CN1859976A - 燃料电池阴极催化剂 - Google Patents

燃料电池阴极催化剂 Download PDF

Info

Publication number
CN1859976A
CN1859976A CNA2004800282534A CN200480028253A CN1859976A CN 1859976 A CN1859976 A CN 1859976A CN A2004800282534 A CNA2004800282534 A CN A2004800282534A CN 200480028253 A CN200480028253 A CN 200480028253A CN 1859976 A CN1859976 A CN 1859976A
Authority
CN
China
Prior art keywords
metal
layer
fuel battery
equivalent thickness
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2004800282534A
Other languages
English (en)
Inventor
乔治·D·韦恩斯特伦
拉多斯拉夫·阿塔纳索斯基
马克·K·德贝
格雷戈里·M·豪根
克日什托夫·A·莱温斯基
安德鲁·J·L·斯坦巴克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of CN1859976A publication Critical patent/CN1859976A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • B01J35/50
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8867Vapour deposition
    • H01M4/8871Sputtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明提供一种燃料电池阴极催化剂,包括含有微结构化载体须晶的纳米化结构元件,所述微结构化载体须晶带有纳米级催化剂粒子。通过交替施加第一和第二层制备所述纳米级催化剂粒子,所述第一层包括铂,所述第二层是铁和第二金属的合金或紧密混合物,所述第二金属选自除了铂和铁之外的VIb族金属、VIIb族金属和VIIIb族金属,其中所述第二层中铁与所述第二金属的原子比为0~10,其中所述第一层与所述第二层的平面等值厚度比为0.3~5,和其中所述第一和第二层的平均双层平面等值厚度小于100。也提供一种制备这种纳米级催化剂粒子的方法,包括交替真空沉积铂和真空沉积铁和第二金属合金或紧密混合物的步骤。

Description

燃料电池阴极催化剂
本发明是通过DOE授予的政府支持项目,合作协定为DE-FC02-99EE50582。政府对本发明具有一定的权利。
发明领域
本发明涉及包括纳米结构的催化剂,纳米结构由沉积的铂和在微结构化载体上的第二层的交互层形成。催化剂用作燃料电池阴极催化剂。
背景技术
美国专利5,879,827公开包括针状的微结构化载体须晶的纳米化结构元件,载体须晶带有针状的纳米级催化剂粒子。催化剂粒子可包含不同催化剂材料的交互层,其可在组成、合金程度或结晶度方面不同。
美国专利申请公开No.2002/0004453 A1公开燃料电池电极催化剂,包括交替的含铂层和含有第二金属低价氧化物的层,该低价氧化物显示较早开始氧化CO。
美国专利5,338,430,5,879,828,6,040,077和6,319,293也涉及纳米结构催化剂。
美国专利4,812,352,5,039,561,5,176,786和5,336,558涉及微结构化。
美国专利5,079,107公开用于磷酸电解质燃料电池的催化剂,包括Pt-Ni-Co、Pt-Cr-C或Pt-Cr-Ce的三元合金。
美国专利4,985,386公开碳载体上的催化剂,该催化剂包括Pt的碳化物,选自Ni、Co、Cr和Fe的第二金属的碳化物,和任选地Mn的碳化物。该参考文献也公开通过在碳载体上还原沉积金属离子,随后合金化,并通过加热和含碳气体的施加碳化至少部分的金属,以制备碳载体催化剂。
美国专利5,593,934公开碳载体上的催化剂,该催化剂包括40-90原子%Pt、30-5原子%Mn和30-5原子%Fe。该参考文献包括对比例,据称举例说明包括50原子%Pt、25原子%Ni和25原子%Co;50原子%Pt和50原子%Mn;和单独的Pt的负载于碳的催化剂。
美国专利5,872,074公开催化剂,首先通过制备亚稳的包括微晶复合物或合金,微晶粒度为100nm或更低,然后滤除合金的一种元素制备。
Markovic等人Oxygen Reduction Reaction on Pt and Pt BimetallicSurfaces:A Selective Review,Fuel Cells,2001,Vol.1,No.2(pp.105-116)总结了Pt-Ni双金属的结晶表面和Pt-助催产剂上的反应,其通过低电势沉积方法制备,经典的冶金方法和沉积假晶的金属膜。
Paulus等人Oxygen Reductionon Carbon-Supported Pt-Ni and Pt-CoAlloy Catalysts,J.Phys.Chem.B,2002,No.106(pp.4181-4191)总结可商业得到包括Pt-Ni和Pt-Co合金的负载于碳的催化剂。
发明内容
简要地,本发明提供包括纳米化结构元件的阴极催化剂,纳米化结构元件包括带有纳米级催化剂粒子的微结构化载体须晶。通过交替施加第一和第二层制备纳米级催化剂粒子,第一层包括铂,和第二层是铁和第二金属的合金或紧密混合物,第二金属选自除了铂和铁之外的VIb族金属,VIIb族金属和VIIIb族金属,其中第二层中铁与第二金属的原子比为0~10,其中第一层与第二层的平面等值厚度比为0.3~5,和其中第一和第二层的平均双层平面等值厚度小于100。
通常,第一层与第二层的平面等值厚度比为0.3~2.5,和平均双层平面等值厚度大于8。通常第二层中铁与第二金属的原子比为0.01~10。通常第二金属选自镍、钴和锰,和最通常镍或钴。
另一个方面中,本发明提供制备纳米级催化剂粒子的方法,包括真空沉积包括铂的层和真空沉积铁和第二金属的合金或紧密混合物的交替步骤,第二金属选自除了铂和铁之外的VIb族金属,VIIb族金属和VIIIb族金属,其中第二层中铁与第二金属的原子比为0~10,其中沉积的铂和沉积的两种金属的合金或紧密混合物形成双层,双层的平均平面等值厚度小于100,其中沉积的铂与沉积的两种金属的合金或紧密混合物的平面等值厚度比为0.3~5。通常在没有氧或基本上没有氧的情况下进行真空沉积步骤。通常第二层中铁与第二金属的原子比为0.01~10。通常第二金属选自镍、钴和锰,最通常镍或钴。一种实施方式中,所述沉积步骤之后,该方法可另外包含除去或″浸出″至少部分所述两种金属的合金或紧密混合物的步骤。本发明另外提供由所述浸出法产生的纳米级催化剂粒子。
没有记载于现有技术的,通过本发明提供的,是本发明中记载的催化剂,其用作燃料电池阴极催化剂显示出改进的性能。
本发明中:
″膜电极组件″表示包括膜的结构,其包括电解质,通常聚合物电解质,和至少一种但是更通常两个或更多毗连膜的电极;
″纳米化结构元件″表示针状的,不连续的微结构化,包括在其至少部分表面上的催化剂材料;
″纳米级催化剂粒子″表示少量催化剂材料具有至少一维等于或小于大约15nm或具有微晶尺寸大约15nm或更小,以标准2-θX射线衍射扫描衍射峰的半峰宽计算。
″针状的″表示长度与平均截面宽度的比大于或等于3;″不连续的″指分离的元件,具有分离特性,但是不排除元件彼此接触;
″微观″表示至少一维等于或小于大约微米级;
″平面等值厚度″表示,关于层表面的分布,其可以不平坦地分布,和表面可为粗糙表面(例如横向交叉分布雪状物的层,或真空沉积方法中分布的原子层),假定层的总质量平坦地散布在平面上,覆盖相同的投影面积的平面作为表面(注:当忽视不平坦的特征和褶积时,由表面覆盖的投影面积小于或等于表面的总面积);
″双层平面等值厚度″表示第一层(如本发明中所述的)和相邻第二层(如本发明中所述的)的总平面等值厚度;
符号″″表示埃,不管任何印刷上的或计算机的错误。
本发明的优点是提供用于燃料电池的阴极催化剂。
附图说明
图1是用于实施本发明方法仪器的简图。
详细说明本发明涉及催化剂,当用作燃料电池阴极催化剂时,显示出乎意料的改进性能。
根据本发明的燃料电池阴极催化剂可以被用于构造燃料电池的膜电极组件(MEA′s)。MEA是质子交换膜燃料电池例如氢燃料电池的中心元件。燃料电池是电化学电池,其通过燃料例如氢和氧化剂例如氧的催化化合作用产生可用的电流。典型的MEA′s包含聚合物电解质膜(PEM)(亦称离子传导膜(ICM)),其作为固体电解质。PEM的一面与阳极电极层接触,相反的面与阴极电极层接触。典型的施加中,通过氢的氧化在阳极上形成质子,穿过PEM输送到阴极,与氧反应,产生的电流流入连接电极的外电路。各个电极层包括电化学催化剂,通常包括铂系金属。气体扩散层(GDL′s)利于往返于阳极和阴极电极材料之间的气体输送和电流的传导。GDL是多孔的和导电的,通常由碳纤维组成。GDL也称流体输送层(FTL)或散流器/集流器(DCC)。一些实施方式中,阳极和阴极电极层被用于GDL′s,致使催化剂涂敷的GDL′s插入PEM中,形成五层MEA。五层MEA的五层依次是:阳极GDL、阳极电极层,PEM,阴极电极层,和阴极GDL。在其他的实施方式中,阳极和阴极电极层被施加于PEM的两边,得到的催化剂涂覆的膜(CCM)夹在两种GDL′s之间形成五层MEA。
本发明提供燃料电池膜电极组件(MEA),包括含有纳米化结构元件的阴极催化剂,纳米化结构元件包括带有纳米级催化剂粒子的微结构化载体须晶。美国专利4,812,352,5,039,561,5,176,786和5,336,558涉及微结构化其可以被用于本发明的实施。美国专利5,338,430,5,879,827,6,040,077和6,319,293和美国专利公开2002/0004453 A1记载包括带有纳米级催化剂粒子的微结构化载体须晶的纳米化结构元件。美国专利5,879,827和美国专利公开2002/0004453 A1记载包括交互层的纳米级催化剂粒子。
根据本发明的纳米级催化剂粒子是通过交替施加第一和第二层制备的,第一层包括或基本上由铂组成,第二层是铁和第二金属的合金或紧密混合物,第二金属选自除了铂和铁之外的VIb族金属,VIIb族金属和VIIIb族金属。通常第二金属选自镍,钴和锰,最通常镍或钴。第二层中铁与第二金属的原子比为0~10,通常至少0.01,通常小于1,更通常小于4和更更通常小于0.15。第一层与第二层的重量比为0.3~5,通常小于2.5。第一和第二层的平均双层平面等值厚度小于100。平均双层平面等值厚度通常大于3和更通常大于8。交替施加第一和第二层不排除施加除第一和第二层之外的层。
根据本发明的燃料电池阴极催化剂层可以通过任何适当的方法制造。通常,根据本发明的催化剂层是,通过真空沉积包括或基本上由铂组成的层和在微结构化膜上真空沉积第二层的交替步骤制备的。
通常在没有氧或基本上没有氧的情况下进行真空沉积步骤。通常使用溅射沉积。典型显微结构化记载于美国专利4,812,352,5,039,561,5,176,786,5,336,558,5,338,430,5,879,827,6,040,077和6,319,293和美国专利公开2002/0004453 A1通过有机颜料C.I.Pigment Red 149,即N,N′-二(3,5-二甲苯基)二萘嵌苯-3,4:9,10-双(二甲酰亚胺)的热升华和真空退火制备典型显微结构化。
可以在任何适当的仪器中进行真空沉积,例如记载于美国专利5,338,430,5,879,827,5,879,828,6,040,077和6,319,293和美国专利公开2002/0004453 A1。在图1中大略地描绘一种这种仪器,其中在鼓(20)上放置基质,然后其依次在多重DC磁控溅射源(10,11,12)下旋转。基于沉积材料的厚度和在其上沉积材料的基质的表面面积,得到的结构可为层状,基本上为层状,或可包括更复杂的混合结构。
在一种实施方式中,所述沉积步骤之后,该方法可另外包含除去至少部分所述两种金属的合金或紧密混合物的步骤。可以通过任何合适的方法除去铁和/或第二金属,包括用水溶剂浸出,水溶剂可另外含有酸。很清楚在常规的燃料电池操作条件下,可从催化剂浸出一些量的铁和/或第二金属。
本发明的催化剂可用于制造燃料电池用的膜电极组件(MEA′s),例如记载于美国专利5,879,827和5,879,828。
本发明有益于燃料电池的制造和操作。
通过下列实施例进一步说明本发明的目的和优点,但是这些实施例所述的特别的材料和量及其他的条件和细节,不应该解释为过度地限制本发明。
实施例
除非另作说明,所有的试剂得自Aldrich Chemical Co.,Milwaukee,WI或通过已知的方法合成。
PR149微结构化
用作催化剂载体的纳米结构载体膜根据记载于美国专利5,338,430,4,812,352和5,039,561的方法制备,用作基质的微结构化催化剂传送基质(或MCTS))记载于美国专利6,136,412。微结构化基质上的纳米结构的芘红膜(PR149,American Hoechst Corp.,Somerset,NJ)是通过有机颜料C.I.Pigment Red 149,即N,N’-二(3,5-二甲苯基)二萘嵌苯-3,4:9,10-双(二甲酰亚胺)的热升华和真空退火制备的。沉积和退火之后,形成具有大长径比的高度取向的晶体结构,可控制的长度为约0.5~2微米,宽度约0.03~0.05微米,表面的数量密度约每平方微米30须,取向基本上垂直于下面的基质。
纳米结构催化剂
根据美国专利5,879,827和6,040,077公开的方法制备催化剂。通过使用大略地描绘于图1的真空系统的溅射沉积,在PR149微结构化上沉积催化剂材料,其中基质放置在鼓(20)上,鼓(20)依次在多重DC磁控溅射源(10,11,12)下旋转,产生基本上层状结构的构造。从两种靶交替地沉积催化剂材料,Pt靶和由单个金属或两种-金属合金组成的第二靶,选自Ni,Co,Mn,Ni80Fe20,Ni90Fe10,Ni95Fe5,Co80Fe20,和Mn80Fe20(下标表示原子比)。在任何场合,交替沉积并随后用Pt结束沉积的材料具有1.5nm的平面等值厚度。
使用的仪器记载于美国专利6,040,077″Catalyst for MembraneElectrode Assembly and Method of Making″,除PtNiFe催化剂之外,其是使用如下所述类似的体系制备的。这些沉积系统配备24英寸(61厘米)的鼓和网控制系统。
主室配备3个低温抽气泵(两个6英寸(15厘米)泵和一个16英寸(41厘米)泵,得自CTI Cryogenics),过夜停泵之后能减压到低于7×10-5Pa。这种低压有助于具有产生低氧化物含量的催化剂材料。主室配备有三个小的2×10英寸(5×25厘米)平面DC磁控管(得自Sierra Applied Sciences),每个能在6英寸(15cm)宽的网上产生均匀沉积区域。
磁控管配备有不锈钢侧面护罩,使得在催化剂沉积期间源区物质不会混合。经常地清洗护罩以降低污染靶的可能性,靶污染起因于在操作期间落到靶上的材料微粒。在以120sccm的流速引入0.7Pa的氩气的条件下,操作磁控管。通过MDX-10K AE电源给磁控管供电。
基于已知材料的密度和测量的Pt和第二靶的校正曲线,计算Pt平面等值厚度与第二层平面等值厚度的比。使用示例性样品,通过简单的重量分析法测量催化剂负载。样品沉积在涂覆有如上所述纳米结构载体的平面基质上。沉积之后,使用数字天平精确到大约一个微克,称重平面聚酰亚胺负载的纳米结构膜层的样品。然后通过用亚麻布擦从聚酰亚胺基质除掉纳米结构层,再称重基质。也用这种方法测量没有沉积金属的纳米结构的芘红膜的单位面积上的质量。不管任何其他组分的量,所有实施例负载的Pt,包括对比例,保持0.1mg/cm2不变。
催化剂表征
一些催化剂构造入膜电极组件(MEA′s),在燃料电池中测试,通常根据记载于美国专利6,136,412,5,879,827和6,040,077中的方法。由上述纳米结构催化剂、厚度大约30微米当量重大约1000的浇铸NAFION(DuPont Chemicals Wilmington,DE)离子传导膜(ICM)如美国专利公开2001/0,031,388、和涂覆碳分散涂层的碳布电极衬底材料如美国专利6,465,041述制成MEA′s。根据本发明的催化剂被用作阴极催化剂。仅有Pt的纳米结构催化剂被用作阳极催化剂。
使用层压方法制备每个50cm2MEA,该方法由通过组合夹层,将涂敷催化剂的纳米化结构元件转移到膜上组成,夹层由高光泽纸、2mil(50微米)聚酰亚胺片、阳极催化剂,浇铸NAFION膜,阴极催化剂、2密耳(50micron)聚酰亚胺和最后的高光泽纸片组成。然后组件通过热的双辊层压机,132℃(270),辊速1英尺/分钟,挤压强度足以致使催化剂转移到膜。然后剥落光泽纸和聚酰亚胺,留下3层50cm2CCM。
PtNi,PtCo,PtMn和PtNi80Fe20的CCM′s样品夹在GDL层之间,GDL层由浸渍碳的TorayTM Carbon Paper制造,切割成与CCM尺寸相配的50cm2。其余的样品用布DCC′s制成,如记载于美国专利6,465,041第3页第13-15行。
如上所述制备的五层MEA′s装在50cm2燃料电池试验电池上(FuelCell Technologies,Inc.Albuquerque,N.Mex.),用聚四氟乙烯涂敷的玻璃丝(The Furon Co.,CHR Division,New Haven Conn.)垫圈沿周长作为压缩可调限制器。当测定电池螺钉扭转到约110in-lbs时,选择垫圈厚度使得MEA厚度压缩约为30%。
氧气标准
具有50cm2活性面积的试验电池装在从Fuel Cell Technologies,Inc购买的试验站上。电池温度,气体(氢和空气或氧)压力,和气体湿度(相对湿度或露点)全部由试验站控制。通常通过65℃的电池温度和露点70℃的湿润气流操作数小时,调节MEA′s。然后通过重复的动电位极化电池并热循环,直到MEA性能最佳化和稳定,以进一步调节电池。
氧气标准或O2标准,用于在50cm2电池中,在与催化剂区域最相关的极化曲线区域内,筛选具有最小的物质传递效果的催化剂制剂。通过手动地扫描以静电模式测量氧气标准,快速地测量以降低任何高电压的持续时间。对于H2气流定在1200sccm,对于O2 600sccm,两面压力为30psig,约303kPa。
温度定在75℃,每侧面的气体湿度为100%含水饱和度。产生电压与电流密度的极化曲线图,用薄膜电阻和短路校正数据,以电压相对于电流密度的对数绘图。选取0.85伏时的电流密度,作为特别是阴极催化剂的活性的测量。
对于PtNi催化剂,用空气标准而不是氧气标准测量,H2/空气操作,环境压力,75℃,70%相对湿度。记录0.7伏时的电流密度作为阴极活性的测量。
结果列于下表。后面有″C″的实施例号是对比例。
表1-Pt/Ni80Fe20
0.85伏时的O2标准的电流密度(mA/cm2),和对于给出的沉积的双层等值厚度(行)和Pt/Ni80Fe20平面等值厚度比(列)的实施例号(括号内)。
 NA     5     10     20     50
    0.2     2(6)     2(11)     2(5)
    0.6     130(13)     182(12)     136(9)     145(8)
    1     133(3)     129(7)     134(4)
    2     132(2)     141(10)
    3     121(1)
   无限大  105(14C)
表2-Pt/Ni
0.7伏时的伏时的空气标准的电流密度(mA/cm2),和对于给出的沉积的双层等值厚度(行)和Pt/Ni平面等值厚度比(列)的实施例号(括号内)。
 NA     5     10   20   50
    0.2     3(33)     1(32)
    0.6     339(28)45(30)     455(26)   443(27)
    1     284(25)     496(20)506(24)   383(19)   537(23)
    2   497(29)47(31)
    3     465(21)54(22)     288(15)323(18)   392(16)   238(17)
   无限大  387(34C)
表3-Pt/Co
0.85伏时的O2标准的电流密度(mA/cm2),和对于给出的沉积的双层等值厚度(行)和Pt/Co平面等值厚度比(列)的实施例号(括号内)。
  NA   5     10     20   50
    0.2     2(51)     2(50)   2(52)
    0.6   20(48)     76(45)   109(49)
    1   43(46)     95(47)   63(43)
    2   93(44)     84(39)     73(40)94(42)   94(41)
    3   32(36)     43(35)45(37)   48(38)
    无限大   51(53C)
表4-Pt/Mn
0.85伏时的O2标准的电流密度(mA/cm2),和对于给出的沉积的双层等值厚度(行)和Pt/Mn平面等值厚度比(列)的实施例号(括号内)。
NA   5   10   20   50
    0.2
    0.6   102(64)   88(59)
    1   79(62)   133(57)   108(65)   45(58)
    2   130(63)107(66)   108(55)   98(61)81(67)
    3   62(56)   79(60)   93(54)   100(68)
    无限大 51(69C)
表5-Co80Fe20
0.85伏的O2标准电流密度(mA/cm2)和对于给出的沉积的双层等值厚度(行)和Pt/Co80Fe20平面等值厚度比(列)的实施例号(括号内)。
NA     5   10  20   30   50
    0.2
    0.6   159(77)   177(82)   195(83)
    1
    1.5     141(76)   162(78)   153(81)   167(85)
    2   145(84)
    3   108(79)   111(80)   152(86)
   无限大 105(14C)
表6-Pt/Mn80Fe20
0.85伏的O2标准电流密度(mA/cm2)和对于给出的沉积的双层等值厚度(行)和Pt/Mn80Fe20平面等值厚度比(列)的实施例号(括号内)。
  NA   5   10   20   30   50
    0.2
    0.6
    1   91(87)
    1.5   107(91)   118(92)   147(94)
    2   113(88)
    3   121(89)   133(90)   102(93)   104(95)
   无限大   105(14C)
表7-Pt/Ni90Fe10
0.85伏的O2标准电流密度(mA/cm2)和对于给出的沉积的双层等值厚度(行)和Pt/Ni90Fe10平面等值厚度比(列)的实施例号(括号内)。
  NA  5  10  20 30   50
    0.2
    0.6  203(99)  200(98) 169(102)
    1  211(104)   144(97)
    1.5  186(103)   160(106)
    2  182(105)
    3  160(96)  196(100) 128(101)
   无限大   105(14C)
表8-Pt/Ni95Fe5
0.85伏的O2标准电流密度(mA/cm2)和对于给出的沉积的双层等值厚度(行)和Pt/Ni95Fe5平面等值厚度比(列)的实施例号(括号内)。
  NA   5   10   20    30   50
    0.2
    0.6   203(112)   159(110)    179(115)   200(111)
    1   196(107)   198(109)    203(116)   132(108)
    1.5
    2
    3   170(113)    153(114)   203(117)
    无限大   105(14C)
对本领域技术人员而言,不离开本发明的范围和原则的各种修改和变更是明显的,很清楚本发明不应过度地限于上文说明性的实施方式。

Claims (25)

1.一种燃料电池阴极催化剂,包括含有微结构化载体须晶的纳米化结构元件,所述微结构化载体须晶带有纳米级催化剂粒子,通过交替施加第一和第二层制备所述纳米级催化剂粒子,所述第一层包括铂,和所述第二层是铁和第二金属的合金或紧密混合物,所述第二金属选自除了铂和铁之外的VIb族金属,VIIb族金属和VIIIb族金属,其中所述第二层中铁与所述第二金属的原子比为0~10,其中所述第一层与所述第二层的平面等值厚度比为0.3~5,和其中所述第一和第二层的平均双层平面等值厚度小于100。
2.如权利要求1的燃料电池阴极催化剂,其中所述第一层与所述第二层的平面等值厚度比为0.3~2.5,和其中所述第一和第二层的平均双层平面等值厚度大于8。
3.如权利要求1的燃料电池阴极催化剂,其中所述第二层中,铁与所述第二金属的原子比为0.01~10。
4.如权利要求1的燃料电池阴极催化剂,其中所述第二金属选自镍、钴和锰。
5.如权利要求3的燃料电池阴极催化剂,其中所述第二金属选自镍、钴和锰。
6.如权利要求1的燃料电池阴极催化剂,所述第二金属是镍。
7.如权利要求6的燃料电池阴极催化剂,其中所述第一层与所述第二层的平面等值厚度比为0.3~2.5,和其中所述第一和第二层的平均双层平面等值厚度大于8。
8.如权利要求3的燃料电池阴极催化剂,所述第二金属是镍。
9.如权利要求8的燃料电池阴极催化剂,其中所述第二层中,铁与镍的原子比为0.01~0.4。
10.如权利要求8的燃料电池阴极催化剂,其中所述第二层中,铁与镍的原子比为0.01~0.15。
11.如权利要求1的燃料电池阴极催化剂,所述第二金属是钴。
12.如权利要求11的燃料电池阴极催化剂,其中所述第一层与所述第二层的平面等值厚度比为0.3~2.5,和其中所述第一和第二层的平均双层平面等值厚度大于8。
13.如权利要求3的燃料电池阴极催化剂,所述第二金属是钴。
14.如权利要求13的燃料电池阴极催化剂,其中所述第一层与所述第二层的平面等值厚度比为0.3~2,和其中所述第一和第二层的平均双层平面等值厚度大于8。
15.如权利要求1的燃料电池阴极催化剂,所述第二金属是锰。
16.如权利要求15的燃料电池阴极催化剂,其中所述第一和第二层的平均双层平面等值厚度大于8。
17.如权利要求3的燃料电池阴极催化剂,所述第二金属是锰。
18.如权利要求17的燃料电池阴极催化剂,其中所述第一层与所述第二层的平面等值厚度比为1.25~5。
19.一种制备包括纳米级催化剂粒子的燃料电池阴极催化剂的方法,包括真空沉积包括铂的第一层和真空沉积包括铁和第二金属的合金或紧密混合物的第二层的交替步骤,第二金属选自除了铂和铁之外的VIb族金属,VIIb族金属和VIIIb族金属,其中所述第二层中,铁与所述第二金属的原子比为0~10,其中所述沉积的铂和所述沉积的两种金属的合金或紧密混合物形成双层,双层的平均平面等值厚度小于100,其中沉积的铂与沉积的两种金属合金或紧密混合物的平面等值厚度比为0.3~5。
20.如权利要求19的方法,其中在基本上没有氧的条件下,进行所述真空沉积步骤。
21.如权利要求19的方法,其中所述铂和所述铁与第二金属的合金或紧密混合物沉积在微结构化载体须晶上。
22.如权利要求19的方法,其中所述第二金属选自镍、钴和锰。
23.如权利要求19的方法,所述第二金属是镍。
24.如权利要求19的方法,在所述沉积步骤之后,另外包括除去至少部分所述两种金属的合金或紧密混合物的步骤。
25.一种燃料电池阴极催化剂,包括根据权利要求23的方法制造的纳米级催化剂粒子。
CNA2004800282534A 2003-09-29 2004-08-27 燃料电池阴极催化剂 Pending CN1859976A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/674,594 US7419741B2 (en) 2003-09-29 2003-09-29 Fuel cell cathode catalyst
US10/674,594 2003-09-29

Publications (1)

Publication Number Publication Date
CN1859976A true CN1859976A (zh) 2006-11-08

Family

ID=34376891

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2004800282534A Pending CN1859976A (zh) 2003-09-29 2004-08-27 燃料电池阴极催化剂

Country Status (9)

Country Link
US (1) US7419741B2 (zh)
EP (1) EP1667793B1 (zh)
JP (2) JP5209206B2 (zh)
KR (1) KR20060131733A (zh)
CN (1) CN1859976A (zh)
AT (1) ATE397490T1 (zh)
CA (1) CA2539965A1 (zh)
DE (1) DE602004014287D1 (zh)
WO (1) WO2005035123A2 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102132447A (zh) * 2008-08-25 2011-07-20 3M创新有限公司 具有电压反转容限的燃料电池纳米催化剂
CN102947990A (zh) * 2010-04-26 2013-02-27 3M创新有限公司 铂镍催化剂合金
CN105226299A (zh) * 2014-06-27 2016-01-06 福特全球技术公司 氧还原反应催化剂
CN109923716A (zh) * 2016-10-26 2019-06-21 3M创新有限公司 催化剂
CN111954950A (zh) * 2018-04-04 2020-11-17 3M创新有限公司 包含Pt、Ni和Ta的催化剂
CN113228355A (zh) * 2018-12-13 2021-08-06 3M创新有限公司 催化剂

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7572534B2 (en) * 2004-09-20 2009-08-11 3M Innovative Properties Company Fuel cell membrane electrode assembly
US8101317B2 (en) * 2004-09-20 2012-01-24 3M Innovative Properties Company Durable fuel cell having polymer electrolyte membrane comprising manganese oxide
US20060147791A1 (en) * 2004-12-30 2006-07-06 Debe Mark K Platinum recovery from fuel cell stacks
EP1849200A2 (en) * 2005-02-16 2007-10-31 3M Innovative Properties Company Fuel cell catalyst
CN1315214C (zh) * 2005-08-04 2007-05-09 王善理 燃料电池催化剂层制作方法及装置
US20070059452A1 (en) * 2005-09-13 2007-03-15 Debe Mark K Formation of nanostructured layers through continued screw dislocation growth
US7790304B2 (en) * 2005-09-13 2010-09-07 3M Innovative Properties Company Catalyst layers to enhance uniformity of current density in membrane electrode assemblies
US7901829B2 (en) 2005-09-13 2011-03-08 3M Innovative Properties Company Enhanced catalyst interface for membrane electrode assembly
US20080020923A1 (en) * 2005-09-13 2008-01-24 Debe Mark K Multilayered nanostructured films
KR100647700B1 (ko) * 2005-09-14 2006-11-23 삼성에스디아이 주식회사 담지 촉매 및 이를 이용한 연료전지
US20070082814A1 (en) * 2005-10-12 2007-04-12 3M Innovative Properties Company Ternary nanocatalyst and method of making
US7622217B2 (en) * 2005-10-12 2009-11-24 3M Innovative Properties Company Fuel cell nanocatalyst
US8367267B2 (en) * 2005-10-28 2013-02-05 3M Innovative Properties Company High durability fuel cell components with cerium oxide additives
US8628871B2 (en) 2005-10-28 2014-01-14 3M Innovative Properties Company High durability fuel cell components with cerium salt additives
DE102005057696A1 (de) * 2005-12-02 2007-08-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Katalysator, Verfahren zu dessen Herstellung und dessen Verwendung
US7968488B2 (en) 2006-04-18 2011-06-28 Southwest Research Institute Two-dimensional composite particle adapted for use as a catalyst and method of making same
US7906251B2 (en) * 2006-04-20 2011-03-15 3M Innovative Properties Company Oxygen-reducing catalyst layer
US7740902B2 (en) * 2006-04-20 2010-06-22 3M Innovative Properties Company Method for making oxygen-reducing catalyst layers
KR20080020259A (ko) * 2006-08-31 2008-03-05 삼성에스디아이 주식회사 연료 전지용 막-전극 어셈블리, 이의 제조방법 및 이를포함하는 연료 전지 시스템
WO2008127828A1 (en) 2007-04-12 2008-10-23 3M Innovative Properties Company High performance, high durability non-precious metal fuel cell catalysts
KR20090063441A (ko) 2007-12-14 2009-06-18 삼성에스디아이 주식회사 리튬 이차 전지
JP5196988B2 (ja) 2007-12-21 2013-05-15 スリーエム イノベイティブ プロパティズ カンパニー インク組成物、その製造方法、そのインク組成物を用いて形成した電極触媒層及びこれらの用途
JP5342824B2 (ja) 2008-07-25 2013-11-13 株式会社東芝 触媒層担持基板の製造方法、触媒層担持基板、膜電極複合体、および燃料電池
JP4861445B2 (ja) 2009-03-19 2012-01-25 株式会社東芝 触媒層担持基板の製造方法、触媒層担持基板および燃料電池
CN102439773B (zh) * 2009-04-23 2014-12-24 3M创新有限公司 使用有机颜料的催化剂粒度控制
US8481231B2 (en) 2009-05-14 2013-07-09 GM Global Technology Operations LLC Preparation of nanostructured thin catalytic layer-based electrode ink
US8507152B2 (en) 2009-05-14 2013-08-13 GM Global Technology Operations LLC Fabrication of electrodes with multiple nanostructured thin catalytic layers
US8512908B2 (en) * 2009-05-14 2013-08-20 GM Global Technology Operations LLC Fabrication of catalyst coated diffusion media layers containing nanostructured thin catalytic layers
US8802329B2 (en) * 2009-05-14 2014-08-12 GM Global Technology Operations LLC Electrode containing nanostructured thin catalytic layers and method of making
WO2011087842A1 (en) 2009-12-22 2011-07-21 3M Innovative Properties Company Fuel cell electrode with nanostructured catalyst and dispersed catalyst sublayer
US8758953B2 (en) 2010-04-01 2014-06-24 Trenergi Corp. High temperature membrane electrode assembly with high power density and corresponding method of making
EP2564455B1 (en) 2010-04-26 2016-09-28 3M Innovative Properties Company Annealed nanostructured thin film catalyst
EP2564458B1 (en) 2010-04-26 2018-10-03 3M Innovative Properties Company Fuel cell water management via reduced anode reactant pressure
US8445164B2 (en) 2010-05-27 2013-05-21 GM Global Technology Operations LLC Electrode containing nanostructured thin catalytic layers and method of making
JP5728452B2 (ja) 2011-09-28 2015-06-03 株式会社東芝 電気化学セル用触媒層、膜電極接合体及び電気化学セル
EP2766515B1 (en) 2011-10-10 2018-08-08 3M Innovative Properties Company Catalyst electrodes, and methods of making and using the same
WO2013101595A1 (en) 2011-12-29 2013-07-04 3M Innovative Properties Company Electrochemical cell electrode
US8518596B1 (en) 2012-05-16 2013-08-27 GM Global Technology Operations LLC Low cost fuel cell diffusion layer configured for optimized anode water management
FR2991103B1 (fr) * 2012-05-25 2015-08-14 Commissariat Energie Atomique Cathode pour batterie lithium-air, comportant une structure bi-couches de catalyseurs differents et batterie lithium-air comprenant cette cathode
CA2895422A1 (en) 2012-12-19 2014-06-26 3M Innovative Properties Company Nanostructured whisker article
WO2014105407A1 (en) * 2012-12-28 2014-07-03 3M Innovative Properties Company Electrode and method of making the same
US20160079604A1 (en) 2013-04-23 2016-03-17 3M Company Catalyst electrodes and method of making it
JP6143663B2 (ja) 2013-12-19 2017-06-07 株式会社東芝 多孔質触媒層、その製造方法、膜電極接合体および電気化学セル
JP6290056B2 (ja) 2014-09-22 2018-03-07 株式会社東芝 触媒層、その製造方法、膜電極接合体および電気化学セル
KR20170095296A (ko) 2014-12-15 2017-08-22 쓰리엠 이노베이티브 프로퍼티즈 캄파니 막 전극 접합체
US11094953B2 (en) 2015-05-26 2021-08-17 3M Innovative Properties Company Electrode membrane assembly having an oxygen evolution catalyst electrodes, and methods of making and using the same
KR20190069523A (ko) 2016-10-26 2019-06-19 쓰리엠 이노베이티브 프로퍼티즈 캄파니 촉매
US11258074B2 (en) 2016-10-26 2022-02-22 3M Innovative Properties Company Pt—Ni—Ir catalyst for fuel cell
KR20190069524A (ko) 2016-10-26 2019-06-19 쓰리엠 이노베이티브 프로퍼티즈 캄파니 연료 전지용 Pt-Ni-Ir 촉매
WO2018118877A1 (en) 2016-12-20 2018-06-28 3M Innovative Properties Company Electrolyzer including a porous hydrophobic gas diffusion layer
JP6809897B2 (ja) 2016-12-20 2021-01-06 スリーエム イノベイティブ プロパティズ カンパニー 膜電極接合体及び固体高分子形燃料電池
US11414770B2 (en) 2017-04-03 2022-08-16 3M Innovative Properties Company Water electrolyzers
CN110475907B (zh) 2017-04-03 2022-08-23 3M创新有限公司 水电解槽
US20200017980A1 (en) 2017-04-03 2020-01-16 3M Innovative Properties Company Water electrolyzers
EP3776701A1 (en) 2018-04-04 2021-02-17 3M Innovative Properties Company Catalyst
US11404702B2 (en) 2018-04-04 2022-08-02 3M Innovative Properties Company Catalyst comprising Pt, Ni, and Cr
WO2019193460A1 (en) 2018-04-04 2019-10-10 3M Innovative Properties Company Catalyst comprising pt, ni, and ru
US20210408555A1 (en) 2018-04-13 2021-12-30 3M Innovative Properties Company Catalyst
WO2019198029A1 (en) 2018-04-13 2019-10-17 3M Innovative Properties Company Catalyst
WO2019198031A1 (en) 2018-04-13 2019-10-17 3M Innovative Properties Company Catalyst
US11560632B2 (en) 2018-09-27 2023-01-24 3M Innovative Properties Company Membrane, membrane electrode assembly, and water electrolyzer including the same
EP3899100B1 (en) 2018-12-19 2023-01-25 3M Innovative Properties Company Water electrolyzers
CN110085875B (zh) * 2019-04-19 2022-06-17 同济大学 一种缓解含合金催化层衰减的多层催化层及其制备方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969545A (en) 1973-03-01 1976-07-13 Texas Instruments Incorporated Light polarizing material method and apparatus
DE2616662C2 (de) 1976-04-15 1984-02-02 Dornier System Gmbh, 7990 Friedrichshafen Verfahren zur herstellung einer selektiven solarabsorberschicht auf aluminium
US4155781A (en) 1976-09-03 1979-05-22 Siemens Aktiengesellschaft Method of manufacturing solar cells, utilizing single-crystal whisker growth
US4252843A (en) 1977-02-18 1981-02-24 Minnesota Mining And Manufacturing Company Process for forming a microstructured transmission and reflectance modifying coating
US4209008A (en) 1977-07-26 1980-06-24 United Technologies Corporation Photon absorbing surfaces and methods for producing the same
US4252865A (en) 1978-05-24 1981-02-24 National Patent Development Corporation Highly solar-energy absorbing device and method of making the same
US4340276A (en) 1978-11-01 1982-07-20 Minnesota Mining And Manufacturing Company Method of producing a microstructured surface and the article produced thereby
US4316944A (en) * 1980-06-18 1982-02-23 United Technologies Corporation Noble metal-chromium alloy catalysts and electrochemical cell
US4396643A (en) 1981-06-29 1983-08-02 Minnesota Mining And Manufacturing Company Radiation absorbing surfaces
US5079107A (en) 1984-06-07 1992-01-07 Giner, Inc. Cathode alloy electrocatalysts
US4568598A (en) 1984-10-30 1986-02-04 Minnesota Mining And Manufacturing Company Article with reduced friction polymer sheet support
US4812352A (en) 1986-08-25 1989-03-14 Minnesota Mining And Manufacturing Company Article having surface layer of uniformly oriented, crystalline, organic microstructures
US5039561A (en) 1986-08-25 1991-08-13 Minnesota Mining And Manufacturing Company Method for preparing an article having surface layer of uniformly oriented, crystalline, organic microstructures
JPH01210035A (ja) 1988-02-18 1989-08-23 Tanaka Kikinzoku Kogyo Kk 白金触媒とその製造方法
US5176786A (en) 1988-07-13 1993-01-05 Minnesota Mining And Manufacturing Company Organic thin film controlled molecular epitaxy
US5138220A (en) 1990-12-05 1992-08-11 Science Applications International Corporation Field emission cathode of bio-molecular or semiconductor-metal eutectic composite microstructures
US5336558A (en) 1991-06-24 1994-08-09 Minnesota Mining And Manufacturing Company Composite article comprising oriented microstructures
US5338430A (en) 1992-12-23 1994-08-16 Minnesota Mining And Manufacturing Company Nanostructured electrode membranes
US5593934A (en) 1993-12-14 1997-01-14 Tanaka Kikinzoku Kogyo K.K. Platinum alloy catalyst
CA2117158C (fr) 1994-03-07 1999-02-16 Robert Schulz Alliages nanocristallins a base de nickel et usage de ceux-ci pour le transport et le stockage de l'hydrogene
DE69612972T2 (de) 1995-02-02 2002-04-04 Hydro Quebec Nanokristallines material auf mg-basis und dessen verwendung zum transport und zum speichern von wasserstoff
JP3874380B2 (ja) * 1996-08-26 2007-01-31 エヌ・イーケムキャット株式会社 空格子点型格子欠陥を有するカーボン担持白金スケルトン合金電極触媒
US5872074A (en) 1997-01-24 1999-02-16 Hydro-Quebec Leached nanocrystalline materials process for manufacture of the same, and use thereof in the energetic field
US6136412A (en) 1997-10-10 2000-10-24 3M Innovative Properties Company Microtextured catalyst transfer substrate
US5910378A (en) 1997-10-10 1999-06-08 Minnesota Mining And Manufacturing Company Membrane electrode assemblies
US5879827A (en) 1997-10-10 1999-03-09 Minnesota Mining And Manufacturing Company Catalyst for membrane electrode assembly and method of making
US5879828A (en) 1997-10-10 1999-03-09 Minnesota Mining And Manufacturing Company Membrane electrode assembly
US6300000B1 (en) 1999-06-18 2001-10-09 Gore Enterprise Holdings Fuel cell membrane electrode assemblies with improved power outputs and poison resistance
US6482763B2 (en) * 1999-12-29 2002-11-19 3M Innovative Properties Company Suboxide fuel cell catalyst for enhanced reformate tolerance
US20010031338A1 (en) * 2000-04-26 2001-10-18 Sil Han Box reinforcing sheet with self-stick layer
US6663998B2 (en) 2001-04-05 2003-12-16 The Technical University Of Denmark (Dtu) Anode catalyst materials for use in fuel cells
US6465041B1 (en) * 2001-12-19 2002-10-15 3M Innovative Properties Company Method of making gas diffusion layers for electrochemical cells
US6703068B2 (en) * 2001-12-19 2004-03-09 3M Innovative Properties Company Amine oxide coating compositions
US20030134178A1 (en) * 2001-12-21 2003-07-17 3M Innovative Properties Company Precompressed gas diffusion layers for electrochemical cells
WO2003073542A2 (en) 2002-02-27 2003-09-04 Symyx Technologies, Inc. Full cell electrocatalyst of pt-ni-mn/fe
US20070082814A1 (en) * 2005-10-12 2007-04-12 3M Innovative Properties Company Ternary nanocatalyst and method of making
JP5674373B2 (ja) * 2010-07-30 2015-02-25 富士フイルム株式会社 洗浄組成物、これを用いた洗浄方法及び半導体素子の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102132447A (zh) * 2008-08-25 2011-07-20 3M创新有限公司 具有电压反转容限的燃料电池纳米催化剂
CN102132447B (zh) * 2008-08-25 2013-12-18 3M创新有限公司 具有电压反转容限的燃料电池纳米催化剂
CN102947990A (zh) * 2010-04-26 2013-02-27 3M创新有限公司 铂镍催化剂合金
CN105226299A (zh) * 2014-06-27 2016-01-06 福特全球技术公司 氧还原反应催化剂
CN105226299B (zh) * 2014-06-27 2020-01-07 福特全球技术公司 氧还原反应催化剂
CN109923716A (zh) * 2016-10-26 2019-06-21 3M创新有限公司 催化剂
CN111954950A (zh) * 2018-04-04 2020-11-17 3M创新有限公司 包含Pt、Ni和Ta的催化剂
CN113228355A (zh) * 2018-12-13 2021-08-06 3M创新有限公司 催化剂

Also Published As

Publication number Publication date
CA2539965A1 (en) 2005-04-21
JP2007507328A (ja) 2007-03-29
US7419741B2 (en) 2008-09-02
KR20060131733A (ko) 2006-12-20
JP5385415B2 (ja) 2014-01-08
EP1667793A2 (en) 2006-06-14
WO2005035123A3 (en) 2005-06-23
DE602004014287D1 (de) 2008-07-17
JP2012164661A (ja) 2012-08-30
EP1667793B1 (en) 2008-06-04
ATE397490T1 (de) 2008-06-15
WO2005035123A2 (en) 2005-04-21
JP5209206B2 (ja) 2013-06-12
US20050069755A1 (en) 2005-03-31

Similar Documents

Publication Publication Date Title
CN1859976A (zh) 燃料电池阴极催化剂
JP6125580B2 (ja) 三元白金合金触媒
US8580462B2 (en) Electrode catalyst material comprising carbon nano-fibers having catalyst particles on the surface and in the insides of the interior area and a fuel cell having the electrode catalyst material
Xie et al. Ionomer segregation in composite MEAs and its effect on polymer electrolyte fuel cell performance
EP3053648B1 (en) Use of carbon powder in fuel cell catalyst, fuel cell catalyst with carbon powder, electrode catalyst layer, membrane electrode assembly, and fuel cell
EP2990109A1 (en) Electrode and fuel cell electrode catalyst layer containing same
Slack et al. Nanofiber fuel cell MEAs with a PtCo/C cathode
JP2008503869A (ja) 電気化学燃料電池のための触媒担体
CN1674327A (zh) 燃料电池和膜电极接合体
EP2164122B1 (en) Membrane electrode assembly and process for producing membrane electrode assembly
JPWO2010131636A1 (ja) 触媒およびその製造方法ならびにその用途
JP5265926B2 (ja) 燃料電池触媒
CN101578726A (zh) 燃料电池触媒、燃料电池阴极与包含该阴极的高分子电解质燃料电池
Natarajan et al. Electrochemical durability of carbon nanostructures as catalyst support for PEMFCs
Fofana et al. High performance PEM fuel cell with low platinum loading at the cathode using magnetron sputter deposition
Spătaru et al. Silica veils-conductive diamond powder composite as a new propitious substrate for platinum electrocatalysts
Assembly Electrochemistry of proton conducting membrane fuel cells
JP2007115637A (ja) 燃料電池用貴金属触媒、燃料電池用電極触媒、燃料電池用電極触媒の製造方法、および、燃料電池用膜電極接合体
Goeke et al. Model electrode structures for studies of electrocatalyst degradation
Wilson Membrane catalyst layer for fuel cells
JP2022138872A (ja) 燃料電池用電極触媒、その選定方法及びそれを備える燃料電池
Blackmore et al. Engineered nano-scale ceramic supports for PEM fuel cells
Xie et al. Ionomer-free nanoporous iridium nanosheet electrodes with boosted performance and catalyst utilization for high-efficiency water electrolyzers
CN116646540A (zh) 铂碳催化剂及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20061108