CN1864032A - 采用催化燃烧的换热气体涡轮发动机系统和方法 - Google Patents

采用催化燃烧的换热气体涡轮发动机系统和方法 Download PDF

Info

Publication number
CN1864032A
CN1864032A CNA2004800286906A CN200480028690A CN1864032A CN 1864032 A CN1864032 A CN 1864032A CN A2004800286906 A CNA2004800286906 A CN A2004800286906A CN 200480028690 A CN200480028690 A CN 200480028690A CN 1864032 A CN1864032 A CN 1864032A
Authority
CN
China
Prior art keywords
fuel
compressor
combustion chamber
waste gas
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800286906A
Other languages
English (en)
Other versions
CN100432536C (zh
Inventor
亚历山大·A·别洛孔
乔治·L·塔奇通三世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MES International Inc
Original Assignee
MES International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MES International Inc filed Critical MES International Inc
Publication of CN1864032A publication Critical patent/CN1864032A/zh
Application granted granted Critical
Publication of CN100432536C publication Critical patent/CN100432536C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/40Continuous combustion chambers using liquid or gaseous fuel characterised by the use of catalytic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2202/00Fluegas recirculation
    • F23C2202/10Premixing fluegas with fuel and combustion air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/12Controlling catalytic burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/20Gas turbines

Abstract

采用催化燃烧的换热气体涡轮发动机系统和相关方法,其中,可以在从满载荷到部分载荷以及从热天到冷天条件的广范围工作条件下,将燃烧室入口温度控制为保持在所需要的最低催化剂工作温度以上。燃料与空气和来自涡轮的废气中的一部分一起经过压缩机。对再循环废气的流速进行控制以控制燃烧室入口温度。

Description

采用催化燃烧的换热气体涡轮发动机系统和方法
技术领域
本发明涉及采用催化燃烧的换热气体涡轮(recuperated gasturbine)发动机系统
背景技术
对燃烧或氧化使用催化处理是有可能减少来自气体涡轮发动机系统的氮氧化物(NOx)排放级别的公知方法。存在将燃料中的化学能转化为转化产物中的热能的多种处理。基本的处理是:1)气相燃烧,2)催化燃烧,以及3)催化氧化。还存在对这些处理的组合,例如第一阶段为催化氧化处理随后进行气相燃烧处理的处理(通常称为降温(cata-thermal))。在催化氧化中,在有催化剂的情况下使空气-燃料混和物氧化。在所有的催化处理中,催化剂使得发生氧化的温度相对于非催化燃烧的温度可以有所下降。氧化温度降低使得NOx产物减少。在催化氧化中,所有的反应都在催化面上发生;不存在局部高温,因此将形成NOx的可能性最低。在催化燃烧或者降温燃烧(catathermalcombustion)中,一部分反应以气相发生,这增加了局部温度并且导致形成NOx的可能性较高。使用催化氧化,在最优的催化氧化条件下,可以实现低于百万分之一的NOx量级;利用常规的非催化燃烧室、催化燃烧、或者降温燃烧通常不能实现这种低量级。在本申请中,术语“催化燃烧室”用于表示利用催化作用的任何燃烧室,优选地表示利用催化氧化的燃烧室。
催化燃烧室中采用的催化剂往往在特定的温度条件下最佳地工作。特别地,通常存在最低温度,在该最低温度以下给定的催化剂将不起作用。例如,当天然气作为燃料时,钯催化剂要求空气-燃料混和物的燃烧室入口温度高于800K。此外,催化氧化的缺点在于为了碳氢化合物燃料的完全氧化而必须提供的物理反应面随着燃烧室入口温度的下降而指数上升,这大大增加了燃烧室的成本并且使总体设计变得复杂。对相对较高的燃烧室入口温度的需要是催化燃烧(特别是催化氧化)总体上尚未在气体涡轮发动机系统中得到广泛应用的主要原因之一。更具体地,除非采用换热循环,否则这种高燃烧室入口温度通常不能在以小于约40的压缩机压缩比工作的气体涡轮中实现。在换热循环中,在燃烧之前,通过与涡轮废气的热交换来对空气-燃料混和物进行预加热。因此,至少在一些情况下,换热可以帮助实现催化剂正常工作所需要的燃烧室入口温度。然而,常常会遇到即使利用换热也仍然不能实现最低要求的燃烧室入口温度的其它工作条件。
例如,当在小型气体涡轮中应用换热时,换热器中的材料温度限制可能限制空气或者空气-燃料混和物的最高温度。作为示例,利用换热器中的常规高温材料,换热器的最高安全工作温度可以是大约900K,因此大约800到850K的空气-燃料混和物温度大致是可以实现的最高温度。该温度范围高于某些类型的催化剂的最低催化剂工作温度,因此催化燃烧室可以在一个特定工作条件(例如百分之百载荷和标准日环境条件)下正常地工作。然而,在其它工作条件(例如部分载荷和/或寒冷环境条件)下,燃烧室入口温度可能降到最低温度以下。
希望能够克服这些问题以使得可以在小型气体涡轮发动机系统中实现催化氧化的低NOx量级。此外,存在利用催化处理可以实现的其它好处。这些处理扩展了气态碳氢化合物燃料(包括但不限于填埋气(landfillgas)、厌氧性消化池气(anaerobic digester gas)、天然气和沼气)的工作可燃极限。因此,可以按比常规燃烧稀(贫)得多的燃料/空气比来进行处理。这使得燃料气体可以在压缩处理之前或者在压缩处理期间与空气混和,使得均匀的燃料-空气混和物进入燃烧室。继而,这使得可以略去非常昂贵(尤其对于小型气体涡轮来说)的燃料气体压缩机。燃料气体压缩机可以使通常在$600-$900/kW范围内的发动机成本增加$60/kW或更多。此外,因为为了让发动机工作燃料气体压缩机必须工作,所以燃料气体压缩机使发动机的可靠性和可用性降低,并且因为油料、过滤器、机械或者电损耗等而使维护成本增加。
发明内容
本发明通过提供采用催化氧化或燃烧或者降温燃烧的换热气体涡轮发动机系统以及相关方法而解决了上述需求并且实现了其它优点,其中,可以在从满载荷到部分载荷以及从热天到冷天条件的广范围工作条件下将燃烧室入口温度控制为保持在最低需要的催化剂工作温度以上并且进一步将其优化为燃料/空气比的函数。
根据本发明的方法方面,用于操作气体涡轮发动机的方法包括以下步骤:在压缩机中压缩空气;将燃料与来自压缩机的经压缩空气相混和以产生空气-燃料混和物;在催化燃烧室中燃烧该空气-燃料混和物以产生灼热的燃烧气体;在涡轮中使该燃烧气体膨胀以产生机械能并使用该机械能来驱动压缩机;以及使来自涡轮的废气经过换热器,在该换热器中所述空气-燃料混和物通过与废气的热交换而得到预加热。所述方法进一步包括将来自涡轮的废气中的一部分导入压缩机的步骤。还使燃料与空气和这一部分废气一起经过压缩机。废气的再循环将燃烧室的入口温度提升得高于没有废气再循环的情况下的燃烧室入口温度。最后进入燃烧室的是被优化为满足能量输出、最大化效率、并且最小化空气污染的空气、燃料和废气的混和物。
可以各种方式来实现空气、燃料和废气的混和。在一个实施例中,在压缩机的上游实现废气与燃料的混和,并且将经混和的废气和燃料与空气分离地导入压缩机。另选地,可以在压缩机的上游实现燃料与空气的至少部分混和,并且可以将经混和的燃料和空气与废气分离地导入压缩机。作为又一另选实施例,将空气、燃料和废气彼此分离地导入压缩机,并且在压缩机内或者与压缩机和其它部件相关联的通道内进行混和。
根据本发明,响应于与发动机相关联的一个或更多个参数对导入压缩机的废气的流速进行控制,所述一个或更多个参数中的至少一个是燃料/空气比。例如,控制步骤可以包括响应于测量到的燃烧室入口温度来控制流速以将该燃烧室入口温度保持为高于催化燃烧室在该燃料/空气比进行正常操作所必需的预定最低温度。以这种方式,可以对进入压缩机的废气的流速进行优化以补偿环境温度和/或者相对发动机载荷的变化。
可以在换热器的下游点将导入压缩机的一部分废气与其余废气相分离。在这种情况下,再循环的废气由于其经过换热器而温度降低。另选地,可以在换热器的上游点将导入压缩机的一部分废气与其余废气相分离,从而再循环的废气绕过换热器。在这种方案下,送到压缩机的再循环废气的温度较高,因此再循环废气的流速可以低于前述方案中的流速。
根据本发明的采用催化燃烧的换热气体涡轮发动机系统包括:压缩机,被设置为接收空气并压缩空气;燃料系统,可以进行操作以向压缩机提供燃料,从而从压缩机排出经压缩空气和燃料的混和物;催化燃烧室,可以进行操作以燃烧该混和物从而产生灼热的燃烧气体;涡轮,被设置为接收该燃烧气体并且使该气体膨胀以产生驱动压缩机的机械能;换热器,被设置为接收来自涡轮的废气和从压缩机排出的混和物,并且使得在这二者之间发生热交换,从而使所述混和物进入催化燃烧室之前得到预加热;以及再循环系统,可以进行操作以将一部分涡轮废气导入压缩机,从而通过该废气来提高从压缩机排出的混和物的温度,由此提高催化燃烧室的入口温度。
再循环系统可以包括:可以对其进行控制以可变地调节进入压缩机的废气的流速的阀;以及可操作地连接到所述阀的控制系统。可以将可进行操作以对表示燃料/空气比和燃烧室入口温度的参数进行测量的传感器连接到所述控制系统,所述控制系统可以进行操作以按如下方式控制所述阀:使得燃烧室入口温度超过催化燃烧室的正常工作所必需的预定最低温度并与针对所测量到的燃料/空气比的最优温度相匹配。注意,所述阀可以位于换热器的上游或下游。
根据本发明的换热发动机系统在包括小型发电系统的多种应用中具有实用性。因此,可以设置发电机以由涡轮进行驱动。
本系统不限于单绕轴(spool)涡轮发动机,而是还可以应用于多绕轴发动机或者单绕轴发动机的成组系统(ganged system)。
本系统和方法对于催化氧化处理最为有利,但是采用催化作用的所有处理都能受益。
附图说明
已经如此总体上描述了本发明,现在参照附图,附图未必是按比例绘制的,在附图中:
图1是根据现有技术的涡轮发动机系统的图解描述;
图2是根据本发明的第一实施例的涡轮发动机系统的图解描述;
图3是根据本发明的第二实施例的涡轮发动机系统的图解描述;
图4是示出针对在压缩机入口没有混和废气的现有技术涡轮发动机系统以及根据本发明的在压缩机入口处混和有废气的涡轮发动机系统这两种情况的涡轮入口温度、燃烧室入口温度、效率、以及压缩机入口温度作为相对载荷的函数的模型计算的曲线图;
图5A图示出本发明的另一实施例,其中将燃料和废气混和并且将其与空气分离地送入压缩机,从而与空气的混和完全在压缩机中进行;
图5B示出又一实施例,其中在将空气和燃料送入压缩机之前对其进行混和,并且将废气独立地送入压缩机;以及
图5C示出又一实施例,其中将空气、燃料和废气全部独立地送入压缩机,在压缩机中使空气、燃料和废气混和。
具体实施方式
现在将在下文中参照附图更充分地描述本发明,在附图中示出了本发明的部分但并不是全部的实施例。事实上,可以按多种不同的形式来实现本发明,不应将本发明理解为限于本文所述的实施例;相反,提供这些实施例是为了使本公开满足适用的法律要求。相同的标号通篇表示相同的部件。
图1中示出了由利用催化燃烧的换热气体涡轮发送机驱动的现有技术发电系统10。该系统包括气体涡轮发动机12,该气体涡轮发动机12包括:压缩机14和通过轴18相连接以驱动该压缩机的涡轮16,以及催化燃烧室20。该系统还包括热交换器或换热器22,该热交换器或换热器22具有用于压缩机排出流体的一个或更多个通道24,这一个或更多个通道24被设置为与用于涡轮废气的一个或更多个通道26有热传递关系。该系统还包括用于将空气和燃料放在一起并使其混和并且将混和物送入压缩机14的装置28。
经压缩的空气-燃料混和物在换热器22中被预加热,随后被送入催化燃烧室20,在催化燃烧室20内发生燃烧。将灼热的燃烧气体从燃烧室引入涡轮16,涡轮16使该灼热气体膨胀以产生机械能,通过轴18将该机械能传送给压缩机16。发电机30也耦接到该轴,该发电机30受驱动以产生提供给载荷的电流。
在如图1所示的系统中,可以将发动机部件设计为:在相对较高的发动机载荷和标准日条件下,送入催化燃烧室20的空气-燃料混和物的温度处于或者高于催化反应正常工作所需要的催化剂最低温度。应用最广泛的钯催化剂需要至少800K的燃烧室入口温度。然而,在低载荷和/或寒冷环境的条件下,燃烧室入口温度可能降到催化剂最低温度以下。参见图4中的虚线,其表示在图1所示的现有技术型循环的情况下作为相对载荷的函数的各种热力学变量的模型计算。在100%载荷条件下,燃烧室入口温度为大约850K,但是在大约80%载荷时下降到800K的催化剂最低温度。在更低的载荷,燃烧室入口温度低得无法支持催化燃烧室的正常工作。
本发明提供了克服该问题的气体涡轮发动机系统和方法。图2示出了由根据本发明第一实施例的涡轮发动机系统驱动的发电机系统。通过如上所述地具有压缩机14、涡轮16、轴18以及催化燃烧室20的涡轮发动机12来驱动发电机30。如上所述,在将空气-燃料混和物引入燃烧室之前采用换热器22对其进行预加热。
然而,通过将一部分涡轮废气引入压缩机来调节燃烧室入口温度。该废气具有比进入压缩机的环境空气高得多的温度,因此用于提高经过压缩机的流体的温度,这继而提高了燃烧室入口温度。
因此,该系统包括设置在换热器22下游的可操纵阀(actuatablevalve)40,该可操纵阀40用于使一部分涡轮废气通过线路42转向混和器44。混和器44也接收空气、燃料和废气中的至少两种,并且至少部分地混和这三种成分中的至少两种。接着将混和物送入压缩机14,在压缩机14中可以进一步进行混和。可将任何的第三种未混和流与其它两种同时地引入压缩机并且在该压缩机中或者在到达换热器之前的后续通道中对其进行混和。
阀40可以进行操作以选择性地改变通过线路42传送到混和器44的涡轮废气的量。此外,可以由对来自被设置为检测燃烧室入口温度的温度传感器52的温度信号敏感的控制系统50(可以是PC、PLC、神经网络等)来控制该阀。该控制系统也可以对来自被设置为检测空气流速的气流传感器54的气流信号以及来自被设置为检测燃料流速的燃料流传感器56的燃料流信号敏感。如果需要,还可以在换热器之后的排气管道中设置用于检测排放物(特别是未燃烧的碳氢化合物)的传感器58,并且控制系统将测量到的排放情况纳入考虑范围。另选地,可以根据燃烧室入口温度和燃料/空气比,使用由理论和发动机试验而确定的模型来计算排放物。此外,还可以采用测量换热器入口温度的传感器60。虽然在图2和3中没有示出传感器54、56、58和60与控制系统50之间的连接线路,但应该理解这些传感器是连接到控制系统的。对控制系统适当地进行编程以控制阀40的操作,从而根据需要来调节燃烧室入口温度。具体地,控制系统优选地包括按如下方式对阀40进行开环或闭环控制的逻辑:使得燃烧室入口温度总是等于或者超过燃烧室中的正常催化反应所必需的预定最低温度。优选地,也可以按如下方式来执行控制:使得换热器入口温度不超过最高允许换热器入口温度,优选地,同时使排放最少(或者将排放保持在希望的限度之下)并最大化效率。通常,随着载荷下降,涡轮废气的必须回馈到压缩机的比例将上升,以将燃烧室入口温度保持在预定的最低水平之上。
图4上的实线示出了废气与空气和燃料相混和的效果。随着载荷下降,压缩机入口温度上升,反映在再循环到压缩机的废气的比例越来越大。因此,压缩机入口温度对于所有的载荷条件都可以保持在800K以上。同时,在优选实施例中,通过同时控制再循环废气的流速以及燃料/空气比,在所有工作条件下都防止了换热器入口温度超过其最高允许值,并且优化了发动机的效率。
应该理解,上述系统和方法可以补偿环境温度的变化。因此,随着环境温度下降,如果有必要,则可以增大再循环废气的比例以保持所需要的燃烧室入口温度。通过本发明的系统和方法也可以对载荷和环境温度变化的组合影响进行补偿。
图3示出本发明的第二实施例,其总体上类似于图2所示的实施例,除了阀40位于换热器22的上游而不是下游。由此,线路42绕过换热器,因此,废气在再循环之前不会在换热器中冷却。因为再循环废气的温度较高,所以在所有其它因素都相同的情况下,必须再循环的废气的相对比例低于图2的实施例的废气比例。在其它方面,该系统的操作与图2的系统的操作相同。
在对本发明的实践中,可以改变废气再循环以及与空气和燃料相混和的方式。图5A至C示出了几种可能性,不过它们不是穷举的,并且可以使用其它变型例。这些示例全部基于阀40位于换热器22下游的情况,但是它们同样适用于阀位于换热器上游的系统。在图5A的实施例中,再循环的废气在混和器44中与燃料相混和,得到的混和物与空气分离地送入压缩机14。此方案在燃料初始为液体形式(例如丙烷)时是有利的,因为灼热的废气使得燃料在送入压缩机之前至少部分地汽化。
在图5B的方案中,空气和燃料在混和器44中混和,得到的混和物送入压缩机。来自线路42的废气单独地送入压缩机,并且在压缩机中与空气和燃料相混和。
在图5C中示出了另一种可能性,其中,空气、燃料和废气都单独地送入压缩机,并且在压缩机中进行这三者之间的混和。
本文所述的发明所属领域的技术人员受益于上述说明和相关附图中给出的教义,可以想到本发明的许多变型例和其它实施例。因此应该理解,本发明不限于所公开的具体实施例,旨在将变型例和其它实施例包括在所附权利要求的范围内。虽然本文采用了特定术语,但是它们仅仅用于一般性和描述性的意义,而不是用于限制。

Claims (33)

1、一种采用催化燃烧的换热气体涡轮发动机系统,包括:
压缩机,被设置为接收空气并压缩空气;
燃料系统,可以进行操作以向压缩机提供燃料,从而从压缩机排出燃料与经压缩空气的混和物;
催化燃烧室,可以进行操作以燃烧所述混和物以产生灼热的燃烧气体;
涡轮,被设置为接收该燃烧气体并且使该气体膨胀以产生驱动压缩机的机械能;
换热器,被设置为接收来自涡轮的废气和从压缩机排出的混和物,并且使得在它们之间发生热交换以使得该混和物在进入催化燃烧室之前得到预加热;以及
如下的系统:可以进行操作以将一部分涡轮废气导入压缩机,从而由所述废气来提高从压缩机排出的混和物的温度,由此提高催化燃烧室的入口温度。
2、根据权利要求1所述的换热气体涡轮发动机系统,其中,所述可以进行操作以将一部分涡轮废气导入压缩机的系统包括:可以对其进行控制以可变地调节进入压缩机的废气的流速的阀;以及可操作地连接到所述阀的控制系统。
3、根据权利要求2所述的换热气体涡轮发动机系统,其中,所述控制系统包括可以进行操作以对表示燃烧室入口温度的参数进行测量的传感器,所述控制系统可以进行操作以按使得燃烧室入口温度超过催化燃烧室的正常工作所必需的预定最低温度的方式来控制所述阀。
4、根据权利要求3所述的换热气体涡轮发动机系统,其中,所述控制系统进一步包括可以进行操作以测量空气流速的传感器和可以进行操作以测量燃料流速的传感器、以及可以进行操作以测量换热器入口温度的传感器,所述控制系统可以进行操作以基于空气、燃料和废气的流速来确定进入燃烧室的混和物的燃料/空气比,并控制进入压缩机的废气的流速以按使得不超过最高允许换热器温度的方式针对所述燃料/空气比来对燃烧室入口温度进行优化。
5、根据权利要求4所述的换热气体涡轮发动机系统,其中,所述控制系统进一步可以进行操作以按使得发动机的效率最大的方式针对所述燃料/空气比来控制燃烧室入口温度。
6、根据权利要求5所述的换热气体涡轮发动机系统,进一步包括用于确定来自发动机的排放级别的装置,并且其中,所述控制系统可以进行操作以按使得不超过最大允许排放极限的方式针对所述燃料/空气比来控制燃烧室入口温度。
7、根据权利要求6所述的换热气体涡轮发动机系统,其中,所述用于确定排放级别的装置包括排放物传感器。
8、根据权利要求5所述的换热气体涡轮发动机系统,进一步包括用于确定来自发动机的排放级别的装置,并且其中,所述控制系统可以进行操作以按使得排放最少的方式针对所述燃料/空气比来控制燃烧室入口温度。
9、根据权利要求2所述的换热气体涡轮发动机系统,其中,所述阀位于换热器的下游,从而废气在导入压缩机之前在换热器中冷却。
10、根据权利要求2所述的换热气体涡轮发动机系统,其中,所述阀位于换热器的上游,从而所述一部分废气绕过换热器并且随后导入压缩机。
11、根据权利要求1所述的换热气体涡轮发动机系统,进一步包括被设置为由所述涡轮驱动的发电机。
12、一种用于操作气体涡轮发动机的方法,包括以下步骤:
在压缩机中压缩空气;
将燃料与来自压缩机的经压缩空气相混和,以产生空气一燃料混和物;
在催化燃烧室中燃烧所述空气一燃料混和物,以产生灼热的燃烧气体;
在涡轮中使该燃烧气体膨胀以产生机械能,并使用该机械能来驱动压缩机;
使来自涡轮的废气经过换热器,并且使所述空气一燃料混和物经过该换热器,以通过与所述废气的热交换来预加热所述混和物;
将来自涡轮的废气中的一部分废气导入压缩机以提高燃烧室的入口温度;并且
其中,使燃料与空气和所述一部分废气一起经过压缩机。
13、根据权利要求12所述的方法,其中,在压缩机的上游完成废气与燃料的混和。
14、根据权利要求13所述的方法,其中,将经混和的废气和燃料与空气分离地导入压缩机。
15、根据权利要求12所述的方法,其中,在压缩机的上游完成燃料与空气的至少部分混和。
16、根据权利要求15所述的方法,其中,将经混和的燃料和空气与废气分离地导入压缩机。
17、根据权利要求12所述的方法,其中,将空气、燃料和废气彼此分离地导入压缩机,并且在压缩机中进行混和。
18、根据权利要求12所述的方法,进一步包括对导入压缩机的废气的流速进行控制的步骤。
19、根据权利要求18所述的方法,其中,所述控制步骤包括响应于与发动机相关联的参数来控制流速的步骤。
20、根据权利要求19所述的方法,其中,所述控制步骤包括响应于测量到的燃烧室入口温度来控制流速的步骤。
21、根据权利要求20所述的方法,其中,按总是将燃烧室入口温度保持为高于催化燃烧室的正常工作所必需的预定最低温度的方式对流速进行控制。
22、根据权利要求21所述的方法,进一步包括以下步骤:推导进入燃烧室的混和物的燃料/空气比,并且如下地控制燃烧室入口温度:按使得在任何时候都不超过最高允许换热器温度的方式针对所述燃料/空气比来对燃烧室入口温度进行优化。
23、根据权利要求21所述的方法,进一步包括以下步骤:推导进入燃烧室的混和物的燃料/空气比,并且如下地控制燃烧室入口温度:按使得不超过最大允许排放极限的方式针对所述燃料/空气比来对燃烧室入口温度进行优化。
24、根据权利要求23所述的方法,进一步包括以下步骤:推导进入燃烧室的混和物的燃料/空气比,并且如下地控制燃烧室入口温度:按使得发动机效率最大的方式针对所述燃料/空气比来对燃烧室入口温度进行优化。
25、根据权利要求21所述的方法,进一步包括以下步骤:推导进入燃烧室的混和物的燃料/空气比,并且如下地控制燃烧室入口温度:按使得排放最少的方式针对所述燃料/空气比来对燃烧室入口温度进行优化。
26、根据权利要求25所述的方法,进一步包括以下步骤:推导进入燃烧室的混和物的燃料/空气比,并且如下地控制燃烧室入口温度:按使得效率最大的方式针对所述燃料/空气比来对燃烧室入口温度进行优化。
27、根据权利要求19所述的方法,其中,所述控制步骤包括对流速进行控制以补偿环境温度的变化的步骤。
28、根据权利要求27所述的方法,其中,当环境温度下降时,导入压缩机的废气的相对份额增加。
29、根据权利要求19所述的方法,其中,所述控制步骤包括对流速进行控制以补偿相对发动机载荷的变化的步骤。
30、根据权利要求29所述的方法,其中,当相对发动机载荷下降时,导入压缩机的废气的相对份额增加。
31、根据权利要求12所述的方法,其中,在换热器的下游点将所述导入压缩机的一部分废气与其余废气分离。
32、根据权利要求12所述的方法,其中,在换热器的上游点将所述导入压缩机的一部分废气与其余废气分离,从而所述一部分废气绕过换热器。
33、根据权利要求12所述的方法,进一步包括用所述涡轮来驱动一发电机的步骤。
CNB2004800286906A 2003-07-31 2004-07-23 采用催化燃烧的换热气体涡轮发动机系统和方法 Expired - Fee Related CN100432536C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/631,977 US7007487B2 (en) 2003-07-31 2003-07-31 Recuperated gas turbine engine system and method employing catalytic combustion
US10/631,977 2003-07-31

Publications (2)

Publication Number Publication Date
CN1864032A true CN1864032A (zh) 2006-11-15
CN100432536C CN100432536C (zh) 2008-11-12

Family

ID=34104237

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800286906A Expired - Fee Related CN100432536C (zh) 2003-07-31 2004-07-23 采用催化燃烧的换热气体涡轮发动机系统和方法

Country Status (8)

Country Link
US (1) US7007487B2 (zh)
EP (1) EP1658464A1 (zh)
JP (1) JP2007500815A (zh)
KR (1) KR20060125677A (zh)
CN (1) CN100432536C (zh)
CA (1) CA2534429A1 (zh)
RU (1) RU2347143C2 (zh)
WO (1) WO2005012793A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100422639C (zh) * 2006-12-08 2008-10-01 北京建筑工程学院 催化燃烧控制系统
CN102265004A (zh) * 2008-12-24 2011-11-30 阿尔斯通技术有限公司 具有co2捕捉的动力设备
CN102562304A (zh) * 2012-02-09 2012-07-11 中煤科工集团重庆研究院 催化燃烧燃气轮机发电装置
CN102979621A (zh) * 2011-08-25 2013-03-20 通用电气公司 发电设备和操作方法
US8534073B2 (en) 2008-10-27 2013-09-17 General Electric Company System and method for heating a fuel using an exhaust gas recirculation system
CN103958852A (zh) * 2011-03-22 2014-07-30 埃克森美孚上游研究公司 用于控制低排放涡轮系统中的化学计量燃烧的系统和方法
CN105240132A (zh) * 2015-09-15 2016-01-13 广州粤能电力科技开发有限公司 多燃气轮发电机组的负荷协调控制方法和系统
TWI564475B (zh) * 2010-07-02 2017-01-01 艾克頌美孚上游研究公司 低排放之三循環動力產生系統和方法
CN106621702A (zh) * 2017-03-23 2017-05-10 合肥工业大学 一种有机废气浓缩处理装置
CN107407208A (zh) * 2014-11-12 2017-11-28 八河流资产有限责任公司 适用于发电系统和方法的控制系统和方法
CN107514306A (zh) * 2016-06-16 2017-12-26 上海汽车集团股份有限公司 发动机、温度控制系统及其换热组件
CN107917433A (zh) * 2017-11-22 2018-04-17 苏州克兰茨环境科技有限公司 一种微型涡轮机有机废气处理装置
CN113167475A (zh) * 2018-11-13 2021-07-23 庄信万丰股份有限公司 电加热的催化燃烧器

Families Citing this family (176)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2399600B (en) * 2001-10-26 2005-12-14 Alstom Technology Ltd Gas turbine adapted to operate with a high exhaust gas recirculation rate and a method for operation thereof
EP1512855A1 (de) * 2003-09-04 2005-03-09 ALSTOM Technology Ltd Kraftwerksanlage, und Verfahren zum Betrieb
WO2006101987A2 (en) * 2005-03-17 2006-09-28 Southwest Research Institute Use of recirculated exhaust gas in a burner-based exhaust generation system for reduced fuel consumption and for cooling
US20060219227A1 (en) * 2005-04-05 2006-10-05 Eric Ingersoll Toroidal intersecting vane supercharger
US7765810B2 (en) * 2005-11-15 2010-08-03 Precision Combustion, Inc. Method for obtaining ultra-low NOx emissions from gas turbines operating at high turbine inlet temperatures
US20080078178A1 (en) * 2006-07-20 2008-04-03 Jay Johnson Use of exhaust in thermal devices
US7997077B2 (en) * 2006-11-06 2011-08-16 Harlequin Motor Works, Inc. Energy retriever system
GB2446810C (en) * 2007-02-22 2016-01-20 Bowman Power Group Ltd An auxiliary power generation apparatus
US8393160B2 (en) 2007-10-23 2013-03-12 Flex Power Generation, Inc. Managing leaks in a gas turbine system
US8671658B2 (en) * 2007-10-23 2014-03-18 Ener-Core Power, Inc. Oxidizing fuel
US8056318B2 (en) * 2007-11-08 2011-11-15 General Electric Company System for reducing the sulfur oxides emissions generated by a turbomachine
US8572944B2 (en) * 2007-12-19 2013-11-05 General Electric Company Prime mover for an exhaust gas recirculation system
WO2009082275A1 (en) * 2007-12-20 2009-07-02 Volvo Aero Corporation A gas turbine engine
WO2009121008A2 (en) * 2008-03-28 2009-10-01 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
CA2934541C (en) 2008-03-28 2018-11-06 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
US7997076B2 (en) * 2008-03-31 2011-08-16 Cummins, Inc. Rankine cycle load limiting through use of a recuperator bypass
DE102008021450A1 (de) 2008-04-29 2009-11-05 Rolls-Royce Deutschland Ltd & Co Kg Thermoelektrischer Generator mit Konzentrationselement
US7866157B2 (en) * 2008-05-12 2011-01-11 Cummins Inc. Waste heat recovery system with constant power output
US8397482B2 (en) * 2008-05-15 2013-03-19 General Electric Company Dry 3-way catalytic reduction of gas turbine NOx
US8015793B2 (en) * 2008-07-18 2011-09-13 Siemens Energy, Inc. Fuel heating via exhaust gas extraction
KR101324900B1 (ko) * 2008-10-01 2013-11-04 미츠비시 쥬고교 가부시키가이샤 가스 터빈 장치
EP2344738B1 (en) 2008-10-14 2019-04-03 Exxonmobil Upstream Research Company Method and system for controlling the products of combustion
US7926256B2 (en) 2008-10-27 2011-04-19 General Electric Company Inlet system for an EGR system
US8701413B2 (en) * 2008-12-08 2014-04-22 Ener-Core Power, Inc. Oxidizing fuel in multiple operating modes
CH700310A1 (de) * 2009-01-23 2010-07-30 Alstom Technology Ltd Verfahren zur CO2 Abscheidung aus einem Kombikraftwerk und Kombikraftwerk mit einer Gasturbine mit Strömungsteilung und Rezirkulation.
US20100326084A1 (en) * 2009-03-04 2010-12-30 Anderson Roger E Methods of oxy-combustion power generation using low heating value fuel
US20100275611A1 (en) * 2009-05-01 2010-11-04 Edan Prabhu Distributing Fuel Flow in a Reaction Chamber
US8621869B2 (en) 2009-05-01 2014-01-07 Ener-Core Power, Inc. Heating a reaction chamber
US8510013B2 (en) * 2009-05-04 2013-08-13 General Electric Company Gas turbine shutdown
US8437941B2 (en) 2009-05-08 2013-05-07 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems
US9354618B2 (en) 2009-05-08 2016-05-31 Gas Turbine Efficiency Sweden Ab Automated tuning of multiple fuel gas turbine combustion systems
US9267443B2 (en) 2009-05-08 2016-02-23 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems
US9671797B2 (en) 2009-05-08 2017-06-06 Gas Turbine Efficiency Sweden Ab Optimization of gas turbine combustion systems low load performance on simple cycle and heat recovery steam generator applications
AU2010256517B2 (en) 2009-06-05 2016-03-10 Exxonmobil Upstream Research Company Combustor systems and methods for using same
US8544274B2 (en) * 2009-07-23 2013-10-01 Cummins Intellectual Properties, Inc. Energy recovery system using an organic rankine cycle
US8627663B2 (en) * 2009-09-02 2014-01-14 Cummins Intellectual Properties, Inc. Energy recovery system and method using an organic rankine cycle with condenser pressure regulation
EA023673B1 (ru) 2009-11-12 2016-06-30 Эксонмобил Апстрим Рисерч Компани Система и способ для низкоэмиссионного производства электроэнергии и извлечения углеводородов
EP2547888A4 (en) 2010-03-15 2016-03-16 Ener Core Power Inc TREATMENT OF FUEL AND WATER
DE102011102720B4 (de) * 2010-05-26 2021-10-28 Ansaldo Energia Switzerland AG Kraftwerk mit kombiniertem Zyklus und mit Abgasrückführung
CH703218A1 (de) * 2010-05-26 2011-11-30 Alstom Technology Ltd Verfahren zum Betreiben eines Gas-und-Dampf-Kombikraftwerk mit Rauchgasrezirkulation sowie Kraftwerk.
US20110302925A1 (en) * 2010-06-14 2011-12-15 Vykson Limited Method and Apparatus for Controlling the Operation of a Gas Turbine
JP5913305B2 (ja) 2010-07-02 2016-04-27 エクソンモービル アップストリーム リサーチ カンパニー 低エミッション発電システム及び方法
TWI593878B (zh) 2010-07-02 2017-08-01 艾克頌美孚上游研究公司 用於控制燃料燃燒之系統及方法
MX341981B (es) 2010-07-02 2016-09-08 Exxonmobil Upstream Res Company * Combustion estequiometrica con recirculacion de gas de escape y enfriador de contacto directo.
JP5906555B2 (ja) 2010-07-02 2016-04-20 エクソンモービル アップストリーム リサーチ カンパニー 排ガス再循環方式によるリッチエアの化学量論的燃焼
WO2012019161A1 (en) 2010-08-05 2012-02-09 Cummins Intellectual Properties, Inc. Emissions-critical charge cooling using an organic rankine cycle
CN105736150B (zh) 2010-08-06 2018-03-06 埃克森美孚上游研究公司 优化化学计量燃烧的系统和方法
US9399950B2 (en) 2010-08-06 2016-07-26 Exxonmobil Upstream Research Company Systems and methods for exhaust gas extraction
CN103180553B (zh) 2010-08-09 2015-11-25 康明斯知识产权公司 包括兰金循环rc子系统的废热回收系统和内燃机系统
WO2012021757A2 (en) 2010-08-11 2012-02-16 Cummins Intellectual Property, Inc. Split radiator design for heat rejection optimization for a waste heat recovery system
CN103180554B (zh) 2010-08-13 2016-01-20 康明斯知识产权公司 使用换能装置旁通阀进行兰金循环冷凝器压力控制
WO2012088532A1 (en) 2010-12-23 2012-06-28 Cummins Intellectual Property, Inc. System and method for regulating egr cooling using a rankine cycle
US8826662B2 (en) 2010-12-23 2014-09-09 Cummins Intellectual Property, Inc. Rankine cycle system and method
DE102012000100A1 (de) 2011-01-06 2012-07-12 Cummins Intellectual Property, Inc. Rankine-kreisprozess-abwärmenutzungssystem
US9021808B2 (en) 2011-01-10 2015-05-05 Cummins Intellectual Property, Inc. Rankine cycle waste heat recovery system
US9074530B2 (en) * 2011-01-13 2015-07-07 General Electric Company Stoichiometric exhaust gas recirculation and related combustion control
EP2665907B1 (en) 2011-01-20 2017-05-10 Cummins Intellectual Properties, Inc. Rankine cycle waste heat recovery system and method with improved egr temperature control
US8707914B2 (en) 2011-02-28 2014-04-29 Cummins Intellectual Property, Inc. Engine having integrated waste heat recovery
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
TWI593872B (zh) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 整合系統及產生動力之方法
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
TWI563164B (en) * 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated systems incorporating inlet compressor oxidant control apparatus and related methods of generating power
US9057028B2 (en) 2011-05-25 2015-06-16 Ener-Core Power, Inc. Gasifier power plant and management of wastes
US8266883B2 (en) 2011-08-25 2012-09-18 General Electric Company Power plant start-up method and method of venting the power plant
US8205455B2 (en) 2011-08-25 2012-06-26 General Electric Company Power plant and method of operation
US8266913B2 (en) 2011-08-25 2012-09-18 General Electric Company Power plant and method of use
US8453462B2 (en) 2011-08-25 2013-06-04 General Electric Company Method of operating a stoichiometric exhaust gas recirculation power plant
US8245493B2 (en) * 2011-08-25 2012-08-21 General Electric Company Power plant and control method
US9127598B2 (en) 2011-08-25 2015-09-08 General Electric Company Control method for stoichiometric exhaust gas recirculation power plant
US8713947B2 (en) 2011-08-25 2014-05-06 General Electric Company Power plant with gas separation system
US8347600B2 (en) 2011-08-25 2013-01-08 General Electric Company Power plant and method of operation
US8453461B2 (en) 2011-08-25 2013-06-04 General Electric Company Power plant and method of operation
US9279364B2 (en) 2011-11-04 2016-03-08 Ener-Core Power, Inc. Multi-combustor turbine
US9273606B2 (en) 2011-11-04 2016-03-01 Ener-Core Power, Inc. Controls for multi-combustor turbine
JP5183795B1 (ja) * 2011-12-05 2013-04-17 川崎重工業株式会社 希薄燃料吸入ガスタービン
CN104428490B (zh) 2011-12-20 2018-06-05 埃克森美孚上游研究公司 提高的煤层甲烷生产
US9206980B2 (en) 2012-03-09 2015-12-08 Ener-Core Power, Inc. Gradual oxidation and autoignition temperature controls
US9328660B2 (en) 2012-03-09 2016-05-03 Ener-Core Power, Inc. Gradual oxidation and multiple flow paths
US8926917B2 (en) 2012-03-09 2015-01-06 Ener-Core Power, Inc. Gradual oxidation with adiabatic temperature above flameout temperature
US8844473B2 (en) 2012-03-09 2014-09-30 Ener-Core Power, Inc. Gradual oxidation with reciprocating engine
BR112014022252B8 (pt) * 2012-03-09 2022-12-20 Ener Core Power Inc Oxidação gradual com transferência de calor
US9567903B2 (en) 2012-03-09 2017-02-14 Ener-Core Power, Inc. Gradual oxidation with heat transfer
US9328916B2 (en) 2012-03-09 2016-05-03 Ener-Core Power, Inc. Gradual oxidation with heat control
US9359947B2 (en) 2012-03-09 2016-06-07 Ener-Core Power, Inc. Gradual oxidation with heat control
US9194584B2 (en) 2012-03-09 2015-11-24 Ener-Core Power, Inc. Gradual oxidation with gradual oxidizer warmer
US9273608B2 (en) 2012-03-09 2016-03-01 Ener-Core Power, Inc. Gradual oxidation and autoignition temperature controls
US9726374B2 (en) 2012-03-09 2017-08-08 Ener-Core Power, Inc. Gradual oxidation with flue gas
US8980193B2 (en) 2012-03-09 2015-03-17 Ener-Core Power, Inc. Gradual oxidation and multiple flow paths
US9381484B2 (en) 2012-03-09 2016-07-05 Ener-Core Power, Inc. Gradual oxidation with adiabatic temperature above flameout temperature
US8671917B2 (en) 2012-03-09 2014-03-18 Ener-Core Power, Inc. Gradual oxidation with reciprocating engine
US9359948B2 (en) 2012-03-09 2016-06-07 Ener-Core Power, Inc. Gradual oxidation with heat control
US9347664B2 (en) 2012-03-09 2016-05-24 Ener-Core Power, Inc. Gradual oxidation with heat control
US8807989B2 (en) 2012-03-09 2014-08-19 Ener-Core Power, Inc. Staged gradual oxidation
US9267432B2 (en) 2012-03-09 2016-02-23 Ener-Core Power, Inc. Staged gradual oxidation
US9234660B2 (en) 2012-03-09 2016-01-12 Ener-Core Power, Inc. Gradual oxidation with heat transfer
US9017618B2 (en) 2012-03-09 2015-04-28 Ener-Core Power, Inc. Gradual oxidation with heat exchange media
US9534780B2 (en) 2012-03-09 2017-01-03 Ener-Core Power, Inc. Hybrid gradual oxidation
US9371993B2 (en) 2012-03-09 2016-06-21 Ener-Core Power, Inc. Gradual oxidation below flameout temperature
US8980192B2 (en) 2012-03-09 2015-03-17 Ener-Core Power, Inc. Gradual oxidation below flameout temperature
US9353946B2 (en) 2012-03-09 2016-05-31 Ener-Core Power, Inc. Gradual oxidation with heat transfer
US9068506B2 (en) 2012-03-30 2015-06-30 Pratt & Whitney Canada Corp. Turbine engine heat recuperator system
US20130269355A1 (en) * 2012-04-12 2013-10-17 General Electric Company Method and system for controlling an extraction pressure and temperature of a stoichiometric egr system
US20130269357A1 (en) * 2012-04-12 2013-10-17 General Electric Company Method and system for controlling a secondary flow system
US20130269356A1 (en) * 2012-04-12 2013-10-17 General Electric Company Method and system for controlling a stoichiometric egr system on a regenerative reheat system
US20130269360A1 (en) * 2012-04-12 2013-10-17 General Electric Company Method and system for controlling a powerplant during low-load operations
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
KR101915196B1 (ko) * 2012-05-18 2018-11-05 한화에어로스페이스 주식회사 가스터빈 시스템
US8893495B2 (en) 2012-07-16 2014-11-25 Cummins Intellectual Property, Inc. Reversible waste heat recovery system and method
US9435258B2 (en) * 2012-10-15 2016-09-06 General Electric Company System and method for heating combustor fuel
US9470145B2 (en) 2012-10-15 2016-10-18 General Electric Company System and method for heating fuel in a combined cycle gas turbine
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US10100741B2 (en) 2012-11-02 2018-10-16 General Electric Company System and method for diffusion combustion with oxidant-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9140209B2 (en) 2012-11-16 2015-09-22 Cummins Inc. Rankine cycle waste heat recovery system
US9188285B2 (en) * 2012-12-24 2015-11-17 General Electric Company Systems and methods for oxidation of boil-off gas
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
RU2523510C1 (ru) * 2013-02-19 2014-07-20 Николай Евгеньевич Староверов Способ форсажа газотурбинного двигателя
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
TW201502356A (zh) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co 氣渦輪機排氣中氧之減少
US10221762B2 (en) 2013-02-28 2019-03-05 General Electric Company System and method for a turbine combustor
TW201500635A (zh) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co 處理廢氣以供用於提高油回收
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
CN105008499A (zh) 2013-03-08 2015-10-28 埃克森美孚上游研究公司 发电和从甲烷水合物中回收甲烷
US9845711B2 (en) 2013-05-24 2017-12-19 Cummins Inc. Waste heat recovery system
US9145795B2 (en) 2013-05-30 2015-09-29 General Electric Company System and method of waste heat recovery
US9587520B2 (en) 2013-05-30 2017-03-07 General Electric Company System and method of waste heat recovery
US9593597B2 (en) 2013-05-30 2017-03-14 General Electric Company System and method of waste heat recovery
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
TWI654368B (zh) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
WO2015017873A2 (en) 2013-08-02 2015-02-05 Gill Martin Gordon Multi-cycle power generator
US9371776B2 (en) * 2013-08-20 2016-06-21 Darren Levine Dual flow air injection intraturbine engine and method of operating same
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
JP6384916B2 (ja) * 2014-09-30 2018-09-05 東芝エネルギーシステムズ株式会社 ガスタービン設備
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
US10578307B2 (en) * 2015-10-09 2020-03-03 Dresser-Rand Company System and method for operating a gas turbine assembly including heating a reaction/oxidation chamber
KR102086876B1 (ko) * 2015-11-27 2020-03-10 현대중공업 주식회사 배기가스 온도 조절 기능이 부가된 엔진
US10033316B2 (en) * 2016-09-30 2018-07-24 General Electric Company System and method for model based turbine shaft power predictor
KR20200104330A (ko) * 2017-12-22 2020-09-03 지오바니 다′리엔조 보일러용 열병합 발전 시스템
EP3561269A1 (en) * 2018-04-23 2019-10-30 Siemens Aktiengesellschaft Combustion system control
RU195793U1 (ru) * 2019-11-21 2020-02-05 Хайдер Ибрагим Куса Мобильное зарядное устройство
CN110966059B (zh) * 2019-12-04 2022-04-26 中国船舶重工集团公司第七一九研究所 燃煤发电系统及方法
RU2766496C2 (ru) * 2019-12-24 2022-03-15 Фролова Татьяна Марковна Устройство вихревого газового компрессора для комбинированного воздушно-реактивного двигателя

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3785145A (en) * 1971-11-10 1974-01-15 Gen Motors Corp Gas turbine power plant
US3977182A (en) * 1975-06-20 1976-08-31 General Motors Corporation Gas turbine control
IT1063699B (it) * 1975-09-16 1985-02-11 Westinghouse Electric Corp Metodo di avviamento di una turbina a gas di grande potenza con un combustore catalitico
US4204401A (en) * 1976-07-19 1980-05-27 The Hydragon Corporation Turbine engine with exhaust gas recirculation
US4133171A (en) * 1977-03-07 1979-01-09 Hydragon Corporation Temperature stratified turbine compressors
US4271664A (en) * 1977-07-21 1981-06-09 Hydragon Corporation Turbine engine with exhaust gas recirculation
NL8001472A (nl) * 1980-03-12 1981-10-01 Tno Installatie voor warmteterugwinning bij verbrandingsmachine met compressor.
US4754607A (en) * 1986-12-12 1988-07-05 Allied-Signal Inc. Power generating system
JPH05346207A (ja) * 1992-06-12 1993-12-27 Honda Motor Co Ltd 触媒燃焼器
JPH06108879A (ja) 1992-09-30 1994-04-19 Toyota Motor Corp 触媒燃焼器を用いたガスタービン
AU681271B2 (en) 1994-06-07 1997-08-21 Westinghouse Electric Corporation Method and apparatus for sequentially staged combustion using a catalyst
JP3030689B2 (ja) * 1995-09-08 2000-04-10 本田技研工業株式会社 ガスタービンエンジン
US5826429A (en) * 1995-12-22 1998-10-27 General Electric Co. Catalytic combustor with lean direct injection of gas fuel for low emissions combustion and methods of operation
US6065957A (en) * 1996-03-21 2000-05-23 Denso Corporation Catalyst combustion apparatus
GB9611235D0 (en) * 1996-05-30 1996-07-31 Rolls Royce Plc A gas turbine engine combustion chamber and a method of operation thereof
SE9602688L (sv) * 1996-07-08 1998-01-09 Volvo Ab Katalytisk brännkammare, samt förfarande för tändning och reglering av den katalytiska brännkammaren
JPH1082306A (ja) * 1996-09-06 1998-03-31 Ishikawajima Harima Heavy Ind Co Ltd ガス化複合発電設備
JP3794168B2 (ja) * 1997-06-27 2006-07-05 株式会社日立製作所 排気再循環型コンバインドプラント
US6107693A (en) * 1997-09-19 2000-08-22 Solo Energy Corporation Self-contained energy center for producing mechanical, electrical, and heat energy
US6141953A (en) * 1998-03-04 2000-11-07 Solo Energy Corporation Multi-shaft reheat turbine mechanism for generating power
US20040119291A1 (en) * 1998-04-02 2004-06-24 Capstone Turbine Corporation Method and apparatus for indirect catalytic combustor preheating
US6095793A (en) * 1998-09-18 2000-08-01 Woodward Governor Company Dynamic control system and method for catalytic combustion process and gas turbine engine utilizing same
US6205768B1 (en) * 1999-05-05 2001-03-27 Solo Energy Corporation Catalytic arrangement for gas turbine combustor
US6513318B1 (en) * 2000-11-29 2003-02-04 Hybrid Power Generation Systems Llc Low emissions gas turbine engine with inlet air heating
US6526757B2 (en) * 2001-02-13 2003-03-04 Robin Mackay Multi pressure mode gas turbine
US6606864B2 (en) 2001-02-13 2003-08-19 Robin Mackay Advanced multi pressure mode gas turbine
WO2002084091A1 (fr) * 2001-04-09 2002-10-24 Hitachi, Ltd. Générateur de puissance à turbine à gaz
JP3936160B2 (ja) * 2001-09-17 2007-06-27 株式会社タクマ ガスタービン発電装置及びこれに用いる混合ガス燃焼装置
CH695793A5 (de) * 2001-10-01 2006-08-31 Alstom Technology Ltd Verbrennungsverfahren, insbesondere für Verfahren zur Erzeugung von elektrischem Strom und/oder von Wärme.
GB2399600B (en) 2001-10-26 2005-12-14 Alstom Technology Ltd Gas turbine adapted to operate with a high exhaust gas recirculation rate and a method for operation thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100422639C (zh) * 2006-12-08 2008-10-01 北京建筑工程学院 催化燃烧控制系统
US8534073B2 (en) 2008-10-27 2013-09-17 General Electric Company System and method for heating a fuel using an exhaust gas recirculation system
CN102265004A (zh) * 2008-12-24 2011-11-30 阿尔斯通技术有限公司 具有co2捕捉的动力设备
TWI564475B (zh) * 2010-07-02 2017-01-01 艾克頌美孚上游研究公司 低排放之三循環動力產生系統和方法
CN103958852A (zh) * 2011-03-22 2014-07-30 埃克森美孚上游研究公司 用于控制低排放涡轮系统中的化学计量燃烧的系统和方法
TWI564474B (zh) * 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法
CN102979621B (zh) * 2011-08-25 2015-07-01 通用电气公司 发电设备和操作方法
CN102979621A (zh) * 2011-08-25 2013-03-20 通用电气公司 发电设备和操作方法
CN102562304A (zh) * 2012-02-09 2012-07-11 中煤科工集团重庆研究院 催化燃烧燃气轮机发电装置
CN107407208B (zh) * 2014-11-12 2020-01-10 八河流资产有限责任公司 适用于发电系统和方法的控制系统和方法
CN107407208A (zh) * 2014-11-12 2017-11-28 八河流资产有限责任公司 适用于发电系统和方法的控制系统和方法
CN105240132A (zh) * 2015-09-15 2016-01-13 广州粤能电力科技开发有限公司 多燃气轮发电机组的负荷协调控制方法和系统
CN107514306A (zh) * 2016-06-16 2017-12-26 上海汽车集团股份有限公司 发动机、温度控制系统及其换热组件
CN106621702A (zh) * 2017-03-23 2017-05-10 合肥工业大学 一种有机废气浓缩处理装置
CN106621702B (zh) * 2017-03-23 2023-05-09 合肥工业大学 一种有机废气浓缩处理装置
CN107917433A (zh) * 2017-11-22 2018-04-17 苏州克兰茨环境科技有限公司 一种微型涡轮机有机废气处理装置
CN113167475A (zh) * 2018-11-13 2021-07-23 庄信万丰股份有限公司 电加热的催化燃烧器
CN113167475B (zh) * 2018-11-13 2022-11-29 庄信万丰股份有限公司 电加热的催化燃烧器

Also Published As

Publication number Publication date
US20050022499A1 (en) 2005-02-03
RU2347143C2 (ru) 2009-02-20
US7007487B2 (en) 2006-03-07
CN100432536C (zh) 2008-11-12
WO2005012793A1 (en) 2005-02-10
EP1658464A1 (en) 2006-05-24
RU2006106186A (ru) 2006-08-27
JP2007500815A (ja) 2007-01-18
KR20060125677A (ko) 2006-12-06
CA2534429A1 (en) 2005-02-10

Similar Documents

Publication Publication Date Title
CN100432536C (zh) 采用催化燃烧的换热气体涡轮发动机系统和方法
CN100353033C (zh) 电力产生系统和方法
CN1849444A (zh) 多转子涡轮发电机系统及控制方法
JP5508763B2 (ja) 排ガス再循環及び再熱を有するタービンシステム
CN102588113B (zh) 燃气轮机发动机及其燃料控制系统以及分析和控制燃气轮机发动机的排气的组分的方法
US6412279B1 (en) Twin turbine exhaust gas re-circulation system having a second stage variable nozzle turbine
EP1752709A2 (en) Reheat combustion in gas turbine systems
US8240152B2 (en) Control systems and method for controlling a load point of a gas turbine engine
EP1917469B1 (en) Method using a cogeneration system with oxygen-enriched air assisting system
US6418721B1 (en) Two turbocharger exhaust gas re-circulation system having a first stage variable nozzle turbine
US6141955A (en) Gas turbine generator with dual steam-injected turbines
US5743081A (en) Gas turbine engine
AU2016284752B2 (en) Method and equipment for combustion of ammonia
CN110230538A (zh) 一种柴油引燃机组及其运行控制方法
US6460519B1 (en) Twin turbine exhaust gas re-circulation system having fixed geometry turbines
EP1028237B1 (en) Gas turbine engine
CN108700288B (zh) 用于氨气燃烧的方法和设备
GB2377973A (en) Gas bleed system for a gas turbine
Coelho et al. Cogeneration—the development and implementation of a cogeneration system for a chemical plant, using a reciprocating heavy fuel oil engine with a supplementary fired boiler
MXPA06001199A (en) Recuperated gas turbine engine system and method employing catalytic combustion
Holtman Testing of a low specific fuel consumption turbocompound engine

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081112

Termination date: 20110723