Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberCN1960680 B
Publication typeGrant
Application numberCN 200580005451
Publication date8 Sep 2010
Filing date18 Feb 2005
Priority date20 Feb 2004
Also published asCA2556102A1, CA2556102C, CA2765204A1, CA2765204C, CN1960680A, CN101816588A, EP1734878A2, EP1734878A4, EP1734878B1, US7235076, US9044252, US20050192575, US20070276397, WO2005081863A2, WO2005081863A3, WO2005081863B1
Publication number200580005451.3, CN 1960680 B, CN 1960680B, CN 200580005451, CN-B-1960680, CN1960680 B, CN1960680B, CN200580005451, CN200580005451.3
InventorsHector O Pacheco
ApplicantHector O Pacheco
Export CitationBiBTeX, EndNote, RefMan
External Links: SIPO, Espacenet
Method for determining size and placement of pedicle screw in spinal surgery
CN 1960680 B
Abstract
A method of determining the size and placement of screws in pedicles during surgery in a selected spinal area, comprising using a computer to generate a dimensionally true three-dimensional image of the bony spine in the selected spinal area; using a computer to hollow out the vertebra in the three-dimensional image with cortical wall thicknesses selected by a surgeon performing the surgery; using a computer to determine the narrowest cross section (isthmus) within each pedicle; using a computer to generate a straight line starting at the center of the isthmus and extending in opposite directions so that it is positioned concentrically within the pedicle without touching the walls thereof, the line terminating inside the vertebral body a predeteimined distance from the anterior inner cortical wall and extending outwardly in the opposite direction to penetrate the posterior pedicle cortex; using a computer to expand the line concentrically and radially to a cross sectional size that isless than that of the isthmus, the line being expanded into a cylinder that stops growing when any portion thereof contacts the inner cortical wall of the hollowed out vertebral body, with the exception of the posterior pedicle cortex; and using a computer to calculate the ideal pedicle screw diameter, length and trajectory based on the dimensions and trajectory of the cylinder generated for eachpedicle.
Claims(24)  translated from Chinese
  1. 一种确定将要在所选脊柱区域进行外科手术中被置入椎弓根中的螺钉的尺寸和位置的方法,其特征在于,包括:用计算机生成所选脊柱区域脊椎体的真实尺寸的三维图像;用计算机挖空三维图像中的脊椎体,脊椎体的皮层壁具有由执行外科手术的外科医生选择的厚度,从而单节脊椎体被形象化为一种挖空的结构,剩余的脊椎体的皮层壁全部被照亮;用计算机根据外科医生选择的椎弓根皮层壁的厚度确定每个椎弓根的最窄直径或峡部;用计算机生成一直线,该直线从峡部中心开始,并向相反方向延伸,该直线集中在椎弓根内,而不与照亮的椎弓根皮层壁接触,所述直线在脊椎体内部距前内皮层壁预定的距离处终止,并沿相反方向向外延伸而穿过后椎弓根皮层;用计算机以直线为中心将直线扩张成一个圆柱,该圆柱的直径不超过基于外科医生选择的椎弓根皮层壁厚度确定的峡部的直径,当圆柱任一部份接触到脊椎体的照亮的除后椎弓根皮层外的内皮层壁时,圆柱停止扩大;用计算机确定圆柱从该圆柱与前内皮层壁间隔开的最内端到该圆柱外端与后椎弓根皮层接触的交点的长度;及用计算机根据圆柱的尺寸和轨线计算理想椎弓根螺钉的直径、长度和轨线,其中圆柱是针对每个椎弓根所生成的。 A surgical procedure is to determine the size and location of the placement of the pedicle screw method to be performed in the selected region of the spine, characterized by comprising: generating a three-dimensional image of the actual size of the selected region of the spine with a vertebral body computer ; three-dimensional image in a computer hollowed vertebral body cortical wall of the vertebral body has a thickness by a surgeon to perform surgery of choice, and thus a single vertebra is visualized as a hollowed-out structure, the remaining vertebral body All cortical walls are illuminated; determining the narrowest diameter or pedicle isthmus each computer based on the thickness of the surgeon selects the pedicle skin wall; generating a straight line with a computer, the line starting from the center of the isthmus, to the contrary extending the rectilinear concentrated pedicle without touching the illuminated pedicle cortical wall, the straight line terminates inside the vertebral body prior to a predetermined distance away from the cortex at the wall, and extending outwardly in opposite directions and after passing through the pedicle cortex; computer in a straight line to a straight line as the center expanded into a cylinder, the diameter of the cylinder does not exceed the diameter of the isthmus is determined based on the surgeon selects the pedicle cortical wall thickness, either when the cylindrical part After contact with the vertebral body except when illuminated pedicle cortical wall outside the cortex, cylindrical stop expanding; using a computer to determine the cylinder and the inner cylinder from frontal cortex end wall spaced from the inner end of the cylindrical outer rear the length of the intersection of the pedicle skin contact; and calculating with the computer the ideal pedicle screw according to the size and trajectory of the cylinder diameter, length and trajectory, wherein the cylinder is generated for each pedicle.
  2. 2.如权利要求1所述的方法,其特征在于:首先生成所选脊柱区域的二维图像,然后用计算机生成三维图像。 2. The method according to claim 1, characterized in that: first generate the two-dimensional image of the selected region of the spine, and then generate three-dimensional images using a computer.
  3. 3.如权利要求2所述的方法,其特征在于:所述二维图像是用计算机断层扫描(CT)、磁共振扫描(MRI)、荧光透视法或类似成像方法生成的。 The method as claimed in claim 2, characterized in that: said two-dimensional image with a computer tomography (CT), magnetic resonance imaging (MRI), fluoroscopy or similar imaging methods generated.
  4. 4.如权利要求2所述的方法,其特征在于:所述二维图像是薄分割区段的,从而更准确和详细。 4. The method according to claim 2, characterized in that: said two-dimensional image segmentation section is thin, so that a more accurate and detailed.
  5. 5.如权利要求1所述的方法,其特征在于:所述峡部中心是所述直线的支点。 5. The method according to claim 1, characterized in that: the center of the isthmus linear fulcrum.
  6. 6.如权利要求1所述的方法,其特征在于:计算机产生一数据汇总表,显示每个脊椎体的理想椎弓根螺钉长度、直径和轨线。 6. The method according to claim 1, wherein: the computer generates a data summary table showing the ideal pedicle screw length, diameter and trajectory for each vertebra.
  7. 7.如权利要求6所述的方法,其特征在于:以每个脊椎体椎弓根的上端面作为参考面, 所述轨线是以横截面和矢状面相对参考面的角度而测量得的。 Was measured in the end face of each vertebra pedicle as a reference plane, the trajectory is a cross-sectional and sagittal plane relative to a reference angle: 7. A method as claimed in claim 6, wherein, wherein a.
  8. 8.如权利要求6所述的方法,其特征在于:用计算机生成示意图,显示每个脊椎体理想的椎弓根螺钉的长度、直径和轨线。 8. The method according to claim 6, characterized in that: a schematic view of a computer generated display of each vertebra desired length, diameter and trajectory of the pedicle screw.
  9. 9.如权利要求6所述的方法,其特征在于:用计算机根据可利用的螺钉来确定螺钉的尺寸。 9. The method as claimed in claim 6, characterized in that: in accordance with a computer can be used to determine screw screw size.
  10. 10.如权利要求1所述的方法,其特征在于:还包括脊椎体上在椎弓根基部之间的接点处的椎弓根基部圆周标识,使在手术中进行荧光透视前后位成像扫描与手术前计算机为确定椎弓根螺钉置入和基于椎弓根基部圆周轮廓线的测量生成的三维图像相结合。 10. The method according to claim 1, characterized in further comprising: identifying the pedicle base circumference vertebral body at the junction between the base of the pedicle so performed anteroposterior fluoroscopic imaging and scanning operation preoperative computer to determine and measure pedicle screw pedicle base circumference outline generated three-dimensional image based on the combined.
  11. 11.如权利要求10所述的方法,其特征在于:还包括根据预定螺钉轨线将椎弓根基部圆周轮廓线向外投影到后椎弓根皮层的表面,以标识后椎弓根皮层上的螺钉的起点。 11. The method according to claim 10, characterized in that: further comprising a screw according to a predetermined trajectory pedicle base circumference outline outwardly projected to the rear surface of the cortex of the pedicle after pedicle cortex to identify The starting point of the screw.
  12. 12.如权利要求10所述的方法,其特征在于:在手术中荧光透视图像上对应椎弓根基部圆周生成一圆,通过观察与所述圆和后椎弓根皮层的相对位置来确定椎弓根螺钉定位孔。 Surgery to determine the corresponding pedicle base circumference of a circle generated fluoroscopic image, by observing the relative position of the pedicle cortex of the circle and back vertebra: 12. The method as claimed in claim 10 wherein, characterized in that pedicle screw positioning holes.
  13. 13.如权利要求12所述的方法,其特征在于:手术中实时荧光透视成像以与每个脊椎体的三维图像配准。 13. A method as claimed in claim 12, characterized in that: the real-time fluoroscopic imaging operation of each vertebral body to a three-dimensional image registration.
  14. 14.如权利要求12所述的方法,其特征在于:对于畸形螺钉的置入,所述椎弓根螺钉定位孔通过理想圆柱轨线的切向旋转而偏移,旋转轴是毗邻前内皮层壁的圆柱的最内端。 14. The method according to claim 12, wherein: the deformed screw placement, positioning of the pedicle screw through the hole cut to the desired trajectory cylinder rotation offset is within the first rotational shaft adjacent cortex the end wall of the cylinder of the innermost.
  15. 15.如权利要求1所述的方法,其特征在于:所述生成的直线和圆柱一部分延伸超过后椎弓根皮层,以利手术中椎弓根螺钉的自动置入。 15. The method according to claim 1, characterized in that: a portion of the linear cylindrical and extends back over said generated pedicle cortex, to facilitate the operation of automatic pedicle screw placement.
  16. 16.如权利要求15所述的方法,其特征在于:所述生成的延伸超过后椎弓根皮层的直线和圆柱被一对间隔的同线环截取并延伸穿过该对同线环,该对同线环安装在由病床或其他支持物支持的支架上,该对同线环包括第一个环和第二个环,其中第一个环置于后椎弓根皮层附近,第二个环与该第一个环向外隔开,该对同线环具有大致与穿过其中的圆柱的直径相等的内部直径,该对同线环为钻孔套管或其他类似工具导航,从而在椎弓根内形成一个与生成的圆柱对应的供椎弓根螺钉插入的螺钉定位孔。 16. The method according to claim 15, wherein: said generated after extending over the pedicle cortex is straight and cylindrical with a pair of spaced wire rings and extends through the interception of the line with the ring, the on the same line ring mounted on the bed or other support by the support bracket, which on the same line ring includes a first ring and the second ring, which after the first ring is placed near the pedicle cortex, the second ring and the first ring outward separated the pair have substantially the same wire loop through which a cylindrical inner diameter equal to the diameter of the ring on the same line as the borehole casing or other similar navigation tools, resulting in screw positioning holes are formed and generated a corresponding column for pedicle screw insertion of pedicle.
  17. 17.如权利要求16所述的方法,其特征在于:所述一对间隔的同线环是活动安装在所述支架上。 17. The method according to claim 16, wherein: said pair of spaced loops with the active mounted on the holder.
  18. 18.如权利要求15所述的方法,其特征在于:所述一对间隔的同线环是可移除地安装在所述支架上。 18. The method according to claim 15, wherein: said line with a pair of spaced rings are removably mounted on the holder.
  19. 19.如权利要求16所述的方法,其特征在于:所述第一个环和所述第二个环都可调整改变其内部直径。 19. The method according to claim 16, wherein: said first ring and said second ring can be adjusted to change its internal diameter.
  20. 20.如权利要求16所述的方法,其特征在于:一钻孔套管插入并穿过所述一对间隔的同线环,钻孔套管具有一个活动支撑钻孔元件的中心纵向开口。 20. The method according to claim 16, characterized in that: a drill bushing inserted through the pair of spaced loops with, borehole casing having a movable member supporting hole center longitudinal opening.
  21. 21.如权利要求20所述的方法,其特征在于:所述钻孔套管安装在病床或其他支持物上,并具有内部套管元件,活动支撑钻孔元件。 21. The method according to claim 20, wherein: said borehole casing mounted on the bed or other support, and having an inner sleeve member, moving support member bore.
  22. 22.如权利要求21所述的方法,其特征在于:所述内部套管元件包括相互间隔的、平行的、纵向延伸的及可移动的杆,并形成钻孔元件的中心开口,所述杆可延伸超过钻孔套管的内端,从而在不平坦的表面提供稳定的支持。 22. The method according to claim 21, wherein: said internal element comprises a sleeve, parallel, longitudinally extending and spaced movable rod, the central bore and forms an opening element, said rod It may extend beyond the inner end of the borehole casing, resulting in uneven surfaces to provide a stable support.
  23. 23.如权利要求20所述的方法,其特征在于:所述一对间隔的同线环可移动安装在所述支架上,椎弓根内的螺钉定位孔钻好后,钻孔套管移除,具有纵向槽的槽形外套管装于所述一对间隔的同线环的外部,并固定于所述支架,从而所述槽形外套管的纵向槽与生成的圆柱的纵向轴对应,所述圆柱穿过所述一对间隔的同线环,所述一对间隔的同线环从所述第二套管移除后,所述第二套管用作引导螺钉置入椎弓根。 23. The method of claim 20, wherein: the one on the same line spacing ring movement is mounted on the bracket, after the pedicle screw within the positioning holes drilled, borehole casing shift In addition, the groove having a longitudinal slot in the outer tube fitted with a pair of lines spaced outer ring and fixed to the bracket, whereby the longitudinal grooves and the longitudinal axis of the cylinder corresponding to the generated geometry overtube, the cylinder through the one on the same line spacing ring, a pair of spaced the same line ring is removed from said second sleeve, the second sleeve used to guide pedicle screws.
  24. 24. 一种确定将要在所选脊柱区域进行外科手术中被置入椎弓根中的螺钉的尺寸和位置的方法,其特征在于,包括:生成所选脊柱区域脊椎体的真实尺寸的三维图像;挖空三维图像中的脊椎体,脊椎体的皮层壁具有由执行外科手术的外科医生选择的厚度,从而单节脊椎体被形象化为一种挖空的结构,剩余的脊椎体的皮层壁全部被照亮;根据外科医生选择的椎弓根皮层壁的厚度确定每个椎弓根的最窄直径或峡部;形成一条从峡部中心开始并向相反方向延伸的直线,该直线集中在椎弓根内,而不与照亮的椎弓根皮层壁接触,所述直线在脊椎体内部距前内皮层壁预定的距离处终止,并沿相反方向向外延伸而穿过后椎弓根皮层;以所述直线为中心将直线扩张成一个圆柱,该圆柱的直径不超过基于外科医生选择的椎弓根皮层壁厚度确定的峡部的直径,当圆柱任一部份接触到脊椎体的照亮的除后椎弓根皮层外的内皮层壁时,圆柱停止扩大;确定圆柱从该圆柱间隔前内皮层壁的最内端到该圆柱外端与后椎弓根皮层接触的交点的长度;及根据圆柱的尺寸和轨线计算理想椎弓根螺钉的直径、长度和轨线,其中圆柱是针对每个椎弓根所生成的。 24. A method of determining the size of surgical procedures and is placed in the position of the pedicle screw method to be performed in the selected region of the spine, characterized by comprising: generating a three-dimensional image of the actual size of the selected region of the spine of the vertebral body ; cortical wall hollowed-dimensional image of the vertebral body, vertebral body has a thickness by a surgeon to perform surgery of choice, and thus a single vertebra is visualized as a hollowed-out structure, cortical walls remaining vertebral body All are illuminated; determining the narrowest isthmus diameter or thickness of each pedicle according to the surgeon selects the pedicle skin wall; forming a straight line starting from the center of the isthmus that extends to the opposite direction, the line focused on the arch root, without contacting illuminated pedicle cortical wall of the vertebral body within the first straight line from the internal cortical wall terminates at a predetermined distance and extending outwardly in opposite directions after passing through the pedicle cortex; to The straight line as the center of the straight line expanded into a cylinder, the diameter of the cylinder does not exceed the diameter of the isthmus is determined based on the surgeon selects the pedicle cortical wall thickness, as the cylindrical part of any contact with the vertebral body in addition to illuminate After pedicle cortical wall of the outer cortex, the cylinder stop expanding; determining a cylinder from the inner wall of the cylindrical interval cortical length of the innermost end of the cylindrical outer contact with the rear end of the pedicle cortex intersection; and according to a cylindrical dimensions and calculate the ideal trajectory pedicle screw diameter, length and trajectory, which cylinder is generated for each pedicle.
Description  translated from Chinese

CN 1960680 B CN 1960680 B

确定椎弓根中欲置入螺钉的尺寸和位置的方法 To determine the pedicle screw into the size and location of the method

[0001] 本专利申请要求2004年2月24日申请的美国临时专利申请第60/545,903号的优先权。 [0001] This patent application claims the No. 60 / 545,903 priority to U.S. Provisional Patent Application February 24, 2004 application.

[0002] 技术领域 [0002] Technical Field

[0003] 本发明涉及脊柱外科手术技术领域,尤其涉及一种在将要进行的脊柱外科手术中精确确定椎弓根中欲置入螺钉的尺寸和置入位置的计算机控制或自动化方法。 [0003] The present invention relates to the field of spinal surgery technology, particularly to a spinal surgery to be performed accurately determine the pedicle screw placement want the size and placement position by computer-controlled or automated methods.

[0004] 背景技术 [0004] BACKGROUND ART

[0005] 将螺钉置入到人类脊柱是进行大多数脊柱外科手术的共有手术程序,其中典型的是将螺钉置入腰椎和荐椎单节脊椎体的椎弓根。 [0005] The screw placement is carried out most of the human spine spine surgery total surgical procedures, which typically screws into the lumbar and sacral vertebrae pedicle single vertebra. 由于该方法在生物力学效果上胜过其它固定方式,外科医生正不断扩展椎弓根螺钉置入脊柱的范围。 Since the method is better than other fixed manner on the biomechanical effect, surgeons are constantly expand the scope of the spine pedicle screw. 然而,啦邻脊柱的是大量重要组织和器官,尤其是颈椎和胸椎区域,这些组织和器官对手术创伤的承受力很低,最后可能导致严重的发病率和/或死亡率。 However, it is a significant amount of the spine adjacent tissues and organs, especially the cervical and thoracic region, these tissues and organs for surgical trauma tolerance is low, may eventually lead to severe morbidity and / or mortality. 因此,大多数专注于椎弓根螺钉置入的研究都以改进保持螺钉在多骨(骨内)环境下的精确度为中心。 Therefore, most focus on research pedicle screw in retaining screw are to improve the accuracy of multi-bone (the bone) under the environment center.

[0006] 图像导航系统不断发展,并愈来愈多地用于帮助医生准确置入螺钉。 [0006] The continuous development of image-guided navigation system, and more and more used to aid in the accurate screw placement. 将椎弓根螺钉置入人体脊柱的关键参数有螺钉的直径、长度、轨线和实际的置入位置。 The key parameters of the human spine pedicle screw has a screw diameter, length, trajectory and the actual placement position. 目前许多图像导航系统都是由人工确定这些参数以提高外科医生的手工置入螺钉的效果。 Many image navigation systems are determined by these parameters to improve the artificial hand-surgeon screws into effect. 到目前为止,还没有系统能为椎弓根螺钉准确置入自动确定椎弓根螺钉理想的直径、长度和轨线。 So far, no system can provide accurate pedicle screw placement automatically determines the ideal pedicle screw diameter, length and trajectory. 本发明提供了这样一种技术,使医生可以利用开方的或经皮的技术将椎弓根螺钉置入,类似于飞行员利用计算机控制的航空技术驾驶飞机。 The present invention provides a technique that can be used prescribing physician or percutaneous pedicle screw technology, similar to pilot the use of computer-controlled aviation technology to fly a plane.

[0007] 于2004年12月2日公开的美国专利申请早期公开第2004/0240715A1号涉及到了脊柱外科手术中确定椎弓根螺钉置入的方法和计算机系统,该方法中,首先确定最小的椎弓根直径,以确定最佳的椎弓根螺钉轨线以及利用最佳轨线确定每个椎弓根螺钉的最大直径和长度。 [0007] US patent on December 2, 2004 Application Laid-open Publication No. 2004 / 0240715A1 related to the spinal surgery method and a computer system to determine the pedicle screw placement, the method, first determine the smallest vertebra bow root diameter, to determine the best use of pedicle screw trajectory and determine the optimal trajectories of each pedicle screw diameter and length of the maximum. 二维横向切片数据堆叠形成三维数据点,通过线性最小二乘解确定符合这些数据的最佳轨线,要求最小二乘解能够通过所有最小横向椎弓根宽度。 Dimensional transverse slices stacked to form a three-dimensional data point data by linear least-squares solution to determine the best trajectory of these data, the requirements of the least squares solution through all minimum transverse pedicle width. 这一方法的不足之处在于它包括了偏离轨线的确定,尤其是歪曲的椎弓根剖析,使得确定的螺钉最大直径和长度都减小,导致了生物力学结构上的不足。 The inadequacy of this method is that it includes determining trajectory deviation, especially distorted pedicle analysis, making maximum screw diameter and length are determined decreases, resulting in a lack of biomechanical structure. 与此相反的,本发明中改进了的新方法可通过最佳轨线的确定将轨线总是集中通过椎弓根,该最佳轨线是利用最小横截面区域(峡部) 的中心点及用计算机在相反方向上画出该限制区域的法线的方法确定的,在下文中将进行更详细的描述。 In contrast, the new method of the invention can be improved by determining the optimal trajectory of the rail line is always centralized through the pedicle, the optimal trajectory is to use the smallest cross-sectional area (isthmus) and the center point computer drawn in the opposite direction normal to the restricted area of the method of determination, will hereinafter be described in more detail. 本发明的方法可以确定骨内置入的最大螺钉直径和长度。 The method of the present invention can determine bone built into the largest screw diameter and length.

发明内容 DISCLOSURE

[0008] 本发明利用三维图象和计算机或类似装置生成一表格,该表格提供了最大允许椎弓根螺钉的直径、长度、轨线的主要数据,还生成阐释各椎弓根的数据的示意图。 [0008] The present invention utilizes a three-dimensional image and a computer or similar device to generate a table that provides the maximum allowable primary data pedicle screw diameter, length, trajectory, and also generate data that explain each pedicle schematic . 医生利用这些数据通过以下方式之一进行实际骨内椎弓根螺钉的置入:1.按医生优选的方法进行手工椎弓根螺钉置入;2.椎弓根基部圆周轮廓法并结合外科手术中的荧光透视法;3.自动椎弓根螺钉置入;或4.任何商业可用的配准软件(例如计算机断层摄影术/荧光透视法 Doctors use the data in one of the following ways within the actual bone of the pedicle screw placement: 1 by the doctor preferred method for manual pedicle screw; 2 pedicle base circumference outline method combined with surgery. The fluoroscopy; 3. automatic pedicle screw; or 4. Any commercially available registration software (such as computer tomography / fluoroscopy

寸乂0 Inch qe 0

5[0009] 如果外科医生希望,本发明还可基于轨线进行骨外或椎弓根外进行椎弓根螺钉置入,该轨线始于前皮层附近相同的起点,但与外科医生期望的优选在切向上有一距离或角度。 5 [0009] If the surgeon hope that the present invention may also be based rail lines were bone or pedicle pedicle screw, the rail line starts near the beginning of the same premotor cortex, but expectation and surgeon Preferably there is a distance in the tangential direction or angle.

[0010] 本发明通过经椎弓根或在椎弓根周围法使进入脊锥体安全可靠,如锥体成形术、 锥体后凸成形术或者锥体活组织检查。 [0010] The present invention pedicle pedicle around the law or entering ridge cone safe and reliable, such as angioplasty cone, cone kyphoplasty or cone biopsy.

[0011] 此外,本发明还形成了一种新的研究工具,该工具可以提供适于所有脊柱的较小、 较大直径或者普通尺寸的椎弓根螺钉。 [0011] Further, the present invention also formed a new research tool that can provide suitable for all spine smaller or larger diameter pedicle screw normal size.

[0012] 本发明的方法包括以下步骤: [0012] The method of the present invention comprises the steps of:

[0013] 1.首先取得所选的脊柱区域的计算机断层扫描(CT)、磁共振成像(MRI)、CT荧光透视或类似的二维成像法形成的二维图像。 [0013] 1. First, get computed tomography of the selected region of the spine (CT), magnetic resonance imaging (MRI), CT fluoroscopy or similar two-dimensional image formed by two-dimensional imaging method.

[0014] 2.通过CT、MRI或其它方法,或用任何其它适合的方法生成脊柱的真实尺寸的三维计算机图像。 [0014] 2. by CT, MRI or other methods, or to generate a three-dimensional computer image of the true size of the spine by any other suitable method.

[0015] 3.计算机形成单个脊椎体的三维图像,然后用计算机或其它装置将其挖空,类似于一次经椎弓根锥体次切除,将其成为医生期望的规格,例如剩余的锥体皮层或椎根壁的皮层壁厚度。 [0015] 3. The three-dimensional computer image of a single vertebra, and then use a computer or other device to be hollowed out, like a cone times pedicle resection, which was expected to become a doctor specifications, such as the rest of the cone vertebral cortex or cortical wall thickness end wall. 单节脊椎体被形象化为一种去芯的或被挖空的结构,使剩余的脊椎体全部壁通电的或照亮。 Individual vertebra to be visualized as a core or hollowed structure, all of the remaining vertebral body wall powered or illuminated.

[0016] 4.然后计算机根据外科医生优选的椎弓根皮层壁的直径确定任意给定椎弓根的最窄直径或横截区域(峡部)X,自动确定被置入螺钉的最大允许直径。 [0016] 4. Then the computer according to the surgeon preferred to determine the diameter of the pedicle cortical wall at any given pedicle narrowest diameter or cross-sectional area (isthmus) X, the screw is placed automatically determines the maximum allowable diameter.

[0017] 5.然后计算机生成一个从峡部X中心开始沿直线伸长的圆柱,该圆柱确定了理想的轴/轨线,并向例如垂直于椎弓根峡部所在平面的两相反方向延伸,这样就能尽可能地将该圆柱集中设置在椎弓根内部而不接触到通电的或照亮的皮层。 [0017] 5. The computer then generates a start from the center of the isthmus along the line X elongated cylinder, the cylinder to determine the ideal shaft / rail lines, such as perpendicular to the pedicle isthmus where the two planes extend in opposite directions, so You will be able to focus as much as possible the cylinder disposed inside the pedicle without touching the skin energized or illuminated. 所述的直线可以刺穿背部或后椎弓根皮层,这样就能延伸到病人的皮肤外至任意所期望的长度。 The post may be straight or pedicle skin piercing the back, so that we can extend to the outer skin of a patient to any desired length. 所述直线在锥体内部延伸至与预先确定的前内部皮层壁为预定的距离时停止,该距离由外科医生选择,这样它就不会刺穿前外部皮层。 The straight line extending to the inside of the cone at a predetermined distance before stopping the internal cortical wall pre-determined by the surgeon to select the distance, so it does not pierce the front outer skins.

[0018] 6.然后计算机以直线为中心在半径方向上扩展其至最终的最大直径,所述直径不超过根据外科医生优选的皮层壁厚度的定义的最窄椎弓根直径。 [0018] 6. The computer then extended in a straight line as the center thereof to a final maximum diameter not exceeding the diameter of the narrowest according to the surgeon pedicle cortical wall thickness is preferably defined by a diameter in the radial direction. 这种同轴扩展最后形成一个明显的圆柱,当该圆柱外表面上任意一点都与除后侧椎弓根皮层外的通电的或照亮的内侧皮层壁接触时停止构建。 This coaxial extension and finally form a clear cylinder, stops the building when any point on the outer surface of the cylinder are in contact with the skin in addition to the rear side of the pedicle outside energized or illuminated wall inside the cortex. 然而,这种方法不能应用于毗邻已经存在的从峡部产生的直轨迹线的前皮层。 However, this method can not be applied to the anterior cortex adjacent to the existing isthmus generated from straight-line trajectory.

[0019] 7.然后计算机通过测量圆柱的长度确定螺钉的长度,该圆柱始于预定的前内皮层,到其与背/后皮层的交叉点为止。 [0019] 7. A computer then determined by measuring the length of the cylinder length of the screw, the cylinder begins within the first predetermined cortex, to its intersection with the back / rear cortex so far. 为了使螺钉的置入更容易,圆柱可以延长到超过其与背/后皮层的交叉点。 To make it easier to screw placement, it can be extended to the intersection of the cylinder over it with the back / rear cortex.

[0020] 8.然后计算机提供一个数据汇总表和一个理想化的示意图,所述数据汇总表显示了每个单个椎弓根的理想椎弓根螺钉的直径、长度和轨线。 [0020] 8. A computer then provides a data summary table and schematic diagram of an idealized, the data summary table shows each individual pedicle ideal pedicle screw diameter, length and trajectory.

[0021] 9.然后根据最大椎弓根螺钉直径和长度,利用列表的数据确定椎弓根螺钉的生存能力,同样利用列表的数据按外科医生优选的方法进行椎弓根螺钉的置入。 [0021] 9. The pedicle screw and then according to the maximum diameter and length, the use of a list of data to determine the viability of the pedicle screw, the same data by use of a list of preferred methods surgeon pedicle screw placement.

附图说明 Brief Description

[0022] 图la和lb分别是三维计算机图像的侧面和后面,该图像是通过对所选脊柱区域的脊椎体进行CT、MRI或其它研究方式而形成。 [0022] Figure la and lb respectively, side and rear three-dimensional computer image, the image is formed by the selected region of the spine vertebral bodies were CT, MRI, or other research methods.

[0023] 图2是从如图la和lb所示的脊柱区域经人工切除后的单节脊椎体的三维计算机图像。 [0023] FIG. 2 is shown in Figure la and lb spinal region shown in three-dimensional computer image after artificial removal of a single vertebra.

[0024] 图3是一个挖空的单节脊椎体的计算机图像,显示了椎弓根内最窄直径或横截面区域(峡部)。 [0024] FIG. 3 is a computer image of a hollowed out individual vertebra, showing the pedicle narrowest diameter or cross-sectional area (isthmus).

[0025] 图4是一个挖空的单节脊椎体的计算机图像,显示了穿过峡部中心并沿相反方向延伸穿过后椎弓根皮层及前内皮层的直线。 [0025] FIG. 4 is a computer image of a hollowed out individual vertebra, showing the isthmus through the center and extending in opposite directions through the straight-line after pedicle cortex and frontal cortex of.

[0026] 图5是圆柱形成的示意图,该圆柱以穿过峡部中心的直线为中心轴,在半径方向上扩展而成。 [0026] FIG. 5 is a schematic view of a cylindrical form, the cylinder to a straight line passing through the center of the isthmus to the central axis, extend in the radial direction is made.

[0027] 图6a和6b分别是挖空的对称和不规则形状的单节脊椎体的示意图。 [0027] Figures 6a and 6b are schematic hollowed out individual vertebra of symmetry and irregularly shaped.

[0028] 图7a和7b分别是直的和弯曲的椎弓根的峡部的示意图。 [0028] Figures 7a and 7b are schematic isthmus straight and curved pedicle.

[0029] 图8是挖空的脊椎体的示意图,显示了用于确定椎弓根螺钉长度的圆柱的长度。 [0029] FIG. 8 is a schematic view of a hollowed out vertebra showing the means for determining the length of the cylinder of the pedicle screw length.

[0030] 图9是单节脊椎体的侧视图,显示了外科医生为椎弓根螺钉的安装而标记的单节脊椎体。 [0030] FIG. 9 is a side view of a single vertebra, showing the individual vertebra surgeon pedicle screw installation marks.

[0031] 图10a是一个由计算机生成的数据汇总表,该表包括最大椎弓根螺钉直径和长度,还包括椎弓根螺钉相对于矢状面和横截面的轨线角度。 [0031] FIG. 10a is a summary of the data generated by the computer, the table contains the maximum pedicle screw diameter and length, but also with respect to the sagittal pedicle screw and the angle of the cross-section of the rail line.

[0032] 图10b是一个脊椎体的侧视图,显示了矢状面及图10a中轨线角度的性质。 [0032] Figure 10b is a side view of a vertebral body showing the sagittal plane and the angle of the trajectory in Figure 10a nature.

[0033] 图10c是一个脊椎体的平面示意图,显示了横截面及图10a中轨线角度的性质。 [0033] Figure 10c is a schematic plan view of a vertebral body, it shows a cross-sectional view and FIG. 10a, the angle of the trajectory of the character.

[0034] 图10d是一个脊椎体的后视图,显示了冠状面及图10a中轨线角度的性质。 [0034] Figure 10d is a rear view of a vertebral body showing the coronal and 10a, the angle of the trajectory properties.

[0035] 图11是计算机根据图10a中数据汇总表定义的理想椎弓根螺钉置入生成的示意图表,并展示置入面的冠状面轨线。 [0035] FIG. 11 is a computer based on the data summary table Figure 10a defined ideal pedicle screw generated schematic table and show the rail line into coronal plane.

[0036] 图12是最大可利用螺钉尺寸参数表,该表的数据与图10a中的数据汇总表的数据相对应,还包括椎弓根基部圆周轮廓线(冠状面)和椎弓根点A到点B的距离。 [0036] FIG. 12 is the maximum size parameter table with screws, data summary table of data in the table in Fig. 10a corresponding to the data, including the pedicle base circumference contour (frontal plane) and pedicle point A B's point distance.

[0037] 图13是计算机根据图12表中的数据生成的螺钉置入的示意图表。 [0037] FIG. 13 is a computer based on the data generated in the table in Figure 12 screws into a schematic form.

[0038] 图14a是一个脊椎体的侧视图,显示了峡部和椎弓根基部圆周。 [0038] Figure 14a is a side view of a vertebra showing the isthmus and the pedicle base circumference.

[0039] 图14b是一个脊椎体的平面示意图,显示了由计算机生成的在横截面和冠状面穿过椎弓根基部圆周的圆柱。 [0039] FIG. 14b is a schematic plan view of a vertebra showing in cross-section and coronal plane through the pedicle base circumference of the cylinder generated by the computer.

[0040] 图14c、14d和14e分别是腰椎、胸椎和颈椎区域的脊椎体的平面图,显示了每个脊椎体中峡部和椎弓根基部圆周的关系。 [0040] FIG. 14c, 14d and 14e are plan lumbar, thoracic and cervical vertebral body area, showing the relationship between each vertebra in the isthmus and the pedicle base circumference.

[0041] 图14f和14g是一个脊椎体的后视图,显示了用于在脊椎体中产生椎弓根螺钉定位孔的锥子的定位。 [0041] FIG. 14f and 14g is a rear view of a vertebra showing the positioning of pedicle screws used to generate awl positioning holes in the vertebral body of the.

[0042] 图14h显示了一个脊椎体两个对齐的后视图,并显示一个人工确定的通过椎弓根基部圆周中心的椎弓根螺钉方向线。 [0042] Figure 14h shows a two vertebra aligned rear view, and display is determined by an artificial pedicle screw pedicle base circumference direction of the center line.

[0043] 图15a、15c和15e显示了一个脊椎体在不同方位的后视图,并显示一计算机生成的通过其椎弓根基部圆周的椎弓根螺钉圆柱。 [0043] FIG. 15a, 15c and 15e shows a rear view of the vertebral body in different directions, and displays a computer generated pedicle base circumference through which the pedicle screw cylinder.

[0044] 图15b、15d和15f分别显示了图15a、15c和15e所示脊椎体的侧视图。 [0044] FIG. 15b, 15d and 15f show the 15a, 15c and 15e vertebral body shown in side view.

[0045] 图16是通过椎弓根T1、T2、T4和T5中心的CT轴视图,显示了与每个脊椎体在手术中的前后位荧光透视成像结合后的椎弓根形态、峡部和椎弓根定位孔进入点的确定。 [0045] FIG. 16 is a pedicle T1, CT isometric view T2, T4 and T5 center, showing the pedicle morphology anteroposterior fluoroscopic imaging in conjunction with each of the vertebral body after surgery, and vertebral isthmus pedicle positioning holes into the determined points.

[0046] 图17a和17b是本发明中可调整锥子的不同实施例的侧视图。 [0046] Figures 17a and 17b is a side view of the present invention, various embodiments of the adjustable awl.

7[0047] 图18a是单节脊椎体和椎弓根基部圆周在手术中前后位荧光透视成像的示意图。 7 [0047] FIG. 18a is a schematic view individual vertebra and pedicle base circumference during surgery anteroposterior fluoroscopic imaging.

[0048] 图18b是计算机生成的脊椎体的三维图像的示意图,并显示了由计算机置入的椎弓根圆柱和椎弓根基部圆周。 [0048] FIG. 18b is a schematic diagram of a three-dimensional image of the vertebral body computer generated and displayed by a computer into a cylindrical pedicle and pedicle base circumference.

[0049] 图18c是图18a和图18b的配准图象示意图。 [0049] FIG. 18a and FIG. 18c is a schematic diagram of the registration image and 18b.

[0050] 图19a是本发明的双环椎弓根螺钉排列装置的侧视图。 [0050] Figure 19a is a side view bicyclic pedicle screw aligning apparatus of the present invention.

[0051] 图19b是图19a所示装置的主视图。 [0051] Figure 19b is a front view of the device shown in FIG. 19a.

[0052] 图19c和19d单节脊椎体的平面视图,分别显示了经皮环境和开放的外科手术环境中双环椎弓根螺钉排列装置的使用。 [0052] FIG. 19c and 19d plan view of a single vertebra, show the environment using percutaneous and open surgical environment bicyclic pedicle screw arrangement device.

[0053] 图20是本发明的双环椎弓根螺钉排列装置另一实施例的主视图。 [0053] FIG. 20 is a front view of the bicyclic pedicle screw aligning apparatus of the present invention to another embodiment.

[0054] 图21a和21b是分别本发明钻孔套管部分第一实施例的尾部的侧视图和主视图, 该套管部分用于图19a和19b所示的双环椎弓根螺钉排列装置。 [0054] Figures 21a and 21b are respectively a side view of the present invention and a front view of the embodiment of the rear portion of the first embodiment of the sleeve bore, the sleeve portion 19a to FIG bicyclic pedicle screw aligning apparatus shown and 19b.

[0055] 图22a和22b是本发明钻孔套管部分第二实施例的尾部的侧视图和前视图,该套管部分用于图19a和19b所示的双环椎弓根螺钉排列装置。 [0055] Figures 22a and 22b are side and front views borehole casing portion of the second embodiment of the present invention, the tail, the sleeve portion for pedicle screw arrangement bicyclic Figures 19a and 19b and the device shown.

[0056] 图23a是一个槽形外套管的立体图,该外套管与图19a和19b中双环椎弓根螺钉排列装置配套使用。 [0056] Figure 23a is a perspective view of a channel-shaped outer tube, the outer tube 19a and 19b in FIG bicyclic supporting the use of pedicle screw aligning apparatus.

[0057] 图23b是图23a所示的槽形外套管的主视图,双环椎弓根螺钉排列装置中的一个排列环置入其中。 [0057] FIG. 23b is a front view of the grooved outer tube shown in Fig. 23a, bi- pedicle screw arrangement means an arrangement into which ring.

[0058] 图24是一个挖空的脊椎体的示意图,显示了不同的椎弓根螺钉轨线,其一具有中心的或理想的轨线,另一具有骨外或椎弓根外轨线,骨外或椎弓根外轨线偏离中心轨线。 [0058] FIG. 24 is a schematic diagram of a hollowed vertebral body, pedicle screws show different trajectories, one with a center or desired trajectory, the other with a bone or pedicle rail line, bone or pedicle rail line from the center rail lines.

[0059] 图25是一个脊椎体的平面示意图,显示了依照本发明方法进行的椎弓根螺钉的安装。 [0059] FIG. 25 is a schematic plan view of a vertebral body showing the method according to the present invention pedicle screw mounting.

具体实施方式 DETAILED DESCRIPTION

[0060] 本发明确定椎弓根螺钉的尺寸和置入位置的方法将在下文中进行详细描述。 [0060] The present invention determines the size and placement of pedicle screw position method will be described in detail below.

[0061]步骤 1 [0061] Step 1

[0062] 首先取得选择的脊柱区域的计算机断层扫描(CT)、磁共振成像(MRI)、CT荧光透视法或类似的二维成像方法形成的二维图象。 Two-dimensional image [0062] First, computed tomography of the spine to achieve the selected region (CT), magnetic resonance imaging (MRI), CT fluoroscopy or similar two-dimensional imaging method of formation. 为了增加准确性和详细度,优选薄分割区段。 In order to increase the accuracy and detail, preferably thin dividing sections.

[0063]步骤 2 [0063] Step 2

[0064],根据步骤1的CT、MRI或其它任何适当的方法取得的图象制得如图la和图lb所示脊柱的具有真实尺寸的三维计算机图像。 [0064] The image prepared in step 1 of CT, MRI or any other suitable method was obtained as shown with a life-size three-dimensional computer image of the spine shown in Figure la and lb.

[0065]步骤 3 [0065] Step 3

[0066] 如图2所示的三维单节脊椎体然后用计算机挖空成外科医生期望的规格(例如剩余的椎体皮层或椎弓根壁的皮层壁的厚度),类似于一次经椎弓根锥体次切除(eggshell transpedicular vertebral corpectomy)。 [0066] three-dimensional individual vertebra shown in Figure 2 and then use the computer to a surgeon hollowed desired size (for example, skin or the rest of the vertebral pedicle cortical wall thickness of the wall), similar to a through arch root cone times resection (eggshell transpedicular vertebral corpectomy). 这些规格允许不对称的厚度,例如,前椎体皮层可能厚五毫米,侧椎体壁厚七毫米,而椎弓根壁只有一毫米厚;或者椎体皮层壁一律五毫米厚,而椎弓根壁只有一毫米厚或者与此类似。 These specifications allow asymmetrical thickness, for example, before the vertebral cortex may be five millimeters thick, the side wall thickness vertebral seven millimeters, while the pedicle walls only one millimeter thick; or cortical wall of the vertebral body will be five millimeters thick, while the arch only one millimeter thick root wall or similar. 该单节脊椎体可以被形象化为一种去芯的或被挖空的结构,使剩下的脊椎体可以一种合适的方式将其全部锥体壁通电(electrified) 或照亮(highlighted)。 The individual vertebra can be visualized as a knockout or go the core structure, so that the rest of the vertebral body may be an appropriate way to electrify the entire cone wall (electrified) or illuminated (highlighted) .

[0067]步骤 4[0068] 然后,计算机通过测量根据外科医生对椎弓根皮层壁的直径参数选择选定的椎弓根的最窄直径或横截区域(峡部)X,自动确定被置入螺钉的最大允许直径,如图3所示。 [0067] Step 4 [0068] Then, the computer parameters by measuring the diameter of the pedicle cortical wall of choice selected pedicle narrowest diameter or cross-sectional area (isthmus) X, is placed automatically determined according to the surgeon The maximum allowable diameter of the screw, as shown in FIG.

[0069]步骤 5 [0069] Step 5

[0070] 然后计算机生成一个从峡部X中心开始沿如图4所示直线10伸长的圆柱,该圆柱确定了理想的轴/轨线,并向例如垂直于椎弓根峡部所在平面的两相反方向延伸,这样就能尽可能地将该圆柱集中设置在椎弓根内部而不接触到剩下的皮层,在峡部中心形成支点。 [0070] The computer then generates a start in the direction from the center of the isthmus X 10 as shown in Figure 4 straight elongated cylinder, the cylinder to determine the ideal shaft / rail lines, such as perpendicular to the pedicle isthmus where two opposite plane extending, as much as possible so that we can collectively set the cylinder internal pedicle without touching the rest of the cortex, in the center of the isthmus forming the fulcrum. 所述的直线可以刺穿背部或后椎弓根皮层,这样就能延伸到病人的皮肤外至任意所期望的长度。 The post may be straight or pedicle skin piercing the back, so that we can extend to the outer skin of a patient to any desired length. 所述直线在锥体内部延伸至与预先确定的前内部皮层壁为预定的距离(例如5 毫米)时停止,该距离由外科医生选择,这样它就不会刺穿前外部皮层并且还可以最大化螺钉直径,详后述。 The straight line extending to the interior of the cone and the front wall of the internal cortex predetermined predetermined distance (for example 5 mm) is stopped, the distance from the surgeon to select, so that it will not pierce the outer cortex before and also the maximum of the screw diameter, described in detail later.

[0071]步骤 6 [0071] Step 6

[0072] 如图5所示,然后计算机以直线10为中心在半径方向上扩展至其最终的最大直径,所述直径不超过基于外科医生优选的皮层壁厚度确定的最窄椎弓根直径。 [0072] As shown in Figure 5, and then the computer 10 as the center of a straight line extended to its final maximum diameter in the radial direction, the narrowest diameter less than the diameter of pedicle cortical wall thickness is preferably determined based on the surgeon. 这种同轴扩展最后形成一个可见的圆柱12,当该圆柱外表面上任意一点都与除后侧椎弓根皮层外的内侧皮层壁接触时停止构建。 This coaxial extension and finally form a visible cylinder 12 stops the building when any point on the outer surface of the cylinder are in contact with the outer skin layer in addition to the rear side of the pedicle medial cortical wall. 形成的圆柱中心有起始直线10,该起始直线10可以用与圆柱12不同的颜色或模式来鉴别。 Formed in the center of the cylinder 10 has a starting straight line, the straight line 10 starting with the cylinder 12 may be a different color or pattern to identify. 如下文所述,圆柱12可以越过其与背/后皮层的交点,以便按下文所述的一种自动化方法将螺钉置入。 As described below, the cylinder 12 may be past its intersection with the back / rear cortex, in order to press an automated method will be described screw placement.

[0073]步骤 7 [0073] Step 7

[0074] 对于那些有不规则剖面的椎弓根,如图6b所示,或如图7b所示的弯曲的椎弓根或类似的畸形,允许的最大螺钉直径实际上小于最窄直径方法确定的直径,从而避免了椎弓根皮层壁破裂。 [0074] For those who have irregular cross-sectional pedicle, pedicle curved as shown, or, as shown in Fig. 6b, 7b or the like deformity, the maximum allowable screw diameter substantially less than the diameter of the narrowest method for determining diameter, thus avoiding the pedicle cortical wall rupture.

[0075]步骤 8 [0075] Step 8

[0076] 然后计算机通过测量圆柱12的长度确定椎弓根螺钉的长度,参阅图8,所述圆柱的长度是从靠近预定的前内侧皮层的点D到其与背/后皮层的交点A之间的距离。 [0076] The computer then by measuring the length of the cylinder 12 determines the length of the pedicle screw, see Figure 8, the cylinder near a predetermined length from the medial cortex and back to its point D / A of the intersection after the cortex the distance between.

[0077]步骤 9 [0077] Step 9

[0078] 然后计算机产生一个数据汇总表,如图10a所示,该表显示了每个单节脊椎体椎弓根的理想椎弓根螺钉的直径、长度和轨线(如图10b和10c所示,以相应的上端面20为参考面,轨线是通过测量横截面和矢状面相对参考面的角度而得),还提供了图11所示的理想示意图。 [0078] The computer then generates a data summary table, shown in Figure 10a, the table shows each individual vertebra pedicle ideal pedicle screw diameter, length and trajectory (Figure 10b and 10c of the shows, on a corresponding end surface 20 of the reference plane, relative to the reference trajectory is a cross-sectional plane, and by measuring the sagittal angle derived), also provides an ideal schematic diagram 11 shown in FIG. 参阅图9,经医生鉴定的特殊的脊椎体被加上标签,然后计算机用医生确认的精确脊椎体标签自动标记剩下的脊椎体。 Referring to Figure 9, the doctors identified special vertebral body is labeled, then the computer with a doctor to confirm the exact vertebral body tags automatically mark the rest of the vertebral body.

[0079]步骤 10 [0079] Step 10

[0080] 然后利用表格中的数据确定使用基于如图12所示的最大直径和长度的椎弓根螺钉的生存能力,所述数据同样被用来按外科医生的优选方法确定螺钉的置入。 [0080] and then use the data in the table to determine the maximum use of pedicle screw diameter and length as shown in Fig. 12 based on the viability of the data is also used to determine the screw placement by the surgeon's preferred method. 图12还提供了单节椎弓根基部从点A到B的圆周轮廓线(冠状轨线)及它们各自的长度。 Figure 12 also provides a single pedicle base from point A to B of the circumferential contour (coronal trajectory) and their respective lengths. 实际使用的螺钉尺寸是基于外科医生选用的商业上可用的螺钉。 Screw the actual size is chosen based on the surgeon commercially available screw. 一旦外科医生在所选椎弓根螺钉系统内提供可用螺钉的尺寸范围,计算机就能自动确定并产生所述表格,同时产生一个理想化的前后位示意图(冠状)、带有图13所示数据的侧面和横截面图。 Once the surgeon screws available within a selected size range pedicle screw system, the computer can automatically determine and generate the table, while producing an idealized schematic anteroposterior (coronal), with the data shown in FIG. 13 side and cross-sectional view. 此外,这个系统还为外科医生提供一种基本能力,即根据单节脊椎体基部选择不同于最大可用直径的直径,并且将这些变化并入到数据汇总表和图中。 In addition, this system also provides the surgeon a basic capacity, i.e. the maximum usable choose a different diameter according to the diameter of the base of individual vertebra, and these changes are incorporated into the data summary table and FIG. [0081] 步骤11-手工椎弓根螺钉置入 [0081] Step 11 Hand pedicle screw

[0082] 然后,外科医生按他或她优选的方法,并利用理想化的示意图和汇总的数据完成椎弓根螺钉的置入。 [0082] Then, the surgeon according to his or her preferred method, and the use of idealized schematic and summarized data to complete the pedicle screw placement.

[0083] 步骤12a_椎弓根基部圆周轮廓法_人工确定 [0083] Step 12a_ pedicle base circumference outline method _ artificial OK

[0084] 这种方法利用解剖学中意义重大的X光照相技术拍摄的脊椎体图像来匹配如图10d和11所示的冠状面理想的椎弓根螺钉轨线。 Vertebral body image [0084] This method utilizes anatomical significance of the X-ray photography to match the shooting as shown in the coronal plane 10d and 11 ideal pedicle screw trajectory. 特别地,在标准的X光照片或荧光透视成像所看到的放射线密度圆周线与椎弓根基部圆周相符。 In particular, in the standard X-ray or fluoroscopic imaging radiation density seen circumference and pedicle base circumference match. 椎弓根基部圆周B被定义为椎弓根壁和它过渡到脊椎体的皮层接合点。 Pedicle base circumference B is defined as the pedicle wall and its transition to the cortical junction vertebral body. 所述椎弓根基部圆周显然不同于椎弓根峡部,但是对于单节脊椎体而言,在某些情况下它们是同一个或非常接近,在图14a到14e中可以看到。 The pedicle base circumference is clearly different from the pedicle isthmus, but for a single vertebra, in some cases they are the same or very close, can be seen in FIG. 14a to 14e are.

[0085] 对于椎弓根基部圆周技术的人工利用,参阅图14b,首先利用相应的穿过椎弓根的横截面X光图像人工确定通过椎弓根峡部X的理想轨线。 [0085] For use artificial pedicle base circumference technology, see Figure 14b, first through the pedicle using the corresponding cross-sectional X-ray images manually determined by the desired trajectory of the pedicle isthmus X. 然后测量椎弓根峡部X,从而确定最大直径的椎弓根螺钉,轨线被用来确定椎弓根螺钉的最大长度。 Then measuring the pedicle isthmus X, to determine the maximum diameter of the pedicle screw, the rail line is used to determine the maximum length of the pedicle screw. 然后,如图14b所示, 通过鉴别椎弓根壁到脊椎体的过渡确定椎弓根基部圆周B。 Then, as shown in FIG. 14b, by identifying the pedicle wall transition vertebral body to determine the pedicle base circumference B. 最后,测量A到B的长度,并利用该长度校准合适的工具,例如下文所述的长度可变的锥子,所述A到B的长度对应于后皮层A上的起点到与椎弓根基部圆周B的交点之间的长度。 Finally, measure the length A to B, and use the proper length calibration tools, such as variable length awl described below, the starting point of the A to B corresponds to a length of the upper skin layer A and pedicle base the length of the intersection between the circumference B. 如图14h所示,点A和点B应该关于椎弓根基部圆周从椎弓根基部圆周的顶部(头部)和底部(尾部)边缘集中。 As shown in Figure 14h, point A and point B should be on the top of the pedicle base circumference pedicle base circumference (head) and bottom (trailing) edge set. 然后结合理想轨线和椎弓根基部圆周确定点A关于椎弓根基部圆周前后方向上的位置和点B在椎弓根基部圆周内部的位置。 And then combined with the ideal trajectory and pedicle base circumference to determine the point A on the front and rear of the pedicle base circumference direction position and the position of the point B in the interior of the pedicle base circumference. 所述椎弓根基部圆周轮廓线具有类似于每个单节脊椎体的前后位X光图像的圆形外形。 The pedicle base circumference having a similar outline to each individual vertebra in the anteroposterior X-ray image of a circular shape.

[0086] 对于椎弓根螺钉的人工置入,可以利用标准荧光透视单元排列各个单节脊椎体的上端面,使其平行于所述荧光透视图像。 [0086] For artificial pedicle screw placement, using standard fluoroscopy unit arranged on the end face of each individual vertebra to be parallel to the fluoroscopic image. 此外,当具有头部脊椎体的脊椎体上端面用对称圆盘空间荧光透视形象化时,及当脊椎体通过椎弓根基部圆周轮廓在荧光透视前后位图像上可以明显识别其距每个椎弓根的距离相等时,脊椎体居中放置。 Further, when the vertebral body having a head end surface of the vertebral bodies with symmetrical fluoroscopic visualization of the disc space and vertebral body through the pedicle base circumference outline can be clearly identified on the anteroposterior fluoroscopic images of each vertebra when their distance It is equal to the distance pedicle, vertebral body centered. 当每个脊椎体有不同的两个椎弓根时,例如天生畸形、瘤、骨折等,该居中放置依然可以进行。 When each vertebra has two different pedicle, for example a natural deformity, tumors, fractures, which can still be centered. 然后在荧光透视成像下,将一经适当校准的长度可变的锥子或其他合适的工具T从椎弓根定位孔的起点A插入相应的脊椎体的后皮层,并向椎弓根内推进至点B,参阅图14f和14g。 Then under fluoroscopic imaging, will a properly calibrated variable length awl or other suitable tool T inserted cortex corresponding vertebral body pedicle positioning holes starting from A, to advance to the point pedicle B, see Fig. 14f and 14g. 这种置入在荧光透视下确定,并在与理想轨线对齐的直线上绘出A和B两点。 Such placement under fluoroscopy to determine and draw points A and B on the ideal trajectory aligned straight. 工具T被重新调长,更进一步向脊椎体内部推进至点D或改用其他椎弓根探测锥或相似的工具。 Tool T is re-adjusted long, vertebral body to further advance the inside to the point D or switch to other pedicle awl or similar tool to detect. 然后探测椎弓根内骨质的完整性,打开定位孔,具有适当直径和长度的椎弓根螺钉置入到脊椎体。 Then probe pedicle bone integrity, open the positioning holes with appropriate diameter and length of pedicle screw into the vertebral body.

[0087] 根据步骤12〜穿过椎弓根! [0087] According to step through the pedicle 12~! 1、12、14、15中心的(^轴视图,如图16所示,结合在手术中每个脊椎体的前后荧光透视成像,展示了椎弓根形态、峡部和椎弓根定位孔进入点的人工确定。椎弓根螺钉的长度、直径和轨线已经确定。椎弓根基部圆周轮廓线由右下角圆代表,并被用来作为识别椎弓根定位孔进入点的一致性手术标记。例如,椎弓根T1和T2 的起点A分别是大约2个和1. 25个椎弓根基部圆周,如在手术中的前后位荧光透视成像上所见(圆内部用圆点显示)。椎弓根T4和T5的定位孔分别是0. 9和0. 8个椎弓根基部圆周。 1,12,14,15 Centre (^ isometric view, shown in Figure 16, before and after surgery combined fluorescence imaging perspective of each vertebral body, showing pedicle morphology, isthmus and the pedicle entry point positioning holes Artificial determined. pedicle screw length, diameter and trajectory have been determined. pedicle base circumference outline circles represent the bottom right corner, and is used as an identification pedicle entry point positioning holes consistency surgical marker. For example, T1 and T2 pedicle starting point A are approximately 2 and 1.25 pedicle base circumference, such as surgery on the anteroposterior fluoroscopic imaging findings (in the circle with a dot inside display). vertebra pedicle T4 and T5 positioning holes were 0.9 and 0.8 pedicle base circumference.

[0088] 步骤12b_椎弓根基部圆周轮廓法_半自动 [0088] Step 12b_ pedicle base circumference outline law _ semiautomatic

[0089] 这种方法类似于步骤12a,除了点A和B与椎弓根基部圆周轮廓是由计算机在构建了椎弓根圆柱后确定的。 [0089] This method is similar step 12a, in addition to points A and B and pedicle base circumference outline is constructed by a computer after pedicle cylinder determined. 然后这些数据汇总进图12。 The data is then aggregated into 12. 所述数据还包括矢向和横向轨线与上端面和中线的夹角度数。 The data also include the number of folders angle sagittal and transverse rail line and the center line of the upper end face. 长度可变的锥子或其它工具,例如,可以适当调整到图12中的特定椎弓根距离AB,并按照步骤12a中描述的方法在标准荧光透视图像下将螺钉置入。 Variable length awl or other tool, for example, can be appropriately adjusted to the 12 specific pedicle distance AB, and in accordance with the method described in Step 12a standard fluoroscopic image under the screw placement.

[0090] 步骤12c-椎弓根基部圆周轮廓法_全自动 [0090] Step 12c- pedicle base circumference outline law _ Automatic

[0091] 这种方法进一步扩展了本技术,可以实时成像和多个脊椎体形象化,呈现椎弓根螺钉置入情况。 [0091] This approach further expansion of this technology, real-time imaging and visualization of multiple vertebral body, showing pedicle screw cases. 产生的数据与图12中的一样,除了椎弓根基部圆周轮廓和标识点A和B是动态的,也不要求如步骤12a和12b中要求的脊椎体居中放置或上端面平行于荧光透视成像。 12 as data generated map, in addition to the pedicle base circumference outline and identify the points A and B is dynamic and does not require such steps 12a and 12b in the vertebral body requirements centered on the end face or parallel to the fluoroscopic imaging . 荧光透视成像的脊椎体通过任何适当的方法登记在计算机上,形成带有相应的计算机生成的椎弓根圆柱的脊椎体。 Fluoroscopic imaging of the vertebral body by any suitable method registered on the computer, with the formation of vertebral body pedicle corresponding computer-generated cylinder. 然后点A和B被显现出来,如图15a、15c和15e中所示,显示了按图12更新的实时图像。 Then A and B are apparent, as 15a, 15c and 15e shown in Figure 12 shows the updated real-time images. 长度可变的锥子或其它工具,例如,可以调整到大约适合每个单个脊椎体从点A开始推进到点B的长度。 Variable length awl or other tool, for example, can be adjusted to suit each individual vertebra about from point A to point B began to advance length. 注意,任意合适的工具,如不可调整的锥子,可以按本发明方法不同于可调整的锥子使用。 Note that any suitable tools, such as non-adjustable awl, may be different according to the method of the present invention to use an adjustable awl.

[0092] 步骤13-可调整的可变长度的锥子 [0092] Step 13- adjustable variable length awl

[0093] 点A到点B的距离(图14b),即后皮层到与椎弓根基部圆周的交点的距离,被用来设置可调整的长度可变的锥子的长度A到B,所述锥子用来在荧光透视成像下开设椎弓根定位孔。 [0093] from point A to point B (FIG. 14b), i.e., after the point of intersection with the distance from the cortex to the pedicle base circumference, is used to set the variable length awl adjustable length A to B, the awl to open the pedicle positioning hole under fluoroscopic imaging. 在椎弓根螺钉置入的一系列步骤中,形成该椎弓根定位孔是第一步,从计算机指出的识别起点A开始,一旦它完全固定,就产生椎弓根圆柱并将其推进到点B。 Pedicle screw in a series of steps, the formation of the pedicle positioning hole is the first step to start from the computer pointed to identify a starting point A, once it is fully seated, it creates a cylindrical pedicle and advance to Point B.

[0094] 参阅图17a,锥子100包括一个用来插入锥子本体的射线可穿透的外套102,其末端开口,用来移动地支持射线不可穿透的锥子本体104。 [0094] Referring to Figure 17a, awl 100 includes an insert awl rays penetrate the coat to 102, its open-ended, for moving the support ray impenetrable awl 104. 所述锥于100完全可以调整到与A 到B的长度一致的长度,也可以设置以防止锥于进一步推进超过图14b和其它图中可见的任何距离A到B。 The cone 100 can be adjusted to coincide with the A to B in the length may be provided to prevent the cone to further advance over Fig. 14b and other figures seen in any distance A to B.

[0095] 一旦A到B的距离在X光线成像中被确定,外科医生可以调整所述锥于点A到点D 的任意长度,即图14b中最后的螺钉长度。 [0095] Once the A to B is determined from the X-ray imaging, the surgeon can adjust the cone at point A to point D of arbitrary length, i.e. Figure 14b final length of the screw. 这种锥子100最好具有能承受用槌棒或类似物敲打的结构,而其直径也足够窄用来穿透皮肤。 This awl 100 preferably has to withstand beat with a mallet or similar structure, and its diameter narrow enough to penetrate the skin. 为了便于显示深度,锥子本体104可以按固定的增量106用颜色或其他方式标记,如5毫米或10毫米。 For ease of display depth, awl member 104 can be fixed by increments of 106 color or otherwise marked, such as 5 mm or 10 mm.

[0096] 锥子100外部末端具有用于敲打的坚固的头部108,还有合适的锁定装置110,如螺钉锁定装置,用来在相对于外套102的期望的位置锁定锥子本体104。 [0096] awl outer end 100 has a head 108 of the beat of the solid, as well as suitable locking means 110, such as a screw locking means for the housing 102 with respect to the desired position of the lock body 104 awl. 所述锥子还有一个窗口112或其它标记,用来显示锥子本体104的位置或长度。 There is also a window 112 of the awl or other mark used to show the position of the body 104 awl or length. 图14f•和14g显示了一个正在推进椎弓根内部开设螺钉定位孔的锥子。 Figure 14f • and 14g show is promoting a pedicle screw internal positioning holes opened awl.

[0097] 图17b揭露了一个改进的可调整的锥子300,包括可插导管的或空的锥子本体304 和一个具有中心孔309的头部308,这样一个导线311可以穿过头部和锥子本体304延伸至其内端。 [0097] Figure 17b uncovered an improved adjustable awl 300, includes a catheter or empty awl 304 and a head 309 having a center hole 308, so the head can pass through a wire 311 and awl 304 extending to its inner end. 在定位孔用锥子300打通后,导线311可以留在定位孔中适当的位置,从而在后面的步骤中方便用它的位置为椎弓根螺钉的置入导航。 After positioning holes 300 opened with an awl, wire 311 may remain in the positioning holes in the appropriate location, making it easy to use its position as a pedicle screw placement navigation in a later step.

[0098] 步骤14-双环排列装置 [0098] Step 14- bicyclic arrangement device

[0099] 对于在手术中自动置入椎弓根螺钉的方法,有用到具有真实尺寸的三维脊柱模型,该模型中具有计算机自动置入的椎弓根螺钉圆柱,所述圆柱定义了椎弓根螺钉的长度、 直径和轨线。 [0099] For the automatic operation of the pedicle screw method, useful for the three-dimensional model of the spine with the real dimensions of the computer model with automatic placement of pedicle screw cylinder, the cylinder defines a pedicle screw length, diameter and rail lines. 另外,还用到椎弓根基部圆周轮廓数据,以利手术中成像的记录。 In addition, the pedicle base circumference outline data used to facilitate surgical imaging records.

[0100] 手术中实时进行荧光透视检查,以准确记录单节脊椎体基部的三维模型。 [0100] intraoperative fluoroscopy performed in real time, in order to accurately record the three-dimensional model of a single vertebra base. 这种荧光透视的脊椎体成像被集中在监控器上,并由外科医生鉴别出特别的脊椎体(例如T2,T3 等)。 This fluoroscopic imaging of vertebral bodies is concentrated on the monitor by the surgeon identify the particular vertebral body (e.g., T2, T3, etc.). 相应的具有真实尺寸的三维单节脊椎体模型与荧光透视图像配准,如图18a、18b和 Corresponding with a life-size model of a three-dimensional individual vertebra and fluoroscopic image registration, as shown in Figure 18a, 18b,

1118c所示。 1118c shown. 上述步骤可以在如外科手术般的暴露的脊柱上进行或经由皮肤进行。 The above steps can be carried out on the skin or via a surgically exposed spine.

[0101] 该配准是利用内部脊椎体骨性标记进行,这些标记是荧光透视成像中所见的椎弓根基部圆周,该圆周起于椎弓根皮层壁连接脊椎体的汇合处。 [0101] This registration is the use of internal vertebral body bone markers, these markers are seen fluoroscopic imaging pedicle base circumference of the circumferential wall connections from the cortex to the pedicle vertebral body meet. 如前文所述,这些椎弓根基部圆周形成圆形或是椭圆形,基于脊椎体相对于荧光透视成像中的旋转,可以改变其外形和平方面积。 As mentioned above, the pedicle base circumference to form a circular or oval shape, based on the vertebral bodies relative to the rotation of fluoroscopic imaging, and can change its shape square area.

[0102] 然后,手术中的荧光透视图像和计算机生成的椎弓根基部圆周轮廓进行配准,通过确保轮廓线重叠和测量的平方面积相等及确保椎弓根间距离相等来获得配准的精确度。 [0102] Then, the operation of fluoroscopic images and computer generated pedicle base circumference outlines registration, and ensure equal square area by ensuring that overlap and contour measurement equal to the distance between the pedicle to get accurate registration degrees. 这种配准方法消除了将X光线成像标记锚定在病人骨骼上的要求,这种要求特别不利于经皮置入的应用。 This registration method eliminates the X-ray imaging markers anchored in the bone of the patient requirements that do not particularly conducive to the percutaneous implantation of applications. 这种方法还允许一个脊椎体自由独立地向另一个脊椎体移动,来展示计算机产生的模型的符合性,所述方法在不稳定脊柱中尤其有用。 This method also allows a free and independent vertebral body to vertebral body moves to another to demonstrate compliance of a computer-generated model, the method is particularly useful in an unstable spine. 外科医生在手术中确认椎弓根基部圆周的配准充分,以进行椎弓根螺钉的置入。 The surgeon confirmed during surgery pedicle base circumference of full registration, for pedicle screw placement. 所述方法允许计算机生成的模型增大或减小,以匹配手术中的荧光透视成像。 The method allows a computer generated model to increase or decrease to match the operation of the fluoroscopic imaging.

[0103] 现在包括计算机生成的椎弓根基部圆周和椎弓根圆柱的完整的三维图像接着被投射到手术中的荧光透视成像上。 [0103] Now a complete three-dimensional computer-generated images include the pedicle base circumference and pedicle cylinder is then projected onto the surgery fluoroscopic imaging. 如图19a和19b所示,计算机生成的椎弓根螺钉圆柱200 穿过后皮层并凸出到病人体外,并被两个分离的同线环202、204截取及延伸穿过该同线环202、204。 As shown in Fig. 19a and 19b, the computer generated pedicle screw cylinder 200 protrude through the skin and into the patient's body, and with the line separating the two rings 202,204 interception and extends through the same line ring 202, 204. 该环安装在一个配套的锚定在病床或其他支持物上(未显示)的支架206上, 环的尺寸允许截取计算机圆柱图像和将锥子套管插入。 The ring is mounted on a supporting anchor in bed or other support (not shown) of the bracket 206, the size of the ring to allow the interception of computer graphics and will awl cylindrical casing inserted. 第一个环202在靠近后皮层区域208或刚好在体外截取计算机椎弓根螺钉圆柱,而第二个环204在距第一个环202任意期望的距离处截取计算机椎弓根螺钉圆柱。 The first ring 202 in the region 208 near the cortex in vitro or just intercept computer pedicle screw cylinder, and the second ring interception computer pedicle screw cylinder 204 away from the first ring 202 in any desired distance. 两个环之间的距离越大,螺钉的置入就越准确。 The greater the distance between the two rings, screw placement more accurate. 环202、204对计算机椎弓根圆柱的截取在计算机监控器上显示,展示环相对计算机椎弓根圆柱200移动。 Ring 202 to intercept computer pedicle cylinder display on a computer monitor, showing ring opposite the computer pedicle cylinder 200 moves.

[0104] 图19c和19d分别显示了经皮环境和开放的外科手术环境中从脊椎体VB伸出并穿过环202、204的计算机生成的圆柱200和直线210。 [0104] FIG. 19c and 19d show the environment percutaneous and open surgical environment extends from the vertebral body VB and through the loop 202, 204 computer-generated column 200 and line 210.

[0105] 椎弓根圆柱的截取发生在两个层面上。 [0105] pedicle cylinder taken place on two levels. 计算机椎弓根圆柱200中心线210及其外围圆柱组成,首先,环202、204需要被置于中心线210和椎弓根圆柱200中心。 Computer pedicle cylinder centerline 200 210 and its peripheral cylindrical composition, first ring 202, 204 and 210 need to be placed in the center line of the pedicle cylinder 200 centers. 第二,环与脊椎体配准以便在计算机监控器上跟踪其移动,例如通过LED装置。 Second, the ring vertebral body registration in order to track its movement on a computer monitor, for example, by LED devices. 第三,环的内部直径与计算机生成的椎弓根圆柱200的直径匹配。 Third, the matching diameter of the inner diameter of the computer generated pedicle cylindrical ring 200. 有多种具有不同直径的移动环可供外科医生期望的椎弓根螺钉系统利用。 There are a variety of mobile ring having different diameters desirable for the surgeon pedicle screw system uses. 第四,为了与计算机生成的椎弓根圆柱的直径相匹配,环被构造成可以以任意合适的方式改变其直径,如图20所示,环202由可移动连接的部分212制成, 该可移动连接的部分212可以旋转来改变环的直径的。 Fourth, to the diameter of the cylinder and the computer generated pedicle match ring can be configured in any suitable manner to change its diameter, as shown, the ring 202 is made of a portion 212 of the movable connection 20, the movable connection portion 212 can be rotated to change the diameter of the ring. 计算机椎弓根圆柱与环的配准是在计算机监控器上被鉴别和确定的。 Computer pedicle cylinder and ring registration is to identify and determine on a computer monitor.

[0106] 所述同线环202、204现在形成了一个用来放置钻孔套管214的通道(图21a和21b),该钻孔套管也被固定在支架206上。 [0106] The ring line 202 is now formed with a passage bore 214 to place the cannula (FIG. 21a and 21b), the borehole casing is also fixed to the bracket 206. 在钻孔套管214内设有一个坚固的套管元件216 (图21a和图21b)或一个特别的内部套管元件218 (图22a和22b),该特别的套管元件内具有多个窄小的可移动的纵向平行的金属杆220,其中心开口可以放置锥子。 In borehole casing 214 features a rugged casing element 216 (Fig. 21a and 21b) or a special inner sleeve member 218 (Fig. 22a and 22b), especially within the sleeve member having a plurality of narrow small movable parallel to the longitudinal metal rod 220, the central opening can be placed awl. 这些金属杆220可以让内部套管元件218平稳地放置在不平坦的表面上。 The metal rod 220 can make a smooth inner sleeve member 218 is placed on an uneven surface. 这种特征在后皮层钻孔区域提供了额外的稳定性以避免钻子被拴牢。 This feature in the cortex drilling area provides additional stability to prevent the drill is tied firmly. 另外,特别的内部套管元件218允许这些金属杆缩回,从而荧光透视可以清楚的呈现椎弓根内部的钻孔过程。 In addition, the special inner sleeve member 218 is retracted to allow these metal rods, which can be clearly presented fluoroscopy internal pedicle drilling process. 外科医生可以使用任一种方式。 The surgeon can use either way.

12[0107] 然后椎弓根被钻孔至所期望的预先校准的深度,不会超过预定的椎弓根螺钉的长度。 12 [0107] pedicle then be drilled to the desired depth of the pre-calibrated, does not exceed a predetermined length of the pedicle screw. 然后用椎弓根探测器探测椎弓根以确保骨质的完整性。 Then probe the pedicle with pedicle probe to ensure the integrity of the bone.

[0108] 实际的螺钉置入中,一种特别的槽形外套管230(图23a和23b)被置于与同线环202、204同一条直线上。 [0108] The actual screw placement, a special grooved outer tube 230 (FIG. 23a and 23b) are placed on the same line with the same 202,204 loops. 这种槽形外套管230也连接在支架206或其他锚定装置上。 This grooved outer casing 230 is also connected to the bracket 206 or other anchoring device. 然后旋转所述环大约90度(未显示)并从槽形外套管230上收回。 Then rotating the ring about 90 degrees (not shown) and to recover from the trough outer tube 230. 槽形外套管的可调整的内部直径足以容纳任意具有螺纹和变化的头部的椎弓根螺钉。 Adjustable inner diameter of the outer sleeve groove sufficient to accommodate any changes in the head with a thread and pedicle screws. 适当的椎弓根螺钉(未显示) 被放入承载它的螺丝起子,置入槽形外套管,然后置入各自的椎弓根。 Appropriate pedicle screws (not shown) is placed in its carrying screwdriver, slotted into the outer sleeve, and then placed in their respective pedicle.

[0109] 对于改进的可调整的并列环,如图20所示,图23a中的槽形外套管230可以选择使用,环202、204可以留在一定的位置并被调整至一个完全开放的位置从而让螺丝起子可以插入并通过。 [0109] for an improved adjustable parallel loop, shown in Figure 20, in Figure 23a slotted outer sleeve 230 may choose to use, ring 202, 204 can stay in position and adjusted to a fully open position so that a screwdriver can be inserted through.

[0110]步骤 15 [0110] Step 15

[0111] 现在有商业可利用的软件包能够将病人手术前的三维脊椎图像与手术中荧光透视图像在手术中配准。 [0111] There are commercial available software package can be a three-dimensional image of the spine of patients before surgery and intraoperative fluoroscopic image registration operation. 这种功能与本发明的方法相结合,可以提供汇总的数据资料和理想化的图表。 This feature and the method of the present invention in combination, can provide data and idealized graph summary. 后面的信息将为实际椎弓根螺钉的置入提供基础,这如前文所述或根据医生的优先选择。 Behind the actual information will provide the basis for pedicle screw placement, which as previously described, or according to the doctor's preference.

[0112]步骤 16 [0112] Step 16

[0113] 有些外科医生宁愿从骨外或椎弓根外置入螺钉,那是因为椎弓根螺钉的尺寸太小,难以提供可以利用的螺钉尺寸,对于这些医生来说,计划用奇怪的螺钉置入大的椎弓根或计划用与剖面轴相对的直头螺钉植入,也可以用本发明的方法。 [0113] Some surgeons prefer placement of pedicle screws from the bone or outside, it is because of the pedicle screw size is too small, it is difficult to provide screw sizes can be utilized for these doctors, plans to use a strange screw into large pedicle or plans to use the cross-sectional axis relative to the straight-head screws implanted, it can also use the method of the present invention. 本发明是这样实现:获取所有理想化的数据,然后由外科医生偏移椎弓根定位孔进入口,该偏移是从理想轨线的正切方向偏移任意期望的距离,也就是说,前螺钉位置在枢轴点D,计算机椎弓根圆柱12从该点产生,如图24所示。 The present invention is achieved by: Get all idealized data, and offset by the surgeon pedicle positioning hole into the mouth, the offset is the offset distance from any desired ideal trajectory tangential direction, that is, before screw position at pivot points D, computer pedicle cylinder 12 generated from that point, as shown in Fig. 此外,这些变化将被自动记载,并结合这些变化产生新的理想化的前后视图、侧视图和轴视图。 In addition, these changes will be automatically recorded and produced in conjunction with these changes before the new idealized view, side view and isometric view. 不管是用椎弓根基部圆周方法,还是用自动排列方法,还是用商业上可用的CT/荧光透视配准法,都可以用这些数据进行螺钉的置入。 Whether using pedicle base circumference method, or with automatic alignment method, or with a commercially available CT / fluoroscopy registration method, you can use these data screw placement. 对于椎弓根基部圆周方法,定位孔的长度被定为可以让合适长度的锥子或其他工具置入。 For the pedicle base circumference method, the length of the positioning hole is set to be able to make proper length awl or other tool placement.

[0114] 作为一个实施例,图25显示了用螺丝起子22或类似工具安装椎弓根螺钉20的示意图,椎弓根螺钉穿过峡部X中心。 [0114] As an example, Figure 25 shows a schematic of a screwdriver or similar tool to install 22 pedicle screws 20, the pedicle screws through the isthmus X Center.

[0115] 所述的本发明的方法的许多步骤都是计算机产生的,值得注意的是,任何合适的设备或装置都可以用来实现本发明方法的这些步骤。 [0115] a number of steps of the method of the present invention is a computer-generated, it is worth noting that any suitable device or devices may be used to implement the method of the present invention, these steps.

[0116] 以上所揭露的仅为本发明的较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明申请专利范围所作的等同变化,仍属本发明所涵盖的范围。 [0116] disclosed above is only a preferred embodiment of the present invention only, of course, can not be used to limit the scope of the claimed invention, therefore equivalent to the change under this patent scope of the invention made, it is still covered by the scope of the invention .

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
CN104287815A *16 Jun 201421 Jan 2015南通舟可信息科技有限公司3D printing percutaneous vertebral pedicle guide plate, preparation method of 3D printing percutaneous vertebral pedicle guide plate, and using method of 3D printing percutaneous vertebral pedicle guide plate
CN104287815B *16 Jun 201411 Jan 2017南通舟可信息科技有限公司3d打印经皮椎弓根导板及其制备方法和使用方法
US934544911 Mar 201424 May 2016Orthosensor IncProsthetic component for monitoring joint health
US93454926 Mar 201424 May 2016Orthosensor Inc.Shielded capacitor sensor system for medical applications and method
US935796426 Dec 20137 Jun 2016Orthosensor Inc.Hermetically sealed prosthetic component and method therefor
US935813624 Mar 20147 Jun 2016Orthosensor Inc.Shielded capacitor sensor system for medical applications and method
US941494023 Sep 201116 Aug 2016Orthosensor Inc.Sensored head for a measurement tool for the muscular-skeletal system
US946296423 Sep 201111 Oct 2016Orthosensor IncSmall form factor muscular-skeletal parameter measurement system
US94921168 Dec 201515 Nov 2016Orthosensor Inc.Prosthetic knee joint measurement system including energy harvesting and method therefor
Classifications
International ClassificationA61B17/56, A61F2/30, A61B17/16, A61B19/00, A61B17/88, A61B17/17
Cooperative ClassificationA61B34/10, A61B2090/376, A61B17/1671, A61B17/1757, A61B17/1615, A61B17/1604
European ClassificationA61B17/17S4, A61B17/16S4
Legal Events
DateCodeEventDescription
9 May 2007C06Publication
4 Jul 2007C10Entry into substantive examination
8 Sep 2010C14Grant of patent or utility model