CN1798949A - 具有粒子网的烧结槽状吸液芯 - Google Patents

具有粒子网的烧结槽状吸液芯 Download PDF

Info

Publication number
CN1798949A
CN1798949A CN200480015179.2A CN200480015179A CN1798949A CN 1798949 A CN1798949 A CN 1798949A CN 200480015179 A CN200480015179 A CN 200480015179A CN 1798949 A CN1798949 A CN 1798949A
Authority
CN
China
Prior art keywords
heat pipe
piston ring
mean particle
wicks
particle diameters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200480015179.2A
Other languages
English (en)
Inventor
斯科特·D·加纳
詹姆斯·E·林德穆斯
热罗姆·E·托特
约翰·H·罗森菲尔德
肯尼思·G·明纳利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aavid Thermal Corp
Original Assignee
Thermal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thermal Corp filed Critical Thermal Corp
Publication of CN1798949A publication Critical patent/CN1798949A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49353Heat pipe device making

Abstract

本发明提供了一种用于热管的槽状烧结吸液芯,包括共同产生一平均粒子直径的多个个体粒子。所述槽状烧结吸液芯还包含至少两个邻近槽脊,通过一设置在所述至少两个邻近槽脊之间的粒子层彼此流体沟通,其中所述粒子层包括至少一个不超过约六个平均粒子直径的维度。本发明还提供了一种热管,包括一槽状吸液芯,包括多个有一平均直径的个体粒子。所述槽状吸液芯包括至少两个邻近槽脊,通过一设置在所述至少两个邻近槽脊之间的粒子层彼此流体沟通,所述粒子层包括小于大约六个平均粒子直径。本发明还提供了一种根据前述结构的制造热管吸液芯的方法。

Description

具有粒子网的烧结槽状吸液芯
技术领域
本发明通常涉及电子系统产生的热能的控制,特别涉及一种与热管相关的装置和方法,用于有效和低成本地按指定路线发送和控制由一电子系统各部件产生的热能。
背景技术
半导体的尺寸是持续地不断缩小的。相对该尺寸的缩小,半导体的功率密度则增大。这反过来造成热增殖问题,而由于过多的热量将降低半导体的性能,该问题必须加以解决。热管是公知的用于将电子装置所产生的热量传送和散发出去的方式。
热管利用一工作流体的持续蒸发和冷凝将热能从一热源传送至一散热片。由于多数的工作流体具有高汽化热,热管能够传送汽化工作流体中的大量热能。进一步,热能能够在热源和散热片间以相对小的温差传送。热管通常利用由一多孔渗水吸液芯所产生的毛细力来将冷凝的工作流体从一热管冷凝器部分(传送的热能在散热片中散发的地方)返至一蒸发器部分(将被传送的热能从热源被吸收的地方)。传热片热管能够改善从集成电路排热的情况。传热片是一薄的基片,吸收自如一半导体装置产生的热能,并将该能传至散热片的一大大的面上。
圆柱热管的热管吸液芯典型地是由将粘结金属的金属滤网围一圆柱状心轴的缠绕所制成,将该心轴和所缠绕的吸液芯插进热管容器内,然后将心轴撤走。吸液芯也可由将一金属粉沉积在热管内表面上所形成,热管或是平的或是圆柱的,然后烧结该粉块以形成大量的间隙毛细管。典型的热管吸液芯对发展中的热点特别敏感,在这里,被毛细作用传送回蒸发器部分的冷凝液汽化并阻止液体运动。在许多现有的热管中,通过将吸液芯的平均厚度保持在相对严格的容限内而使该热点效应基本最小化。
有文献证明现有热管的粉末金属吸液芯结构与其他热管吸液芯结构相比,具有数多优点。那些吸液芯的一个缺陷是,与它们的基底金属,在本领域被称为它们的“delta-T”相比,其热传导效率相对较低。传统的烧结粉末金属吸液芯的热传导性具有比制造吸液芯的基底金属小一个数量级的特点吸液芯。在一传统的平滑的吸液芯热管中,根据蒸发器热流量区分有两种操作模式。第一种模式产生于低热流量时,在这种模式下,吸液芯通过工作流体在吸液芯表面蒸发而吸液芯传导热量。第二种模式产生于高热流量时,在这种模式下,通过相对低传导率的吸液芯进行热传导所需要的温度梯度变得足够大以使靠近热管围壁的吸液芯中的液体变得足够过热从而在吸液芯自身内开始沸腾。在该第二种模式中,气泡在壁/吸液芯界面处或附近形成,并随后通过该吸液芯结构行至热管的汽化空间。该第二种热传输模式可以非常有效,并且与第一种传导模式相比整体吸液芯delta-T更低。不幸的是,吸液芯出来的气泡取代液体返回蒸发器区域,导致吸液芯的蒸发器部分的外围提前干燥。
理想的是,一吸液芯结构应足够薄以使传导delta-T足够小以防止沸腾的开始。然而,薄的吸液芯并不被认为具有足够的横断面面积来传送消除任何大量能量必须的大量液体。例如,G.Y.Eastman的美国专利4,274,479涉及一热管毛细吸液芯结构,该吸液芯结构是由烧结金属制成的,且在其内表面上形成有纵向凹槽。当烧结吸液芯提供一高毛细压力时,该Eastman吸液芯凹槽提供纵向毛细抽送以填充凹槽并保证热传输液体的有效圆周分布。Eastman一般将凹槽结构描述为具有“槽脊”和“凹槽或沟”。该槽脊是凹槽或沟之间的材料。槽脊的侧面限定凹槽的宽度。由此,该槽脊的高度也是凹槽的深度。Eastman还声称,现有技术中有槽脊是固体材料,与壳壁形成一体的凹槽结构,,且该凹槽由多种机械、化学蚀刻或挤压工艺制成。重要的是,Eastman建议为了优化热管性能,其槽脊和凹槽必须有足够的尺寸,以将流体的接续层保持在连接该槽脊和凹槽的烧结粉末的一相对厚的槽脊,从而使各凹槽底部存在一工作流体储藏库。由此,Eastman要求凹槽在其各端部被阻断以确保凹槽内的毛细抽送压力是被汽体液体界面处最窄的宽度所决定的。也就是说,Eastman暗示这些吸液芯不具有足够的横断面面积来传送消除大量热能所要求的相对大量的工作流体。
发明内容
本发明提供了一种用于热管的槽状烧结吸液芯,包括共同产生一平均粒子直径的多个个体粒子。该槽状烧结吸液芯还包括至少两个槽脊,所述至少两个槽脊通过一设置在所述至少两个槽脊之间的粒子层彼此流体沟通,其中所述粒子层包括至少一个不超过约六个平均粒子直径的维度。通过这种方式,气泡不在壁/吸液芯界面处形成以穿过吸液芯结构然后行进到热管的汽化空间。这种热传输方式非常有效并且导致一较低的整体吸液芯delta-T。
本发明还提供了一种热管,包括一具有一内表面的外壳和一置于所述外壳内的工作流体。一槽状吸液芯置于所述内表面的至少一部分上,其包括有一平均直径的多个个体粒子。所述槽状吸液芯包含至少两个槽脊,所述至少两个槽脊通过一设置在所述至少两个槽脊之间的粒子层彼此流体沟通,所述粒子层包括小于大约六个平均粒子直径。
本发明还提供了一种在热管容器的一内侧面上制造热管吸液芯的方法,其中一具有一槽状轮廓的心轴被置于所述热管容器的一部分内。提供一具有平均粒子直径的金属粒子浆,并且金属粒子悬浮于一粘性的粘合剂中。然后用所述的浆覆盖至少部分所述容器内侧面,从而使所述浆与所述心轴的所述槽状轮廓相配,并在相邻凹槽间形成一浆层,所述浆层包括不超过约六个平均粒子直径。干燥所述的浆以形成未淬火吸液芯,然后热处理所述未淬火吸液芯以产生该热管吸液芯的一最终合成物。
附图说明
本发明的这些和其它特点和优点将通过以下对本发明优选实施例的具体说明,连同附图得到更全面的揭示和详尽的描述,附图中同一标号指的是同一部件,此外其中:
图1是根据本发明形成的一热管传热片的示意图;
图2是图1所示热管传热片的沿2-2线的截面图;
图3是用于形成图1和图2所示热管传热片的容器的示意图;
图4是根据本发明用于形成槽状吸液芯的心轴的示意图;
图5是图4所示心轴一端的示意图;
图6是图1和图2所示容器底壁一部分的放大示意图;
图7是置于图1和图2中热管传热片底部的槽状吸液芯一部分的特别放大示意图,示出一设在所述吸液芯个体槽脊间的极薄的吸液芯结构。
具体实施方式
优选实施方式的说明应配合附图阅读,附图也被认为是本发明整个书面的说明书的一部分。附图并不必要成比例,而且本发明中的一些特征可能在比例上或一些示意形式上出于清楚和简要的目的而有些夸大。在本说明书中,相关词汇如“水平的”,“垂直的”,“上”,“下”,“顶”和“底”及其派生词汇(如:“水平地”,“向下地”,“向上地”等等)应参照随后的说明和进行讨论的附图所示的方向而解释。这些相关词汇是为了方便说明,通常并不一定要求精确的方向。包括“内部地”对应“外部地”,“纵向的”对应“横向的”,以及类似的表达,在被适当地解释为相对于彼此,或相对于一延长轴,或旋转中心或轴。有关附设、接合和类似关系,诸如“连接”和“互相连接”,除非用其它方式表达,否则所指为一种关系其中的结构是彼此之间直接或通过中间结构间接紧固或附设的,以及两个可移动或刚性的附设或关系。词汇“有效地连接”是如此一种附设、接合或连接,允许相关结构依靠这种关系而如所预期的那样运转。在权利要求书中,装置+功能从句用于涵盖书面说明书或附图所说明、建议或明确显示的结构以实施书面所陈述的功能,不仅包括结构等同物,还包括等同结构。
参见图1和图2,本发明包括一热管传热片2,其被制成可将产生自至少一个热能来源,如一半导体装置(未示出)的热能进行传输和扩散的尺寸和形状,该热能来源与热管传热片2的一部分热接合。热管传热片2包括一蒸发器部分5,一冷凝器部分7和一烧结槽状吸液芯9。虽然热管传热片2可形成为一平面矩形结构,热管传热片2包括一圆形或矩形管状结构也将很方便。在一平面直矩形的热管传热片2中,一蒸汽室被限定于一底壁15和一顶壁(未示出)之间,且横向和纵向地延伸,贯穿热管传热片2。所包含的柱子18用于维持结构的整体性。
在一个优选的实施例中,底壁15和一顶壁包括一厚度基本均匀的热传导材料薄片,如:铜,钢,铝或任何其各自的合金,并且相距约2.0mm至4.0mm以在热管传热片2内形成空隙空间,定义该空隙空间为一蒸汽室。热管传热片2的顶壁通常是基本平直的,在形状上与底壁15互补。在本发明优选实施例的下述说明中,蒸发器部分5与底壁15相联系,冷凝器部分7与热管传热片2不包括槽状吸液芯,如一顶壁或侧壁的部分相联系。但是应当知道,这种关于限定了热管传热片2金属封套的设置是完全武断的,即在不脱离本发明的范围的情况下可以是相反的或有变化的。
底壁15优选包括一基本平直的外表面20,一内表面22和一外围缘壁23。外围缘壁23在内表面22的外围边缘向外突出从而限定内表面22。通过底壁15和顶壁的连接,沿在其连接界面40处密封的公有边缘,在热管传热片2内形成一蒸汽室。在蒸汽室内有一两相可蒸发液体(如:水,氨或氟里昂,未示出),作为热管传热片2的工作流体。最终密封底壁15和顶壁的公有边缘之前,注入工作流体,然后将蒸汽室抽成部分真空,从而完成热管传热片2。例如,热管传热片2可由铜或碳化硅铜以及选择作为两相可蒸发液体的水,氨或氟里昂制成。
参见图1和图2,图6和图7,烧结槽状吸液芯9设置在底壁15的内表面22上,金属粉30烧结在一成形心轴32(图4)周围,以形成烧结槽状吸液芯9。心轴32的槽脊35形成完成的吸液芯9的凹槽37,心轴32的凹槽40形成吸液芯9的槽脊42。各槽脊42形成为一基本倒“V”形或金字塔形的凸起,具有斜侧壁44a,44b,且与附近的槽脊相隔设置。凹槽37将槽脊42隔开并排列成基本平行的纵向(或横向)走向的,至少贯穿蒸发器部分5延伸的数排。通过更进一步的多孔渗水结构,邻近外围缘壁23的凹槽37的终端部分可以没有边界。优点是,烧结粉末30的一相对薄的层被置于底壁15的内表面22上,以在各凹槽37的底部和相隔的槽脊42之间形成一槽状吸液芯45。烧结粉末30可从任何具有高热传导性和适合形成多孔渗水结构的材料中选择,如:碳,钨,铜,铝,镁,镍,金,银,氧化铝,氧化铍或类似材料,并且可包括基本球形的,任意或规则的多边形的,或多种横截面形状的灯丝状的粒子。例如,当烧结铜粉30主要在底壁15所有内表面22及槽脊42的斜侧壁44a,44b之间设置时,烧结铜粉30被置于槽脊42之间以便槽状吸液芯45包括大约一个到六个平均铜粒子直径的一平均厚度(大致0.005mm至0.5mm,最好在大约0.05mm到0.25mm之间)。当然,可使用其它吸液芯材料诸如碳化硅铝或碳化硅铜也可起到类似的作用。
重要的是,形成了槽状吸液芯45以使其足够薄以至于传导delta-T小到足以防止在底壁15内表面22与烧结粉末形成的吸液芯之间的界面开始沸腾。凹槽45是一极薄的吸液芯结构,通过相隔的槽脊42饲料,相隔的槽脊42提供所要求的横断面面积以维持工作流体流动的有效性。在横断面上,当槽状吸液芯45包括槽脊42之间最大可能(受毛细作用限制)的平的区域时,其包括一最佳设计。这个区域有一定的厚度,如只有一到六个铜粉末粒子。只要内表面22的表面区域有至少一个铜粒子层,槽状吸液芯45越薄,在现实制造的限制下,性能就越好。通过将槽状吸液芯45的厚度限制在不超过几个粉末粒子的范围内,该薄吸液芯区域利用了槽状吸液芯层的增强了的蒸发表面区域。已发现该结构超越了与现有技术相关联的热传导限制。
应当理解,本发明不仅仅限于在此揭示和在附图中所示的具体构造,而且还包括在权利要求的范围内的任何改变和等同物。

Claims (16)

1、一种用于热管的槽状烧结吸液芯,包括共同产生一平均粒子直径的多个个体粒子,并包括至少两个邻近槽脊,所述至少两个邻近槽脊通过一设置在所述至少两个邻近槽脊之间的粒子层彼此流体沟通,其中所述粒子层包括至少一个维度,所述维度不超过约六个平均粒子直径。
2、根据权利要求1所述的用于热管的槽状烧结吸液芯,其中所述的层包括一约为三个平均粒子直径的厚度。
3、根据权利要求1所述的用于热管的槽状烧结吸液芯,其中所述的粒子主要由铜构成。
4、根据权利要求1所述的用于热管的槽状烧结吸液芯,其中所述的六个平均粒子直径是在从约0.05毫米至约0.25毫米的范围内。
5、一种热管,包括:
一外壳,其具有一内表面;
一工作流体,置于所述外壳内;以及
一槽状吸液芯,置于所述内表面的至少一部分上,并且包含有一平均直径的多个个体粒子,所述槽状吸液芯包含至少两个邻近槽脊,所述至少两个邻近槽脊通过一设置在所述至少两个邻近槽脊之间的粒子层彼此流体沟通,所述粒子层包括小于大约六个平均粒子直径。
6、根据权利要求5所述的热管,其中所述的粒子层包括一小于大约三个平均粒子直径的厚度。
7、根据权利要求5所述的热管,其中所述的粒子主要由铜构成。
8、根据权利要求5所述的热管,其中六个平均粒子直径是在约0.005毫米至约0.5毫米的范围内。
9、一种在热管容器的一内侧面上制造热管吸液芯的方法,包括步骤:
(a)将一具有一槽状轮廓的心轴放置于所述容器的一部分内;
(b)提供一具有平均粒子直径的金属粒子浆,并且金属粒子悬浮于一粘性的粘合剂中;
(c)用所述的浆覆盖至少部分所述容器内侧面,从而使所述的浆与所述心轴的所述槽状轮廓相配,并形成相邻凹槽间的一浆层,所述浆层包括不超过大约六个平均粒子直径;
(d)干燥所述的浆以形成未淬火吸液芯;以及,
(e)热处理所述未淬火吸液芯以产生该热管吸液芯的一最终合成物。
10、一种根据权利要求9的方法所形成的热管吸液芯。
11、一种根据权利要求9的方法所形成的热管吸液芯,其中所述的浆层包括一小于大约三个平均粒子直径的厚度。
12、一种根据权利要求9的方法所形成的热管吸液芯,其中所述的浆层包括主要由铜构成的粒子。
13、一种根据权利要求9的方法所形成的热管吸液芯,其中六个所述平均粒子直径是在从约0.05毫米至约0.25毫米的范围内。
14、一种根据权利要求9的方法所形成的热管吸液芯形成于一具有一工作流体的容器内以形成一热管。
15、一种用于热管的槽状烧结吸液芯,包括共同产生一平均粒子直径的多个个体粒子,并包含至少两个相隔槽脊,所述至少两个相隔槽脊通过一设置在所述至少两个相隔槽脊之间的粒子层彼此流体沟通,其中所述粒子层包括至少一个维度,所述纬度不超过大约六个平均粒子直径。
16、一种热管,包括:
一外壳,其具有一内表面;
一工作流体,置于所述外壳内;以及
一槽状吸液芯,置于所述内表面的至少一部分上,并且包含有一平均直径的多个个体粒子,所述槽状吸液芯包含至少两个相隔槽脊,所述至少两个相隔槽脊通过一设置在所述至少两个相隔槽脊之间的粒子层彼此流体沟通,所述粒子层包括小于大约六个平均粒子直径。
CN200480015179.2A 2003-04-24 2004-04-26 具有粒子网的烧结槽状吸液芯 Pending CN1798949A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/422,878 US6945317B2 (en) 2003-04-24 2003-04-24 Sintered grooved wick with particle web
US10/422,878 2003-04-24

Publications (1)

Publication Number Publication Date
CN1798949A true CN1798949A (zh) 2006-07-05

Family

ID=33298985

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200480015179.2A Pending CN1798949A (zh) 2003-04-24 2004-04-26 具有粒子网的烧结槽状吸液芯

Country Status (4)

Country Link
US (2) US6945317B2 (zh)
EP (1) EP1620691A4 (zh)
CN (1) CN1798949A (zh)
WO (1) WO2004097900A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102878845A (zh) * 2012-09-18 2013-01-16 华南理工大学 一种内凹槽多孔强化沸腾微通道结构及制造方法与应用
CN113295028A (zh) * 2020-02-21 2021-08-24 日本电产株式会社 导热构件及其制造方法
CN114577046A (zh) * 2017-05-08 2022-06-03 开文热工科技公司 热管理平面

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6994152B2 (en) * 2003-06-26 2006-02-07 Thermal Corp. Brazed wick for a heat transfer device
US7983042B2 (en) * 2004-06-15 2011-07-19 Raytheon Company Thermal management system and method for thin membrane type antennas
US7002247B2 (en) * 2004-06-18 2006-02-21 International Business Machines Corporation Thermal interposer for thermal management of semiconductor devices
US7713849B2 (en) * 2004-08-20 2010-05-11 Illuminex Corporation Metallic nanowire arrays and methods for making and using same
KR100564638B1 (ko) * 2004-11-02 2006-03-29 삼성전자주식회사 유연한 히트 파이프
US20060196640A1 (en) * 2004-12-01 2006-09-07 Convergence Technologies Limited Vapor chamber with boiling-enhanced multi-wick structure
US7149086B2 (en) * 2004-12-10 2006-12-12 Intel Corporation Systems to cool multiple electrical components
US7246655B2 (en) * 2004-12-17 2007-07-24 Fujikura Ltd. Heat transfer device
US20080236795A1 (en) * 2007-03-26 2008-10-02 Seung Mun You Low-profile heat-spreading liquid chamber using boiling
US7457126B2 (en) * 2005-06-27 2008-11-25 Intel Corporation Optical transponder with active heat transfer
TWI317414B (en) * 2005-10-21 2009-11-21 Foxconn Tech Co Ltd Sintered heat pipe and method for manufacturing the same
NL1031206C2 (nl) * 2006-02-22 2007-08-24 Thales Nederland Bv Vlakke warmtebuis voor koeldoeleinden.
US20080029249A1 (en) * 2006-08-01 2008-02-07 Inventec Corporation Supporting column having porous structure
US8482921B2 (en) * 2006-10-23 2013-07-09 Teledyne Scientific & Imaging, Llc. Heat spreader with high heat flux and high thermal conductivity
JP2008269353A (ja) * 2007-04-20 2008-11-06 Toshiba Corp 電子機器
US8356410B2 (en) * 2007-06-13 2013-01-22 The Boeing Company Heat pipe dissipating system and method
US8356657B2 (en) * 2007-12-19 2013-01-22 Teledyne Scientific & Imaging, Llc Heat pipe system
US20090211095A1 (en) * 2008-02-21 2009-08-27 Wen-Chun Zheng Microgrooves as Wick Structures in Heat Pipes and Method for Fabricating the Same
KR100952422B1 (ko) * 2008-06-11 2010-04-14 한국전자통신연구원 전력 생성이 가능한 열 전달 장치
US20100078151A1 (en) * 2008-09-30 2010-04-01 Osram Sylvania Inc. Ceramic heat pipe with porous ceramic wick
JP2010121867A (ja) * 2008-11-20 2010-06-03 Sony Corp 熱輸送装置、電子機器及び熱輸送装置の製造方法
TWI414740B (zh) * 2008-12-12 2013-11-11 Foxconn Tech Co Ltd 平板式熱管及其製造方法
US20100175856A1 (en) * 2009-01-12 2010-07-15 Meyer Iv George Anthony Vapor chamber with wick structure of different thickness and die for forming the same
TW201038900A (en) * 2009-04-21 2010-11-01 Yeh Chiang Technology Corp Sintered heat pipe
US8208259B1 (en) * 2009-05-08 2012-06-26 Augmentix Corporation System, apparatus and method for cooling electronic components
CN101927426A (zh) * 2009-06-24 2010-12-29 富准精密工业(深圳)有限公司 均温板及其制造方法
US20120099274A1 (en) * 2009-07-10 2012-04-26 Coolsilicon Llc Devices and methods providing for intra-die cooling structure reservoirs
CN101988811B (zh) * 2009-08-05 2013-07-03 富准精密工业(深圳)有限公司 平板式热管及其制造方法
TW201113494A (en) * 2009-10-08 2011-04-16 Ying-Tung Chen Heat dissipation structure and manufacturing method thereof
CN102042778B (zh) * 2009-10-22 2013-06-05 富准精密工业(深圳)有限公司 平板式热管
US20110108020A1 (en) * 2009-11-11 2011-05-12 Mcenerney Bryan William Ballast member for reducing active volume of a vessel
TW201124068A (en) * 2009-12-29 2011-07-01 Ying-Tong Chen Heat dissipating unit having antioxidant nano-film and its method of depositing antioxidant nano-film.
US8811014B2 (en) * 2011-12-29 2014-08-19 General Electric Company Heat exchange assembly and methods of assembling same
US9146059B2 (en) * 2012-05-16 2015-09-29 The United States Of America, As Represented By The Secretary Of The Navy Temperature actuated capillary valve for loop heat pipe system
KR101888910B1 (ko) * 2012-08-03 2018-08-20 삼성전자주식회사 디스플레이 장치
DE102012016442A1 (de) * 2012-08-18 2014-02-20 Audi Ag Wärmetauscher
KR20150028701A (ko) * 2013-09-05 2015-03-16 (주) 씨쓰리 열교환 장치 및 이의 제조 방법
CN203934263U (zh) * 2014-07-04 2014-11-05 讯凯国际股份有限公司 具有毛细构件的散热装置
US11397057B2 (en) * 2014-09-26 2022-07-26 Asia Vital Components Co., Ltd. Vapor chamber structure
US9952000B1 (en) 2015-04-15 2018-04-24 Advanced Cooling Technologies, Inc. Constant conductance heat pipe assembly for high heat flux
US10215500B2 (en) 2015-05-22 2019-02-26 Micron Technology, Inc. Semiconductor device assembly with vapor chamber
US10502498B2 (en) * 2015-07-20 2019-12-10 Delta Electronics, Inc. Slim vapor chamber
US10663231B2 (en) * 2016-06-08 2020-05-26 Delta Electronics, Inc. Manufacturing method of heat conducting device
US10782014B2 (en) 2016-11-11 2020-09-22 Habib Technologies LLC Plasmonic energy conversion device for vapor generation
WO2018198372A1 (ja) * 2017-04-28 2018-11-01 株式会社村田製作所 ベーパーチャンバー
FR3083036A1 (fr) * 2018-06-21 2019-12-27 Valeo Systemes Thermiques Dispositif de refroidissement d’un moteur electrique pour vehicule automobile
US10849217B2 (en) * 2018-07-02 2020-11-24 Aptiv Technologies Limited Electrical-circuit assembly with heat-sink
KR102641742B1 (ko) * 2018-09-20 2024-02-29 삼성전자주식회사 비금속 재질로 이루어진 방열 장치 및 이를 포함하는 전자 장치
CN111414056A (zh) * 2019-01-08 2020-07-14 达纳加拿大公司 带有结构化芯吸部的超薄两相热交换器
US11121058B2 (en) 2019-07-24 2021-09-14 Aptiv Technologies Limited Liquid cooled module with device heat spreader
US11324144B2 (en) * 2019-12-30 2022-05-03 GM Cruise Holdings, LLC Embedded and immersed vapor chambers in automated driving system computers
US11324143B2 (en) * 2019-12-30 2022-05-03 GM Cruise Holdings, LLC Embedded and immersed heat pipes in automated driving system computers
US20210364238A1 (en) * 2020-05-21 2021-11-25 Acer Incorporated Vapor chamber structure
US20210389055A1 (en) * 2020-06-15 2021-12-16 Asia Vital Components Co., Ltd. Compound wick structure of vapor chamber
US11382205B2 (en) 2020-09-16 2022-07-05 Aptiv Technologies Limited Heatsink shield with thermal-contact dimples for thermal-energy distribution in a radar assembly
AT524235B1 (de) * 2020-10-09 2022-04-15 Miba Sinter Austria Gmbh Wärmetransportvorrichtung

Family Cites Families (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3635103A (en) * 1968-12-24 1972-01-18 Siai Marchetti Spa Planetary reduction gearing
US3613778A (en) 1969-03-03 1971-10-19 Northrop Corp Flat plate heat pipe with structural wicks
US3537514A (en) 1969-03-12 1970-11-03 Teledyne Inc Heat pipe for low thermal conductivity working fluids
US3681843A (en) 1970-03-06 1972-08-08 Westinghouse Electric Corp Heat pipe wick fabrication
US3675711A (en) 1970-04-08 1972-07-11 Singer Co Thermal shield
US3598180A (en) * 1970-07-06 1971-08-10 Robert David Moore Jr Heat transfer surface structure
US3788388A (en) 1971-02-19 1974-01-29 Q Dot Corp Heat exchange system
US3786388A (en) * 1971-05-27 1974-01-15 K Sato Fuse-type circuit breaker
DE2502138C3 (de) 1975-01-21 1978-10-12 Rowenta-Werke Gmbh, 6050 Offenbach Gasfeuerzeugbrenner
GB1484831A (en) 1975-03-17 1977-09-08 Hughes Aircraft Co Heat pipe thermal mounting plate for cooling circuit card-mounted electronic components
US4046190A (en) 1975-05-22 1977-09-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Flat-plate heat pipe
US4042346A (en) * 1975-12-24 1977-08-16 Norton Company Diamond or cubic boron nitride grinding wheel with resin core
FR2371633A1 (fr) 1976-11-19 1978-06-16 Dupont S T Appareil a gaz liquefie, notamment briquet a gaz pour fumeurs
US4231423A (en) 1977-12-09 1980-11-04 Grumman Aerospace Corporation Heat pipe panel and method of fabrication
US4274479A (en) * 1978-09-21 1981-06-23 Thermacore, Inc. Sintered grooved wicks
DE2854298C3 (de) 1978-12-15 1981-06-04 Anschuetz & Co Gmbh, 2300 Kiel Schmierstoffkreislauf für das Lager einer umlaufenden Welle
US4327752A (en) 1979-12-05 1982-05-04 Braun, Aktiengesellschaft Rotary ignition system for a catalytically heated curling device
DE3072058D1 (en) 1980-09-30 1988-01-21 Braun Ag Hair curling apparatus
US4366526A (en) 1980-10-03 1982-12-28 Grumman Aerospace Corporation Heat-pipe cooled electronic circuit card
US4382448A (en) 1981-07-10 1983-05-10 Braun Aktiengesellschaft Electrical ignition system for a catalytically heated curling device
US4641404A (en) 1981-10-05 1987-02-10 Seydel Scott O Porous warp sizing apparatus
US4489777A (en) 1982-01-21 1984-12-25 Del Bagno Anthony C Heat pipe having multiple integral wick structures
US4503483A (en) 1982-05-03 1985-03-05 Hughes Aircraft Company Heat pipe cooling module for high power circuit boards
US5148440A (en) 1983-11-25 1992-09-15 The United States Of America As Represented By The United States Department Of Energy Wick for metal vapor laser
US4616699A (en) 1984-01-05 1986-10-14 Mcdonnell Douglas Corporation Wick-fin heat pipe
US4557413A (en) 1984-04-11 1985-12-10 Mcdonnell Douglas Heat pipe fabrication
US4819716A (en) * 1984-08-06 1989-04-11 Beachboard Stephen A Advanced zone damper system
US4777561A (en) 1985-03-26 1988-10-11 Hughes Aircraft Company Electronic module with self-activated heat pipe
US4865729A (en) 1985-11-04 1989-09-12 Sepragen Corporation Radial thin layer chromatography
FR2595052B1 (fr) 1986-03-03 1990-06-01 Armines Procede et dispositif de vaporisation rapide d'un liquide
US4697205A (en) 1986-03-13 1987-09-29 Thermacore, Inc. Heat pipe
US4765396A (en) 1986-12-16 1988-08-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Polymeric heat pipe wick
US4960202A (en) 1987-01-14 1990-10-02 Ingersoll-Rand Company Friction control for bearing surface of roller
US4819719A (en) 1987-01-20 1989-04-11 Mcdonnell Douglas Corporation Enhanced evaporator surface
US4912548A (en) 1987-01-28 1990-03-27 National Semiconductor Corporation Use of a heat pipe integrated with the IC package for improving thermal performance
DE3862511D1 (de) 1987-04-28 1991-05-29 Sig Schweiz Industrieges Siegelbacke fuer verpackungsmaschinen.
JPH063354B2 (ja) 1987-06-23 1994-01-12 アクトロニクス株式会社 ル−プ型細管ヒ−トパイプ
US4830097A (en) 1987-07-15 1989-05-16 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Space vehicle thermal rejection system
US4807697A (en) 1988-02-18 1989-02-28 Thermacore, Inc. External artery heat pipe
US5101560A (en) 1988-10-24 1992-04-07 The United States Of America As Represented By The Secretary Of The Air Force Method for making an anisotropic heat pipe and wick
US4885129A (en) 1988-10-24 1989-12-05 The United States Of America As Represented By The Secretary Of The Air Force Method of manufacturing heat pipe wicks
US4929414A (en) 1988-10-24 1990-05-29 The United States Of America As Represented By The Secretary Of The Air Force Method of manufacturing heat pipe wicks and arteries
USH971H (en) 1988-10-24 1991-10-01 The United States Of America As Represented By The Secretary Of The Air Force Regidized porous material and method
US4982274A (en) 1988-12-14 1991-01-01 The Furukawa Electric Co., Ltd. Heat pipe type cooling apparatus for semiconductor
US4931905A (en) 1989-01-17 1990-06-05 Grumman Aerospace Corporation Heat pipe cooled electronic circuit card
US4883116A (en) 1989-01-31 1989-11-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Ceramic heat pipe wick
US4880052A (en) 1989-02-27 1989-11-14 Thermacore, Inc. Heat pipe cooling plate
US5059496A (en) 1989-03-23 1991-10-22 Globe-Union Inc. Nickel-hydrogen battery with oxygen and electrolyte management features
ES2077844T5 (es) 1990-02-20 2001-02-01 Procter & Gamble Estructuras de canales capilares abiertos, procedimiento mejorado para producir estructuras de canales capilares, y boquilla de extrusion para uso en el mismo.
US5242644A (en) 1990-02-20 1993-09-07 The Procter & Gamble Company Process for making capillary channel structures and extrusion die for use therein
US5160252A (en) 1990-06-07 1992-11-03 Edwards Thomas C Rotary vane machines with anti-friction positive bi-axial vane motion controls
US5711816A (en) 1990-07-06 1998-01-27 Advanced Technolgy Materials, Inc. Source reagent liquid delivery apparatus, and chemical vapor deposition system comprising same
US5219020A (en) 1990-11-22 1993-06-15 Actronics Kabushiki Kaisha Structure of micro-heat pipe
US5076352A (en) 1991-02-08 1991-12-31 Thermacore, Inc. High permeability heat pipe wick structure
US5333470A (en) 1991-05-09 1994-08-02 Heat Pipe Technology, Inc. Booster heat pipe for air-conditioning systems
US5103897A (en) 1991-06-05 1992-04-14 Martin Marietta Corporation Flowrate controller for hybrid capillary/mechanical two-phase thermal loops
EP0529837B1 (en) 1991-08-26 1996-05-29 Sun Microsystems, Inc. Method and apparatus for cooling multi-chip modules using integral heatpipe technology
JPH0563385A (ja) 1991-08-30 1993-03-12 Hitachi Ltd ヒートパイプ付き電子機器及び計算機
US5253702A (en) 1992-01-14 1993-10-19 Sun Microsystems, Inc. Integral heat pipe, heat exchanger, and clamping plate
US5349237A (en) 1992-03-20 1994-09-20 Vlsi Technology, Inc. Integrated circuit package including a heat pipe
JPH0629683A (ja) 1992-03-31 1994-02-04 Furukawa Electric Co Ltd:The 電子機器用ヒートパイプ式放熱ユニット
US5283715A (en) 1992-09-29 1994-02-01 International Business Machines, Inc. Integrated heat pipe and circuit board structure
US5408128A (en) 1993-09-15 1995-04-18 International Rectifier Corporation High power semiconductor device module with low thermal resistance and simplified manufacturing
US5522455A (en) 1994-05-05 1996-06-04 Northrop Grumman Corporation Heat pipe manifold with screen-lined insert
US5549394A (en) 1994-11-10 1996-08-27 Hycomp, Inc. Bearing arrangement having a polyimide graphite-fiber reinforced composite embedded therein
JP3164518B2 (ja) * 1995-12-21 2001-05-08 古河電気工業株式会社 平面型ヒートパイプ
US5769154A (en) 1996-01-29 1998-06-23 Sandia Corporation Heat pipe with embedded wick structure
US6056044A (en) 1996-01-29 2000-05-02 Sandia Corporation Heat pipe with improved wick structures
US5642776A (en) * 1996-02-27 1997-07-01 Thermacore, Inc. Electrically insulated envelope heat pipe
JP2806357B2 (ja) 1996-04-18 1998-09-30 日本電気株式会社 スタックモジュール
US6041211A (en) 1996-06-06 2000-03-21 W. L. Gore & Associates, Inc. Cleaning assembly for critical image surfaces in printer devices and method of using same
US6167948B1 (en) 1996-11-18 2001-01-02 Novel Concepts, Inc. Thin, planar heat spreader
DE19805930A1 (de) 1997-02-13 1998-08-20 Furukawa Electric Co Ltd Kühlvorrichtung
US5826645A (en) 1997-04-23 1998-10-27 Thermal Corp. Integrated circuit heat sink with rotatable heat pipe
US5880524A (en) 1997-05-05 1999-03-09 Intel Corporation Heat pipe lid for electronic packages
US5847925A (en) 1997-08-12 1998-12-08 Compaq Computer Corporation System and method for transferring heat between movable portions of a computer
US5950710A (en) 1997-11-21 1999-09-14 Continocean Tech Inc. Overheat regulating system for vehicle passenger compartment
US6303081B1 (en) 1998-03-30 2001-10-16 Orasure Technologies, Inc. Device for collection and assay of oral fluids
US6055157A (en) 1998-04-06 2000-04-25 Cray Research, Inc. Large area, multi-device heat pipe for stacked MCM-based systems
US6148906A (en) 1998-04-15 2000-11-21 Scientech Corporation Flat plate heat pipe cooling system for electronic equipment enclosure
US6227287B1 (en) 1998-05-25 2001-05-08 Denso Corporation Cooling apparatus by boiling and cooling refrigerant
TW493058B (en) 1998-07-02 2002-07-01 Showa Denko Kk The remains of non condensing gas in heat pipe, the detecting method of non-remains, and the manufacturing method of pipes
US6239350B1 (en) 1998-09-28 2001-05-29 Advanced Modular Power Systems Internal self heat piping AMTEC cell
JP2000124374A (ja) 1998-10-21 2000-04-28 Furukawa Electric Co Ltd:The 板型ヒートパイプとそれを用いた冷却構造
US6154364A (en) 1998-11-19 2000-11-28 Delco Electronics Corp. Circuit board assembly with IC device mounted thereto
US6169852B1 (en) 1999-04-20 2001-01-02 The Hong Kong University Of Science & Technology Rapid vapor generator
US6302192B1 (en) 1999-05-12 2001-10-16 Thermal Corp. Integrated circuit heat pipe heat spreader with through mounting holes
US6293333B1 (en) 1999-09-02 2001-09-25 The United States Of America As Represented By The Secretary Of The Air Force Micro channel heat pipe having wire cloth wick and method of fabrication
US6418017B1 (en) 2000-03-30 2002-07-09 Hewlett-Packard Company Heat dissipating chassis member
US6382309B1 (en) 2000-05-16 2002-05-07 Swales Aerospace Loop heat pipe incorporating an evaporator having a wick that is liquid superheat tolerant and is resistant to back-conduction
US6651735B2 (en) * 2001-05-15 2003-11-25 Samsung Electronics Co., Ltd. Evaporator of CPL cooling apparatus having fine wick structure
US6536510B2 (en) * 2001-07-10 2003-03-25 Thermal Corp. Thermal bus for cabinets housing high power electronics equipment
US6388882B1 (en) 2001-07-19 2002-05-14 Thermal Corp. Integrated thermal architecture for thermal management of high power electronics
US20030136550A1 (en) * 2002-01-24 2003-07-24 Global Win Technology Heat sink adapted for dissipating heat from a semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102878845A (zh) * 2012-09-18 2013-01-16 华南理工大学 一种内凹槽多孔强化沸腾微通道结构及制造方法与应用
CN114577046A (zh) * 2017-05-08 2022-06-03 开文热工科技公司 热管理平面
CN113295028A (zh) * 2020-02-21 2021-08-24 日本电产株式会社 导热构件及其制造方法

Also Published As

Publication number Publication date
EP1620691A4 (en) 2007-12-26
WO2004097900A3 (en) 2005-05-26
WO2004097900A2 (en) 2004-11-11
US7013958B2 (en) 2006-03-21
EP1620691A2 (en) 2006-02-01
US20050236143A1 (en) 2005-10-27
US6945317B2 (en) 2005-09-20
US20040211549A1 (en) 2004-10-28

Similar Documents

Publication Publication Date Title
CN1798949A (zh) 具有粒子网的烧结槽状吸液芯
CN1820560A (zh) 具有烧结槽状结构吸液芯的塔式散热器
EP3690373B1 (en) Great-power flat evaporator resisting against positive pressure, processing method therefor, and flat-plate loop heat pipe based on evaporator
US10514211B2 (en) Vapor chamber
US20070006993A1 (en) Flat type heat pipe
CN104634148B (zh) 一种纳米结构平板热管
US6997245B2 (en) Vapor chamber with sintered grooved wick
US6863117B2 (en) Capillary evaporator
CN106152846B (zh) 一种自循环气液两相流相变换热器
CN106091765B (zh) 一种平板热管及其制作方法
CN206556484U (zh) 一种新型超薄均热板
US5998863A (en) Cooling apparatus boiling and condensing refrigerant
CN100414243C (zh) 沸腾冷却装置
CN1743783A (zh) 热管及其制备方法
CN1836145A (zh) 用于传热设备的钎焊吸液芯及其制造方法
CN102175088A (zh) 硅基不等宽微槽道平板热管及制备方法
CN101844297B (zh) 一种热管的制作方法及其热管
US11653471B2 (en) Heat dissipation device
CN201053839Y (zh) 烧结式热管
CN1719183A (zh) 一种用于cpl的平面式毛细芯冷凝器
EP1906128A2 (en) Heat transfer device
CN107509357A (zh) 一种新型平板热管及其制造方法
CN210900115U (zh) 一种散热装置
US20020074108A1 (en) Horizontal two-phase loop thermosyphon with capillary structures
CN113915594A (zh) 一种具有双相变腔的散热器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20060705

C20 Patent right or utility model deemed to be abandoned or is abandoned