wandler be- oder verhindert werden oder, mit anderen Worten, über das Trommelfell eingestrahlte akustische Energie in beträchtlichem Umfang an der Ankoppelstelle reflektiert wird. Die über das Außenohr einfallende und von dem Trommelfell aufgenommene Schallenergie wird so im wesentlichen unvermindert an das Innenohr weitergeleitet. Infolgedessen bleibt das Resthörvermögen des Hörsystemträgers weitestgehend erhalten.
Der erfindungsgemäßen Lösung kommt vor allem dann besondere Bedeutung zu, wenn die mechanische Ausgangsimpedanz des Hörsystems höher ist als die mechanische Lastimpedanz der angekoppelten biologischen Mittel- und/oder Innenohrstruktur.
Der vorliegend im Zusammenhang mit der Kupplungsanordnung verwendete Begriff "schaltbar" ist weitfassend zu verstehen. Er ist keineswegs auf eine kraft- und/oder form­ schlüssige Verbindung im "eingeschalteten" Zustand und ein vollständiges Trennen des aktiven elektromechanischen Wandlerelements von dem passiven Koppelelement im "ausgeschalteten" Zustand der Kupplungsanordnung beschränkt, sondern soll allgemein alle Fälle umfassen, bei welchen zwischen dem "eingeschalteten" und dem "ausgeschalteten" Zustand der "schaltbaren" Kupplungsanordnung ein wesentlicher Unterschied hinsichtlich der mechanischen Ausgangsimpedanz des ausgangsseitigen Wandlers - bezogen auf die vom Wandler abliegende Seite der Kupplungsanordnung - vorliegt. Vorzugsweise ist die schalt­ bare Kupplungsanordnung so ausgeführt, daß zwischen dem eingeschalteten und dem ausgeschalteten Zustand der Kupplungsanordnung ein mechanischer Impedanzunter­ schied von mindestens 10 dB besteht.
Die schaltbare Kupplungsanordnung ist im Hinblick auf die beengten Platzverhältnisse am Implantationsort und zum Kleinhalten der schwingenden Massen vorzugsweise mikrosys­ temtechnisch hergestellt. Sie weist zweckmäßig ein elektromechanisch aktives Bauele­ ment, insbesondere ein Piezoelement, auf. In weiterer Ausgestaltung der Erfindung sind das aktive elektromechanische Element des Wandlers und die schaltbare Kupplungsan­ ordnung in einem gemeinsam Gehäuse untergebracht. Dies vereinfacht die Ansteuerung der Kupplungsanordnung und vermeidet ein zusätzliches Kupplungsgehäuse.
Das passive Koppelelement kann in an sich bekannter Weise mit dem aktiven elektromecha­ nischen Element des Wandlers über eine Koppelstange in mechanischer Verbindung stehen. Dabei kann die schaltbare Kupplungsanordnung in die Koppelstange eingefügt oder zwischen dem aktiven elektromechanischen Element des Wandlers und dem dem Wandler zugewendeten Ende der Koppelstange angeordnet sein.
Gemäß einer weiteren Ausgestaltung der Erfindung ist die elektronische Signalverarbeitungseinheit auch zur Ansteuerung der schaltbaren Kupplungsanordnung ausgelegt. Die Signalverarbeitungseinheit weist vorteilhaft einen digitalen Signalprozessor zum Verar­ beiten der Schallsensorsignale und/oder zum Generieren von digitalen Signalen für eine Tinnitusmaskierung sowie zum Ansteuern der schaltbaren Kupplungsanordnung auf.
Der Signalprozessor kann statisch in der Weise ausgelegt sein, daß entsprechende Softwaremodule aufgrund wissenschaftlicher Erkenntnisse einmalig in einem Programm­ speicher des Signalprozessors abgelegt werden und unverändert bleiben. Liegen dann aber später zum Beispiel aufgrund neuerer wissenschaftlicher Erkenntnisse verbesserte Algorithmen zur Sprachsignalaufbereitung und -verarbeitung vor und sollen diese genutzt werden, muß durch einen invasiven, operativen Patienteneingriff das gesamte Implantat oder das Implantatmodul, das die entsprechende Signalverarbeitungseinheit enthält, gegen ein neues mit der veränderten Betriebssoftware ausgetauscht werden. Dieser Eingriff birgt erneute medizinische Risiken für den Patienten und ist mit hohem Aufwand verbunden.
Diesem Problem kann dadurch begegnet werden, daß in weiterer Ausgestaltung der Erfindung dem Signalprozessor zur Aufnahme und Wiedergabe eines Betriebspro­ gramms eine wiederholt beschreibbare, implantierbare Speicheranordnung zugeordnet ist, und mindestens Teile des Betriebsprogramms durch von einer externen Einheit über eine Telemetrieeinrichtung übermittelte Daten geändert oder ausgetauscht werden kön­ nen. Auf diese Weise läßt sich nach Implantation des implantierbaren Systems die Betriebssoftware, einschließlich von Software zur Ansteuerung der vorstehend erläu­ terten schaltbaren Kupplungsanordnung, als solche verändern oder auch vollständig austauschen.
Bevorzugt ist die Auslegung so beschaffen, daß darüber hinaus bei vollimplantierbaren Systemen auch in an sich bekannter Weise Betriebsparameter, das heißt patientenspezifi­ sche Daten, wie beispielsweise audiologische Anpaßdaten, oder veränderbare Implantat­ systemparameter (zum Beispiel als Variable in einem Softwareprogramm zur Ansteue­ rung der schaltbaren Kupplungsanordnung oder zur Regelung einer Batterienachladung) nach der Implantation transkutan, das heißt drahtlos durch die geschlossene Haut, in das Implantat übertragen und damit verändert werden können. Dabei sind die Softwaremo­ dule bevorzugt dynamisch, oder mit anderen Worten lernfähig, ausgelegt, um zu einer möglichst optimalen Rehabilitation der jeweiligen Hörstörung zu kommen. Insbesondere können die Softwaremodule adaptiv ausgelegt sein, und eine Parameteranpassung kann durch "Training" durch den Implantatträger und weitere Hilfsmittel vorgenommen werden.
Weiterhin kann die Signalverarbeitungselektronik ein Softwaremodul enthalten, das eine möglichst optimale Stimulation auf der Basis eines lernfähigen neuronalen Netzwerkes erreicht. Das Training dieses neuronalen Netzwerks kann durch den Implantatträger erfolgen und/oder unter Zuhilfenahme weiterer externer Hilfsmittel.
Die Speicheranordnung zum Speichern von Betriebsparametern und die Speicheranord­ nung zur Aufnahme und Wiedergabe des Betriebsprogramms können als voneinander unabhängige Speicher implementiert sein; es kann sich jedoch auch um einen einzigen Speicher handeln, in dem sowohl Betriebsparameter als auch Betriebsprogramme abgelegt werden können.
Die vorliegende Lösung erlaubt eine Anpassung des Systems an Gegebenheiten, die erst nach Implantation des implantierbaren Systems erfaßbar sind. So sind beispielsweise bei einem mindestens teilweise implantierbaren Hörsystem zur Rehabilitation einer monau­ ralen oder binauralen Innenohrstörung sowie eines Tinnitus mit mechanischer Stimula­ tion des Innenohres die sensorischen (Schallsensor beziehungsweise Mikrofon) und aktorischen (Ausgangsstimulator) biologischen Schnittstellen immer abhängig von den anatomischen, biologischen und neurophysiologischen Gegebenheiten, zum Beispiel von dem interindividuellen Einheilprozeß. Diese Schnittstellenparameter können individuell insbesondere auch zeitvariant sein. So können beispielsweise das Übertragungsverhalten eines implantierten Mikrofons aufgrund von Gewebebelagen und das Übertragungsver­ halten eines an das Innenohr angekoppelten elektromechanischen Wandlers aufgrund unterschiedlicher Ankopplungsqualität interindividuell und individuell variieren. Solche Unterschiede der Schnittstellenparameter, die sich bei den aus dem Stand der Technik bekannten Vorrichtungen nicht einmal durch den Austausch des Implantats mindern beziehungsweise eliminieren ließen, können vorliegend durch Veränderung beziehungs­ weise Verbesserung der Signalverarbeitung des Implantats optimiert werden.
Bei einem mindestens teilweise implantierbaren Hörsystem kann es sinnvoll oder notwendig werden, nach Implantation verbesserte Signalverarbeitungsalgorithmen zu implementieren. Dabei sind insbesondere zu nennen:
  • - Sprachanalyseverfahren (zum Beispiel Optimierung einer Fast-Fourier-Transfor­ mation (FFT)),
  • - statische oder adaptive Störschallerkennungsverfahren,
  • - statische oder adaptive Störschallunterdrückungsverfahren,
  • - Verfahren zur Optimierung des systeminternen Signal-Rauschabstandes,
  • - optimierte Signalverarbeitungsstrategien bei progredienter Hörstörung,
  • - ausgangspegelbegrenzende Verfahren zum Schutz des Patienten bei Implantat­ fehlfunktionen beziehungsweise externen Fehlprogrammierungen,
  • - Verfahren zur Vorverarbeitung mehrerer Sensor-(Mikrofon-)signale, insbeson­ dere bei binauraler Positionierung der Sensoren,
  • - Verfahren zur binauralen Verarbeitung zweier oder mehrerer Sensorsignale bei binauraler Sensorpositionierung, zum Beispiel Optimierung des räumlichen Hörens beziehungsweise Raumorientierung,
  • - Phasen- beziehungsweise Gruppenlaufzeit-Optimierung bei binauraler Signalverar­ beitung,
  • - Verfahren zur optimierten Ansteuerung der Ausgangsstimulatoren, insbesondere bei binauraler Positionierung der Stimulatoren.
Mit dem vorliegenden System lassen sich auch nach der Implantation unter anderem die folgenden Signalverarbeitungsalgorithmen implementieren:
  • - Verfahren zur Rückkopplungsunterdrückung beziehungsweise -minderung,
  • - Verfahren zur Optimierung des Betriebsverhaltens des beziehungsweise der Ausgangswandler (zum Beispiel Frequenz- und Phasengangoptimierung, Verbes­ serung des Impulsübertragungsverhaltens),
  • - Sprachsignal-Kompressionsverfahren bei Innenohrschwerhörigkeiten,
  • - Signalverarbeitungsmethoden zur Recruitment-Kompensation bei Innenohr­ schwerhörigkeiten.
Des weiteren ist bei Implantatsystemen mit einer sekundären Energieversorgungseinheit, das heißt einem nachladbaren Akkumulatorsystem, aber auch bei Systemen mit primärer Batterieversorgung davon auszugehen, daß diese elektrischen Energiespeicher mit vor­ anschreitender Technologie immer größere Lebensdauern und damit steigende Verweil­ zeiten im Patienten ermöglichen. Es ist davon auszugehen, daß die Grundlagen- und Applikationsforschung für Signalverarbeitungsalgorithmen schnelle Fortschritte macht. Die Notwendigkeit oder der Patientenwunsch einer Betriebssoftwareanpassung beziehungsweise -veränderung wird daher voraussichtlich vor Ablauf der Lebensdauer der implantatinternen Energiequelle eintreten. Das vorliegend beschriebene System erlaubt eine derartige Anpassung der Betriebsprogramme des Implantats auch im bereits implantierten Zustand.
Vorzugsweise ist ferner eine Zwischenspeicheranordnung vorgesehen, in welcher von der externen Einheit über die Telemetrieeinrichtung übermittelte Daten vor dem Weiter­ leiten an den Signalprozessor zwischengespeichert werden können. Auf diese Weise läßt sich der Übertragungsvorgang von der externen Einheit zu dem implantierten System abschließen, bevor die über die Telemetrieeinrichtung übermittelten Daten an den Signalprozessor weitergeleitet werden.
Des weiteren kann eine Überprüfungslogik vorgesehen sein, die in der Zwischenspei­ cheranordnung gespeicherte Daten vor dem Weiterleiten an den Signalprozessor einer Überprüfung unterzieht. Es kann ein Mikroprozessorbaustein, insbesondere ein Mikrocontroller, zum implantatinternen Steuern des Signalprozessors und der schaltba­ ren Kupplungsanordnung über einen Datenbus vorgesehen sein, wobei zweckmäßig die Überprüfungslogik und die Zwischenspeicheranordnung in dem Mikroprozessorbaustein implementiert sind und wobei über den Datenbus und die Telemetrieeinrichtung auch Programmteile oder ganze Softwaremodule zwischen der Außenwelt, dem Mikropro­ zessorbaustein und dem Signalprozessor übermittelt werden können.
Dem Mikroprozessorbaustein ist vorzugsweise eine implantierbare Speicheranordnung zum Speichern eines Arbeitsprogramms für den Mikroprozessorbaustein zugeordnet, und mindestens Teile des Arbeitsprogramms für den Mikroprozessorbaustein können durch von der externen Einheit über die Telemetrieeinrichtung übermittelte Daten geändert oder ausgetauscht werden.
In weiterer Ausgestaltung der Erfindung können mindestens zwei Speicherbereiche zur Aufnahme und Wiedergabe mindestens des Betriebsprogramms des Signalprozessors vorgesehen sein. Dies trägt zur Fehlersicherheit des Systems bei, indem durch das mehr­ fache Vorhandensein des Speicherbereichs, welcher das beziehungsweise die Betriebs­ programme enthält, beispielsweise nach einer Übertragung von extern oder aber beim Einschalten des Implantats eine Überprüfung der Fehlerfreiheit der Software durch­ geführt werden kann.
Analog hierzu kann auch die Zwischenspeicheranordnung mindestens zwei Speicherbe­ reiche zur Aufnahme und Wiedergabe von von der externen Einheit über die Telemetrie­ einrichtung übermittelten Daten aufweisen, so daß nach einer Datenübertragung von der externen Einheit noch im Bereich des Zwischenspeichers eine Überprüfung der Fehler­ freiheit der übermittelten Daten vorgenommen werden kann. Die Speicherbereiche können zur beispielsweise komplementären Ablage der von der externen Einheit über­ mittelten Daten ausgelegt sein. Mindestens einer der Speicherbereiche der Zwischen­ speicheranordnung kann aber auch zur Aufnahme nur eines Teils der von der externen Einheit übermittelten Daten ausgelegt sein, wobei in diesem Fall die Überprüfung der Fehlerfreiheit der übermittelten Daten abschnittsweise erfolgt.
Um zu gewährleisten, daß bei Übertragungsfehlern ein erneuter Übertragungsvorgang gestartet werden kann, kann dem Signalprozessor ferner ein vorprogrammierter, nicht überschreibbarer Festspeicherbereich zugeordnet sein, in welchem die für einen "Minimalbetrieb" des Systems erforderlichen Anweisungen und Parameter gespeichert sind, beispielsweise Anweisungen, die nach einem "Systemabsturz" zumindest einen fehlerfreien Betrieb der Telemetrieeinrichtung zum Empfang eines Betriebsprogramms sowie Anweisungen zum Einspeichern desselben in die Steuerlogik gewährleisten.
Wie bereits erwähnt, ist die Telemetrieeinrichtung in vorteilhafter Weise außer zum Empfang von Betriebsprogrammen von der externen Einheit auch zur Übermittlung von Betriebsparametern zwischen dem implantierbaren Teil des Systems und der externen Einheit ausgelegt, so daß einerseits solche Parameter von einem Arzt, einem Hörgeräte­ akustiker oder dem Träger des Systems selbst eingestellt werden können (zum Beispiel Lautstärke), andererseits das System aber auch Parameter an die externe Einheit übermitteln kann, beispielsweise um den Status des Systems zu überprüfen.
Ein vollständig implantierbares Hörsystem der vorliegend erläuterten Art kann implan­ tatseitig neben der aktorischen Stimulationsanordnung und der Signalverarbeitungsein­ heit mindestens einen implantierbaren Schallsensor und ein nachladbares elektrisches Speicherelement aufweisen, wobei in einem solchen Fall eine drahtlose, transkutane Ladevorrichtung zum Laden des Speicherelements vorgesehen sein kann. Es versteht sich jedoch, daß zur Energieversorgung auch eine Primärzelle oder eine andere Energieversorgungseinheit vorhanden sein kann, die keine transkutane Nachladung benötigt. Dies gilt insbesondere, wenn man berücksichtigt, daß in naher Zukunft vor allem durch Weiterentwicklung der Prozessortechnologie mit wesentlicher Verminde­ rung des Energiebedarfs für elektronische Signalverarbeitung zu rechnen ist, so daß für implantierbare Hörsysteme neue Energieversorgungsformen praktisch anwendbar werden, zum Beispiel eine den Seebeck-Effekt nutzende Energieversorgung. Vorzugs­ weise ist auch eine drahtlose Fernbedienung zur Steuerung der Implantatfunktionen durch den Implantatträger vorhanden.
Bei teilimplantierbarer Ausbildung des Hörsystems sind mindestens ein Schallsensor, die elektronische Signalverarbeitungseinheit, die Energieversorgungseinheit sowie eine Modulator/Sender-Einheit in einem extern am Körper, vorzugsweise am Kopf über dem Implantat, zu tragenden externen Modul enthalten. Das Implantat weist den ausgangs­ seitigen elektromechanischen Wandler und die schaltbare Kupplungsanordnung auf, ist aber energetisch passiv und empfängt seine Betriebsenergie und Steuerdaten für den ausgangsseitigen Wandler und die schaltbare Kupplungsanordnung über die Modula­ tor/Sender-Einheit im externen Modul.
Das beschriebene System kann bei vollimplantierbarer Auslegung ebenso wie bei teilim­ plantierbarem Aufbau monaural oder binaural ausgelegt sein. Ein binaurales System zur Rehabilitation einer Hörstörung beider Ohren weist zwei Systemeinheiten auf, die jeweils einem der beiden Ohren zugeordnet sind. Dabei können die beiden System­ einheiten einander im wesentlichen gleich sein. Es kann aber auch die eine Systemeinheit als Master-Einheit und die andere Systemeinheit als von der Master-Einheit gesteuerte Slave-Einheit ausgelegt sein. Die Signalverarbeitungsmodule der beiden Systemeinheiten können auf beliebige Weise, insbesondere über eine drahtgebundene implantierbare Leitungsverbindung oder über eine drahtlose Verbindung, vorzugsweise eine bidirek­ tionale Hochfrequenzstrecke, eine körperschallgekoppelte Ultraschallstrecke oder eine die elektrische Leitfähigkeit des Gewebes des Implantatträgers ausnutzende Datenüber­ tragungsstrecke, so miteinander kommunizieren, daß in beiden Systemeinheiten eine optimierte binaurale Signalverarbeitung und Wandler-Array-Ansteuerung erreicht wird.
Bevorzugte Ausführungsbeispiele des erfindungsgemäßen Hörsystems beziehungsweise möglicher teil- und vollimplantierbarer Gesamtsysteme sind nachstehend unter Bezugnahme auf die beiliegenden Zeichnungen näher beschrieben. Es zeigen:
Fig. 1 beispielhaft ein piezoelektrisches ausgangsseitiges Wandlersystem zur Stimulation eines Mittelohr-Zielossikels mit elektrisch betätigter Kupplungsanordnung,
Fig. 2 beispielhaft eine mögliche Ausführungsform der schaltbaren Kupplungs­ anordnung unter Verwendung eines aktiven Piezoelementes,
Fig. 3 ein Blockschaltbild eines teil- oder vollimplantierbaren Hörsystems,
Fig. 4 ein vollimplantierbares Hörsystem mit einem elektromechanischen Wandler zur Mittelohranregung sowie mit Fernbedienung und Ladegerät, sowie
Fig. 5 ein teilimplantierbares System mit einem elektromechanischen Wandler zur Mittelohranregung.
Der in Fig. 1 dargestellte, insgesamt mit 10 bezeichnete implantierbare ausgangsseitige elektromechanische Wandler weist ein biokompatibles, zylindrisches Gehäuse 11 aus elek­ trisch leitendem Material, beispielsweise Titan, auf, das mit Inertgas gefüllt ist. In dem Gehäuse 11 ist eine schwingungsfähige, elektrisch leitende Membran 12 angeordnet. Die Membran 12 ist vorzugsweise kreisrund, und sie ist an ihrem Außenrand mit dem Gehäuse 11 fest verbunden. An der in Fig. 1 unteren Seite der Membran 12 sitzt eine dünne Scheibe 13 aus piezoelektrischem Material, zum Beispiel Blei-Zirkonat-Titanat (PZT). Die der Membran 12 zugewendete Seite der Piezoscheibe 13 steht mit der Membran 12 in elektrisch leitender Verbindung, und zwar zweckmäßig über eine elektrisch leitende Klebeverbindung. Auf der von der Membran 12 abgewendeten Seite ist die Piezoscheibe 13 mit einem dünnen, flexiblen Draht kontaktiert, der Teil einer Signalleitung 14 ist und der seinerseits über eine hermetische Gehäusedurchführung 15 mit einer außerhalb des Gehäuses 11 liegenden Wandlerzuleitung 16 verbunden ist. Bei 17 ist in Fig. 1 ein Polymerverguß zwischen der Außenseite des Gehäuses 11, der Gehäusedurchführung 15 und der Wandlerzuleitung 16 angedeutet. Ein Masseanschluß 18 ist von der Wandlerzuleitung 16 über die Gehäusedurch­ führung 15 an die Innenseite des Gehäuses 11 geführt.
Das Anlegen einer elektrischen Spannung zwischen die Signalleitung 14 und den Mas­ seanschluß 18 bewirkt ein Durchbiegen des Hetero-Verbundes aus Membran 12 und Piezoscheibe 13 und führt somit zu einer Auslenkung der Membran 12. Auch bei der vorliegenden Anordnung vorteilhaft anwendbare Einzelheiten eines solchen piezoelektrischen Wandlers sind im übrigen in der bereits oben genannten US-PS 5 277 694 erläutert. Ein ausgangsseitiger elektromechanischer Wandler dieser Art hat typischerweise eine relativ hohe mechanische Ausgangsimpedanz, insbesondere eine mechanische Ausgangsimpedanz, die höher ist als die mechanische Lastimpedanz der im implantierten Zustand an den Wandler angekoppelten biologischen Mittel- und/oder Innenohrstruktur.
Bei dem veranschaulichten Ausführungsbeispiel sind zum Verbinden des Wandlers 10 mit einem beliebigen Mittelohr-Ossikel eine Koppelstange 20 und ein passives Koppelelement 21 vorgesehen, das an dem von dem Wandler 10 abliegenden Ende der Koppelstange 20 angebracht ist oder von diesem Koppelstangenende selbst gebildet wird. Die direkte Ankopplung der Ausgangsseite des Wandlers 10 an das Zielossikel erfolgt dabei über eine schaltbare Kupplungsanordnung 22, die mit der in Fig. 1 oberen Seite der Membran 12, vorzugsweise im Zentrum der Membran, in mechanischer Verbindung steht. Die Kupplungs­ anordnung 22 kann mit ihrem membranseitigen Ende unmittelbar an der Membran 12 und mit ihrem anderen Ende an dem membranseitigen Ende der Koppelstange 20 angreifen; sie kann aber auch in die Koppelstange 20 eingefügt sein.
Die Koppelstange 20 erstreckt sich bei der dargestellten Ausführungsform mindestens näherungsweise senkrecht zu der Membran 12 durch eine elastisch nachgiebige Polymer­ dichtung 23 hindurch von außen in das Innere des Gehäuses 11. Die Polymerdichtung 23 ist so beschaffen, daß sie im implantierten Zustand Axialschwingungen der Koppelstange 20 zuläßt. Die Kupplungsanordnung 22 ist innerhalb des Gehäuses 11 untergebracht. Eine Steuerleitung 24 führt von der Wandlerzuleitung 16 über die Gehäusedurchführung 15 und eine gehäuseinterne Durchführung 25 zu der Kupplungsanordnung 22. Letztere steht ferner über einen Masseanschluß 26 mit dem Gehäuse 11 und über dieses Gehäuse mit dem Masseanschluß 18 in elektrisch leitender Verbindung.
Im normalen Betrieb eines mit der Anordnung gemäß Fig. 1 ausgestatteten Hörsystems ist die Kupplungsanordnung 22 unter dem Einfluß eines über die Steuerleitung 24 angelegten Signals eingeschaltet. Unter "eingeschaltet" soll dabei verstanden werden, daß die Kupp­ lungsanordnung 22 für eine mindestens näherungsweise kraft- und/oder formschlüssige Verbindung zwischen der Membran 12 und der Koppelstange 20 bezüglich der für einen adäquaten Höreindruck notwendigen, durch elektrische Signale auf der Signalleitung 14 bewirkte Schwingungsbewegungen sorgt.
Aufgrund der im Vergleich zu der mechanischen Lastimpedanz der an den Wandler angekoppelten biologischen Mittel- und/oder Innenohrstruktur relativ hohen mechani­ schen Ausgangsimpedanz des Wandlers 10 werden aber die Ossikel durch den Wandler 10 "festgebremst", wenn das Hörsystem aus irgendeinem Grund inaktiv ist, zum Beispiel die Energieversorgung des Hörsystems erschöpft ist, ein Defekt des Hörsystems vorliegt oder das Hörsystem absichtlich ausgeschaltet ist. Das bedeutet, daß in einem solchen Fall, das Hörsystem ein möglicherweise vorhandenes Resthörvermögen des Implantat­ trägers behindert oder ganz unterdrückt.
Dem kann vorliegend mittels der Kupplungsanordnung 22 wirkungsvoll begegnet werden, indem bei inaktivem Hörsystem die Kupplungsanordnung 22 ausgeschaltet und damit der Wandler 10 von der biologischen Mittel- und/oder Innenohrstruktur abgekup­ pelt wird. Unter "ausgeschalteter" Kupplungsanordnung beziehungsweise "abgekuppel­ tem" ausgangsseitigem Wandler soll vorliegend ein Zustand verstanden werden, bei dem die mechanische Ausgangsimpedanz des Wandlers keinen oder nur einen geringfügigen Einfluß auf die natürliche Schwingfähigkeit der Ossikelkette des Mittelohres hat. Bei ausgeschalteter Kupplungsanordnung 22 bleibt daher die natürliche Resthörfähigkeit für Luftschall weitgehend erhalten. Vorzugsweise ist die Kupplungsanordnung 22 so ausgeführt, daß zwischen ein- und ausgeschaltetem Zustand ein mechanischer Impe­ danzunterschied von mindestens 10 dB besteht.
Fig. 2 zeigt eine mögliche Ausführungsform einer in die Koppelstange 20 eingefügten Kupplungsanordnung 22. Die Koppelstange 20 weist zwei axial miteinander fluchtende, in geringem Axialabstand voneinander liegende Koppelstangenteile 28 und 29 auf. Einander zugewendete Endabschnitte 30 beziehungsweise 31 der Koppelstangenteile 28, 29 sind rohrförmig mit gleichem Innen- und Außendurchmesser ausgeführt. Die beiden rohrförmigen Endabschnitte 30, 31 nehmen ein aktives Piezoelement 33 auf, das im vorliegenden Ausführungsbeispiel einen kreisringförmigen Querschnitt hat. Die Längen der Endabschnitte 30, 31 und des Piezoelements 33 sind so bemessen, daß die freien Enden des Piezoelements 33 axial in Abstand von dem Übergang der Endabschnitte 30, 31 zu dem daran jeweils anschließenden massiv ausgebildeten Abschnitt der Koppel­ stangenteile 28, 29 gehalten sind. Der Außendurchmesser des Piezoelements 33 ist nur geringfügig kleiner als der Innendurchmesser der rohrförmigen Endabschnitte 30, 31 der Koppelstange. Der verbleibende Zwischenraum ist mit einem komprimierbaren Polymer 34 ausgefüllt, das im nicht komprimierten Zustand weich ist und somit eine geringe mechanische Impedanz aufweist. Wird das Piezoelement 33 elektrisch aktiviert, das heißt die Kupplungsanordnung 22 eingeschaltet, dehnt sich das Piezoelement 33 aus und erzeugt eine hohe radiale Kraft auf das Polymer 34, das somit stark komprimiert wird. Das Material des Polymers 34 wird so gewählt, daß es im komprimierten Zustand eine deutlich höhere Steifigkeit und damit höhere mechanische Impedanz aufweist als im nicht komprimierten Zustand bei nicht elektrisch aktiviertem Piezoelement 33 (ausge­ schalteter Kupplungsanordnung 22).
Für den Fachmann versteht es sich, daß die Ausbildung der schaltbaren Kupplungsan­ ordnung in mannigfacher Weise abgewandelt werden kann, wobei die Kupplung vorzugsweise mikrosystemtechnisch hergestellt wird.
Fig. 3 zeigt ein schematisches Blockschaltbild eines mit einer Anordnung gemäß den Fig. 1 und 2 ausgestatteten, mindestens teilweise implantierbaren Hörsystems zur Rehabilitation einer Mittelohr- und/oder Innenohrstörung oder eines Tinnitus mit direkter mechanischer Stimulation eines Mittelohrossikels.
Über einen oder mehrere Schallsensoren (Mikrofone) 38a bis 38n wird das externe Schallsignal aufgenommen und in analoge elektrische Signale umgewandelt. Im Falle einer Implantatrealisierung zur ausschließlichen Rehabilitation eines Tinnitus durch Maskierung oder Noiserfunktion ohne zusätzliche Hörgerätefunktion entfallen diese Sensorfunktionen. Die elektrischen Sensorsignale werden an eine Einheit 39 geleitet, die Teil eines implantierbaren Elektronikmoduls 40 ist und in welcher das oder die Sensor­ signale ausgewählt, vorverarbeitet und in Digitalsignale umgewandelt werden (A/D- Wandlung). Die Vorverarbeitung kann beispielsweise in einer analogen linearen oder nicht-linearen Vorverstärkung und Filterung (zum Beispiel Antialiasing-Filterung) bestehen. Das beziehungsweise die digitalisierten Sensorsignale werden einem digitalen Signalprozessor (DSP) 41 zugeführt, der die bestimmungsgemäße Funktion des Hörimplantates ausführt, wie zum Beispiel Audiosignalverarbeitung bei einem System für Innenohrschwerhörigkeiten und/oder Signalgenerierung im Fall eines Tinnitus­ maskierers oder Noisers. Der Signalprozessor 41 enthält einen nicht überschreibbaren Festspeicherbereich S0, in welchem die für einen "Minimalbetrieb" des Systems erforderlichen Anweisungen und Parameter gespeichert sind, sowie einen Speicherbe­ reich S1, in dem die Betriebssoftware der bestimmungsgemäßen Funktion beziehungs­ weise Funktionen des Implantatsystems abgelegt sind. Vorzugsweise ist dieser Spei­ cherbereich doppelt vorhanden sein (S1 und S2). Der wiederholt beschreibbare Programmspeicher zur Aufnahme der Betriebssoftware kann auf EEPROM-Basis oder RAM-Zellen basieren, wobei in diesem Fall dafür gesorgt sollte, daß dieser RAM- Bereich immer durch das implantatinterne Energieversorgungssystem "gepuffert" ist.
Die digitalen Ausgangssignale des Signalprozessors 41 werden in einem Digital-Analog- Wandler (D/A) 43 in Analogsignale umgewandelt. Dieser D/A-Wandler kann je nach Implantatfunktion auch mehrfach ausgelegt sein beziehungsweise völlig entfallen, wenn zum Beispiel im Falle eines Hörsystems mit elektromagnetischem Ausgangswandler direkt ein zum Beispiel pulsweitenmoduliertes, serielles digitales Ausgangssignal des Signalprozessors 41 direkt an den Ausgangswandler übermittelt wird. Das analoge Ausgangssignal des Digital-Analog-Wandlers 43 ist dann zu einer Treibereinheit 44 geführt, die je nach Implantatfunktion den ausgangsseitigen elektromechanischen Wandler 10 zur Stimulation des Mittel- beziehungsweise Innenohres ansteuert. Ein anderes Ausgangssignal des Signalprozessors 41 steuert über einen weiteren Digital- Analog-Wandler 45 und eine zugeordnete Treibereinheit 46 die im Gehäuse 11 des Wandlers 10 untergebrachte schaltbare Kupplungsanordnung 22.
Bei der in Fig. 3 dargestellten Ausführungsform werden die Signalbearbeitungskompo­ nenten 39, 41, und 43 bis 46 durch einen Mikrocontroller 48 (µC) mit einem oder zwei zugehörigen Speichern S4 beziehungsweise S5 über einen bidirektionalen Datenbus 49 gesteuert. In dem beziehungsweise den Speicherbereichen S4 und S5 können insbeson­ dere die Betriebsoftwareanteile des Implantatmanagementsystems abgelegt sein, zum Beispiel Verwaltungsüberwachungs- und Telemetriefunktionen. In den Speichern S1 und/oder S2 können auch von außen veränderliche, patientenspezifische wie zum Beispiel audiologische Anpaßparameter abgelegt sein. Ferner weist der Mikrocontroller 48 einen wiederholt beschreibbaren Speicher S3 auf, in welchem ein Arbeitsprogramm für den Mikrocontroller 48 abgelegt ist.
Der Mikrocontroller 48 kommuniziert über einen Datenbus 50 mit einem Telemetrie- System (TS) 51. Dieses Telemetriesystem 51 kommuniziert seinerseits durch die bei 52 angedeutete geschlossene Haut beispielweise über eine nicht dargestellte induktive Spulenkopplung drahtlos bidirektional mit einem externen Programmiersystem (PS) 53. Das Programmiersystem 53 kann vorteilhaft ein PC-basiertes System mit entsprechen­ der Programmier-, Bearbeitungs-, Darstellungs- und Verwaltungssoftware sein. Über diese Telemetrieschnittstelle wird die zu verändernde beziehungsweise ganz auszutau­ schende Betriebssoftware des Implantatsystems übertragen und zunächst in dem Speicherbereich S4 und/oder S5 des Mikrocontrollers 48 zwischengespeichert. So kann zum Beispiel der Speicherbereich S5 für eine komplementäre Ablage der von dem externen System übermittelten Daten benutzt werden, und eine einfache Verifikation der Softwareübertragung durch einen Lesevorgang über die Telemetrieschnittstelle kann durchgeführt werden, um die Koinzidenz der Inhalte der Speicherbereiche S4 und S5 zu überprüfen, bevor der Inhalt des wiederholt beschreibbaren Speicher S3 geändert oder ausgetauscht wird.
Die Betriebssoftware des mindestens teilweise implantierbaren Hörsystems soll gemäß der vorliegend verwendeten Nomenklatur sowohl die Betriebssoftware des Mikro­ controllers 48 (zum Beispiel Housekeeping-Funktionen, wie Energiemanagement oder Telemetriefunktionen) als auch die Betriebssoftware des digitalen Signalprozessors 41 umfassen. So kann zum Beispiel eine einfache Verifikation der Softwareübertragung durch einen Lesevorgang über die Telemetrieschnittstelle durchgeführt werden, bevor die Betriebssoftware oder die entsprechenden Signalverarbeitungsanteile dieser Software in den Programmspeicherbereich S1 des digitalen Signalprozessors 41 über den Datenbus 49 übertragen werden. Ferner kann auch das Arbeitsprogramm für den Mikrocontroller 48, das beispielsweise in dem wiederholt beschreibbaren Speicher S3 eingespeichert ist, über die Telemetrieschnittstelle 51 ganz oder teilweise mit Hilfe der externen Einheit 53 geändert oder ausgetauscht werden.
Alle elektronischen Komponenten des Implantatsystems werden durch eine primäre oder sekundäre Batterie 54 mit elektrischer Betriebsenergie versorgt.
Fig. 4 zeigt schematisch den Aufbau eines vollständig implantierbaren Hörsystems, das als aktorische Stimulationsanordnung einen ausgangsseitigen elektromechanischen Wandler 10, beispielsweise den Wandler gemäß Fig. 1, aufweist. Der ausgangsseitige elektromechanische Wandler kann allgemein als beliebiger elektromagnetischer, elektrodynamischer, piezoelektrischer, magnetostriktiver oder dielektrischer (kapaziti­ ver) Wandler ausgebildet sein. Unter anderem kann der in Fig. 1 dargestellte Wandler auch dahingehend modifiziert sein, daß an der in Fig. 1 unteren Seite der piezoelektri­ schen Keramikscheibe 13 ein Permanentmagnet angebracht ist, der nach Art eines elektromagnetischen Wandlers mit einer Elektromagnetspule zusammenwirkt. Ein solcher kombinierter piezoelektrischer/elektromagnetischer Wandler ist besonders im Hinblick auf ein breites Frequenzband und auf die Erzielung relativ großer Schwin­ gungsamplituden mit verhältnismäßig kleiner zugeführter Energie von Vorteil. Bei dem ausgangsseitigen elektromechanischen Wandler kann es sich ferner um eine elektromag­ netische Wandleranordnung handeln. In jedem Fall ist zusätzlich die vorliegend erläuterte schaltbare Kupplungsanordnung 22 vorgesehen.
Zum Ankoppeln des elektromechanischen Wandlers 10 an das Mittel- oder Innenohr eignen sich besonders Koppelanordnungen, bei denen ein Koppelelement außer einem Ankoppelteil für den betreffenden Ankoppelort eine Crimphülse aufweist, die zunächst lose auf einen mit rauher Oberfläche versehenen stabförmigen Teil einer Koppelstange aufgeschoben ist, die in der zuvor erläuterten Weise mit dem Wandler verbunden ist. Beim Implantieren kann die Crimphülse gegenüber der Koppelstange einfach verschoben und gedreht werden, um das Ankoppelteil des Koppelelementes mit dem beabsichtigten Ankoppelort exakt auszurichten. Dann wird die Crimphülse fixiert, indem sie mittels eines Crimpwerkzeuges plastisch kaltverformt wird. Alternativ kann das Koppelelement mit Bezug auf die Koppelstange auch mittels einer zuziehbaren Bandschlaufe festgelegt werden.
Es kann auch ein Koppelelement vorgesehen werden, das an seinem Ankoppelende eine Kontaktfläche aufweit, die eine an die Oberflächenform der Ankoppelstelle anpaßbare oder angepaßte Oberflächenform sowie eine solche Oberflächenbeschaffenheit und Oberflächengröße aufweist, daß es durch Anlegen des Ankoppelendes an die Ankoppel­ stelle zu einer dynamischen Zug-Druck-Kraftkopplung von Koppelelement und Ossikelkette durch Oberflächenadhäsion kommt, die für eine sichere gegenseitige Verbindung von Koppelelement und Ossikelkette ausreicht. Das Koppelelement kann mit einem im implantierten Zustand an der Ankoppelstelle anliegenden Dämpfungsglied mit entropieelastischen Eigenschaften versehen sein, um eine optimale Schwingungsform der Steigbügelfußplatte oder einer das runde Fenster oder ein artifizielles Fenster in der Cochlea, im Vestibulum oder im Labyrinth abschließenden Membran zu erreichen und das Risiko einer Beschädigung der natürlichen Strukturen im Bereich der Ankoppelstelle während und nach der Implantation besonders gering zu halten.
Das Koppelelement kann des weiteren mit einer Stellvorrichtung zum wahlweisen Verstellen des Koppelelements zwischen einer Offenstellung, in welcher das Koppelele­ ment in und außer Eingriff mit der Ankoppelstelle bringbar ist, und einer Schließstellung versehen sein, in welcher das Koppelelement im implantierten Zustand mit der Ankop­ pelstelle in Kraft- und/oder Formschlußverbindung steht.
Zum mechanischen Ankoppeln des elektromechanischen Wandlers an eine vorgewählte Ankoppelstelle an der Ossikelkette eignet sich ferner eine Koppelanordnung, die eine von dem Wandler in mechanische Schwingungen versetzbare Koppelstange sowie ein mit der vorgewählten Ankoppelstelle in Verbindung bringbares Koppelelement aufweist, wobei die Koppelstange und das Koppelelement über wenigstens eine Kupplung miteinander verbunden sind und zumindest ein im implantierten Zustand an der Ankoppelstelle anliegender Abschnitt des Koppelelements zur verlustarmen Schwin­ gungseinleitung in die Ankoppelstelle ausgelegt ist, wobei eine erste Kupplungshälfte der Kupplung eine Außenkontur mit mindestens näherungsweise der Gestalt einer Kugelkalotte aufweist, die in einer zur Außenkontur wenigstens teilweise komplementä­ ren Innenkontur einer zweiten Kupplungshälfte aufnehmbar ist, und wobei die Kupplung gegen Reibkräfte reversibel verschwenk- und/oder drehbar, jedoch bei im implantierten Zustand auftretenden dynamischen Kräften im Wesentlichen starr ist. Entsprechend einer abgewandelten Ausführungsform einer solchen Koppelanordnung hat eine erste Kupplungshälfte der Kupplung eine Außenkontur mit mindestens näherungsweise zylindrischer, vorzugsweise kreiszylindrischer, Gestalt, die in einer zur Außenkontur wenigstens teilweise komplementären Innenkontur einer zweiten Kupplungshälfte aufnehmbar ist, wobei ein im implantierten Zustand an der Ankoppelstelle anliegender Abschnitt des Koppelelements zur verlustarmen Schwingungseinleitung in die Ankop­ pelstelle ausgelegt ist, wobei im implantierten Zustand eine Übertragung von dynami­ schen Kräften zwischen den beiden Kupplungshälften der Kupplung im Wesentlichen in Richtung der Längsachse der ersten Kupplungshälfte erfolgt, und wobei die Kupplung reversibel an- und abkuppelbar sowie reversibel linear und/oder rotatorisch mit Bezug auf eine Längsachse der ersten Kupplungshälfte verstellbar, jedoch bei im implantierten Zustand auftretenden dynamischen Kräften starr ist.
Zu dem in Fig. 4 dargestellten vollständig implantierbaren Hörsystem gehören ferner ein implantierbares Mikrofon (Schallsensor) 38, eine drahtlose Fernbedienung 56 zur Steuerung der Implantatfunktionen durch den Implantatträger sowie ein drahtloses, transkutanes Ladesystem mit einem Ladegerät 57 und einer Ladespule 58 zur Nachla­ dung der im Implantat befindlichen sekundären Batterie 54 (Fig. 3) zur Energieversor­ gung des Hörsystems.
Das Mikrofon 38 kann vorteilhaft mit einer Mikrofonkapsel, die in einem Gehäuse allseitig hermetisch dicht untergebracht ist, sowie mit einer elektrischen Durchführungs­ anordnung zum Durchführen mindestens eines elektrischen Anschlusses von dem Innenraum des Gehäuses zu dessen Außenseite versehen sein, wobei das Gehäuse mindestens zwei Schenkel aufweist, die in einem Winkel mit Bezug aufeinander ausgerichtet sind, wobei der eine Schenkel die Mikrofonkapsel aufnimmt und mit einer Schalleintrittsmembran versehen ist, wobei der andere Schenkel die elektrische Durchführungsanordnung enthält und gegenüber der Ebene der Schalleintrittsmembran zurückversetzt ist, und wobei die Geometrie des Mikrofongehäuses so gewählt ist, daß bei Implantation des Mikrofons in der Mastoidhöhle der die Schalleintrittsmembran enthaltende Schenkel vom Mastoid aus in eine artifizielle Bohrung in der hinteren, knöchernen Gehörgangswand hineinragt und die Schalleintrittsmembran die Haut der Gehörgangswand berührt. Zur Festlegung des implantierten Mikrofons 38 kann zweckmäßig ein Fixationselement vorgesehen sein, das eine Manschette aufweist, die mit einem zylindrischen Gehäuseteil den die Schalleintrittsmembran enthaltenden Schenkel umschließt und mit gegen die der Gehörgangshaut zugewendete Seite der Gehörgangswand anlegbaren, vorspringenden, elastischen Flanschteile versehen . ist. Dabei beinhaltet das Fixationselement vorzugsweise eine Halterung, welche die genannten Flanschteile vor der Implantation entgegen einer elastischen Rückstellkraft der Flanschteile in einer das Durchstecken durch die Bohrung der Gehörgangswand erlaubenden umgebogenen Stellung hält.
Die an den Ausgang des Ladegerätes 57 angeschlossene Ladespule 58 bildet vorzugs­ weise Teil eines Sende-Serienresonanzkreises, der mit einem nicht veranschaulichten Empfangs-Serienresonanzkreis induktiv gekoppelt werden kann. Der Empfangs- Serienresonanzkreis kann Teil eines implantierbaren Elektronikmoduls 34 (Fig. 2) sein und eine Konstantstromquelle für die Batterie 25 (Fig. 2) bilden. Dabei liegt der Empfangs-Serienresonanzkreis in einem Batterie-Ladestromkreis, der in Abhängigkeit von der jeweiligen Phase des in dem Ladestromkreis fließenden Ladestromes über den einen oder den anderen Zweig einer Vollweg-Gleichrichterbrücke geschlossen wird.
Das Elektronikmodul 40 ist bei der Anordnung nach Fig. 4 über eine Mikrofonleitung 59 an das Mikrofon 38 und über die Wandlerzuleitung 16 an den elektromechanischen Wandler 10 und die vorzugsweise gleichfalls in dem Wandlergehäuse untergebrachte schaltbare Kupplungsanordnung 22 angeschlossen.
Fig. 5 zeigt schematisch den Aufbau eines teilimplantierbaren Hörsystems. Bei diesem teilimplantierbaren System sind ein Mikrofon 38, ein Elektronikmodul 62 für eine elektronische Signalverarbeitung weitestgehend entsprechend Fig. 3 (aber ohne das Telemetriesystem 51), die Energieversorgung (Batterie) 54 sowie eine Modula­ tor/Sender-Einheit 63 in einem extern am Körper, vorzugsweise am Kopf über dem Implantat, zu tragenden externen Modul 64 enthalten. Das Implantat ist wie bei bekannten Teilimplantaten energetisch passiv. Sein Elektronikmodul 65 (ohne Batterie 54) empfängt Betriebsenergie und Steuersignale für den Wandler 10 und die Kupplungsanordnung 22 über die Modulator/Sender-Einheit 63 im externen Teil 64.
Sowohl das vollimplantierbare als auch das teilimplantierbare Hörsystem können monoaural (wie in den Fig. 4 und 5 dargestellt) oder binaural ausgelegt sein. Ein binaurales System zur Rehabilitation einer Hörstörung beider Ohren weist zwei Systemeinheiten auf, die jeweils einem der beiden Ohren zugeordnet sind. Dabei können die beiden Systemeinheiten einander im wesentlichen gleich sein. Es kann aber auch die eine Systemeinheit als Master-Einheit und die andere Systemeinheit als von der Master- Einheit gesteuerte Slave-Einheit ausgelegt sein. Die Signalverarbeitungsmodule der beiden Systemeinheiten können auf beliebige Weise, insbesondere über eine drahtgebun­ dene implantierbare Leitungsverbindung oder über eine drahtlose Verbindung, vorzugs­ weise eine bidirektionale Hochfrequenzstrecke, eine körperschallgekoppelte Ultra­ schallstrecke oder eine die elektrische Leitfähigkeit des Gewebes des Implantatträgers ausnutzende Datenübertragungsstrecke, so miteinander kommunizieren, daß in beiden Systemeinheiten eine optimierte binaurale Signalverarbeitung erreicht wird.
Folgende Kombinationsmöglichkeiten sind vorsehbar:
  • - Beide Elektronikmodule können jeweils einen digitalen Signalprozessor gemäß vorstehender Beschreibung enthalten, wobei die Betriebssoftware beider Prozesso­ ren wie beschrieben transkutan veränderbar ist. Dann sorgt die Verbindung beider Module im wesentlichen für den Datenaustausch zur optimierten binauralen Signal­ verarbeitung zum Beispiel der Sensorsignale.
  • - Nur ein Modul enthält den beschriebenen digitalen Signalprozessor, wobei dann die Modulverbindung neben der Sensordatenübertragung zur binauralen Schallanalyse und -verrechnung auch für die Ausgangsignalübermittlung zu dem kontralateralen Wandler sorgt, wobei in dem kontralateralen Modul der elektronische Wandlertrei­ ber untergebracht sein kann. In diesem Fall ist die Betriebssoftware des gesamten binauralen Systems nur in einem Modul abgelegt und wird auch nur dort transkutan über eine nur einseitig vorhandene Telemetrieeinheit von extern verändert. In die­ sem Fall kann auch die energetische Versorgung des gesamten binauralen Systems in nur einem Elektronikmodul untergebracht sein, wobei die energetische Versor­ gung des kontralateralen Moduls drahtgebunden oder drahtlos geschieht.

Claims (26)

1. Mindestens teilweise implantierbares Hörsystem mit mindestens einem schallaufnehmenden Sensor (38) zur Aufnahme von Schallsignalen und deren Umwandlung in entsprechende elektrische Signale, einer elektronischen Signalverarbeitungseinheit (40, 62, 65) zur Audiosignalverarbeitung und - verstärkung, einer elektrischen Energieversorgungseinheit (54), die einzelne Komponenten des Systems mit Strom versorgt, sowie mindestens einem ein aktives elektromechanisches Element (12, 13) aufweisenden, von einer treibenden Elektronikbaugruppe (44) der Signalverarbeitungseinheit angesteuerten ausgangsseitigen elektromechanischen Wandler (10) zur Stimulation eines beliebigen Mittelohr-Zielossikels über ein passives Koppelelement (21), dadurch gekennzeichnet, daß zwischen dem aktiven elektromechanischen Element (12, 13) des Wandlers (10) und dem passiven Koppelelement (21) eine schaltbare Kupplungsanordnung (22) angeordnet ist, die im inaktiven Zustand der den Wandler treibenden Elektronikbaugruppe (44) das passive Koppelelement von dem ausgangsseitigen Teil (12) des Wandlers (10) so weitgehend abkuppelt, daß die mechanische Ausgangsimpedanz des Wandlers im wesentlichen keinen Einfluß auf die natürliche Schwingfähigkeit der Ossikelkette des Mittelohres hat und somit die natürliche Resthörfähigkeit für Luftschall weitgehend erhalten bleibt.
2. System nach Anspruch 1, dadurch gekennzeichnet, daß das Hörsystem eine mechanische Ausgangsimpedanz hat, die höher ist als die mechanische Lastimpedanz der im implantierten Zustand angekoppelten biologischen Mittel- und/oder Innenohrstruktur.
3. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die schaltbare Kupplungsanordnung (22) so ausgeführt ist, daß zwischen dem eingeschalteten und dem ausgeschalteten Zustand der Kupplungsanordnung ein mechanischer Impedanzunterschied von mindestens 10 dB besteht.
4. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die schaltbare Kupplungsanordnung (22) ein elektromechanisch aktives Bauelement (33) aufweist.
5. System nach Anspruch 4, dadurch gekennzeichnet, daß das elektromechanisch aktive Bauelement (33) der schaltbaren Kupplungsanordnung (22) als Piezoelement ausgeführt ist.
6. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die schaltbare Kupplungsanordnung (22) mikrosystemtechnisch hergestellt ist.
7. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das aktive elektromechanische Element (12, 13) des Wandlers (10) und die schaltbare Kupplungsanordnung (22) gemeinsam in einem Wandlergehäuse (11) untergebracht sind.
8. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das passive Koppelelement (21) mit dem aktiven elektromechanischen Element (12, 13) des Wandlers (10) über eine Koppelstange (20) in mechanischer Verbindung steht.
9. System nach Anspruch 8, dadurch gekennzeichnet, daß die schaltbare Kupplungsanordnung (22) in die Koppelstange (20) eingefügt ist.
10. System nach Anspruch 8, dadurch gekennzeichnet, daß die schaltbare Kupplungsanordnung (22) zwischen dem aktiven elektromechanischen Element (12, 13) des Wandlers (10) und dem dem Wandler zugewendeten Ende der Koppelstange (20) sitzt.
11. System nach Anspruch 10, dadurch gekennzeichnet, daß die elektronische Signalverarbeitungseinheit (40, 62, 65) auch zur Ansteuerung der schaltbaren Kupplungsanordnung (22) ausgelegt ist.
12. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Signalverarbeitungseinheit (40, 62, 65) einen digitalen Signalprozessor (41) zum Verarbeiten der Schallsensorsignale und/oder zum Generieren von digitalen Signalen für eine Tinnitusmaskierung sowie zum Ansteuern der schaltbaren Kupplungsanordnung (22) aufweist.
13. System nach Anspruch 12, dadurch gekennzeichnet, daß dem Signalprozessor (41) zur Aufnahme und Wiedergabe eines Betriebsprogramms eine wiederholt beschreibbare, implantierbare Speicheranordnung (S1, S2) zugeordnet ist, und mindestens Teile des Betriebsprogramms durch von einer externen Einheit (53) über eine Telemetrieeinrichtung (51) übermittelte Daten geändert oder ausgetauscht werden können.
14. System nach Anspruch 13, dadurch gekennzeichnet, daß ferner eine Zwischen­ speicheranordnung (S4, S5) vorgesehen ist, in welcher von der externen Einheit (53) über die Telemetrieeinrichtung (51) übermittelte Daten vor dem Weiterleiten an den Signalprozessor (41) zwischengespeichert werden können.
15. System nach Anspruch 14, dadurch gekennzeichnet, daß ferner eine Überprü­ fungslogik (48) vorgesehen ist um in der Zwischenspeicheranordnung (S4, S5) gespeicherte Daten vor dem Weiterleiten an den Signalprozessor (41) einer Über­ prüfung zu unterziehen.
16. System nach einem der Ansprüche 12 bis 15, gekennzeichnet durch einen Mikroprozessorbaustein (44), insbesondere einen Mikrocontroller, zum implan­ tatinternen Steuern des Signalprozessors (42) und der schaltbaren Kupplungsan­ ordnung (22) über einen Datenbus (49).
17. System nach Anspruch 16, dadurch gekennzeichnet, daß die Überprü­ fungslogik und die Zwischenspeicheranordnung (S4, S5) in dem Mikroprozessorbau­ stein (48) implementiert sind.
18. System nach Anspruch 16 oder 17, dadurch gekennzeichnet, daß über den Datenbus (49) und die Telemetrieeinrichtung (51) auch Programmteile oder ganze Softwaremodule zwischen der Außenwelt, dem Mikroprozessorbaustein (48) und dem Signalprozessor (41) übermittelbar sind.
19. System nach einem der Ansprüche 16 bis 18, dadurch gekennzeichnet, daß dem Mikroprozessorbaustein (48) eine implantierbare Speicheranordnung (S3) zum Speichern eines Arbeitsprogramms für den Mikroprozessorbaustein zugeordnet ist, und mindestens Teile des Arbeitsprogramms für den Mikroprozessorbaustein durch von der externen Einheit (53) über die Telemetrieeinrichtung (51) übermittelte Daten geändert oder ausgetauscht werden können.
20. System nach einem der Ansprüche 13 bis 19, dadurch gekennzeichnet, mindes­ tens zwei Speicherbereiche (S1, S2,) zur Aufnahme und Wiedergabe mindestens des Betriebsprogramms des Signalprozessors (41) vorgesehen sind.
21. System nach einem der Ansprüche 14 bis 20, dadurch gekennzeichnet, daß die Zwischenspeicheranordnung mindestens zwei Speicherbereiche (S4, S5) zur Aufnahme und Wiedergabe von von der externen Einheit (53) über die Tele­ metrieeinrichtung (51) übermittelten Daten aufweist.
22. System nach einem der Ansprüche 12 bis 21, dadurch gekennzeichnet, daß dem Signalprozessor (41) ferner ein vorprogrammierter, nicht überschreibbarer Fest­ speicherbereich (S0) zugeordnet ist.
23. System nach einem der Ansprüche 13 bis 22, dadurch gekennzeichnet, daß die Telemetrieeinrichtung (51) zur Übermittlung auch von Betriebsparametern zwischen dem implantierbaren Teil des Systems und der externen Einheit (53) ausgelegt ist.
24. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß es vollimplantierbar ausgebildet und mit mindestens einem implantierbaren Schallsensor (38) versehen ist, die elektrische Energieversorgungseinheit implantatseitig ein nachladbares elektrisches Speicherelement (54) aufweist und eine drahtlose, transkutane Ladevorrichtung (57, 58) zum Laden des Speicher­ elements vorgesehen ist.
25. System nach Anspruch 24, gekennzeichnet durch eine drahtlose Fernbedienung (56) zur Steuerung der Implantatfunktionen durch den Implantatträger.
26. System nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, daß es teilimplantierbar ausgebildet ist, wobei mindestens ein Schallsensor (38), die elektronische Signalverarbeitungseinheit (62) zur Audiosignalverarbeitung und -verstärkung, die Energieversorgungseinheit (54) sowie eine Modulator/Sender- Einheit (63) in einem extern am Körper, vorzugsweise am Kopf über dem Implantat (65), zu tragenden externen Modul (64) enthalten sind, sowie das Implantat energetisch passiv ist und seine Betriebsenergie und Steuerdaten für den ausgangsseitigen Wandler (10) und die schaltbare Kupplungsanordnung (22) über die Modulator/Sender-Einheit im externen Modul empfängt.
DE10039401A 2000-08-11 2000-08-11 Mindestens teilweise implantierbares Hörsystem Expired - Fee Related DE10039401C2 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE10039401A DE10039401C2 (de) 2000-08-11 2000-08-11 Mindestens teilweise implantierbares Hörsystem
DK01118052.8T DK1179969T3 (da) 2000-08-11 2001-07-25 I det mindste delvis implanterbart høresystem
EP01118052A EP1179969B1 (de) 2000-08-11 2001-07-25 Mindestens teilweise implantierbares Hörsystem
AT01118052T ATE513423T1 (de) 2000-08-11 2001-07-25 Mindestens teilweise implantierbares hörsystem
AU57971/01A AU778293B2 (en) 2000-08-11 2001-08-10 At least partially implantable hearing system for rehabilitation of a hearing disorder
US09/927,504 US6592512B2 (en) 2000-08-11 2001-08-13 At least partially implantable system for rehabilitation of a hearing disorder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10039401A DE10039401C2 (de) 2000-08-11 2000-08-11 Mindestens teilweise implantierbares Hörsystem

Publications (2)

Publication Number Publication Date
DE10039401A1 DE10039401A1 (de) 2002-02-28
DE10039401C2 true DE10039401C2 (de) 2002-06-13

Family

ID=7652196

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10039401A Expired - Fee Related DE10039401C2 (de) 2000-08-11 2000-08-11 Mindestens teilweise implantierbares Hörsystem

Country Status (6)

Country Link
US (1) US6592512B2 (de)
EP (1) EP1179969B1 (de)
AT (1) ATE513423T1 (de)
AU (1) AU778293B2 (de)
DE (1) DE10039401C2 (de)
DK (1) DK1179969T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004013092A1 (de) * 2004-03-17 2005-10-06 Dornier Medtech Systems Gmbh Integrierter Drucksensor

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6978159B2 (en) * 1996-06-19 2005-12-20 Board Of Trustees Of The University Of Illinois Binaural signal processing using multiple acoustic sensors and digital filtering
DE60125553T2 (de) * 2000-05-10 2007-10-04 The Board Of Trustees For The University Of Illinois, Urbana Verfahren zur interferenzunterdrückung
US6829364B2 (en) * 2001-06-22 2004-12-07 Topholm & Westermann Aps, Ny Hearing aid with a capacitor having a large capacitance
US20030097178A1 (en) * 2001-10-04 2003-05-22 Joseph Roberson Length-adjustable ossicular prosthesis
US7278963B2 (en) * 2003-01-27 2007-10-09 Otologics, Llc Implantable hearing aid transducer with advanceable actuator to facilitate coupling with the auditory system
DE10212726A1 (de) * 2002-03-21 2003-10-02 Armin Bernhard Schallaufnehmer für ein implantierbares Hörgerät
US7179238B2 (en) * 2002-05-21 2007-02-20 Medtronic Xomed, Inc. Apparatus and methods for directly displacing the partition between the middle ear and inner ear at an infrasonic frequency
AU2003270597A1 (en) * 2002-09-10 2004-04-30 Vibrant Med-El Hearing Technology Gmbh Implantable medical devices with multiple transducers
US7273447B2 (en) * 2004-04-09 2007-09-25 Otologics, Llc Implantable hearing aid transducer retention apparatus
US7076072B2 (en) * 2003-04-09 2006-07-11 Board Of Trustees For The University Of Illinois Systems and methods for interference-suppression with directional sensing patterns
US7945064B2 (en) * 2003-04-09 2011-05-17 Board Of Trustees Of The University Of Illinois Intrabody communication with ultrasound
US7651460B2 (en) * 2004-03-22 2010-01-26 The Board Of Regents Of The University Of Oklahoma Totally implantable hearing system
US7412288B2 (en) * 2004-05-10 2008-08-12 Phonak Ag Text to speech conversion in hearing systems
WO2007011806A2 (en) * 2005-07-18 2007-01-25 Soundquest, Inc. Behind-the-ear auditory device
US20070127757A2 (en) * 2005-07-18 2007-06-07 Soundquest, Inc. Behind-The-Ear-Auditory Device
US8014871B2 (en) * 2006-01-09 2011-09-06 Cochlear Limited Implantable interferometer microphone
US8718786B2 (en) * 2007-09-20 2014-05-06 Estimme Ltd. Electrical stimulation in the middle ear for treatment of hearing related disorders
EP2227914A1 (de) * 2007-10-30 2010-09-15 3Win N.V. Am körper getragenes drahtloses wandlermodul
US9179226B2 (en) * 2008-02-07 2015-11-03 Advanced Bionics Ag Partially implantable hearing device
US20090287277A1 (en) * 2008-05-19 2009-11-19 Otologics, Llc Implantable neurostimulation electrode interface
US20100069997A1 (en) * 2008-09-16 2010-03-18 Otologics, Llc Neurostimulation apparatus
DE102008053070B4 (de) * 2008-10-24 2013-10-10 Günter Hortmann Hörgerät
US20110304240A1 (en) * 2008-12-21 2011-12-15 Sirius Implantable Systems Ltd. High efficiency piezoelectric micro-generator and energy storage system
US9044588B2 (en) * 2009-04-16 2015-06-02 Cochlear Limited Reference electrode apparatus and method for neurostimulation implants
US8771166B2 (en) 2009-05-29 2014-07-08 Cochlear Limited Implantable auditory stimulation system and method with offset implanted microphones
US20120197265A1 (en) * 2009-06-26 2012-08-02 Med-El Elektromedizinische Geraete Gmbh Instrument for Inserting Implantable Electrode Carrier
US8594806B2 (en) 2010-04-30 2013-11-26 Cyberonics, Inc. Recharging and communication lead for an implantable device
US9343923B2 (en) 2012-08-23 2016-05-17 Cyberonics, Inc. Implantable medical device with backscatter signal based communication
US9935498B2 (en) 2012-09-25 2018-04-03 Cyberonics, Inc. Communication efficiency with an implantable medical device using a circulator and a backscatter signal
US10251790B2 (en) 2013-06-28 2019-04-09 Nocira, Llc Method for external ear canal pressure regulation to alleviate disorder symptoms
US9039639B2 (en) 2013-06-28 2015-05-26 Gbs Ventures Llc External ear canal pressure regulation system
CN103686499B (zh) * 2013-11-29 2017-02-01 上海师范大学 一种仿生拾音器
US10183164B2 (en) 2015-08-27 2019-01-22 Cochlear Limited Stimulation parameter optimization
US11071869B2 (en) 2016-02-24 2021-07-27 Cochlear Limited Implantable device having removable portion
US9937346B2 (en) 2016-04-26 2018-04-10 Cochlear Limited Downshifting of output in a sense prosthesis
US10760566B2 (en) 2016-07-22 2020-09-01 Nocira, Llc Magnetically driven pressure generator
WO2018157143A1 (en) 2017-02-27 2018-08-30 Nocira, Llc Ear pumps
US20180352348A1 (en) * 2017-06-06 2018-12-06 Sonitus Technologies Inc. Bone conduction device
WO2019237133A1 (en) * 2018-09-24 2019-12-12 Med-El Elektromedizinische Geraete Gmbh Passive hearing implant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4104358A1 (de) * 1991-02-13 1992-08-20 Implex Gmbh Implantierbares hoergeraet zur anregung des innenohres
US5554096A (en) * 1993-07-01 1996-09-10 Symphonix Implantable electromagnetic hearing transducer

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3712962A (en) 1971-04-05 1973-01-23 J Epley Implantable piezoelectric hearing aid
GB1440724A (en) 1972-07-18 1976-06-23 Fredrickson J M Implantable electromagnetic hearing aid
US3882285A (en) * 1973-10-09 1975-05-06 Vicon Instr Company Implantable hearing aid and method of improving hearing
US4850962A (en) * 1984-12-04 1989-07-25 Medical Devices Group, Inc. Implantable hearing aid and method of improving hearing
US4606329A (en) * 1985-05-22 1986-08-19 Xomed, Inc. Implantable electromagnetic middle-ear bone-conduction hearing aid device
US5015225A (en) * 1985-05-22 1991-05-14 Xomed, Inc. Implantable electromagnetic middle-ear bone-conduction hearing aid device
DE4104359A1 (de) 1991-02-13 1992-08-20 Implex Gmbh Ladesystem fuer implantierbare hoerhilfen und tinnitus-maskierer
US5624376A (en) 1993-07-01 1997-04-29 Symphonix Devices, Inc. Implantable and external hearing systems having a floating mass transducer
DE19618964C2 (de) 1996-05-10 1999-12-16 Implex Hear Tech Ag Implantierbares Positionier- und Fixiersystem für aktorische und sensorische Implantate
US5836863A (en) 1996-08-07 1998-11-17 St. Croix Medical, Inc. Hearing aid transducer support
US5762583A (en) 1996-08-07 1998-06-09 St. Croix Medical, Inc. Piezoelectric film transducer
US6005955A (en) 1996-08-07 1999-12-21 St. Croix Medical, Inc. Middle ear transducer
US5707338A (en) 1996-08-07 1998-01-13 St. Croix Medical, Inc. Stapes vibrator
US5997466A (en) 1996-08-07 1999-12-07 St. Croix Medical, Inc. Implantable hearing system having multiple transducers
US5814095A (en) 1996-09-18 1998-09-29 Implex Gmbh Spezialhorgerate Implantable microphone and implantable hearing aids utilizing same
DE19738587C1 (de) 1997-09-03 1999-05-27 Implex Gmbh Anordnung zum Einstellen und Fixieren der Relativlage zweier Elemente eines aktiven oder passiven Hör-Implantats
DE19745331A1 (de) * 1997-10-14 1999-04-15 Schumann Klaus Elektronisches Hörgerät
DE19758573C2 (de) 1997-11-26 2001-03-01 Implex Hear Tech Ag Fixationselement für ein implantierbares Mikrofon
DE19802568C2 (de) 1998-01-23 2003-05-28 Cochlear Ltd Hörhilfe mit Kompensation von akustischer und/oder mechanischer Rückkopplung
EP0936840A1 (de) * 1998-02-16 1999-08-18 Daniel F. àWengen Implantierbares Hörgerät
DE19840212C2 (de) 1998-09-03 2001-08-02 Implex Hear Tech Ag Wandleranordnung für teil- oder vollimplantierbare Hörgeräte
DE19840211C1 (de) 1998-09-03 1999-12-30 Implex Hear Tech Ag Wandler für teil- oder vollimplantierbare Hörgeräte
US6077215A (en) 1998-10-08 2000-06-20 Implex Gmbh Spezialhorgerate Method for coupling an electromechanical transducer of an implantable hearing aid or tinnitus masker to a middle ear ossicle
US6113531A (en) 1998-11-18 2000-09-05 Implex Aktiengesellschaft Hearing Technology Process for optimization of mechanical inner ear stimulation in partially or fully implantable hearing systems
DE19915846C1 (de) 1999-04-08 2000-08-31 Implex Hear Tech Ag Mindestens teilweise implantierbares System zur Rehabilitation einer Hörstörung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4104358A1 (de) * 1991-02-13 1992-08-20 Implex Gmbh Implantierbares hoergeraet zur anregung des innenohres
US5554096A (en) * 1993-07-01 1996-09-10 Symphonix Implantable electromagnetic hearing transducer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004013092A1 (de) * 2004-03-17 2005-10-06 Dornier Medtech Systems Gmbh Integrierter Drucksensor
DE102004013092B4 (de) * 2004-03-17 2007-09-27 Dornier Medtech Systems Gmbh Integrierter Drucksensor

Also Published As

Publication number Publication date
EP1179969A3 (de) 2010-04-07
EP1179969B1 (de) 2011-06-15
EP1179969A2 (de) 2002-02-13
AU778293B2 (en) 2004-11-25
AU5797101A (en) 2002-02-14
DK1179969T3 (da) 2011-09-19
US6592512B2 (en) 2003-07-15
ATE513423T1 (de) 2011-07-15
US20020019668A1 (en) 2002-02-14
DE10039401A1 (de) 2002-02-28

Similar Documents

Publication Publication Date Title
DE10039401C2 (de) Mindestens teilweise implantierbares Hörsystem
DE10018334C1 (de) Mindestens teilimplantierbares System zur Rehabilitation einer Hörstörung
DE10041726C1 (de) Implantierbares Hörsystem mit Mitteln zur Messung der Ankopplungsqualität
EP1191815B1 (de) Mindestens teilimplantierbares Hörsystem mit direkter mechanischer Stimulation eines lymphatischen Raums des Innenohres
EP1246503B1 (de) Vollständig implantierbares Hörsystem
DE10018361C2 (de) Mindestens teilimplantierbares Cochlea-Implantat-System zur Rehabilitation einer Hörstörung
EP1181952B1 (de) Implantierbare medizinische Vorrichtung mit einem hermetisch dichten Gehäuse
EP1173044B1 (de) System zur Rehabilitation einer Hörstörung
DE10018360C2 (de) Mindestens teilimplantierbares System zur Rehabilitation einer Hörstörung
DE19859171C2 (de) Implantierbares Hörgerät mit Tinnitusmaskierer oder Noiser
DE19915846C1 (de) Mindestens teilweise implantierbares System zur Rehabilitation einer Hörstörung
DE10047388C1 (de) Mindestens teilweise implantierbares Hörsystem
EP1054573B1 (de) Vorrichtung zum mechanischen Ankoppeln eines in einer Mastoidhöhle implantierbaren elektromechanischen Hörgerätewandlers
EP1073313B1 (de) Anordnung zum mechanischen Ankoppeln eines Treibers an eine Ankoppelstelle der Ossikelkette
DE19858398C1 (de) Implantierbares Gerät zum Behandeln eines Tinnitus
EP0831674B1 (de) Vollständig implantierbare Hörhilfe mit elektrischer Reizung des Gehörs
DE10041727A1 (de) Implantierbares hermetisch dichtes Gehäuse für eine implantierbare medizinische Vorrichtung
EP0831673B1 (de) Implantierbares Mikrofon

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
D2 Grant after examination
8327 Change in the person/name/address of the patent owner

Owner name: PHONAK AG, STAEFA, CH

8328 Change in the person/name/address of the agent

Free format text: SCHWAN SCHWAN SCHORER, 81739 MUENCHEN

8364 No opposition during term of opposition
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20130301