CN1881595A - 半导体装置及其制作方法 - Google Patents

半导体装置及其制作方法 Download PDF

Info

Publication number
CN1881595A
CN1881595A CNA2006100996770A CN200610099677A CN1881595A CN 1881595 A CN1881595 A CN 1881595A CN A2006100996770 A CNA2006100996770 A CN A2006100996770A CN 200610099677 A CN200610099677 A CN 200610099677A CN 1881595 A CN1881595 A CN 1881595A
Authority
CN
China
Prior art keywords
film
thin
substrate
semiconductor
semiconductor film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006100996770A
Other languages
English (en)
Other versions
CN1881595B (zh
Inventor
山崎舜平
寺本聪
小山润
尾形靖
早川昌彦
纳光明
大谷久
滨谷敏次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP32606896A external-priority patent/JP3645380B2/ja
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of CN1881595A publication Critical patent/CN1881595A/zh
Application granted granted Critical
Publication of CN1881595B publication Critical patent/CN1881595B/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02672Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using crystallisation enhancing elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • H01L21/3226Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering of silicon on insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1277Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using a crystallisation promoting species, e.g. local introduction of Ni catalyst
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT

Abstract

本发明目的是获得具有良好的特性的薄膜晶体管。使镍元素与非晶质膜203的特定的区域205保持选择性地接连。采用施行加热处理的办法使之结晶化,再在含卤族元素的氧化性气氛中施行加热处理的办法形成热氧化膜。这时进行结晶性的改善和镍元素的吸杂。这种结晶性硅膜将变成具有从多点放射状地进行了结晶生长的那样的构造。于是可得到具有良好的特性的TFT。

Description

半导体装置及其制作方法
本发明申请是本发明申请人于2005年4月19日提交的、申请号为200510067218.X、发明名称为“半导体装置及其制作方法”的发明申请的分案申请。
技术领域
本发明涉及具有结晶性的薄膜半导体。此外还涉及该薄膜半导体的制作方法。还涉及利用了该薄膜半导体的半导体装置以及该半导体装置的制作方法。
背景技术
人们都知道一种先在玻璃基板和石英基板上形成具有结晶性的硅膜,再用该硅膜来制作薄膜晶体管(以下称之为TFT)的技术。
该薄膜晶体管被称之为高温多晶硅TFT和低温多晶硅TFT。
高温多晶硅TFT是把800℃或900℃以上这样的比较高温的加热处理用作结晶性硅膜的制作方法的技术。可以说该技术是利用了单晶硅圆片的IC制作工艺的派生技术。
当然,作为制作高温多晶硅TFT的基板,通常利用能耐上述加热温度的石英基板。
另一方面,低温多晶硅TFT,利用便宜的玻璃基板作为基板(当然,耐热性不如石英基板)。
在构成低温多晶硅TFT的结晶性硅膜的制作中,利用玻璃基板可以耐受600℃以下的加热和对玻璃基板几乎没有热损伤的激光退火技术。
高温多晶硅TFT的特征是可在基板上集成特性一致的TFT。
另一方面,低温多晶硅TFT的特征是可以利用便宜且易于大面积化的玻璃基板作为基板。
此外,在现有技术中,不论是高温多晶硅TFT还是低温多晶硅TFT其特性没什么大的不同,硬要说出不同之处的话,在生产成品率和基板面内的特性的均一性这一点上高温多晶硅比较出色,而在生产性和生产成本这一点上低温多晶硅有优势。
作为特性,两者都可以得出迁移率约50~100(cm2/Vs)、S值为200~400(mV/dec)(VD=1V)的TFT。
如果将这一特性与以非晶硅为样品的TFT比较,虽然可以进行约两个数量级的高速工作,但和利用了单晶硅圆片的MOS型晶体管的特性相比,则大为逊色。一般地说,利用了单晶硅圆片的MOS型晶体管的S值约为60~70(mV/dec)。其工作频率也以高温多晶硅TFT和低温多晶硅TFT的约1~2个数量级高的值工作。
在现状情况下,TFT被利用来在同一块基板上集成有源矩阵式液晶显示装置的有源矩阵电路和周边驱动电路。即,可把有源矩阵电路和周边驱动电路用TFT制作在同一块基板上。
在这样的构成中,要求周边驱动电路的源驱动器电路工作在十几MHz以上。但是,用现有的高温多晶硅TFT和低温TFT构成的电路其工作速度的容许范围只能达到约几个MHz。
因而现状是进行工作分割(叫做分割驱动)等等以构成液晶显示。但是,这种方法,存在着因为分割的定时的微妙的偏离而在画面上出现条纹之类的问题。
此外,作为今后的技术,人们认为除了周边驱动电路(由移位寄存器电路和缓冲器电路构成)之外,还要把振荡电路、D/A变换器、A/D变换器以及进行各种图象处理的数字电路也集成在同一基板上。
但是,上述振荡电路、D/A变换器、A/D变换器以及进行各种图象处理的数字电路都必须工作在比周边驱动电路还要高的频率上。
因此,用现有技术所能得到的高温多晶硅TFT或低温多晶硅TFT来构成这些电路实质上是不可能的。
还有,用利用了单晶硅圆片的MOS晶体管构成的集成电路,使之在100MHz以上工作也已实用化。
发明内容
在本申请书中所提出的发明,目的是制得可以构成要求上述那样的高速工作(一般要求十几MHz以上的工作进度)的电路的薄膜晶体管。
此外,还以提供一种可以得到与利用单晶硅圆片制成的MOS型晶体管相比拟的那种特性的薄膜晶体管为目的。本发明的另一个目的是提供上述晶体管的制作装置。再一个目的是用具有上述那样的高特性的薄膜晶体管提供一种具有必要功能的半导体装置。
本申请书中所公开的发明之一的特征是:具有在带有绝缘表面的基板上制作多个薄膜晶体管的构成;
构成上述多个薄膜晶体管的有源层的结晶性硅膜利用从多个点放射状地进行单晶生长的结晶性硅膜构成。
上述构成是在用具有示于图3或图6的那样的结晶生长形态的结晶性硅膜已构成了薄膜晶体管的情况下制得的。
作为具有绝缘表面的基板,可以举出玻璃基板(但是要求对工艺温度的耐热性)、石英基板和已在表面上形成了绝缘膜的半导体基板的例子。
从上述多点放射状地进行结晶生长的结晶性硅膜,如后所述,可采用先利用以镍为代表的助长硅的结晶化的金属元素的加热处理使之结晶化,再经在含卤族元素的氧化性气氛中进行的热氧化膜的形成,该热氧化膜的除去等工序的办法来制得。
另一发明的构成的特征是:
具有在带有绝缘表面的基板上边已制作多个薄膜晶体管的构成;
构成上述多个薄膜晶体管的有源层的结晶性硅膜由在特定的方向上进行结晶生长后的宽度为从大约等于膜度~约2000的细长的多个结构体构成;
上述特定的方向在各个薄膜晶体管中各不相同。
上述的构成,在已制作成了使用了具有示于图3或图6的结晶生长形态的结晶性硅膜的多个薄膜晶体管的情况下,规定在构成各薄膜晶体管的有源层中的结晶生长方向(结晶结构的各向异性的方向)将变成分别不同的方向。
当然,也将形成多个用具有相同结晶生长方向的有源层构成的薄膜晶体管,但大部分将按照上述构成。
例如,在用具有图3所示的那种结晶生长形态的结晶性硅膜构成有源矩阵电路的情况下,以几百×几百的数目排列成矩阵状的多个薄膜晶体管将变成满足上述构成的晶体管。
公开于本申请书中的发明的结晶性硅膜,已成为在示于图8的那样的特定的方向上结晶结构连续延伸的硅膜结构体。这种结晶结构连续延伸的细长的构造体,宽度约为与膜厚相等~2000左右,并已变成为通过结晶晶粒边界大约平行排列的状态。
另外,更为宏观地来看的话,则已变成为示于图7或图6的那样地放射性地延续存在构造体。
另一发明的构成的特征是,
具备有:
在绝缘表面上形成非晶质硅膜的工序;
借助于助长硅结晶化的金属元素的作用使上述非晶硅膜结晶化以得到结晶性硅膜的工序;
借助于在含卤族元素的氧化性气氛中在800是~1100℃下的加热处理,在上述结晶性硅膜的表面上形成第1热氧化膜的工序;
除掉上述第1热氧化膜的工序;
在上述结晶硅膜的表面上形成第2热氧化膜的工序,并将得到从多数点放射状地进行结晶生长的硅膜。
在上述构成中,要想提高所得到的结晶性硅膜的膜质,重要的是要把第1和第2热氧化膜的合计厚度做得比最终要得到的结晶性硅膜的厚度厚。
这是因为借助于热氧化膜的形成将极大地改善结晶性硅膜的膜质。
作为助长硅的结晶化的金属元素,在重复性和效果这一点上极为理想的是镍。一般来说作为这种金属元素,可以利用从Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Au中选出的一种或多种金属。
在利用镍元素的情况下,最终残留于硅膜中的镍的浓度约为1×104个原子/cm3~5×1018个原子/cm3。如果满足热氧化膜的吸杂条件,则该浓度的上限可以减至5×1017个原子/cm3的程度。该浓度的测量可以用SIMS(二次离子分析方法)来测量。
一般说来,上述镍浓度的下限约为1×1016个原子/cm3。这是因为在考虑到与价格的平衡的情况下,要排除附着于基板或装置上的镍元素的影响通常是很困难的,因而残留下这种程度的镍元素。但是,借助于继续进行装置的洗净的程度和制作工序的完善,还可进一步降低其残留度。
这样一来,在遵循一般的制作工序的情况下,残留镍元素的浓度将变成为1×1016个原子/cm3~5×1017个原子/cm3
另外,在热氧化膜的制作工序中,由于该金属元素在热氧化膜中进行移动的关系,在所得到的结晶性硅膜的厚度方向上的镍元素的浓度分布中将会产生梯度分布。
一般说观察到结晶性硅膜中的该金属元素的浓度向着形成热氧化膜的界面该金属元素的浓度变高的趋势。此外,在有的条件下,还观察到该金属元素的浓度向着基板或衬底膜即向着背面一侧的界面变高的趋势。
此外,形成热氧化膜时在气氛中含有卤族元素的情况下,该卤族元素也将变成为显示出与上述金属元素同样的浓度分布。即,将变成为显示出含有浓度向着结晶性硅膜的表面和/或背面变高的浓度分布。
本申请书中所公布的发明中的结晶性硅膜,理想的是把其最终膜厚作成为100~750,更为理想的是作成为150~450。采用使之成为这种膜厚的办法,就可以重复性更为显著地好地得到图6~图8所示的那样的晶体构造。
这种最终的结晶性硅膜的膜厚,需要考虑根据热氧化膜的膜形成引起的膜厚的减小来决定。
通过采用上述那样的工序,就可以得到在本申请书中所公开的结晶性硅膜,进而可以得到利用其结晶构造的独特性的MOS型薄膜晶体管。
作为金属元素的导入法可以举出下述方法,它们是:涂敷含有有关金属元素溶液的方法,用CVD的导入的方法,应用溅射法或蒸镀法的方法,用利用含有有关金属的电极进行等离子体处理的方法和气体吸附法等方法。
作为导入卤族元素的方法,可以利用在氧化性气氛中(例如氧气气氛中)含HCl、HF、HBr、Cl2、F2、Br2和CF4等等的方法。
另外,向形成非氧化膜时的整个气氛中同时导入氢气来利用湿氧化作用也是有效的。
用来形成热氧化膜的温度是极其重要的。如果是要想得到用下边要讲的单个器件可在几十MHz以上进行工作、且S值小于100(mV/dec)这样的TFT,则必须把热氧化膜形成时的加热温度优选地设定为800℃以上,更为理想的是设定为900℃以上。
另外,把这一加热温度的上限定为本身即是石英基板的耐热温度的上限的1100℃左右是适当的。
在借助于加热使非晶硅结晶化以获得结晶性硅膜的技术中,通过使镍元素保持与非晶硅膜的表面接连的状态下施行加热处理的办法,可以得到结晶性硅膜,再在其表面上形成氧化膜。该氧化膜采用在含卤族元素的氧化性气氛中施行800℃~1100℃的加热处理的办法形成。
这样一来,就可得到具有图6~图8所示的那样的独特的结晶状态的结晶性硅膜。
在把利用本申请书所公开的发明制得的PTFT和NTFT组合起来构成9级的环形振荡器的情况下,可以使之进行400Mz以上的振荡。
一般说,当考虑用环形振荡器的振荡频率的10%左右来设计实际的电路时,结果就变成为可以用上述的TFT构成在40MHz左右的频率下工作的电路。
倘像以上那样地利用本发明,则可以得到可以构成高速工作所要求(一般要求几十MHz以上的工作速度)的薄膜晶体管。
因此,比如说就可以把有源矩阵式的液晶显示装置的周边电路一体化于同一块基板上而无需进行分割驱动。
另外,关于S值,可以得到与利用100(mV/dec)以下这样的单晶硅圆片制成的MOS型晶体管比拟的特性。
倘采用本发明,则可以提供一种把各种高速工作所要求的电路用TFT集成化于同一基板上的构成。另外,还可以提供其制作方法。
附图说明
下面简单地说明附图。
图1示出了薄膜晶体管的制作工序。
图2示出了薄膜晶体管的制作工序。
图3的模式图示出了晶体生长状态的要点。
图4示出了薄膜晶体管的制作工序。
图5示出了薄膜晶体管的制作工序。
图6的电子显微镜照片照的是硅薄膜。
图7的电子显微镜照片照的是硅薄膜。
图8的电子显微镜照片照的是硅薄膜。
图9示出了利用了本发明的半导体装置的概要。
具体实施方式
实施例1
在本实施例中,涉及采用向非晶硅膜的整个表面选择性地导入助长硅的结晶化的金属元素的方法,得到具有图6所示的那样的独特的晶体生长状态的结晶性硅膜的方法。
图1示出了本实施例的制作工序。首先,在石英基板201的上边形成厚度为3000的氧化硅膜作为衬底膜202。另外,如果石英基板的表面的平滑性良好且清洗得很充分的话,该衬底膜202也可以不要。
还有,把石英基板用作基板在现有状况下是理想的选择,但只要是可承受加热处理温度的基板,也不受限于石英。比如说也可以利用已在其表面上形成了氧化膜的半导体基板。
其次,用减压CVD法形成厚度为500的将成为结晶性硅膜的起始膜的非晶硅膜203。
接下来,涂敷含有换算成重量为10ppm的镍元素的醋酸镍溶液。接着,用没有画出来的甩干机进行甩干除掉多余的溶液。
这样一来,就得到了镍元素在用图1(A)的虚线204所示的那种状态下存在的状态。在该状态下,可以得到镍元素在开口205的底部保持与非晶硅膜的一部分有选择地连接的状态。
作为镍的导入方法,应用上述溶液的方法在导入量的控制和重复性这些点上是出色的。但是也可以利用CVD法,溅射法,蒸镀法,等离子处理和气体吸附法等等导入以镍为代表的助长硅的结晶化的金属元素。
其次,在已含有3%氢的、尽可能不含氧气的氮气氛中,进行600℃8个小时的加热处理。在该热处理中进行结晶化,得到示于图1(B)中的结晶硅膜205。
用于这种晶体生长的加热处理可以在450℃~1100℃(上限受基板的耐热性限制)下进行。倘要确保某种程序的横生长距离,把加热处理的温度定为600℃以上是理想的。但是,采用使温度超过600℃以上所产生的晶体生长距离和结晶性的提高并不那么大。
也可在用该加热而导致的结晶化之后进行激光照射。即,也可用激光照射进一步助长结晶化。这种激光照射,具有使存在于膜中的镍元素的结块分散开来,之后易于除去镍元素的效果。另外,即使在这一阶段进行激光照射,也不会进一步进行横向生长。
作为激光,可以利用具有紫外波段的波长的准分子激光。例如,可以利用KrF准分子激光(波长248nm)或XeCl准分子激光(波长308nm)。
当用于结晶化的加热处理结束之后,接着在含有3%体积的HCl的氧气氛中进行950℃的加热处理。在该工序中,在结晶性硅膜205的表面上形成厚度200的热氧化膜209(图1(C))。
随着该热氧化膜的形成,结晶性硅膜208的厚度减少约100。即硅膜的膜厚将变成约400。
在该工序中,随着热氧化膜的形成,把膜中的具有不稳定的结合状态的硅元素用于热氧化膜的形成。这样一来,就可以减少膜中的缺陷,就可得到更高的结晶性。
另外,借助于热氧化膜的形成和氯的作用可同时进行从膜中对镍元素的吸杂作用。
当然,对于用该工序形成膜的热氧化膜209中来说,结果将变成为可用比较高的浓度引入镍元素。这样一来,硅膜208中的镍元素的浓度相对地减少了。
形成了热氧化膜209之后,除掉该热氧化膜209。这样一来,就得到了使镍元素的含有浓度减少后的结晶性硅膜208(图1(D))。
经这样地处理所得出的结晶硅膜,如图6所示,具有从多个局部区域(多个点)开始放射状地进行结晶生长的状态。图6是用光学显微镜拍摄的放大像的照片。
图7示出了把图6的一部分进一步放大后的图象。图7的照片是用TEM(透射电子显微镜)拍摄的。
这种结晶构造的结晶晶粒边界放射状地向结晶生长的方向延伸,而且在该方向上已变成为结晶构造连续延伸的结构。在该结构构造连续延伸的方向上,已被确认结晶晶格的连续性大体上已被保持。
图8是把图7的一部分再次扩大后的图象。图8的照片所拍摄的也是用TEM所观察到的图象。此外,示于图3的是模式性地示出了在整个膜中的结晶生长状态的模式图。
这样得到的结晶性硅膜如图6或图7所示具有在一个方向上结晶构造延续存在(该方向与结晶方向一致)的结构。即,具有细长的柱状的结晶体借助于在多个方向上延续存在的结晶晶粒边界多个平行地排列起来的那样的构造。
在这种特定的方向上结晶构造延续存在的柱状结晶体的宽度具有从约等于膜厚到2000左右的范围。这样一来,这些结晶构造就变成了以在特定的方向(该方向大体上与上述结晶构造的连续延伸方向一致)上延续存在的晶粒边界为界微观地看来多个平行排列起来的构造。
在完成了热氧化膜209的除去并如图1(D)所示得到了结晶硅208之后,接着采用图形刻蚀的办法,形成用横向生长区域构成的图形302。这种岛状的区域302以后将成为TFT的有源层。
接下来,如图2(A)所示,在形成了由302构成的图形之后,用等离子体CVD法,形成厚度为1000的氧化硅膜304,该氧化硅膜304以后起栅极绝缘膜的作用。
在形成了氧化膜304之后,采用在含3%HCl的氧气氛中进行950℃加热处理的办法,形成厚度为300的热氧化膜303。该热化膜如图2(A)所示。被形成于将成为有源层的图形302的表面上。
归因于形成热氧化膜211,将成为有源层的图形302的膜厚变成250。
要想得到具有更高性能的TFT,理想的是把热氧化膜303的膜厚作得比构成有源层的结晶性硅膜的膜厚要厚。
一般说,把热氧化膜209与热氧化膜303合起来的膜厚作成为比最终要得到的有源层的膜厚还厚是一个重要的关键因素。
该热氧化膜211将构成栅极绝缘膜的一部分。这样一来,就得到了示于图2(A)的状态。
其次,用溅射法,形成厚度为4000的用于形成栅电极的铝极。在该铝膜中含有0.2重量%的钪(Seandium)。
之所以使铝膜中含有钪(Secndium),是由于要在以后的工序中抑制突起或金属须的发生的缘故。所说的突起或金属须指的是起因于加热时铝的异常生长的针状或刺状的突起部分。
在形成了铝膜之后,形成没有画出来的致密的阳极氧化膜。该阳极氧化膜以含有3%的酒石酸的乙(撑)二醇溶液为电解溶液,以铝膜为阴极,由金为阴极来形成。在这一工序中,在铝膜上边形成膜厚为100的具有致密的膜质的阳极氧化膜。
这一没有画出来的阳极氧化膜起着改善与后边要形成的光刻胶掩模的密接性的作用。
该阳极氧化膜的膜厚可以用阳极氧化时的所加电压进行控制。
其次形成光刻胶掩模306。接着,利用该光刻胶掩模对铝膜进行图形刻蚀使之成为305所示的图形。这样就得到了图2(B)所示的状态。
在这里再次进行阳极氧化。在这里,把3%的草酸水溶液用作电解溶液。在该电解溶液中,采用把铝图形305作为阳极的阳极氧化的办法,就可以形成用308表示的多孔质状的阳极氧化膜。
在这一工序中,由于在上部存在密接性高的光刻胶掩模306的关系,放在铝图形的侧面上选择性地形成了阳极氧化膜308。
该阳极氧化膜的膜厚可生长到几个μm。在这里把该膜厚定为6000。另外,其生长距离可以用阳极氧化时间进行控制。
接着去除光刻胶掩模306。接下来再次进行致密的阳极氧化膜的形成。即,再次进行以上边说过的含有3%的酒石酸的乙(撑)二醇溶液为电解溶液的阳极氧化。
在这一工序中,由于电解溶液将进入到多孔质状的阳极氧化膜308中去的关系,如用308所表示的那样,可形成具有致密的膜质的阳极氧化膜。
把该致密阳极氧化膜309的膜厚作成为1000。该膜厚可用所加电压进行控制。
其次刻蚀去掉已露出来的氧化硅膜304。同时,刻蚀热氧化膜303。这种刻蚀利用干法刻蚀。
其中,310是剩下来的用CVD法形成膜的氧化硅膜。变成为在该剩下来的氧化硅膜下边残留下同样形状的热氧化膜的状态。
这样一来就得到了示于图2(c)的状态。其次,用把醋酸、硝酸和磷酸混合起来的混合酸去除多孔质状的阳极氧化膜308。于是得到示于图2(D)的状态。
得到图2(D)所示的状态之后,就进行杂质离子的注入。在这里,为了要制作N沟型的薄膜晶体管,故用等离子体掺杂法注入P(磷)离子。
在这一工序中,将形成进行重掺杂的311和315区和进行轻掺杂的312和314区。这是因为剩下来的氧化硅膜310起着半透过掩模的作用,并在该处把所注入的离子的一部分屏蔽起来的缘故。
接着,采用激光(或者应用灯泡的强光)照射的办法,使已注入了杂质离子的区域活性化。这样一来,就可以以自对准方式形成源极区311、沟道形成区313、漏极区315、低浓度杂质区312和314。
其中,用314表示的是被称之为LDD(轻掺杂漏极区)区的区域。
此外,在已把致密阳极氧化膜309的膜厚作成厚达2000以上的情况下,可以用该膜厚在沟道形成区313的外侧形成补偿(offset)栅极区。
虽然在实施例中也已形成了补偿栅极区,但由于其尺寸小,故因其存在而形成的影响不大,而且由于图面将会变得复杂,故图中没有画上。
还有,由于要形成厚达2000以上的具有致密的膜质的阳极氧化膜需要加上200V以上的电压,涉及重复性和安全性,故必须多加注意。
在得到图2(D)所示的状态后,作为层间绝缘膜用等离子体CVD法形成氮化硅膜300,再用旋转涂敷法形成聚酰亚胺树脂膜316。
接下来形成接触孔,并进行源极电极317和漏极电极318的形成。这样就完成了图2(E)所示的TFT。
本实施例中所示的TFT,作为其特性可以得到以往不曾有过的极其高的特性。
例如,在NTFT(N沟TFT)中,可以得到迁移率为200~300(cm2/Vs),S值为75~90(mV/dec)(VD=1V)这么高性能的晶体管。在PTFT(P沟TFT)中,可以得到迁移率为120~180(cm2/Vs)、S值为75~100(mV/dec)(VD=1V)这么高性能的晶体管。
应理解为降低一倍的结果,特别是S值,和现有的高温多晶硅TFT及低温多晶硅TFT的值相比,是一个小于1/2的这么一个令人惊异的值。
利用这样的TFT,可以在石英基板上边形成运放、存储电路,各种延在电路和放大器。
实施例2
本实施例示出了有源矩阵型液晶显示装置的有源矩阵电路部分的制作工序。
图4示出了本实施例的制作工序的概况。先按照实施例1中所示的制作工序制得结晶硅膜。再按照示于图1和图2所示的制作工序得到图2(D)(图4(A))所示的状态。
得到示于4(A)的状态之后,作为第1层间绝缘膜,用等离子体CVI法形成厚度为2000的氮化硅膜401。再用旋转涂敷法形成聚酰亚胺树脂膜402。这样就得到了图4(B)的状态。此外,作为树脂材料,除了聚酰亚胺之外,还可以利用聚酰胺和聚酰亚胺胺化物(polyimideamide)。
其次,形成到达源极区域311和漏极区域315的接触孔、形成源极电极403和漏极电极403。这些电极用钛膜和铝膜和钛膜的叠层形成。此外,源极电极403被形成为从源极线延伸出来的电极(图4(C))。
漏极电极403可把其一部分用作用于形成辅助电容的电极。
在形成源极和漏极电极之后,形成聚酰亚胺树脂膜404作为第2层间绝缘膜。这样就得到了图4(C)的状态。
其次,在树脂层间绝缘膜404上形成开口,再形成由钛膜和铝膜的叠层膜构成的黑色矩阵(BM)405。该黑色矩阵405,除了原有的作为遮光膜的功能之外,还起着用来形成辅助电容的电极的作用。
在形成了黑色矩阵405之后,作为第3层间绝缘膜,形成聚酰亚胺树脂膜406。接着形成通往漏极电极403的接触孔、形成由ITO构成的图象电极407。
在这里,黑色矩阵405的图形和图象电极407的图形借助于聚酰亚胺树脂膜406重叠在一起的区域将变成辅助电容。
实施例3
本实施例是在实施例1所示的构成中,相对于栅极电极或从栅极电极延伸出来的栅极布线的接触的形成的作法进行探讨的例子。
在示于实施例1的构成中,栅极电极的侧面和上表面都变成了被具有致密的膜质的阳极氧化膜覆盖了起来的状态。
这样的构造在形成以铝为材料的电极的情况下,在抑制突起、抑制布线之间的短路这些方面具有很大的效果。
但是,由于该膜质很坚固,故存在着比较难于形成接触的问题。
本实施例涉及解决这一问题的构成。图5示出了本实施例的制作工序。与别的实施例相同的标号、部位、详细的制作条件等等,与别的实施例相同。
首先,如图5(A)所示,制得由结晶性硅膜构成的有源层图形210。接着,得到由热氧化膜211和CVD氧化膜304叠层起来的状态。
在这里首先形成CVD膜,然后采用形成热氧化膜的工序。
在得到示于图5(A)的状态之后,就形成铝膜,再形成厚度为500的氮化硅膜。接下来,用光刻胶膜306施行图形刻蚀,得到已形成了用305表示的铝图形和在其上边的氮化硅膜501的状态(图5(B))。
得到了示于图5(B)的状态之后,先在已配置的光刻胶掩模306的状态下形成多孔质状的阳极氧化膜308,然后再形成具有致密的膜质的阳极氧化膜309。
这些阳极氧化膜,仅仅在将成为栅极电极的铝图形307的侧面上选择性地形成。这是因为在铝图形的上表面上已存在着氮化硅膜501的缘故。
在阳极氧化膜的形成结束之后,除掉光刻胶腌模306。接着再除掉已露了出来的氧化硅膜304,还要除掉热氧化膜211的一部分。
这样就得到了图5(C)所示的状态。得出示于图5(C)的状态之后。先除掉光刻胶掩模306,再除掉多孔质状的阳极氧化膜308。
接着再除掉氮化硅膜501。这样就得出了示于图5(D)的状态。在该状态下,应用等离子体掺杂法进行赋与导电类型的杂质的掺杂。
其结果是以自对准方式形成源极区311、低浓度杂质区312和314、沟道区313和漏极区315。
在杂质掺杂结束后,采用进行激光照射的办法,进行掺杂时所产生的操作的退火和已掺杂的杂质的活性化。
这样就得到了示于图5(D)的状态。其次形成层间绝缘膜502。接着进行接触孔的形成、形成源极电极317、栅极引出电极503和漏极电极318,得到示于图5(E)的状态。
在这一工序中,由于在栅极电极的上表面上不存在阳极氧化膜的关系,故通往栅极307的接触孔的形成得以比较容易地进行。
另外在图中,虽然叙述为使源/漏极电极与栅极电极已形成于同一断面上,但是实际上栅极引出电极形成于从栅极电极307延伸出来的部分上。
实施例4
本实施例是对示于图3的构成进一步加以改良的实施例。在本实施例中,作成为这样的构成:先在构成栅极电极的铝膜上边形成钛膜,再在其上边形成氮化硅膜。
即,在示于图5(B)的构成中,把用501所表示的膜作成为钛膜与氮化硅膜的叠层膜。这样一来,在以后的工序中,就可以抑制在铝电极的上表面上产生突起。
实施例5
本实施例是在示于实施例1的构成中把玻璃基板用作基板时的例子。
在本实施例中,把变形点为667℃的康宁1737玻璃基板用作基板。接着进行用于结晶化的加热处理,条件是600℃,4个小时。
用于形成热氧化膜的加热处理在含有3体积%的HCl的氧气氛中,在640℃的条件下进行。在这种情况下,被形成的热氧化膜的膜厚在处理时间为2小时期间将变成约30。这种情况与实施例1中所示的那种进行950℃加热处理的情况相比,其效果将变小。
实施例6
本实施例是在实施例1所示的构成中,在热氧化膜的形成时的气氛中不含HCl的情况的例子。这时,与在气氛中含有HCl的情况相比,镍的吸杂效果变小。
实施例7
本实施例是在示于实施例1的构成中,在形成热氧化膜之后进行激光照射的情况的例子。这样的话,还可进一步助长结晶化。
实施例8
本实施例示出的是利用了TFT的半导体装置的例子。图9示出了各种半导体装置的例子。
示于图9(A)的是被称之为携带式信息终端的装置,可以从内部的存储装置中调出所需要的信息在主机2001中具备的有源矩阵式液晶显示装置2005上进行显示,或者利用电话线路显示已访问的信息。
作为显示装置的形态,也可以考虑使用有源矩阵式的EL显示装置。在与构成显示装置的有源矩阵电路的同一块基板上,作为集成化电路2006利用TFT已集成了各种信息处理电路和存储电路。
另外,在主机2001中已备有摄象机部分2002,借助于对操作开关2004进行操作,就可摄入所需的图象信息。被摄像机部分2002摄入的图象,被从图象接收部分引入装置内部。
示于图9(B)的是被称之为头戴式显示器的装置。该装置把主机2101装到头部上,并具有用2个有源矩阵式的液晶显示器2102在眼睛前近数cm的地方显示图象的功能。这种装置可以虚拟现实地看到图象。
示于图9(C)的是车辆导航系统。该装置具有用由天线2204接收到的来自人造卫星的信号测量位置的功能,并在有源矩阵式液晶显示装置2202上边显示所测到的位置。另外,显示信息的选择由操作开关2203进行。
另外,还可不用液晶显示装置而代之以利用有源矩阵式EL显示装置。
示于图9(D)的是携带式电话的例子。该装置在主机2301中备有天线2306,还备有声音输入部分2303和声音输出部分2302。
在要打电话的时候用对操作键开关2305进行操作的办法进行。此外在显示装置2304上显示各种图象信息。作为显示装置,可以利用有源矩阵式液晶显示装置和有源矩阵式EL显示装置。
示于图9(E)的,是携带式视频录相机。该装置具备有把从图象接受部分2406中摄入的图象存储于已装于主机2401内的磁带上去的功能。
在集成化电路2407中对于图象施行各种数字处理。该集成电路2407既可以由把以往一直利用的IC芯片组合起来的部件构成,也可以用本申请书中所公开的TFT来构成,还可以用它们的组合来构成。
由图象接受部分所接受到的图象或已存储于内部的磁带上的图象在有源矩阵式显示装置2402上显示。装置的操作可由操作开关2404进行。另外,装置由电池2405供电。
示于图9(F)的是投影式显示装置。该装置具有在屏幕上边显示由主机2501投影的图象的功能。
在主机2501中,具备有光源2502和把来自该光源的光进行光学调制形成图象的有源矩阵式液晶显示装置2503及用于对图象进行投影的光学系统2504。
此外,作为液晶显示装置的形式,除去示于(B)的装置之外,还可以利用透射式或反射式的形式中的任一种形式。

Claims (63)

1.一种具有显示部分的电致发光显示装置,包括:
具有绝缘表面的基板;和
在所述基板上所述显示部分中的多个薄膜晶体管,每个薄膜晶体管具有通过构图一半导体膜形成的有源层,该半导体膜的厚度为100-700,
其中所述半导体膜贯穿半导体膜的整个区域包括多个硅晶粒,每个所述晶粒从贯穿所述半导体膜的整个表面分布的多个点的每个点放射状生长,并且
其中在所述有源层中的晶体生长方向对于所述多个薄膜晶体管的每个薄膜晶体管各不相同。
2.根据权利要求1的装置,其中所述半导体膜包括硅。
3.根据权利要求1的装置,其中所述电致发光显示装置是有源矩阵型显示装置。
4.根据权利要求1的装置,其中所述电致发光显示装置包括在选自由携带式智能终端、车辆导航系统和移动电话组成的组的电光装置中。
5.一种具有显示部分的电致发光显示装置,包括:
具有绝缘表面的基板;和
在所述基板上所述显示部分中的多个薄膜晶体管,每个薄膜晶体管具有通过构图一半导体膜形成的有源层,该半导体膜的厚度为100-700,
其中所述半导体膜贯穿半导体膜的整个区域包括多个硅晶粒,每个所述晶粒从贯穿所述半导体膜的整个表面分布的多个点的每个点放射状生长,并且
其中在多个有源层中晶体结构各向异性的方向对于所述多个薄膜晶体管的每个薄膜晶体管各不相同。
6.根据权利要求5的装置,其中所述半导体装置是有源矩阵型显示装置。
7.根据权利要求5的装置,其中所述电致发光显示装置包括在选自由携带式智能终端、车辆导航系统和移动电话组成的组的电光装置中。
8.一种具有显示部分的电致发光显示装置,包括:
具有绝缘表面的基板;和
在所述基板上所述显示部分中的多个薄膜晶体管,每个薄膜晶体管具有:
通过构图一半导体膜形成的有源层,该半导体膜的厚度为100-700,
所述有源层上所述半导体的热氧化膜;和
所述有源层上的绝缘淀积膜,其间插有热氧化膜,
其中所述半导体膜贯穿半导体膜的整个区域包括多个硅晶粒,每个所述晶粒从贯穿所述半导体膜的整个表面分布的多个点的每个点放射状生长,并且
其中在所述有源层中的晶体生长方向对于所述多个薄膜晶体管的每个薄膜晶体管各不相同,并且
其中所述半导体膜遍及该半导体层包括至少一种用于促进所述半导体的结晶化的元素。
9.根据权利要求8的装置,其中所述半导体层包括硅。
10.根据权利要求8的装置,其中所述元素是从含有Fe,Co,Ni,Ru,Rh,Pd,Os,Ir,Pt,Cu和Au的组中选取的。
11.根据权利要求8的装置,其中所述元素包含在所述半导体膜中,浓度为1×1014至5×1018原子/立方厘米。
12.根据权利要求8的装置,其中所述元素包含在所述半导体膜中,浓度为1×1016至5×1017原子/立方厘米。
13.根据权利要求8的装置,其中所述电致发光显示装置是有源矩阵型显示装置。
14.根据权利要求8的装置,其中所述半导体膜的厚度是150-450。
15.根据权利要求8的装置,其中所述电致发光显示装置包括在选自由携带式智能终端、车辆导航系统和移动电话组成的组的电光装置中。
16.一种电致发光显示器,包括:
具有绝缘表面的基板;和
所述基板上的多个薄膜晶体管,每个薄膜晶体管具有:
具有至少一个沟道区、源极区和漏极区、以及低杂质区的有源层,
所述有源层上的热氧化膜,
形成在热氧化膜上的绝缘淀积膜,以及
所述绝缘淀积膜上的至少一个栅极电极,
其中通过构图所述基板上的半导体膜形成薄膜晶体管的所述有源层,
其中所述半导体膜贯穿半导体膜的整个区域包括多个硅晶粒,每个所述晶粒从贯穿所述半导体膜的整个表面分布的多个点的每个点放射状生长,
其中在多个有源层中晶体结构各向异性的方向对于所述多个薄膜晶体管的每个薄膜晶体管各不相同,并且
所述热氧化膜比所述有源层厚。
17.根据权利要求16的装置,其中所述半导体膜含有选自由Fe,Co,Ni,Ru,Rh,Pd,Os,Ir,Pt,Cu和Au组成的组的元素。
18.根据权利要求16的装置,其中所述电致发光显示装置是有源矩阵型显示装置。
19.根据权利要求16的装置,其中所述电致发光显示装置包括在选自由携带式智能终端、车辆导航系统和移动电话组成的组的电光装置中。
20.一种具有显示部分的电致发光显示装置,包括:
具有绝缘表面的基板;和
所述基板上所述显示部分中的多个薄膜晶体管,每个薄膜晶体管具有:
通过构图所述基板上的半导体膜形成的有源层,所述有源层具有至少一个沟道区、源极和漏极区、以及至少一个低杂质区,
与所述[有源层]沟道区相邻的至少一个栅极电极,其间插有栅极绝缘膜,
其中所述半导体膜贯穿半导体膜的整个区域包括多个硅晶粒,每个所述晶粒从贯穿所述半导体膜的整个表面分布的多个点的每个点放射状生长,
其中在多个有源层中的晶体生长方向对于所述多个薄膜晶体管的每个薄膜晶体管各不相同,
其中所述半导体膜包括用于促进硅结晶的材料。
21.根据权利要求20的装置,其中所述材料选自由Fe,Co,Ni,Ru,Rh,Pd,Os,Ir,Pt,Cu和Au组成的组。
22.根据权利要求20的装置,其中所述电致发光显示装置是有源矩阵型显示装置。
23.根据权利要求20的装置,其中所述电致发光显示装置包括在选自由携带式智能终端、车辆导航系统和移动电话组成的组的电光装置中。
24.一种具有显示部分的电致发光显示装置,包括:
具有绝缘表面的基板;和
所述基板上所述显示部分中的多个薄膜晶体管,每个薄膜晶体管具有通过构图所述基板上的半导体膜形成的有源层和与所述有源层相邻的至少一个栅极电极,其间插有栅极绝缘膜;
分别与所述薄膜晶体管连接的像素电极;以及
使用所述像素电极的辅助电容器,
其中所述半导体膜贯穿半导体膜的整个区域包括多个放射状硅晶粒,
其中在所述多个有源层中的晶体生长方向对于所述多个薄膜晶体管的每个薄膜晶体管各不相同,并且
其中所述基板选自由玻璃基板、石英基板和半导体基板组成的组。
25.根据权利要求24的装置,其中所述半导体膜包括引入所述有源层的整个区域中用于促进硅结晶的材料,所述材料选自由Fe,Co,Ni,Ru,Rh,Pd,Os,Ir,Pt,Cu和Au组成的组。
26.根据权利要求24的装置,其中所述电致发光显示装置是有源矩阵型显示装置。
27.根据权利要求24的装置,其中所述电致发光显示装置包括在选自由携带式智能终端、车辆导航系统和移动电话组成的组的电光装置中。
28.一种电致发光装置,包括:
具有绝缘表面的基板;和
所述基板上的多个薄膜晶体管,每个薄膜晶体管具有通过构图基板上的半导体膜形成的有源层和与所述有源层相邻的至少一个栅极电极,其间插有栅极绝缘膜;
提供在薄膜晶体管上的整平的绝缘膜;以及
提供在整平的绝缘膜上的像素电极,该像素电极分别与所述薄膜晶体管电连接,
其中所述半导体膜贯穿半导体膜的整个区域包括多个放射状硅晶粒,并且
其中在所述多个有源层中的晶体生长方向对于所述多个薄膜晶体管的每个薄膜晶体管各不相同。
29.根据权利要求28的装置,其中所述半导体膜包括硅。
30.根据权利要求28的装置,其中该半导体膜的厚度是100-700。
31.根据权利要求28的装置,其中该衬底选自由玻璃衬底、石英衬底和半导体衬底组成的组。
32.根据权利要求28的装置,进一步包括使用像素电极的辅助电容器。
33.根据权利要求28的装置,其中所述半导体膜包括引入所述有源层的整个区域中用于促进硅结晶的材料,所述材料选自由Fe,Co,Ni,Ru,Rh,Pd,Os,Ir,Pt,Cu和Au组成的组。
34.根据权利要求28的装置,其中所述电致发光显示装置是有源矩阵型显示装置。
35.根据权利要求28的装置,其中所述电致发光显示装置包括在选自由携带式智能终端、车辆导航系统和移动电话组成的组的电光装置中。
36.一种电致发光装置,包括:
具有绝缘表面的基板;和
所述基板上的多个薄膜晶体管,每个薄膜晶体管具有通过构图基板上的半导体膜形成的有源层和与所述有源层相邻的至少一个栅极电极,其间插有栅极绝缘膜;
提供在薄膜晶体管上的整平的绝缘膜;以及
提供在整平的绝缘膜上的像素电极,该像素电极分别与所述薄膜晶体管电连接,
其中所述半导体膜贯穿半导体膜的整个区域包括多个放射状硅晶粒,并且
其中在所述多个有源层中的晶体结构各向异性的方向对于所述多个薄膜晶体管的每个薄膜晶体管各不相同。
37.根据权利要求36的装置,其中所述半导体膜包括硅。
38.根据权利要求36的装置,其中该半导体膜的厚度是100-700。
39.根据权利要求36的装置,其中该衬底选自由玻璃衬底、石英衬底和半导体衬底组成的组。
40.根据权利要求36的装置,进一步包括使用像素电极的辅助电容器。
41.根据权利要求36的装置,其中所述半导体膜包括引入所述有源层的整个区域中用于促进硅结晶的材料,所述材料选自由Fe,Co,Ni,Ru,Rh,Pd,Os,Ir,Pt,Cu和Au组成的组。
42.根据权利要求36的装置,其中所述电致发光显示装置是有源矩阵型显示装置。
43.根据权利要求36的装置,其中所述电致发光显示装置包括在选自由携带式智能终端、车辆导航系统和移动电话组成的组的电光装置中。
44.一种电致发光装置,包括:
具有绝缘表面的基板;和
所述基板上的多个薄膜晶体管,每个薄膜晶体管具有通过构图基板上的半导体膜形成的有源层和与所述有源层相邻的至少一个栅极电极,其间插有栅极绝缘膜;
提供在薄膜晶体管上的整平的绝缘膜;以及
提供在整平的绝缘膜上的像素电极,该像素电极分别与所述薄膜晶体管电连接,
其中所述半导体膜贯穿半导体膜的整个区域包括多个硅晶粒,每个所述晶粒从贯穿所述半导体膜的整个表面分布的多个点的每个点放射状生长,并且
其中在所述有源层中的晶体生长方向对于所述多个薄膜晶体管的每个薄膜晶体管各不相同。
45.根据权利要求44的装置,其中所述半导体膜包括硅。
46.根据权利要求44的装置,其中该半导体膜的厚度是100-700。
47.根据权利要求44的装置,其中该衬底选自由玻璃衬底、石英衬底和半导体衬底组成的组。
48.根据权利要求44的装置,进一步包括使用像素电极的辅助电容器。
49.根据权利要求44的装置,其中所述半导体膜包括引入所述有源层的整个区域中用于促进硅结晶的材料,所述材料选自由Fe,Co,Ni,Ru,Rh,Pd,Os,Ir,Pt,Cu和Au组成的组。
50.根据权利要求44的装置,其中所述电致发光显示装置是有源矩阵型显示装置。
51.根据权利要求44的装置,其中所述电致发光显示装置包括在选自由携带式智能终端、车辆导航系统和移动电话组成的组的电光装置中。
52.一种电致发光装置,包括:
具有绝缘表面的基板;和
所述基板上的多个薄膜晶体管,每个薄膜晶体管具有通过构图基板上的半导体膜形成的有源层和与所述有源层相邻的至少一个栅极电极,其间插有栅极绝缘膜;
提供在薄膜晶体管上的整平的绝缘膜;以及
提供在整平的绝缘膜上的像素电极,该像素电极分别与所述薄膜晶体管电连接,
其中所述半导体膜贯穿半导体膜的整个区域包括多个硅晶粒,每个所述晶粒从贯穿所述半导体膜的整个表面分布的多个点的每个点放射状生长,并且
其中在所述多个有源层中的晶体结构各向异性的方向对于所述多个薄膜晶体管的每个薄膜晶体管各不相同。。
53.根据权利要求52的装置,其中所述半导体膜包括硅。
54.根据权利要求52的装置,其中该半导体膜的厚度是100-700。
55.根据权利要求52的装置,其中该衬底选自由玻璃衬底、石英衬底和半导体衬底组成的组。
56.根据权利要求52的装置,进一步包括使用像素电极的辅助电容器。
57.根据权利要求52的装置,其中所述半导体膜包括引入所述有源层的整个区域中用于促进硅结晶的材料,所述材料选自由Fe,Co,Ni,Ru,Rh,Pd,Os,Ir,Pt,Cu和Au组成的组。
58.根据权利要求52的装置,其中所述电致发光显示装置是有源矩阵型显示装置。
59.根据权利要求52的装置,其中所述电致发光显示装置包括在选自由携带式智能终端、车辆导航系统和移动电话组成的组的电光装置中。
60.根据权利要求28的装置,其中该电致发光装置包括在选自由头戴式显示器、携带式摄象机和投影式显示装置组成的组的电装置中。
61.根据权利要求36的装置,其中该电致发光装置包括在选自由头戴式显示器、携带式摄象机和投影式显示装置组成的组的电装置中。
62.根据权利要求44的装置,其中该电致发光装置包括在选自由头戴式显示器、携带式摄象机和投影式显示装置组成的组的电装置中。
63.根据权利要求52的装置,其中该电致发光装置包括在选自由头戴式显示器、携带式摄象机和投影式显示装置组成的组的电装置中。
CN2006100996770A 1996-01-19 1997-01-20 半导体装置及其制作方法 Expired - Lifetime CN1881595B (zh)

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2621096 1996-01-19
JP26210/96 1996-01-19
JP2603796 1996-01-20
JP26037/96 1996-01-20
JP32875/96 1996-01-26
JP3287596 1996-01-26
JP3287496 1996-01-26
JP32874/96 1996-01-26
JP32981/96 1996-01-27
JP3298196 1996-01-27
JP58334/96 1996-02-20
JP5833496 1996-02-20
JP88759/96 1996-03-17
JP8875996 1996-03-17
JP326068/96 1996-11-21
JP32606896A JP3645380B2 (ja) 1996-01-19 1996-11-21 半導体装置の作製方法、情報端末、ヘッドマウントディスプレイ、ナビゲーションシステム、携帯電話、ビデオカメラ、投射型表示装置

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
CNB200510067218XA Division CN100444407C (zh) 1996-01-19 1997-01-20 半导体器件及其制作方法
CNB971022828A Division CN1206738C (zh) 1996-01-19 1997-01-20 半导体器件及其制作方法

Publications (2)

Publication Number Publication Date
CN1881595A true CN1881595A (zh) 2006-12-20
CN1881595B CN1881595B (zh) 2012-02-08

Family

ID=12187088

Family Applications (7)

Application Number Title Priority Date Filing Date
CNB200510067218XA Expired - Lifetime CN100444407C (zh) 1996-01-19 1997-01-20 半导体器件及其制作方法
CNB2005100657955A Expired - Fee Related CN100444406C (zh) 1996-01-19 1997-01-20 半导体器件及其制造方法
CN2006100996766A Expired - Fee Related CN1881594B (zh) 1996-01-19 1997-01-20 半导体装置及其制作方法
CNB2005100835844A Expired - Fee Related CN100468777C (zh) 1996-01-19 1997-01-20 便携式信息终端
CN2006100996770A Expired - Lifetime CN1881595B (zh) 1996-01-19 1997-01-20 半导体装置及其制作方法
CN2006101016286A Expired - Lifetime CN1901205B (zh) 1996-01-19 1997-01-20 半导体装置及其制造方法
CNB2006100996501A Expired - Fee Related CN100505312C (zh) 1996-01-19 1997-01-20 便携式信息终端

Family Applications Before (4)

Application Number Title Priority Date Filing Date
CNB200510067218XA Expired - Lifetime CN100444407C (zh) 1996-01-19 1997-01-20 半导体器件及其制作方法
CNB2005100657955A Expired - Fee Related CN100444406C (zh) 1996-01-19 1997-01-20 半导体器件及其制造方法
CN2006100996766A Expired - Fee Related CN1881594B (zh) 1996-01-19 1997-01-20 半导体装置及其制作方法
CNB2005100835844A Expired - Fee Related CN100468777C (zh) 1996-01-19 1997-01-20 便携式信息终端

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN2006101016286A Expired - Lifetime CN1901205B (zh) 1996-01-19 1997-01-20 半导体装置及其制造方法
CNB2006100996501A Expired - Fee Related CN100505312C (zh) 1996-01-19 1997-01-20 便携式信息终端

Country Status (2)

Country Link
US (2) US5985740A (zh)
CN (7) CN100444407C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108432047A (zh) * 2015-12-28 2018-08-21 夏普株式会社 扫描天线及其制造方法

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6323071B1 (en) * 1992-12-04 2001-11-27 Semiconductor Energy Laboratory Co., Ltd. Method for forming a semiconductor device
US5403762A (en) * 1993-06-30 1995-04-04 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a TFT
JPH07302912A (ja) * 1994-04-29 1995-11-14 Semiconductor Energy Lab Co Ltd 半導体装置
US6326248B1 (en) 1994-06-02 2001-12-04 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating semiconductor device
JP3621151B2 (ja) * 1994-06-02 2005-02-16 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6300659B1 (en) 1994-09-30 2001-10-09 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistor and fabrication method for same
KR100265179B1 (ko) * 1995-03-27 2000-09-15 야마자끼 순페이 반도체장치와 그의 제작방법
JP4056571B2 (ja) 1995-08-02 2008-03-05 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6204101B1 (en) * 1995-12-15 2001-03-20 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
JP3729955B2 (ja) * 1996-01-19 2005-12-21 株式会社半導体エネルギー研究所 半導体装置の作製方法
US5985740A (en) 1996-01-19 1999-11-16 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device including reduction of a catalyst
JP3645378B2 (ja) 1996-01-19 2005-05-11 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP3645380B2 (ja) 1996-01-19 2005-05-11 株式会社半導体エネルギー研究所 半導体装置の作製方法、情報端末、ヘッドマウントディスプレイ、ナビゲーションシステム、携帯電話、ビデオカメラ、投射型表示装置
US6478263B1 (en) 1997-01-17 2002-11-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
JP3645379B2 (ja) 1996-01-19 2005-05-11 株式会社半導体エネルギー研究所 半導体装置の作製方法
US5888858A (en) 1996-01-20 1999-03-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US6331457B1 (en) * 1997-01-24 2001-12-18 Semiconductor Energy Laboratory., Ltd. Co. Method for manufacturing a semiconductor thin film
US6180439B1 (en) * 1996-01-26 2001-01-30 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device
US6465287B1 (en) 1996-01-27 2002-10-15 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device using a metal catalyst and high temperature crystallization
TW374196B (en) 1996-02-23 1999-11-11 Semiconductor Energy Lab Co Ltd Semiconductor thin film and method for manufacturing the same and semiconductor device and method for manufacturing the same
TW335503B (en) 1996-02-23 1998-07-01 Semiconductor Energy Lab Kk Semiconductor thin film and manufacturing method and semiconductor device and its manufacturing method
JP3472024B2 (ja) 1996-02-26 2003-12-02 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6133119A (en) * 1996-07-08 2000-10-17 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and method manufacturing same
JP3759999B2 (ja) * 1996-07-16 2006-03-29 株式会社半導体エネルギー研究所 半導体装置、液晶表示装置、el装置、tvカメラ表示装置、パーソナルコンピュータ、カーナビゲーションシステム、tvプロジェクション装置及びビデオカメラ
US6979882B1 (en) * 1996-07-16 2005-12-27 Semiconductor Energy Laboratory Co., Ltd. Electronic device and method for manufacturing the same
KR100500033B1 (ko) 1996-10-15 2005-09-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치
JP3765902B2 (ja) 1997-02-19 2006-04-12 株式会社半導体エネルギー研究所 半導体装置の作製方法および電子デバイスの作製方法
JP4242461B2 (ja) * 1997-02-24 2009-03-25 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP3844552B2 (ja) 1997-02-26 2006-11-15 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6291837B1 (en) * 1997-03-18 2001-09-18 Semiconductor Energy Laboratory Co., Ltd. Substrate of semiconductor device and fabrication method thereof as well as semiconductor device and fabrication method thereof
JP3717634B2 (ja) 1997-06-17 2005-11-16 株式会社半導体エネルギー研究所 半導体装置の作製方法
JPH1140498A (ja) 1997-07-22 1999-02-12 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP4180689B2 (ja) * 1997-07-24 2008-11-12 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP3844566B2 (ja) 1997-07-30 2006-11-15 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6218219B1 (en) 1997-09-29 2001-04-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
TW408351B (en) * 1997-10-17 2000-10-11 Semiconductor Energy Lab Semiconductor device and method of manufacturing the same
US6686623B2 (en) 1997-11-18 2004-02-03 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile memory and electronic apparatus
JP4236722B2 (ja) 1998-02-05 2009-03-11 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6617648B1 (en) 1998-02-25 2003-09-09 Semiconductor Energy Laboratory Co., Ltd. Projection TV
US7248232B1 (en) 1998-02-25 2007-07-24 Semiconductor Energy Laboratory Co., Ltd. Information processing device
US6482684B1 (en) 1998-03-27 2002-11-19 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a TFT with Ge seeded amorphous Si layer
JP2000039628A (ja) * 1998-05-16 2000-02-08 Semiconductor Energy Lab Co Ltd 半導体表示装置
JP2000012864A (ja) 1998-06-22 2000-01-14 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
KR100325066B1 (ko) * 1998-06-30 2002-08-14 주식회사 현대 디스플레이 테크놀로지 박막트랜지스터의제조방법
US7294535B1 (en) * 1998-07-15 2007-11-13 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor thin film, method of fabricating the same, semiconductor device, and method of fabricating the same
US7153729B1 (en) 1998-07-15 2006-12-26 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor thin film, method of fabricating the same, semiconductor device, and method of fabricating the same
US7084016B1 (en) * 1998-07-17 2006-08-01 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor thin film, method of fabricating the same, semiconductor device, and method of fabricating the same
US7282398B2 (en) 1998-07-17 2007-10-16 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor thin film, method of fabricating the same, semiconductor device and method of fabricating the same
US6271101B1 (en) 1998-07-29 2001-08-07 Semiconductor Energy Laboratory Co., Ltd. Process for production of SOI substrate and process for production of semiconductor device
US6559036B1 (en) 1998-08-07 2003-05-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
JP4476390B2 (ja) * 1998-09-04 2010-06-09 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6656779B1 (en) * 1998-10-06 2003-12-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor apparatus having semiconductor circuits made of semiconductor devices, and method of manufacture thereof
US6858898B1 (en) 1999-03-23 2005-02-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6461899B1 (en) 1999-04-30 2002-10-08 Semiconductor Energy Laboratory, Co., Ltd. Oxynitride laminate “blocking layer” for thin film semiconductor devices
US8853696B1 (en) 1999-06-04 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and electronic device
TW527735B (en) 1999-06-04 2003-04-11 Semiconductor Energy Lab Electro-optical device
US7288420B1 (en) 1999-06-04 2007-10-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing an electro-optical device
TW480722B (en) 1999-10-12 2002-03-21 Semiconductor Energy Lab Manufacturing method of electro-optical device
US7045444B2 (en) 2000-12-19 2006-05-16 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device that includes selectively adding a noble gas element
US6858480B2 (en) 2001-01-18 2005-02-22 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
TWI221645B (en) 2001-01-19 2004-10-01 Semiconductor Energy Lab Method of manufacturing a semiconductor device
US7115453B2 (en) 2001-01-29 2006-10-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
JP2002231627A (ja) 2001-01-30 2002-08-16 Semiconductor Energy Lab Co Ltd 光電変換装置の作製方法
US7141822B2 (en) * 2001-02-09 2006-11-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP4993810B2 (ja) 2001-02-16 2012-08-08 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP5088993B2 (ja) 2001-02-16 2012-12-05 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP4718700B2 (ja) 2001-03-16 2011-07-06 株式会社半導体エネルギー研究所 半導体装置の作製方法
US7052943B2 (en) 2001-03-16 2006-05-30 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6812081B2 (en) 2001-03-26 2004-11-02 Semiconductor Energy Laboratory Co.,.Ltd. Method of manufacturing semiconductor device
TWI264244B (en) 2001-06-18 2006-10-11 Semiconductor Energy Lab Light emitting device and method of fabricating the same
US7238557B2 (en) * 2001-11-14 2007-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
TWI288443B (en) 2002-05-17 2007-10-11 Semiconductor Energy Lab SiN film, semiconductor device, and the manufacturing method thereof
US7091110B2 (en) * 2002-06-12 2006-08-15 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device by gettering using a anti-diffusion layer
US6861338B2 (en) 2002-08-22 2005-03-01 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and method of manufacturing the same
US7374976B2 (en) 2002-11-22 2008-05-20 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating thin film transistor
US6838396B2 (en) * 2003-03-28 2005-01-04 International Business Machines Corporation Bilayer ultra-thin gate dielectric and process for semiconductor metal contamination reduction
JP4350465B2 (ja) * 2003-09-05 2009-10-21 三菱電機株式会社 半導体装置の製造方法
KR101137797B1 (ko) 2003-12-15 2012-04-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 박막 집적회로장치의 제조방법, 비접촉형 박막집적회로장치 및 그 제조 방법, 비접촉형 박막 집적회로장치를 가지는 아이디 태그 및 동전
US7271076B2 (en) 2003-12-19 2007-09-18 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of thin film integrated circuit device and manufacturing method of non-contact type thin film integrated circuit device
US7566010B2 (en) 2003-12-26 2009-07-28 Semiconductor Energy Laboratory Co., Ltd. Securities, chip mounting product, and manufacturing method thereof
CN100502018C (zh) * 2004-02-06 2009-06-17 株式会社半导体能源研究所 薄膜集成电路的制造方法和元件基片
US7560789B2 (en) 2005-05-27 2009-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7683429B2 (en) * 2005-05-31 2010-03-23 Semiconductor Energy Laboratory Co., Ltd. Microstructure and manufacturing method of the same
US7642612B2 (en) 2005-06-17 2010-01-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR101716311B1 (ko) 2009-12-24 2017-03-14 닛산 가가쿠 고교 가부시키 가이샤 이종원소 간 결합을 포함하는 화합물의 제조방법
WO2011114890A1 (ja) 2010-03-16 2011-09-22 シャープ株式会社 半導体装置およびその製造方法
TWI541904B (zh) 2011-03-11 2016-07-11 半導體能源研究所股份有限公司 半導體裝置的製造方法
JP2013149953A (ja) 2011-12-20 2013-08-01 Semiconductor Energy Lab Co Ltd 半導体装置及び半導体装置の作製方法
US9735280B2 (en) 2012-03-02 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing semiconductor device, and method for forming oxide film
WO2016147529A1 (ja) * 2015-03-16 2016-09-22 富士電機株式会社 半導体装置の製造方法
JP6717700B2 (ja) * 2016-07-28 2020-07-01 株式会社ジャパンディスプレイ 表示装置の製造方法
CN109240004A (zh) * 2018-10-08 2019-01-18 深圳市华星光电半导体显示技术有限公司 提高显示器对比度的方法及装置

Family Cites Families (155)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3389024A (en) 1964-05-12 1968-06-18 Licentia Gmbh Method of forming a semiconductor by diffusion through the use of a cobalt salt
USRE28385E (en) 1968-03-20 1975-04-08 Method of treating semiconductor devices
US3556880A (en) 1968-04-11 1971-01-19 Rca Corp Method of treating semiconductor devices to improve lifetime
US3783049A (en) 1971-03-31 1974-01-01 Trw Inc Method of platinum diffusion
US4086020A (en) 1974-06-07 1978-04-25 Hitachi, Ltd. Hydraulic machine
US4174217A (en) 1974-08-02 1979-11-13 Rca Corporation Method for making semiconductor structure
US4059461A (en) 1975-12-10 1977-11-22 Massachusetts Institute Of Technology Method for improving the crystallinity of semiconductor films by laser beam scanning and the products thereof
US4132571A (en) 1977-02-03 1979-01-02 International Business Machines Corporation Growth of polycrystalline semiconductor film with intermetallic nucleating layer
SE7800261L (sv) 1977-02-28 1978-08-29 Rca Corp Sett att tillverka en halvledaranordning
US4226898A (en) 1978-03-16 1980-10-07 Energy Conversion Devices, Inc. Amorphous semiconductors equivalent to crystalline semiconductors produced by a glow discharge process
US4309224A (en) 1978-10-06 1982-01-05 Tokyo Shibaura Denki Kabushiki Kaisha Method for manufacturing a semiconductor device
US4231809A (en) 1979-05-25 1980-11-04 Bell Telephone Laboratories, Incorporated Method of removing impurity metals from semiconductor devices
DE2932569C2 (de) 1979-08-10 1983-04-07 Siemens Ag, 1000 Berlin Und 8000 Muenchen Verfahren zur Reduzierung der Dichte der schnellen Oberflächenzustände bei MOS-Bauelementen
US4300989A (en) 1979-10-03 1981-11-17 Bell Telephone Laboratories, Incorporated Fluorine enhanced plasma growth of native layers on silicon
US4379020A (en) 1980-06-16 1983-04-05 Massachusetts Institute Of Technology Polycrystalline semiconductor processing
US5262350A (en) 1980-06-30 1993-11-16 Semiconductor Energy Laboratory Co., Ltd. Forming a non single crystal semiconductor layer by using an electric current
US4277884A (en) 1980-08-04 1981-07-14 Rca Corporation Method for forming an improved gate member utilizing special masking and oxidation to eliminate projecting points on silicon islands
US4409724A (en) 1980-11-03 1983-10-18 Texas Instruments Incorporated Method of fabricating display with semiconductor circuits on monolithic structure and flat panel display produced thereby
US4534820A (en) 1981-10-19 1985-08-13 Nippon Telegraph & Telephone Public Corporation Method for manufacturing crystalline film
DE3202484A1 (de) 1982-01-27 1983-08-04 Bayer Ag, 5090 Leverkusen Metallisierte halbleiter und verfahren zu ihrer herstellung
US4481121A (en) 1982-05-17 1984-11-06 Hughes Tool Company Viscosifier for oil base drilling fluids
US4546376A (en) 1983-09-30 1985-10-08 Citizen Watch Co., Ltd. Device for semiconductor integrated circuits
US4544418A (en) 1984-04-16 1985-10-01 Gibbons James F Process for high temperature surface reactions in semiconductor material
US4727044A (en) 1984-05-18 1988-02-23 Semiconductor Energy Laboratory Co., Ltd. Method of making a thin film transistor with laser recrystallized source and drain
EP0178447B1 (en) 1984-10-09 1993-02-17 Fujitsu Limited A manufacturing method of an integrated circuit based on semiconductor-on-insulator technology
US4735824A (en) * 1985-05-31 1988-04-05 Kabushiki Kaisha Toshiba Method of manufacturing an MOS capacitor
US5296405A (en) 1985-08-02 1994-03-22 Semiconductor Energy Laboratory Co.., Ltd. Method for photo annealing non-single crystalline semiconductor films
US5962869A (en) * 1988-09-28 1999-10-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor material and method for forming the same and thin film transistor
US4597160A (en) 1985-08-09 1986-07-01 Rca Corporation Method of fabricating a polysilicon transistor with a high carrier mobility
US4634473A (en) 1985-09-09 1987-01-06 Rca Corporation Method for fabricating a radiation hardened oxide having structural damage
US4755481A (en) * 1986-05-15 1988-07-05 General Electric Company Method of making a silicon-on-insulator transistor
US5221423A (en) 1986-05-20 1993-06-22 Fujitsu Limited Process for cleaning surface of semiconductor substrate
US4911781A (en) * 1987-05-05 1990-03-27 The Standard Oil Company VLS Fiber growth process
US4959247A (en) 1987-12-14 1990-09-25 Donnelly Corporation Electrochromic coating and method for making same
US5225355A (en) 1988-02-26 1993-07-06 Fujitsu Limited Gettering treatment process
US5043224A (en) 1988-05-12 1991-08-27 Lehigh University Chemically enhanced thermal oxidation and nitridation of silicon and products thereof
US5173446A (en) 1988-06-28 1992-12-22 Ricoh Company, Ltd. Semiconductor substrate manufacturing by recrystallization using a cooling medium
US4996077A (en) 1988-10-07 1991-02-26 Texas Instruments Incorporated Distributed ECR remote plasma processing and apparatus
US4996523A (en) 1988-10-20 1991-02-26 Eastman Kodak Company Electroluminescent storage display with improved intensity driver circuits
DE69033153T2 (de) 1989-03-31 1999-11-11 Canon Kk Verfahren zur Herstellung einer Halbleiterdünnschicht und damit hergestellte Halbleiterdünnschicht
US5200630A (en) 1989-04-13 1993-04-06 Sanyo Electric Co., Ltd. Semiconductor device
US5075259A (en) 1989-08-22 1991-12-24 Motorola, Inc. Method for forming semiconductor contacts by electroless plating
US5278093A (en) 1989-09-23 1994-01-11 Canon Kabushiki Kaisha Method for forming semiconductor thin film
US5358907A (en) 1990-01-30 1994-10-25 Xerox Corporation Method of electrolessly depositing metals on a silicon substrate by immersing the substrate in hydrofluoric acid containing a buffered metal salt solution
US5089441A (en) * 1990-04-16 1992-02-18 Texas Instruments Incorporated Low-temperature in-situ dry cleaning process for semiconductor wafers
EP0459763B1 (en) 1990-05-29 1997-05-02 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistors
JP3186096B2 (ja) 1990-06-14 2001-07-11 アジレント・テクノロジーズ・インク 感光素子アレイの製造方法
US5147826A (en) 1990-08-06 1992-09-15 The Pennsylvania Research Corporation Low temperature crystallization and pattering of amorphous silicon films
JP2973492B2 (ja) 1990-08-22 1999-11-08 ソニー株式会社 半導体薄膜の結晶化方法
US5112764A (en) 1990-09-04 1992-05-12 North American Philips Corporation Method for the fabrication of low leakage polysilicon thin film transistors
SG63578A1 (en) 1990-11-16 1999-03-30 Seiko Epson Corp Thin film semiconductor device process for fabricating the same and silicon film
KR950013784B1 (ko) 1990-11-20 1995-11-16 가부시키가이샤 한도오따이 에네루기 겐큐쇼 반도체 전계효과 트랜지스터 및 그 제조방법과 박막트랜지스터
KR950001360B1 (ko) 1990-11-26 1995-02-17 가부시키가이샤 한도오따이 에네루기 겐큐쇼 전기 광학장치와 그 구동방법
JP2838318B2 (ja) 1990-11-30 1998-12-16 株式会社半導体エネルギー研究所 感光装置及びその作製方法
US5289030A (en) 1991-03-06 1994-02-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with oxide layer
JP2794678B2 (ja) 1991-08-26 1998-09-10 株式会社 半導体エネルギー研究所 絶縁ゲイト型半導体装置およびその作製方法
JP2794499B2 (ja) 1991-03-26 1998-09-03 株式会社半導体エネルギー研究所 半導体装置の作製方法
JPH05182923A (ja) 1991-05-28 1993-07-23 Semiconductor Energy Lab Co Ltd レーザーアニール方法
DE69223009T2 (de) 1991-08-02 1998-04-02 Canon Kk Flüssigkristall-Anzeigeeinheit
JPH0553148A (ja) * 1991-08-23 1993-03-05 Nec Corp アクテイブマトリクス液晶パネル
DE69230988T2 (de) 1991-09-23 2000-11-30 Koninkl Philips Electronics Nv Verfahren zum Herstellen einer Anordnung, bei dem ein Stoff in einen Körper implantiert wird
JP2784615B2 (ja) 1991-10-16 1998-08-06 株式会社半導体エネルギー研究所 電気光学表示装置およびその駆動方法
US5244836A (en) 1991-12-30 1993-09-14 North American Philips Corporation Method of manufacturing fusible links in semiconductor devices
US5485019A (en) 1992-02-05 1996-01-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US5424230A (en) 1992-02-19 1995-06-13 Casio Computer Co., Ltd. Method of manufacturing a polysilicon thin film transistor
US5254480A (en) 1992-02-20 1993-10-19 Minnesota Mining And Manufacturing Company Process for producing a large area solid state radiation detector
US5288662A (en) 1992-06-15 1994-02-22 Air Products And Chemicals, Inc. Low ozone depleting organic chlorides for use during silicon oxidation and furnace tube cleaning
JP2560178B2 (ja) 1992-06-29 1996-12-04 九州電子金属株式会社 半導体ウェーハの製造方法
JPH0634962A (ja) * 1992-07-14 1994-02-10 Hitachi Ltd 液晶表示装置
JP3196378B2 (ja) * 1992-12-03 2001-08-06 セイコーエプソン株式会社 液晶表示装置
US5604360A (en) * 1992-12-04 1997-02-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including a plurality of thin film transistors at least some of which have a crystalline silicon film crystal-grown substantially in parallel to the surface of a substrate for the transistor
TW226478B (en) * 1992-12-04 1994-07-11 Semiconductor Energy Res Co Ltd Semiconductor device and method for manufacturing the same
JP3587537B2 (ja) * 1992-12-09 2004-11-10 株式会社半導体エネルギー研究所 半導体装置
US5843225A (en) 1993-02-03 1998-12-01 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating semiconductor and process for fabricating semiconductor device
JPH06296023A (ja) * 1993-02-10 1994-10-21 Semiconductor Energy Lab Co Ltd 薄膜状半導体装置およびその作製方法
JP3662263B2 (ja) * 1993-02-15 2005-06-22 株式会社半導体エネルギー研究所 半導体装置の作製方法
EP1119053B1 (en) * 1993-02-15 2011-11-02 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating TFT semiconductor device
US5275851A (en) 1993-03-03 1994-01-04 The Penn State Research Foundation Low temperature crystallization and patterning of amorphous silicon films on electrically insulating substrates
JP3193803B2 (ja) * 1993-03-12 2001-07-30 株式会社半導体エネルギー研究所 半導体素子の作製方法
US5569936A (en) * 1993-03-12 1996-10-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device employing crystallization catalyst
US5624851A (en) * 1993-03-12 1997-04-29 Semiconductor Energy Laboratory Co., Ltd. Process of fabricating a semiconductor device in which one portion of an amorphous silicon film is thermally crystallized and another portion is laser crystallized
TW241377B (zh) * 1993-03-12 1995-02-21 Semiconductor Energy Res Co Ltd
CN1542929B (zh) * 1993-03-12 2012-05-30 株式会社半导体能源研究所 半导体器件的制造方法
US5501989A (en) * 1993-03-22 1996-03-26 Semiconductor Energy Laboratory Co., Ltd. Method of making semiconductor device/circuit having at least partially crystallized semiconductor layer
JP3345089B2 (ja) 1993-03-26 2002-11-18 株式会社半導体エネルギー研究所 カラーフィルタ基板の作製方法
US5818076A (en) * 1993-05-26 1998-10-06 Semiconductor Energy Laboratory Co., Ltd. Transistor and semiconductor device
US5481121A (en) * 1993-05-26 1996-01-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having improved crystal orientation
US5366926A (en) 1993-06-07 1994-11-22 Xerox Corporation Low temperature process for laser dehydrogenation and crystallization of amorphous silicon
JP3450376B2 (ja) * 1993-06-12 2003-09-22 株式会社半導体エネルギー研究所 半導体装置の作製方法
US5488000A (en) * 1993-06-22 1996-01-30 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor using a nickel silicide layer to promote crystallization of the amorphous silicon layer
TW295703B (zh) 1993-06-25 1997-01-11 Handotai Energy Kenkyusho Kk
US5895933A (en) * 1993-06-25 1999-04-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for its preparation
US5387530A (en) 1993-06-29 1995-02-07 Digital Equipment Corporation Threshold optimization for soi transistors through use of negative charge in the gate oxide
JP2789293B2 (ja) 1993-07-14 1998-08-20 株式会社半導体エネルギー研究所 半導体装置作製方法
US5529937A (en) * 1993-07-27 1996-06-25 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating thin film transistor
US5663077A (en) * 1993-07-27 1997-09-02 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a thin film transistor in which the gate insulator comprises two oxide films
US5492843A (en) * 1993-07-31 1996-02-20 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device and method of processing substrate
JP2975973B2 (ja) * 1993-08-10 1999-11-10 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
JP2762215B2 (ja) * 1993-08-12 1998-06-04 株式会社半導体エネルギー研究所 薄膜トランジスタおよび半導体装置の作製方法
US5580815A (en) 1993-08-12 1996-12-03 Motorola Inc. Process for forming field isolation and a structure over a semiconductor substrate
JPH0766424A (ja) 1993-08-20 1995-03-10 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP2814049B2 (ja) * 1993-08-27 1998-10-22 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
JP2536426B2 (ja) * 1993-09-21 1996-09-18 日本電気株式会社 半導体装置の製造方法
JP3375693B2 (ja) * 1993-09-28 2003-02-10 株式会社半導体エネルギー研究所 薄膜トランジスタを有する半導体装置の作製方法
TW264575B (zh) * 1993-10-29 1995-12-01 Handotai Energy Kenkyusho Kk
JP3267011B2 (ja) * 1993-11-04 2002-03-18 セイコーエプソン株式会社 液晶表示装置
JP3562590B2 (ja) * 1993-12-01 2004-09-08 株式会社半導体エネルギー研究所 半導体装置作製方法
US5612250A (en) * 1993-12-01 1997-03-18 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device using a catalyst
US5654203A (en) * 1993-12-02 1997-08-05 Semiconductor Energy Laboratory, Co., Ltd. Method for manufacturing a thin film transistor using catalyst elements to promote crystallization
JP2860869B2 (ja) * 1993-12-02 1999-02-24 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
TW272319B (zh) 1993-12-20 1996-03-11 Sharp Kk
KR100319332B1 (ko) * 1993-12-22 2002-04-22 야마자끼 순페이 반도체장치및전자광학장치
TW279275B (zh) 1993-12-27 1996-06-21 Sharp Kk
JPH07199150A (ja) * 1993-12-28 1995-08-04 Canon Inc 液晶表示装置
JP3378078B2 (ja) * 1994-02-23 2003-02-17 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP3195157B2 (ja) * 1994-03-28 2001-08-06 シャープ株式会社 半導体装置の製造方法およびその製造装置
JP3192546B2 (ja) 1994-04-15 2001-07-30 シャープ株式会社 半導体装置およびその製造方法
JPH07302912A (ja) 1994-04-29 1995-11-14 Semiconductor Energy Lab Co Ltd 半導体装置
JP3540012B2 (ja) * 1994-06-07 2004-07-07 株式会社半導体エネルギー研究所 半導体装置作製方法
JP3190520B2 (ja) * 1994-06-14 2001-07-23 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
JPH07335906A (ja) * 1994-06-14 1995-12-22 Semiconductor Energy Lab Co Ltd 薄膜状半導体装置およびその作製方法
JP3067949B2 (ja) * 1994-06-15 2000-07-24 シャープ株式会社 電子装置および液晶表示装置
JP3504336B2 (ja) * 1994-06-15 2004-03-08 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP3072000B2 (ja) * 1994-06-23 2000-07-31 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR0136932B1 (ko) 1994-07-30 1998-04-24 문정환 반도체 소자 및 그의 제조방법
JP3464285B2 (ja) 1994-08-26 2003-11-05 株式会社半導体エネルギー研究所 半導体装置の作製方法
US5712191A (en) * 1994-09-16 1998-01-27 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
JP3942651B2 (ja) * 1994-10-07 2007-07-11 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP3486240B2 (ja) * 1994-10-20 2004-01-13 株式会社半導体エネルギー研究所 半導体装置
JP3535241B2 (ja) * 1994-11-18 2004-06-07 株式会社半導体エネルギー研究所 半導体デバイス及びその作製方法
US5756364A (en) * 1994-11-29 1998-05-26 Semiconductor Energy Laboratory Co., Ltd. Laser processing method of semiconductor device using a catalyst
US5684365A (en) 1994-12-14 1997-11-04 Eastman Kodak Company TFT-el display panel using organic electroluminescent media
US5929464A (en) 1995-01-20 1999-07-27 Semiconductor Energy Laboratory Co., Ltd. Active matrix electro-optical device
TW344901B (en) 1995-02-15 1998-11-11 Handotai Energy Kenkyusho Kk Active matrix display device
JP3364081B2 (ja) * 1995-02-16 2003-01-08 株式会社半導体エネルギー研究所 半導体装置の作製方法
JPH08241057A (ja) 1995-03-03 1996-09-17 Tdk Corp 画像表示装置
JPH08241997A (ja) 1995-03-03 1996-09-17 Tdk Corp 薄膜トランジスタ
JP3675886B2 (ja) * 1995-03-17 2005-07-27 株式会社半導体エネルギー研究所 薄膜半導体デバイスの作製方法
TW447144B (en) * 1995-03-27 2001-07-21 Semiconductor Energy Lab Semiconductor device and a method of manufacturing the same
JP3499327B2 (ja) * 1995-03-27 2004-02-23 株式会社半導体エネルギー研究所 表示装置の作製方法
JP3292657B2 (ja) 1995-04-10 2002-06-17 キヤノン株式会社 薄膜トランジスタ及びそれを用いた液晶表示装置の製造法
US5940732A (en) * 1995-11-27 1999-08-17 Semiconductor Energy Laboratory Co., Method of fabricating semiconductor device
US5734179A (en) 1995-12-12 1998-03-31 Advanced Micro Devices, Inc. SRAM cell having single layer polysilicon thin film transistors
TW309633B (zh) 1995-12-14 1997-07-01 Handotai Energy Kenkyusho Kk
US5686329A (en) 1995-12-29 1997-11-11 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming a metal oxide semiconductor field effect transistor (MOSFET) having improved hot carrier immunity
US5985740A (en) 1996-01-19 1999-11-16 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device including reduction of a catalyst
JP3729955B2 (ja) 1996-01-19 2005-12-21 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP3645379B2 (ja) * 1996-01-19 2005-05-11 株式会社半導体エネルギー研究所 半導体装置の作製方法
US5888858A (en) 1996-01-20 1999-03-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
KR100440083B1 (ko) 1996-01-23 2004-10-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체박막제작방법
US6063654A (en) 1996-02-20 2000-05-16 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a thin film transistor involving laser treatment
US6100562A (en) 1996-03-17 2000-08-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6005648A (en) 1996-06-25 1999-12-21 Semiconductor Energy Laboratory Co., Ltd. Display device
JP4831850B2 (ja) 1997-07-08 2011-12-07 株式会社半導体エネルギー研究所 薄膜トランジスタの作製方法
US5846857A (en) * 1997-09-05 1998-12-08 Advanced Micro Devices, Inc. CMOS processing employing removable sidewall spacers for independently optimized N- and P-channel transistor performance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108432047A (zh) * 2015-12-28 2018-08-21 夏普株式会社 扫描天线及其制造方法
CN108432047B (zh) * 2015-12-28 2020-11-10 夏普株式会社 扫描天线及其制造方法

Also Published As

Publication number Publication date
CN1881594B (zh) 2012-02-08
US6316810B1 (en) 2001-11-13
CN1901205B (zh) 2012-06-20
CN1881618A (zh) 2006-12-20
CN100505312C (zh) 2009-06-24
CN1901205A (zh) 2007-01-24
CN1697199A (zh) 2005-11-16
CN100444406C (zh) 2008-12-17
CN1722468A (zh) 2006-01-18
US5985740A (en) 1999-11-16
CN100444407C (zh) 2008-12-17
CN1881595B (zh) 2012-02-08
CN1881594A (zh) 2006-12-20
CN100468777C (zh) 2009-03-11
CN1697198A (zh) 2005-11-16

Similar Documents

Publication Publication Date Title
CN1206738C (zh) 半导体器件及其制作方法
CN1881595A (zh) 半导体装置及其制作方法
CN1218403C (zh) 半导体装置
CN1206737C (zh) 半导体器件及其制造方法
CN1129955C (zh) 半导体器件的制造方法
CN1135608C (zh) 半导体器件的制造方法
CN1246910C (zh) 半导体薄膜及其制造方法以及半导体器件及其制造方法
CN1146955C (zh) 半导体器件的制造方法
CN1277312C (zh) 半导体器件及其制造方法
CN1155991C (zh) 半导体器件的制造方法
CN1213464C (zh) 半导体器件的制造方法
CN1293647C (zh) 半导体器件及其制造方法
CN1697179A (zh) 半导体器件及其制造方法
CN1161566A (zh) 半导体器件及其制造方法
CN1516288A (zh) 半导体器件及其制造方法、层离方法、以及转移方法
CN1881569A (zh) 集成电路器件及制造集成电路器件的方法
CN1407796A (zh) 显示装置
CN1599067A (zh) 薄膜半导体器件、其制造工艺以及液晶显示器
CN1275300C (zh) 激光辐照方法和激光辐照装置以及制造半导体器件的方法
CN100347822C (zh) 制造显示器件的方法
CN1893058A (zh) 半导体器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20120208

EXPY Termination of patent right or utility model