CN1757093A - 具有多种照射图形的单步半导体处理系统和方法 - Google Patents

具有多种照射图形的单步半导体处理系统和方法 Download PDF

Info

Publication number
CN1757093A
CN1757093A CNA038190478A CN03819047A CN1757093A CN 1757093 A CN1757093 A CN 1757093A CN A038190478 A CNA038190478 A CN A038190478A CN 03819047 A CN03819047 A CN 03819047A CN 1757093 A CN1757093 A CN 1757093A
Authority
CN
China
Prior art keywords
thin film
semiconductive thin
radiation
incident
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA038190478A
Other languages
English (en)
Inventor
J·S·艾姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Columbia University of New York
Original Assignee
Columbia University of New York
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Columbia University of New York filed Critical Columbia University of New York
Publication of CN1757093A publication Critical patent/CN1757093A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/066Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1296Multistep manufacturing methods adapted to increase the uniformity of device parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1076Apparatus for crystallization from liquid or supercritical state having means for producing a moving solid-liquid-solid zone
    • Y10T117/1088Apparatus for crystallization from liquid or supercritical state having means for producing a moving solid-liquid-solid zone including heating or cooling details

Abstract

本发明提供了一种高生产量系统和在低温下沉积到衬底上的薄膜半导体的再结晶工艺。用激光光束照射薄膜半导体工件来熔化和再结晶暴露在激光光束的表面目标区域。使用图形掩模,使激光光束成形为一个或多个波束。掩模图形具有合适的尺寸和方向来图形化激光光束照射,使得由波束对准的区域具有传导到半导体再结晶的尺寸和方向。在高速条件下工件沿着相对应激光光束的线性路径机械地平移来处理工件的表面。位置灵敏的触发激光可被用于产生激光脉冲,来熔化和再结晶电动平台上平移的工件时精确地位于工件表面上的半导体材料。

Description

具有多种照射图形的单步半导体处理系统和方法
本申请要求于2002年8月19日提交的相关申请的交叉参考,申请号为No.60/404,447的美国专利申请为优先权。
发明背景
本发明涉及一种半导体工艺方法,更具体地,涉及形成适合于制造薄膜晶体管(“TFT”)器件形态的半导体材料。
平板显示器和其它显示单元用作视觉图像界面,用于普通和普遍存在的电子器件和应用,例如计算机、图像传感器和电视装置。例如,由置于玻璃或塑料衬底上的液晶薄膜和半导体材料制造显示器。每一个显示器在液晶层中由图像元件(像素)的阵列(或矩阵)组成。成千上万的这些像素一起构成显示器上的图像。在半导体材料层中制造的TFT器件用做开关以单独地“接通”(亮)或“断开”(暗)每一个像素。用于制造TFT的半导体材料,传统地是非晶硅或多晶硅薄膜。考虑到所使用的低熔化温度的衬底材料(例如,玻璃或塑料),通过物理或化学工艺以相对低的沉积温度将这些膜沉积在衬底上。相对低的沉积温度降低了沉积的硅薄膜的结晶性并使它们成为非晶或多晶。
不幸地,在硅薄膜中制造的TFT的器件特性一般不希望与硅薄膜的非结晶性成比例的降低。好的结晶质量的硅薄膜期望应用于工业TFT器件。在低温下沉积在衬底上的硅薄膜的结晶性可通过激光退火有效的提升。例如,Maegawa等人的美国专利5,766,989描述了应用受激准分子激光退火(“ELA”)将在低温下沉积的非晶硅薄膜处理成用于LCD的多晶硅薄膜。但是,传统的ELA工艺由于退火的薄膜的晶粒尺寸没有工业应用足够的均一性,所以至少部分上不能完全满意。在退火薄膜中的晶粒尺寸的非均一性与在ELA工艺中扫描薄膜使用的激光光束的光束形状有关。
Im等人的美国专利6,573,531和6,322,625下文中,分别为“‘531专利”和“‘625专利”),在此整体引入二者作为参考,描述激光退火设备和提高的用于产生大晶粒多晶硅或单晶硅结构的工艺。在这些专利中描述的激光退火工艺包括通过激光照射熔化的薄膜的目标部分控制的再固化。薄膜可以是金属或半导体材料(例如,硅)。调制入射到硅薄膜上的一组激光脉冲的流量来控制硅薄膜目标部分熔化的范围。然后,在入射的激光波束脉冲之间,通过目标硅薄膜的轻微物理传送使目标部分的位置移位来促使外延侧向固化。该所谓的侧向固化工艺有利地传递初始熔化的目标部分的晶体结构到大尺寸的晶粒。用于加工的设备包括受激准分子激光器、光束流量调制器、光束聚焦透镜、图形掩模和用于在激光光束照射之间或期间用来移动目标薄膜的电动传送平台(参见例如,‘531专利图1,在此复制)。
现在考虑进一步提高半导体薄膜的激光退火工艺的方式,并且具体是用于薄膜的再结晶。将注意力直接指向设备和工艺技术,例如,在生产平板显示器中通过既提高退火工艺又增加设备产量的应用。
发明概要
本发明提供了再结晶非晶或多晶半导体薄膜的系统和方法,来提高它们的结晶质量并由此使得它们更适合于器件应用。设计系统和工艺使得可以快速处理大表面区域的半导体薄膜。
半导体薄膜的目标区域可计划给全部或部分半导体器件结构。例如,目标区域可计划用于半导体器件的有源区域。目标区域通过激光光束照射处理来使它们再结晶。使目标区域暴露到具有足够密度或流量的激光光束来熔化目标区域中的半导体材料。可使用单步激光光束曝光,当激光光束从目标区域关闭或移开时使熔化的半导体材料再结晶。
半导体薄膜表面上的区域中的大量的目标区域可通过使用图形化的激光照射同时处理。可以展开投影掩模合适地图形化激光光束。掩模将激光光束分为许多的波束,该波束入射在半导体薄膜表面区域中的相应数量的目标区域上。每一个波束具有足够的流量来熔化(波束)入射在其上的目标区域中的半导体材料。波束的面积可考虑到目标区域所希望的尺寸和可有效再结晶的半导体材料的量而选择。典型的波束面积和相应的目标区域的面积可大约0.5微米级或更小微米。
用于图形化激光光束照射的示例性掩模具有大许多彼此平行的长方形狭缝。使用该掩模,入射激光光束可分为多个平行的波束。相应于这些波束的目标区域被分配到相似的平行图形中的表面区域中。另一示例性掩模具有许多设置在一组平行的长方形图形中的长方形狭缝和直角狭缝。例如,狭缝沿着正方形的两边成对地排列。使用该掩模,合成的照射波束和相应的目标区域还分配在相似的长方形图形中(例如,一组平行且直角的目标区域中)。
激光光束可扫描或步进穿过半导体薄膜表面来连续地处理只有重复图形的目标区域表面的所有区域。相反地,出于相同的目的半导体薄膜可相对于固定方向的激光光束移动。在发明的一个实施例中,使用电动线性传送平台相对于在线性X-Y路径上的光束移动半导体薄膜,使得半导体薄膜的所有表面区域可暴露于激光光束照射。在处理期间平台能连续移动跨过半导体薄膜的宽度或能从一个区域步进到另一个区域。对于一些器件应用,在一个区域中的目标区域可邻接下一区域中的目标区域使得延伸条的半导体材料能被再结晶。邻接目标区域的再结晶可有利于熔化的目标区域顺序地侧向固化。对于其它的器件应用,目标区域可几何地与邻近的区域中的目标区域隔开。
目标区域照射的激光波束脉冲的产生可与线性传送平台的运动同步,使得激光光束能入射到几何精确的指定的目标区域上。产生激光脉冲的时机可标为支撑半导体薄膜的传送平台的位置。标记可响应其指出平台位置的实际时间的位置传感器出现,或以薄膜半导体上面的几何栅格的计算的坐标为基础。
附图说明
本发明的进一步特征、性质和多种优点在下面优选实施例的详细描述和附图中将更清楚,其中相同的参考符号始终代表相同的元件,其中:
图1是用来再结晶半导体薄膜的激光退火的半导体工艺系统的方框图和示意图;
图2是薄膜硅工件样品的上分解图;
图3a和3b是基于本发明原理的掩模样品的上视图;
图4是根据本发明原理使用图3a的掩模进行处理的图2中的薄膜硅工件一部分的示意图;
图5是根据本发明原理使用图3b的掩模进行处理的图示范性处理了的薄膜硅工件的示意图;和
图6是说明根据本发明的原理使用几何图形的坐标来触发入射在薄膜硅工件上的辐射脉冲的示意图。
具体实施方式
本发明提供了通过激光退火使半导体薄膜再结晶的工艺和系统来。再结晶半导体薄膜的工艺包括激光束一次照射到半导体薄膜工件的区域。系统将激光束引到半导体薄膜上的区域或点。入射的激光束具有足够的密度或流量来熔化激光束入射到的半导体薄膜区域或点上的目标部分。目标入射区域或部分熔化之后,激光束移动或步进到半导体薄膜上的另一个区域或点。当入射的激光束移开时熔化了的半导体材料再结晶。激光束在半导体薄膜上的点上的停留时间可能足够的小,使得整个半导体薄膜工件再结晶可以快速高生产率的完成。
为使得在此描述的发明能被完全理解,在上下文中的硅薄膜的激光退火在后面的说明中提出。退火后的硅薄膜可被有意的用于示范性TFT器件应用中。然而将明白本发明相同地可用于其它类型的材料和或其它类型的器件应用。
在此,参考图1-6来描述本发明的实施例。在此薄膜硅工件(参见例如,工件170,图2和4-6)用做说明性的工件。例如,工件170可以是使用在平板显示器中沉积在玻璃或塑料衬底上的非晶或随机晶粒的多晶硅薄膜。例如,硅薄膜的厚度可以是大约100埃到大于5000埃的范围内。而且,在图1中所示的激光退火设备1000的上下文中描述了本发明,其通过在此结合作为参考的专利‘531中公开。使用该设备仅仅用于说明的目的来描述本发明的工艺,基于对本发明原理的理解可用于其它任何可利用的照射设备或系统。
设备1000包括能产生能量辐射束的辐射源110、用来定形和引导辐射束到工件表面的合适的光学组件120-163和在处理过程中支撑工件170电动平台移动部件180。辐射源110可以是任何适当的辐射源,其可产生具有足够密度的辐射能量的连续或脉冲束来熔化工件170的半导体薄膜的入射区域或部分。例如,辐射源110可适用于固态或其它类型的激光、电子束或离子束源。对于许多的半导体再结晶应用,由辐射源110产生的辐射光束可具有约10mJ/cm2到1J/cm2范围的密度(例如,500mJ/cm2)。适当的光学和/或电子器件可被用来调制或脉动通过辐射源110产生的辐射光束。例如,在约10到200纳秒范围中的脉冲周期(FWHM),在约10Hz到200Hz的范围中的脉冲重复率,适于硅薄膜工件170的激光退火。例如,用于硅薄膜工件170激光退火的合适辐射源110可是商用XeCl受激准分子激光器(例如,3201 West Commercial Blvd.Ft.Lauderdale,FL33309USA的美国Lambda Physik公司出售的LPX-315I型受激准分子激光器)。
合适的光学器件120-163可用于调制、校准或聚焦通过激光器110产生的照射到工件170上的辐射束。具体地,能量密度调制器120可用于激光束脉冲计数和/或调制它们的流量。例如,调制器120可以是商用可控制的光束能量密度调制器(例如,美国Lambda Physik公司出售的MicroLas双板可变衰减器<two-plate variable-attenuator>)。用来定形激光束的其它光学组件(例如,控制镜140、143、147、160和162、扩展和校准透镜141和142、均化器144聚光透镜145、场镜148、目镜161、可控制快门152、多元件物镜163),例如,也可以是其他任何合适的由美国Lambda Physik公司或其它公司出售的商用光学组件。
合适的光学组件120-163用于成形和引导辐射光束的可包括掩模系统150。掩模系统150可为投影掩模系统,用来图形化入射的放射线(149)使得最大限度的入射到工件170上的辐射光束(164)为几何成形或构图。
加工过程中工件170上的平台装置180可以是能够在一个或多个方向上移动的任何合适的电动平台移动装置。能够高的传送速度的传送平台有利于在此描述的高生产量的一次工艺。平台装置180可被支撑在合适的支撑结构上以从震动中与薄膜硅工件170隔离。例如,支持结构可以是包括传统光具座例如安装在震动隔离和自动调平系统191、192、193和194上的花岗石块光具座190。
计算机100可连接到激光器110、调制器120、平台装置180和其它可控制组件的设备1000上。计算机100可用于控制入射激光束脉冲和平台装置180相对移动的定时和流量。编程计算机100在X、Y和Z方向上控制移动平台装置传送平台180。例如,响应于计算机100的指令,工件170可在X-Y平面内和在Z方向上移动超过预定距离。在操作中,根据用于工件170预先编程的一次再结晶的工艺方法,在一次激光退火的合适时间工件170相对于入射激光束164的位置可被连续调整或间断性的重置。工件170的移动与激光器110产生的辐射光束脉冲的时机选择同步或同等。
在设备1000中,平台装置180的运动使工件170和辐射光束(164)彼此平移。在此描述的工艺中,当平台180被移动时,辐射光束(164)固定在一个位置和方向中。光学组件的可选择的配置或安排可用于沿着定义的路径相对彼此移动辐射光束164和工件170。例如,当平台180固定在一个位置时,计算机控制光束控制镜可用于偏转辐射光束164。通过如此的光束偏转,能够完全或部分省去机械投影掩模(例如,掩模系统150)的使用和代替电子或光学光束引导机械以快步扫描或步进工件170的选择部分。
例如,使用设备1000,可利用如下工艺实现熔化的半导体材料顺序的侧向固化,工艺包括如专利‘531中描述的受激准分子激光脉冲之间增加的运动或平台180的位置移动。平台180的移动小,使得由连续脉冲熔化的部分硅薄膜相互最接近。两个熔化部分的近似性允许第一部分再结晶和扩散其晶体结构到通过下一脉冲熔化的相邻部分中。
在此描述的一次再结晶工艺中,通过移动平台装置180,设备1000可用于激光束扫描或步进穿过半导体薄膜的表面。激光束在激光光束脉冲入射的区域或点上具有足够的密度或流量来熔化目标区域。为了加工整个工件170,平台装置180可移动预定的距离,来引起激光束沿着穿过半导体薄膜175/工件170的路径移动。图2也示意性的显示了路径230、255等,该路径在它移动穿过工件170表面时通过入射辐射光束164跟踪。
路径数和它们的几何方向可通过激光束的截面面积和被加工的工件170的应用电路或设备要求的目标区域来确定。因此,半导体薄膜175/工件170的表面可被分配在产生计算机100的处理方法或另外的设备1000的控制操作的几何阵列区域中。图2显示了工件170上的半导体薄膜175表面示例性的几何分配。在示于图2的示例性的几何分配中,表面分为每个具有宽度W的许多行(例如,205,206,207,等)。可考虑入射辐射光束164的截面宽度来选择行的宽度W。每一行包含一个或多个区域。如说明性的数字示例,工件170在X和Y方向可分别为大约30cms和40cms。例如,每一行205、206、207等可具有在Y方向上大约1/2厘米的宽度W。例如,该值W可对应大约相同大小的激光束宽度。因而,工件170的表面在X方向可以分为每个具有长度大约30cms的八十(80)个行。每一行包括结合长度等于30cms(未示出)的一个或多个区域。
每一行的坐标可存储在计算机100中通过工艺方法来使用。例如,计算机100可使用存储坐标,以在处理过程中来计算平台180的方向、时序和移动距离。例如,坐标也可用来记录激光器110开启的时间,使得在平台180移动时照射半导体薄膜175分配的区域。
当硅薄膜175被照射时,工件170可在线性方向上传送,使得半导体薄膜175的线性条暴露给熔化密度或流量的辐射光束。可配制通过辐射光束追踪的传送路径,使得薄膜硅175整个表面的预期部分通过暴露给激光光束而依次处理。例如,可配制传送路径使得激光束依次横穿行205、206、207,等。在图2中,一开始将辐射光束定向在接近行205左端附近的210’反面的点220上。例如,路径230表示,当平台180在X负方向上移动时通过行205的辐射光束的中心追踪的传送路径。
平台180的运动可进行一系列的步骤,间断的停-和-进的方式或连续的无停顿的直到辐射光束的中心引入到行205右端附近的点240上。路径段225和235分别表示延伸出工件170的边缘210’和210”到点220和240的路径230的延长。这些段可能需要使平台装置180适应在路径230末端加速或减速和/或在平台180在另一方向移动重新初始化平台180的位置。例如,平台180可从点240在Y的负方向上移动,使得辐射光束的中心追踪路径245到在行206右端的点247准备处理行206中的硅材料。从点247相似于沿着行205中路径230的方式(但在反方向),平台180在X方向上移动使得辐射光束中心沿着在行206中照射薄膜硅材料的路径255移动。继续移动直到辐射光束的中心入射到邻近行206左端的点265上。路径延伸260和250分别表示延伸过边210’和210”到点247和265的路径255的段。进一步在Y方向上平台180的线性移动沿着路径270到下一行207的点272移动入射辐射光束的中心。然后,可通过在X负方向上沿着路径275且进一步朝向工件170的相对侧210”移台180来处理在行207中的薄膜硅材料。以对行205、206和207描述的方式使平台180在X和Y方向上连续运动,可处理或照射薄膜硅175表面上的所有行。应当明白,上述的具体的方向或路径顺序仅仅作为说明的目的,也可适当地使用其它方向或顺序。
在设备1000的操作中,硅薄膜175可以通过利用掩模系统150定义几何外形的光束脉冲164来照射。掩模系统150可包括合适的用于此目的的投影掩模。掩模系统150可使单一入射辐射光束(例如光束149)入射到其上来掩饰到几何图形中的多个波束中。波束照射到薄膜硅工件上的区域中的目标区域的相应几何图形上。可选择每个波束有足够充分的密度来引起贯穿它们的(膜)厚度照射的薄膜硅部分完全熔化。
投影掩模可由合适的材料形成,其阻挡照射通道穿过光束149不希望的截面区域但允许通道通过期望的区域。示例性的投影掩模可具有由矩形条或其它合适的阻挡/非阻挡几何图形,其可随机或按几何图形排列。例如,条可以如图3a所示的平行图形、或如图3b所示的平行和直角混合的图形、或任何其它合适的图形放置。
参考图3a,示例性掩模300A包括具有多个开口或透明狭缝301、302、303等的光束阻挡部分310。光束阻挡部分310避免入射光束149入射部分的通道穿过掩模300A。相反,开口或透明狭缝301、302、303等,允许入射光束149入射部分的通道穿过掩模300。因此,离开掩模300A的辐射束164具有和多个开口或透明狭缝301、302、303等的平行图形相对应的几何图形的截面。从而,当定位在掩模系统150中时,可使用掩模300A来图形化入射到半导体薄膜175上的辐射束164作为平行的矩形波束的收集。波束照射半导体薄膜175表面上的区域中的矩形目标区域的对应图形。在提高通过波束熔化的薄膜硅区域的再结晶或横向固化的角度选择波束的面积。例如,可选择波束的边长使得邻近区域中的相应的目标区域相邻接。波束的大小和波束中间分开的距离可通过大小合适的选择和透明狭缝301、302、303等的间隔来选择。例如,具有微米或较大线尺寸的开口或透明狭缝301、302、303等,产生具有在多种条件下适合硅薄膜再结晶工艺的面积的激光照射波束。
图3b示出另一具有与掩模300A不同的图形的示例性掩模300B。例如,在掩模300B中,许多开口或透明狭缝351、352、361、362等可沿着正方形的两边成对排列。该掩模300B也可用在掩模系统150中来图形化入射在半导体薄膜175上的辐射束164。例如,辐射束164可图形化作为按正方形图形排列的波束的收集。在可提高通过波束熔化的薄膜硅表面区域再结晶或横向固化的角度上选择波束的面积。具有约0.5微米线性尺寸开口或透明狭缝351、352、361、362等可产生具有合适面积的用于薄膜硅区域再结晶的激光照射波束。
应当明白,在图3a和3b中所示的具体掩模图形是示例性的。可使用任何其它合适的掩模图形,例如包括专利‘625中描述的人字形图形。考虑到TFT期望的布置或打算再结晶化薄膜硅材料半导体产品中其它电路或器件元件的来选择特定的掩模图形。
例如图4表示,用图3a中的掩模300A(掩模300A可在示于图3a中水平方向旋转约90度)处理了的工件170的部分。显示的该部分对应一行,例如,工件170的行205(图2)。处理了的工件170的行205包括再结晶的多晶硅线性区域或条401、402等。每一个线性条是通过照射由对应的狭缝301、302等形成的辐射束的结果。在穿过行205的线性条中再结晶的硅的连续延伸,例如是在激光束曝光下(图2)沿着路径230的平台180的连续运动的结果。条401、402可具有对应于具有在中心碰撞液体/固体生长面的一次曝光产生长位置控制晶粒边界的微结构。可选地,在方向性的固化过程中,连续区域是平台180沿着路径230接近的距离步进运动的结果,其充分的交叠允许连续再结晶的硅条形成。在该可选择工艺中,再结晶材料的微结构可具有平行于扫描方向的长晶粒。再结晶的多晶硅(例如,条401、402等)可具有一般均匀的结构,其适合于布置一个或多个TFT器件的活性区域。相似地,图5示出了使用图3b中掩模300B的示例性结果。示例性处理的工件170包括再结晶多晶硅条501、502等。再结晶多晶硅条501、502等象条401、402那样具有均匀的晶体结构,适合于TFT器件的活性区域的布置。一般彼此成直角显示的条501和502可对应于利用直角掩模狭缝(例如,图3b狭缝351,361)形成的照射波束。条501和502(对比于条401和402的延伸长度)明显的几何定向和物理间隔,例如可以是在工件170处理过程中暴露给激光照射的物理间隔的结果。在处理过程中,可通过平台180的步进运动(例如,沿着图2路径230)获得间隔的照射曝光。另外或可选择地,平台180和激光光束160彼此以固定速度移动或扫描时,平台180沿路径230在适当的时间和位置通过触发激光器110产生照射脉冲获得间隔曝光。
计算机100可用于当平台180运动时在合适的时间和位置时控制触发激光器110。计算机100可根据预先编程的工艺方法完成,例如,包括工件加工中几何设计信息。图6显示了用于计算机100来触发激光器110的示例性的设计图形600。图形600可以是覆盖薄膜硅175/工件170的几何栅格。例如,栅格可以是具有坐标(x1,x2,...等)和(y1,y2,...等)的长方形x-y栅格。通过设计栅格的间隔可以是规则的或不规则的。在工艺方法中,图形600可按照物理基准的标记(例如,在薄膜硅工件上)布置或可以是数学的结构。当平台180在栅格坐标(xi,yi)处时,记算机100可触发激光器110。例如,计算机100动作响应配置来感应平台180的位置的传统的位置传感器或指示器。可选地,计算机100可以计算的说明触发激光器110,该计算的次数自例如平台初始位置和从初始平台位置平台移动的速度和方向的参数计算。计算机100也可有利地用于指示激光器110来发出变化率的辐射脉冲,胜于通常的匀速。例如,脉冲产生变化率可有利地适应平台180速度的改变,如在路径230末端等的加速或减速。
应当明白,前述仅是示例性的本发明的原理,并且在不脱离本发明的范围与精神的前提下本领域技术人员可做多种修饰,其仅仅通过下面的权利要求限定。

Claims (16)

1、一种提高半导体薄膜结晶质量的再结晶方法,包括下述步骤:
(a)利用一辐射束脉冲照射半导体薄膜表面的第一区域,其中所述辐射束首先被图形化成一波束图形中的至少一个波束,其中每个波束入射到第一区域中的目标区域上,每个波束具有足够的流量来熔化其所入射的目标区域中的半导体材料,并且在所述目标区域中熔化的半导体材料当它不再暴露于所述入射波束时再结晶;并且
(b)相对于所述辐射束,连续地平移半导体薄膜,使得以与步骤(a)相同的方式照射半导体薄膜表面的下一个区域。
2、如权利要求1所述的方法,其特征在于,所述波束具有微米级的截面面积。
3、如权利要求1所述的方法,其特征在于,进一步包括利用一掩模从所述辐射束脉冲图形化得到所述波束的步骤。
4、如权利要求3的方法,其特征在于,所述掩模包括:
阻挡部分,用于阻挡入射在其上的辐射从中通过;
布置成一图形的多个狭缝,所述狭缝允许入射在它们上的辐射从中通过,并且所述狭缝在所述图形中设置为彼此基本平行。
5、如权利要求3的方法,其特征在于,所述掩模包括:
阻挡部分,用于阻挡入射在其上的辐射从中通过;
布置成一图形的多个狭缝,所述狭缝允许入射在它们上的辐射从中通过,并且所述狭缝在所述图形中沿着长方形的两边成对布置。
6、如权利要求1的方法,其特征在于,进一步包括如下步骤:在一移动平台上支撑所述半导体薄膜,并且相对于所述辐射束平移半导体薄膜的所述步骤包括沿着一线形路径将所述可移动平台移到下一个区域。
7、如权利要求6的方法,其特征在于,所述半导体薄膜包括行区域,并且所述方法进一步包括下述步骤:沿着所述线形路径,移动所述可移动平台穿过半导体薄膜表面上的第一行区域。
8、如权利要求7的方法,其特征在于,所述可移动平台不停顿地通过所述第一行区域连续移动。
9、如权利要求7的方法,其特征在于,所述可移动平台在一区域处停顿,然后移到一邻近的区域。
10、如权利要求7的方法,其特征在于,进一步包括下述步骤:沿着线形路径,移动所述可移动平台穿过连续的行区域,直到处理了半导体薄膜的整个表面。
11、如权利要求1的方法,其特征在于,所述第一区域中的至少一个目标区域与下一个区域中的相应目标区域相连,使得在照射第一和下一个区域之后,形成一延伸的条或再结晶的半导体材料。
12、一种提高半导体薄膜结晶质量的再结晶方法,包括下述步骤:
(a)使用激光产生一辐射束脉冲;
(b)利用所述辐射束脉冲照射半导体薄膜表面的第一区域,其中所述辐射束首先被图形化成一波束图形中的至少一个波束,每个波束入射到第一区域中的一个目标区域上,每个波束具有足够的流量来熔化其所述入射的目标区域中的半导体材料,并且所述目标区域中熔化的半导体材料当它不再暴露于所述入射波束时再结晶;并且
(c)在利用所述辐射束脉冲照射了半导体薄膜表面的第一区域之后,相对于所述辐射束平移半导体薄膜,使得以步骤(a)和(b)的方式照射半导体薄膜表面的下一个区域。
13、如权利要求12的方法,其特征在于,根据薄膜半导体区域相对于辐射束的位置,触发所述激光器,以产生所述辐射束脉冲。
14、如权利要求12的方法,其特征在于,进一步包括在一可移动平台上支撑所述半导体薄膜,并且相对于所述辐射束平移半导体薄膜的所述步骤包括移动所述可移动平台,并且根据所述可移动平台的位置,触发所述激光器,以产生所述辐射束脉冲。
15、如权利要求14的方法,其特征在于,通过位置传感器感测所述可移动平台的位置。
16、如权利要求14的方法,其特征在于,根据所述可移动平台的初始位置,计算所述可移动台的位置。
CNA038190478A 2002-08-19 2003-08-19 具有多种照射图形的单步半导体处理系统和方法 Pending CN1757093A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US40444702P 2002-08-19 2002-08-19
US60/404,447 2002-08-19

Publications (1)

Publication Number Publication Date
CN1757093A true CN1757093A (zh) 2006-04-05

Family

ID=31888365

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA038190478A Pending CN1757093A (zh) 2002-08-19 2003-08-19 具有多种照射图形的单步半导体处理系统和方法

Country Status (7)

Country Link
US (5) US7718517B2 (zh)
JP (1) JP2006512749A (zh)
KR (1) KR20050047103A (zh)
CN (1) CN1757093A (zh)
AU (1) AU2003258289A1 (zh)
TW (1) TWI331803B (zh)
WO (1) WO2004017380A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104412361A (zh) * 2012-06-18 2015-03-11 让-保罗·泰斯 用于在异体基质上制造半导体薄层的方法

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6555449B1 (en) 1996-05-28 2003-04-29 Trustees Of Columbia University In The City Of New York Methods for producing uniform large-grained and grain boundary location manipulated polycrystalline thin film semiconductors using sequential lateral solidfication
US6830993B1 (en) 2000-03-21 2004-12-14 The Trustees Of Columbia University In The City Of New York Surface planarization of thin silicon films during and after processing by the sequential lateral solidification method
JP4599032B2 (ja) 2000-10-10 2010-12-15 ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク 薄い金属層を処理する方法及び装置
KR100400510B1 (ko) * 2000-12-28 2003-10-08 엘지.필립스 엘시디 주식회사 실리콘 결정화 장치와 실리콘 결정화 방법
KR101131040B1 (ko) * 2002-08-19 2012-03-30 더 트러스티스 오브 콜롬비아 유니버시티 인 더 시티 오브 뉴욕 에지 영역을 최소화하도록 기판 상의 박막 영역을 레이저결정화 처리하는 방법 및 시스템, 그리고 그러한 박막 영역의 구조
US7718517B2 (en) 2002-08-19 2010-05-18 Im James S Single-shot semiconductor processing system and method having various irradiation patterns
US7341928B2 (en) 2003-02-19 2008-03-11 The Trustees Of Columbia University In The City Of New York System and process for processing a plurality of semiconductor thin films which are crystallized using sequential lateral solidification techniques
KR100546711B1 (ko) * 2003-08-18 2006-01-26 엘지.필립스 엘시디 주식회사 레이저 조사 장치 및 이를 이용한 실리콘 결정화 방법
WO2005029551A2 (en) 2003-09-16 2005-03-31 The Trustees Of Columbia University In The City Of New York Processes and systems for laser crystallization processing of film regions on a substrate utilizing a line-type beam, and structures of such film regions
US7364952B2 (en) * 2003-09-16 2008-04-29 The Trustees Of Columbia University In The City Of New York Systems and methods for processing thin films
WO2005029549A2 (en) * 2003-09-16 2005-03-31 The Trustees Of Columbia University In The City Of New York Method and system for facilitating bi-directional growth
US7318866B2 (en) * 2003-09-16 2008-01-15 The Trustees Of Columbia University In The City Of New York Systems and methods for inducing crystallization of thin films using multiple optical paths
WO2005029546A2 (en) 2003-09-16 2005-03-31 The Trustees Of Columbia University In The City Of New York Method and system for providing a continuous motion sequential lateral solidification for reducing or eliminating artifacts, and a mask for facilitating such artifact reduction/elimination
TWI366859B (en) 2003-09-16 2012-06-21 Univ Columbia System and method of enhancing the width of polycrystalline grains produced via sequential lateral solidification using a modified mask pattern
US7164152B2 (en) * 2003-09-16 2007-01-16 The Trustees Of Columbia University In The City Of New York Laser-irradiated thin films having variable thickness
KR100531416B1 (ko) * 2003-09-17 2005-11-29 엘지.필립스 엘시디 주식회사 Sls 장비 및 이를 이용한 실리콘 결정화 방법
WO2005034193A2 (en) * 2003-09-19 2005-04-14 The Trustees Of Columbia University In The City Ofnew York Single scan irradiation for crystallization of thin films
US7329884B2 (en) * 2004-11-08 2008-02-12 Nikon Corporation Exposure apparatus and exposure method
US7645337B2 (en) * 2004-11-18 2010-01-12 The Trustees Of Columbia University In The City Of New York Systems and methods for creating crystallographic-orientation controlled poly-silicon films
US8221544B2 (en) 2005-04-06 2012-07-17 The Trustees Of Columbia University In The City Of New York Line scan sequential lateral solidification of thin films
US20090218577A1 (en) * 2005-08-16 2009-09-03 Im James S High throughput crystallization of thin films
KR101287314B1 (ko) * 2005-12-05 2013-07-17 더 트러스티이스 오브 콜롬비아 유니버시티 인 더 시티 오브 뉴욕 막 처리 시스템과 방법, 및 박막
JP2007165716A (ja) * 2005-12-15 2007-06-28 Advanced Lcd Technologies Development Center Co Ltd レーザー結晶化装置及び結晶化方法
JP4956987B2 (ja) * 2005-12-16 2012-06-20 株式会社島津製作所 レーザー結晶化装置及び結晶化方法
WO2009039482A1 (en) 2007-09-21 2009-03-26 The Trustees Of Columbia University In The City Of New York Collections of laterally crystallized semiconductor islands for use in thin film transistors
JP5385289B2 (ja) 2007-09-25 2014-01-08 ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク 横方向に結晶化した薄膜上に作製される薄膜トランジスタデバイスにおいて高い均一性を生成する方法
US8012861B2 (en) 2007-11-21 2011-09-06 The Trustees Of Columbia University In The City Of New York Systems and methods for preparing epitaxially textured polycrystalline films
KR20100105606A (ko) 2007-11-21 2010-09-29 더 트러스티이스 오브 콜롬비아 유니버시티 인 더 시티 오브 뉴욕 에피택셜하게 텍스쳐화된 후막의 제조를 위한 시스템 및 방법
WO2009067688A1 (en) 2007-11-21 2009-05-28 The Trustees Of Columbia University In The City Of New York Systems and methods for preparing epitaxially textured polycrystalline films
US8569155B2 (en) * 2008-02-29 2013-10-29 The Trustees Of Columbia University In The City Of New York Flash lamp annealing crystallization for large area thin films
EP2248155A4 (en) * 2008-02-29 2011-10-05 Univ Columbia FLASH LIGHT-RECOGNIZED FOR THIN FILMS
TWI452632B (zh) * 2008-02-29 2014-09-11 Univ Columbia 製造均勻一致結晶矽膜的微影方法
US8193071B2 (en) * 2008-03-11 2012-06-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
CN102077318B (zh) * 2008-06-26 2013-03-27 株式会社Ihi 激光退火方法及装置
JP5540476B2 (ja) * 2008-06-30 2014-07-02 株式会社Ihi レーザアニール装置
EP2351067A4 (en) 2008-11-14 2013-07-03 Univ Columbia SYSTEMS AND METHODS FOR CRYSTALLIZATION OF THIN FILMS
US8440581B2 (en) 2009-11-24 2013-05-14 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse sequential lateral solidification
US9646831B2 (en) 2009-11-03 2017-05-09 The Trustees Of Columbia University In The City Of New York Advanced excimer laser annealing for thin films
US9087696B2 (en) 2009-11-03 2015-07-21 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse partial melt film processing
EP2726264B1 (en) 2011-06-28 2016-11-23 Global Filtration Systems, A DBA of Gulf Filtration Systems Inc. Apparatus for forming three-dimensional objects using an ultraviolet laser diode
US9075409B2 (en) 2011-06-28 2015-07-07 Global Filtration Systems Apparatus and method for forming three-dimensional objects using linear solidification
US10112345B2 (en) 2013-04-04 2018-10-30 Global Filtration Systems Apparatus and method for forming three-dimensional objects using linear solidification with travel axis correction and power control
US20150102531A1 (en) 2013-10-11 2015-04-16 Global Filtration Systems, A Dba Of Gulf Filtration Systems Inc. Apparatus and method for forming three-dimensional objects using a curved build platform
US20150146179A1 (en) * 2013-11-25 2015-05-28 Takao Utsumi Low energy electron beam lithography
US9586364B2 (en) 2013-11-27 2017-03-07 Global Filtration Systems Apparatus and method for forming three-dimensional objects using linear solidification with contourless object data
US9527244B2 (en) 2014-02-10 2016-12-27 Global Filtration Systems Apparatus and method for forming three-dimensional objects from solidifiable paste
US10144205B2 (en) 2014-02-20 2018-12-04 Global Filtration Systems Apparatus and method for forming three-dimensional objects using a tilting solidification substrate
US11104117B2 (en) 2014-02-20 2021-08-31 Global Filtration Systems Apparatus and method for forming three-dimensional objects using a tilting solidification substrate
US10011076B2 (en) 2014-02-20 2018-07-03 Global Filtration Systems Apparatus and method for forming three-dimensional objects using a tilting solidification substrate
JP6027150B2 (ja) 2014-06-24 2016-11-16 内海 孝雄 低エネルギー電子ビームリソグラフィ
US9902112B2 (en) 2015-04-07 2018-02-27 Global Filtration Systems Apparatus and method for forming three-dimensional objects using linear solidification and a vacuum blade
CN106935491B (zh) * 2015-12-30 2021-10-12 上海微电子装备(集团)股份有限公司 一种激光退火装置及其退火方法

Family Cites Families (316)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS474393Y1 (zh) * 1968-04-02 1972-02-15
FR2030468A5 (zh) 1969-01-29 1970-11-13 Thomson Brandt Csf
JPS5727035Y1 (zh) 1972-09-08 1982-06-11
US4234358A (en) 1979-04-05 1980-11-18 Western Electric Company, Inc. Patterned epitaxial regrowth using overlapping pulsed irradiation
US4309225A (en) 1979-09-13 1982-01-05 Massachusetts Institute Of Technology Method of crystallizing amorphous material with a moving energy beam
US4727047A (en) 1980-04-10 1988-02-23 Massachusetts Institute Of Technology Method of producing sheets of crystalline material
JPS5727035A (en) * 1980-07-25 1982-02-13 Hitachi Ltd Manufacture of semiconductor device
US4382658A (en) 1980-11-24 1983-05-10 Hughes Aircraft Company Use of polysilicon for smoothing of liquid crystal MOS displays
JPS58122695U (ja) 1982-02-16 1983-08-20 藤倉航装株式会社 救命服
US4456371A (en) 1982-06-30 1984-06-26 International Business Machines Corporation Optical projection printing threshold leveling arrangement
JPS59195871A (ja) 1983-04-20 1984-11-07 Mitsubishi Electric Corp Mos電界効果トランジスタの製造方法
US4560880A (en) * 1983-09-19 1985-12-24 Varian Associates, Inc. Apparatus for positioning a workpiece in a localized vacuum processing system
US4691983A (en) 1983-10-14 1987-09-08 Hitachi, Ltd. Optical waveguide and method for making the same
US4639277A (en) 1984-07-02 1987-01-27 Eastman Kodak Company Semiconductor material on a substrate, said substrate comprising, in order, a layer of organic polymer, a layer of metal or metal alloy and a layer of dielectric material
JPH084067B2 (ja) 1985-10-07 1996-01-17 工業技術院長 半導体装置の製造方法
JPS62160781A (ja) 1986-01-09 1987-07-16 Agency Of Ind Science & Technol レ−ザ光照射装置
JPH0732124B2 (ja) 1986-01-24 1995-04-10 シャープ株式会社 半導体装置の製造方法
JPS62181419A (ja) 1986-02-05 1987-08-08 Nec Corp 多結晶シリコンの再結晶化法
JPH0763055B2 (ja) 1986-03-18 1995-07-05 富士通株式会社 レ−ザアニ−ル装置
JPH0611729Y2 (ja) 1986-03-28 1994-03-30 大和工業株式会社 可動式ロケ−トピン装置
JPS62160781U (zh) 1986-04-01 1987-10-13
US4793694A (en) 1986-04-23 1988-12-27 Quantronix Corporation Method and apparatus for laser beam homogenization
JPS62181419U (zh) 1986-05-12 1987-11-18
JPS62293740A (ja) 1986-06-13 1987-12-21 Fujitsu Ltd 半導体装置の製造方法
US4758533A (en) 1987-09-22 1988-07-19 Xmr Inc. Laser planarization of nonrefractory metal during integrated circuit fabrication
USRE33836E (en) 1987-10-22 1992-03-03 Mrs Technology, Inc. Apparatus and method for making large area electronic devices, such as flat panel displays and the like, using correlated, aligned dual optical systems
US5204659A (en) 1987-11-13 1993-04-20 Honeywell Inc. Apparatus and method for providing a gray scale in liquid crystal flat panel displays
JPH01256114A (ja) * 1988-04-06 1989-10-12 Hitachi Ltd レーザアニール方法
JP2569711B2 (ja) 1988-04-07 1997-01-08 株式会社ニコン 露光制御装置及び該装置による露光方法
US5523193A (en) 1988-05-31 1996-06-04 Texas Instruments Incorporated Method and apparatus for patterning and imaging member
JP2706469B2 (ja) 1988-06-01 1998-01-28 松下電器産業株式会社 半導体装置の製造方法
JP2765888B2 (ja) 1988-12-02 1998-06-18 株式会社日立製作所 プログラム生成方法および実行方法
US4940505A (en) 1988-12-02 1990-07-10 Eaton Corporation Method for growing single crystalline silicon with intermediate bonding agent and combined thermal and photolytic activation
JPH02283036A (ja) 1989-04-25 1990-11-20 Seiko Epson Corp 半導体装置の製造方法
US4976809A (en) 1989-12-18 1990-12-11 North American Philips Corp, Signetics Division Method of forming an aluminum conductor with highly oriented grain structure
US5076667A (en) 1990-01-29 1991-12-31 David Sarnoff Research Center, Inc. High speed signal and power supply bussing for liquid crystal displays
JP2802449B2 (ja) 1990-02-16 1998-09-24 三菱電機株式会社 半導体装置の製造方法
US5247375A (en) 1990-03-09 1993-09-21 Hitachi, Ltd. Display device, manufacturing method thereof and display panel
JPH0433327A (ja) 1990-05-30 1992-02-04 Kyocera Corp 半導体結晶化膜の形成方法
US5233207A (en) 1990-06-25 1993-08-03 Nippon Steel Corporation MOS semiconductor device formed on insulator
JP2973492B2 (ja) 1990-08-22 1999-11-08 ソニー株式会社 半導体薄膜の結晶化方法
US5032233A (en) 1990-09-05 1991-07-16 Micron Technology, Inc. Method for improving step coverage of a metallization layer on an integrated circuit by use of a high melting point metal as an anti-reflective coating during laser planarization
JP2974394B2 (ja) 1990-10-31 1999-11-10 株式会社東芝 レーザ露光装置
KR920010885A (ko) 1990-11-30 1992-06-27 카나이 쯔또무 박막반도체와 그 제조방법 및 제조장치 및 화상처리장치
US5173441A (en) 1991-02-08 1992-12-22 Micron Technology, Inc. Laser ablation deposition process for semiconductor manufacture
JPH04279064A (ja) 1991-03-07 1992-10-05 Sharp Corp 表示装置の製造方法
JPH04282869A (ja) 1991-03-11 1992-10-07 G T C:Kk 薄膜半導体装置の製造方法及びこれを実施するための装置
CA2061796C (en) 1991-03-28 2002-12-24 Kalluri R. Sarma High mobility integrated drivers for active matrix displays
JP3213338B2 (ja) 1991-05-15 2001-10-02 株式会社リコー 薄膜半導体装置の製法
JPH05196681A (ja) * 1991-06-26 1993-08-06 Digital Equip Corp <Dec> 連続移動する電気回路の相互接続試験方法及び装置
JP3179520B2 (ja) 1991-07-11 2001-06-25 株式会社日立製作所 半導体装置の製造方法
US5373803A (en) 1991-10-04 1994-12-20 Sony Corporation Method of epitaxial growth of semiconductor
KR960008503B1 (en) 1991-10-04 1996-06-26 Semiconductor Energy Lab Kk Manufacturing method of semiconductor device
US5485019A (en) 1992-02-05 1996-01-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US5319183A (en) 1992-02-18 1994-06-07 Fujitsu Limited Method and apparatus for cutting patterns of printed wiring boards and method and apparatus for cleaning printed wiring boards
US5424244A (en) 1992-03-26 1995-06-13 Semiconductor Energy Laboratory Co., Ltd. Process for laser processing and apparatus for use in the same
JP2572003B2 (ja) 1992-03-30 1997-01-16 三星電子株式会社 三次元マルチチャンネル構造を有する薄膜トランジスタの製造方法
JPH0611729A (ja) 1992-06-29 1994-01-21 Kodo Eizo Gijutsu Kenkyusho:Kk 液晶表示装置およびその製造方法
US5285236A (en) 1992-09-30 1994-02-08 Kanti Jain Large-area, high-throughput, high-resolution projection imaging system
US5291240A (en) 1992-10-27 1994-03-01 Anvik Corporation Nonlinearity-compensated large-area patterning system
CN1088002A (zh) 1992-11-16 1994-06-15 东京电子株式会社 制造液晶显示器基板及评价半导体晶体的方法与装置
JP3587537B2 (ja) 1992-12-09 2004-11-10 株式会社半導体エネルギー研究所 半導体装置
US5334892A (en) * 1992-12-22 1994-08-02 Anorad Corporation Positioning device for planar positioning
US5444302A (en) 1992-12-25 1995-08-22 Hitachi, Ltd. Semiconductor device including multi-layer conductive thin film of polycrystalline material
JP2603418B2 (ja) 1993-02-23 1997-04-23 株式会社ジーティシー 多結晶半導体薄膜の製造方法
JP3599355B2 (ja) 1993-03-04 2004-12-08 セイコーエプソン株式会社 アクティブマトリクス基板の製造方法及び液晶ディスプレイの製造方法
JP3357707B2 (ja) 1993-03-25 2002-12-16 三洋電機株式会社 多結晶半導体膜の製造方法及び薄膜トランジスタの製造方法
US5378137A (en) 1993-05-10 1995-01-03 Hewlett-Packard Company Mask design for forming tapered inkjet nozzles
JP3157985B2 (ja) 1993-06-10 2001-04-23 三菱電機株式会社 薄膜トランジスタおよびその製造方法
JPH076960A (ja) 1993-06-16 1995-01-10 Fuji Electric Co Ltd 多結晶半導体薄膜の生成方法
JP2975973B2 (ja) 1993-08-10 1999-11-10 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
JP2814049B2 (ja) 1993-08-27 1998-10-22 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
US5453594A (en) 1993-10-06 1995-09-26 Electro Scientific Industries, Inc. Radiation beam position and emission coordination system
US5395481A (en) 1993-10-18 1995-03-07 Regents Of The University Of California Method for forming silicon on a glass substrate
KR100299292B1 (ko) 1993-11-02 2001-12-01 이데이 노부유끼 다결정실리콘박막형성방법및그표면처리장치
JP2646977B2 (ja) 1993-11-29 1997-08-27 日本電気株式会社 順スタガ型薄膜トランジスタの製造方法
US5496768A (en) 1993-12-03 1996-03-05 Casio Computer Co., Ltd. Method of manufacturing polycrystalline silicon thin film
JP2630244B2 (ja) 1993-12-20 1997-07-16 日本電気株式会社 薄膜トランジスタの製造方法
US6130009A (en) 1994-01-03 2000-10-10 Litel Instruments Apparatus and process for nozzle production utilizing computer generated holograms
US5614421A (en) 1994-03-11 1997-03-25 United Microelectronics Corp. Method of fabricating junction termination extension structure for high-voltage diode devices
JPH07249591A (ja) 1994-03-14 1995-09-26 Matsushita Electric Ind Co Ltd 半導体薄膜のレーザーアニール方法及び薄膜半導体素子
US5456763A (en) 1994-03-29 1995-10-10 The Regents Of The University Of California Solar cells utilizing pulsed-energy crystallized microcrystalline/polycrystalline silicon
JP3326654B2 (ja) 1994-05-02 2002-09-24 ソニー株式会社 表示用半導体チップの製造方法
JP3072000B2 (ja) 1994-06-23 2000-07-31 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP3577755B2 (ja) 1994-06-27 2004-10-13 カシオ計算機株式会社 多結晶シリコン薄膜の製造方法
JP3072005B2 (ja) 1994-08-25 2000-07-31 シャープ株式会社 半導体装置及びその製造方法
US5756364A (en) 1994-11-29 1998-05-26 Semiconductor Energy Laboratory Co., Ltd. Laser processing method of semiconductor device using a catalyst
TW303526B (zh) 1994-12-27 1997-04-21 Matsushita Electric Ind Co Ltd
US5844588A (en) 1995-01-11 1998-12-01 Texas Instruments Incorporated DMD modulated continuous wave light source for xerographic printer
JPH08236443A (ja) 1995-02-28 1996-09-13 Fuji Xerox Co Ltd 半導体結晶の成長方法および半導体製造装置
DE69637994D1 (de) 1995-04-26 2009-09-24 Minnesota Mining & Mfg Ablationsverfahren durch laser-darstellung
US5742426A (en) 1995-05-25 1998-04-21 York; Kenneth K. Laser beam treatment pattern smoothing device and laser beam treatment pattern modulator
TW297138B (zh) 1995-05-31 1997-02-01 Handotai Energy Kenkyusho Kk
JPH097968A (ja) * 1995-06-23 1997-01-10 Mitsubishi Electric Corp レーザ光照射方法及びレーザ光照射装置
US6524977B1 (en) 1995-07-25 2003-02-25 Semiconductor Energy Laboratory Co., Ltd. Method of laser annealing using linear beam having quasi-trapezoidal energy profile for increased depth of focus
US5721606A (en) 1995-09-07 1998-02-24 Jain; Kanti Large-area, high-throughput, high-resolution, scan-and-repeat, projection patterning system employing sub-full mask
JP3348334B2 (ja) 1995-09-19 2002-11-20 ソニー株式会社 薄膜半導体装置の製造方法
CA2233448A1 (en) 1995-09-29 1997-04-03 Sage Technology, Incorporated Optical digital media recording and reproduction system
US6444506B1 (en) 1995-10-25 2002-09-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing silicon thin film devices using laser annealing in a hydrogen mixture gas followed by nitride formation
US5817548A (en) 1995-11-10 1998-10-06 Sony Corporation Method for fabricating thin film transistor device
JPH09171971A (ja) 1995-12-21 1997-06-30 Japan Steel Works Ltd:The レーザーアニール処理装置
KR100514417B1 (ko) 1995-12-26 2005-12-20 세이코 엡슨 가부시키가이샤 액티브매트릭스기판,액티브매트릭스기판제조방법,액정표시장치및전자기기
US5858807A (en) 1996-01-17 1999-01-12 Kabushiki Kaisha Toshiba Method of manufacturing liquid crystal display device
JP3645378B2 (ja) 1996-01-19 2005-05-11 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP3645379B2 (ja) 1996-01-19 2005-05-11 株式会社半導体エネルギー研究所 半導体装置の作製方法
US5830612A (en) 1996-01-24 1998-11-03 Fujitsu Limited Method of detecting a deficiency in a charged-particle-beam exposure mask
US6599790B1 (en) 1996-02-15 2003-07-29 Semiconductor Energy Laboratory Co., Ltd Laser-irradiation method and laser-irradiation device
JP3240258B2 (ja) 1996-03-21 2001-12-17 シャープ株式会社 半導体装置、薄膜トランジスタ及びその製造方法、ならびに液晶表示装置及びその製造方法
JPH09270393A (ja) 1996-03-29 1997-10-14 Sanyo Electric Co Ltd レーザー光照射装置
DE19707834A1 (de) 1996-04-09 1997-10-16 Zeiss Carl Fa Materialbestrahlungsgerät und Verfahren zum Betrieb von Materialbestrahlungsgeräten
US5997642A (en) 1996-05-21 1999-12-07 Symetrix Corporation Method and apparatus for misted deposition of integrated circuit quality thin films
US6555449B1 (en) 1996-05-28 2003-04-29 Trustees Of Columbia University In The City Of New York Methods for producing uniform large-grained and grain boundary location manipulated polycrystalline thin film semiconductors using sequential lateral solidfication
CA2256699C (en) 1996-05-28 2003-02-25 The Trustees Of Columbia University In The City Of New York Crystallization processing of semiconductor film regions on a substrate, and devices made therewith
JPH09321310A (ja) 1996-05-31 1997-12-12 Sanyo Electric Co Ltd 半導体装置の製造方法
JP3306300B2 (ja) 1996-06-20 2002-07-24 三洋電機株式会社 半導体膜のレーザーアニール方法
US5736709A (en) 1996-08-12 1998-04-07 Armco Inc. Descaling metal with a laser having a very short pulse width and high average power
JP4014676B2 (ja) 1996-08-13 2007-11-28 株式会社半導体エネルギー研究所 絶縁ゲイト型半導体装置およびその作製方法
US5981974A (en) 1996-09-30 1999-11-09 Sharp Kabushiki Kaisha Semiconductor device and method for fabricating the same
GB9624715D0 (en) 1996-11-28 1997-01-15 Philips Electronics Nv Electronic device manufacture
JP3917698B2 (ja) 1996-12-12 2007-05-23 株式会社半導体エネルギー研究所 レーザーアニール方法およびレーザーアニール装置
US5861991A (en) 1996-12-19 1999-01-19 Xerox Corporation Laser beam conditioner using partially reflective mirrors
JPH10189998A (ja) 1996-12-20 1998-07-21 Sony Corp 表示用薄膜半導体装置及びその製造方法
US5986807A (en) 1997-01-13 1999-11-16 Xerox Corporation Single binary optical element beam homogenizer
US6455359B1 (en) 1997-02-13 2002-09-24 Semiconductor Energy Laboratory Co., Ltd. Laser-irradiation method and laser-irradiation device
JP4056577B2 (ja) 1997-02-28 2008-03-05 株式会社半導体エネルギー研究所 レーザー照射方法
JPH10244390A (ja) 1997-03-04 1998-09-14 Toshiba Corp レーザ加工方法及びその装置
JP4086932B2 (ja) 1997-04-17 2008-05-14 株式会社半導体エネルギー研究所 レーザー照射装置及びレーザー処理方法
US5948291A (en) 1997-04-29 1999-09-07 General Scanning, Inc. Laser beam distributor and computer program for controlling the same
JP3503427B2 (ja) 1997-06-19 2004-03-08 ソニー株式会社 薄膜トランジスタの製造方法
JP3642546B2 (ja) 1997-08-12 2005-04-27 株式会社東芝 多結晶半導体薄膜の製造方法
US6014944A (en) 1997-09-19 2000-01-18 The United States Of America As Represented By The Secretary Of The Navy Apparatus for improving crystalline thin films with a contoured beam pulsed laser
JP3943245B2 (ja) 1997-09-20 2007-07-11 株式会社半導体エネルギー研究所 半導体装置
DE19741990C1 (de) 1997-09-24 1999-04-29 Degussa Elektrolyt zur galvanischen Abscheidung von spannungsarmen, rißfesten Rutheniumschichten, Verfahren zur Herstellung und Verwendung
JP3462053B2 (ja) 1997-09-30 2003-11-05 株式会社半導体エネルギー研究所 ビームホモジェナイザーおよびレーザー照射装置およびレーザー照射方法および半導体デバイス
EP1049144A4 (en) 1997-12-17 2006-12-06 Matsushita Electronics Corp THIN SEMICONDUCTOR LAYER, METHOD AND DEVICE THEREOF, SEMICONDUCTOR COMPONENT AND METHOD FOR MANUFACTURING SAME
JPH11186189A (ja) 1997-12-17 1999-07-09 Semiconductor Energy Lab Co Ltd レーザー照射装置
TW466772B (en) 1997-12-26 2001-12-01 Seiko Epson Corp Method for producing silicon oxide film, method for making semiconductor device, semiconductor device, display, and infrared irradiating device
KR100284708B1 (ko) 1998-01-24 2001-04-02 구본준, 론 위라하디락사 실리콘박막을결정화하는방법
JP3807576B2 (ja) 1998-01-28 2006-08-09 シャープ株式会社 重合性化合物、重合性樹脂材料組成物、重合硬化物及び液晶表示装置
JPH11281997A (ja) 1998-03-26 1999-10-15 Toshiba Corp 回路基板、その製造方法および液晶表示装置
JPH11297852A (ja) 1998-04-14 1999-10-29 Sony Corp 半導体装置およびその製造方法
US6504175B1 (en) 1998-04-28 2003-01-07 Xerox Corporation Hybrid polycrystalline and amorphous silicon structures on a shared substrate
JPH11330000A (ja) 1998-05-13 1999-11-30 Matsushita Electric Ind Co Ltd 非単結晶薄膜のレーザーアニール方法
JP2000066133A (ja) 1998-06-08 2000-03-03 Sanyo Electric Co Ltd レ―ザ―光照射装置
KR100296110B1 (ko) 1998-06-09 2001-08-07 구본준, 론 위라하디락사 박막트랜지스터 제조방법
KR100292048B1 (ko) 1998-06-09 2001-07-12 구본준, 론 위라하디락사 박막트랜지스터액정표시장치의제조방법
US6326286B1 (en) 1998-06-09 2001-12-04 Lg. Philips Lcd Co., Ltd. Method for crystallizing amorphous silicon layer
KR100296109B1 (ko) 1998-06-09 2001-10-26 구본준, 론 위라하디락사 박막트랜지스터제조방법
JP2000010058A (ja) 1998-06-18 2000-01-14 Hamamatsu Photonics Kk 空間光変調装置
US6479837B1 (en) 1998-07-06 2002-11-12 Matsushita Electric Industrial Co., Ltd. Thin film transistor and liquid crystal display unit
US6555422B1 (en) 1998-07-07 2003-04-29 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and method of manufacturing the same
US6072631A (en) 1998-07-09 2000-06-06 3M Innovative Properties Company Diffractive homogenizer with compensation for spatial coherence
US6246524B1 (en) 1998-07-13 2001-06-12 Semiconductor Energy Laboratory Co., Ltd. Beam homogenizer, laser irradiation apparatus, laser irradiation method, and method of manufacturing semiconductor device
US6346437B1 (en) 1998-07-16 2002-02-12 Sharp Laboratories Of America, Inc. Single crystal TFT from continuous transition metal delivery method
JP3156776B2 (ja) 1998-08-03 2001-04-16 日本電気株式会社 レーザ照射方法
DE19839718A1 (de) 1998-09-01 2000-03-02 Strunk Horst P Kristallisation von Halbleiterschichten mit gepulster Laserstrahlung durch Belichtung mit einer Zweistrahlmethode
GB9819338D0 (en) 1998-09-04 1998-10-28 Philips Electronics Nv Laser crystallisation of thin films
EP1744349A3 (en) 1998-10-05 2007-04-04 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, beam homogenizer, semiconductor device, and method of manufacturing the semiconductor device
US6326186B1 (en) 1998-10-15 2001-12-04 Novozymes A/S Method for reducing amino acid biosynthesis inhibiting effects of a sulfonyl-urea based compound
US6081381A (en) 1998-10-26 2000-06-27 Polametrics, Inc. Apparatus and method for reducing spatial coherence and for improving uniformity of a light beam emitted from a coherent light source
US6120976A (en) 1998-11-20 2000-09-19 3M Innovative Properties Company Laser ablated feature formation method
US6313435B1 (en) 1998-11-20 2001-11-06 3M Innovative Properties Company Mask orbiting for laser ablated feature formation
KR100290787B1 (ko) 1998-12-26 2001-07-12 박종섭 반도체 메모리 소자의 제조방법
TW457553B (en) 1999-01-08 2001-10-01 Sony Corp Process for producing thin film semiconductor device and laser irradiation apparatus
JP2000208771A (ja) 1999-01-11 2000-07-28 Hitachi Ltd 半導体装置、液晶表示装置およびこれらの製造方法
US6203952B1 (en) 1999-01-14 2001-03-20 3M Innovative Properties Company Imaged article on polymeric substrate
US6162711A (en) 1999-01-15 2000-12-19 Lucent Technologies, Inc. In-situ boron doped polysilicon with dual layer and dual grain structure for use in integrated circuits manufacturing
TW444247B (en) 1999-01-29 2001-07-01 Toshiba Corp Laser beam irradiating device, manufacture of non-single crystal semiconductor film, and manufacture of liquid crystal display device
JP3161450B2 (ja) 1999-02-02 2001-04-25 日本電気株式会社 基板処理装置、ガス供給方法、及び、レーザ光供給方法
US6535535B1 (en) 1999-02-12 2003-03-18 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, laser irradiation apparatus, and semiconductor device
EP1033731B1 (en) 1999-03-01 2006-07-05 Fuji Photo Film Co., Ltd. Photo-electrochemical cell containing an electrolyte comprising a liquid crystal compound
US6393042B1 (en) 1999-03-08 2002-05-21 Semiconductor Energy Laboratory Co., Ltd. Beam homogenizer and laser irradiation apparatus
US6573364B1 (en) 1999-03-10 2003-06-03 Curagen Corporation Isolation and characterization of Hermansky Pudlak Syndrome (HPS) protein complexes and HPS protein-interacting proteins
US6493042B1 (en) 1999-03-18 2002-12-10 Xerox Corporation Feature based hierarchical video segmentation
JP4403599B2 (ja) 1999-04-19 2010-01-27 ソニー株式会社 半導体薄膜の結晶化方法、レーザ照射装置、薄膜トランジスタの製造方法及び表示装置の製造方法
JP2000315652A (ja) 1999-04-30 2000-11-14 Sony Corp 半導体薄膜の結晶化方法及びレーザ照射装置
JP2000346618A (ja) 1999-06-08 2000-12-15 Sumitomo Heavy Ind Ltd 矩形ビーム用精密アライメント装置と方法
JP3562389B2 (ja) 1999-06-25 2004-09-08 三菱電機株式会社 レーザ熱処理装置
KR100327087B1 (ko) 1999-06-28 2002-03-13 구본준, 론 위라하디락사 레이저 어닐링 방법
JP4322359B2 (ja) 1999-07-08 2009-08-26 住友重機械工業株式会社 レーザ加工装置
JP2001023918A (ja) * 1999-07-08 2001-01-26 Nec Corp 半導体薄膜形成装置
JP2001023899A (ja) 1999-07-13 2001-01-26 Hitachi Ltd 半導体薄膜とその半導体膜を用いた液晶表示装置及びその製造方法
JP3422290B2 (ja) 1999-07-22 2003-06-30 日本電気株式会社 半導体薄膜の製造方法
US6190985B1 (en) 1999-08-17 2001-02-20 Advanced Micro Devices, Inc. Practical way to remove heat from SOI devices
US6599788B1 (en) 1999-08-18 2003-07-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
TW457732B (en) 1999-08-27 2001-10-01 Lumileds Lighting Bv Luminaire, optical element and method of illuminating an object
US6573531B1 (en) 1999-09-03 2003-06-03 The Trustees Of Columbia University In The City Of New York Systems and methods using sequential lateral solidification for producing single or polycrystalline silicon thin films at low temperatures
US7335260B2 (en) * 1999-10-29 2008-02-26 Lg.Philips Lcd Co., Ltd. Laser annealing apparatus
KR100303142B1 (ko) 1999-10-29 2001-11-02 구본준, 론 위라하디락사 액정표시패널의 제조방법
JP2001144170A (ja) 1999-11-11 2001-05-25 Mitsubishi Electric Corp 半導体装置およびその製造方法
US6368945B1 (en) * 2000-03-16 2002-04-09 The Trustees Of Columbia University In The City Of New York Method and system for providing a continuous motion sequential lateral solidification
US6830993B1 (en) 2000-03-21 2004-12-14 The Trustees Of Columbia University In The City Of New York Surface planarization of thin silicon films during and after processing by the sequential lateral solidification method
EP1196947A4 (en) 2000-03-21 2003-08-13 Univ Columbia SURFACE PASSIVATION OF THIN SILICON FILMS DURING AND AFTER PROCESSING STEPS IN SEQUENTIAL LATERAL CRYSTALIZATION
US6531681B1 (en) 2000-03-27 2003-03-11 Ultratech Stepper, Inc. Apparatus having line source of radiant energy for exposing a substrate
US6274488B1 (en) 2000-04-12 2001-08-14 Ultratech Stepper, Inc. Method of forming a silicide region in a Si substrate and a device having same
GB0009280D0 (en) 2000-04-15 2000-05-31 Koninkl Philips Electronics Nv Method of cystallising a semiconductor film
JP4588167B2 (ja) 2000-05-12 2010-11-24 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6521492B2 (en) 2000-06-12 2003-02-18 Seiko Epson Corporation Thin-film semiconductor device fabrication method
US6602765B2 (en) 2000-06-12 2003-08-05 Seiko Epson Corporation Fabrication method of thin-film semiconductor device
US6577380B1 (en) 2000-07-21 2003-06-10 Anvik Corporation High-throughput materials processing system
TW452892B (en) 2000-08-09 2001-09-01 Lin Jing Wei Re-crystallization method of polysilicon thin film of thin film transistor
US6451631B1 (en) 2000-08-10 2002-09-17 Hitachi America, Ltd. Thin film crystal growth by laser annealing
US6737672B2 (en) 2000-08-25 2004-05-18 Fujitsu Limited Semiconductor device, manufacturing method thereof, and semiconductor manufacturing apparatus
DE10042733A1 (de) 2000-08-31 2002-03-28 Inst Physikalische Hochtech Ev Multikristalline laserkristallisierte Silicium-Dünnschicht-Solarzelle auf transparentem Substrat
US20020151115A1 (en) 2000-09-05 2002-10-17 Sony Corporation Process for production of thin film, semiconductor thin film, semiconductor device, process for production of semiconductor thin film, and apparatus for production of semiconductor thin film
US6746942B2 (en) 2000-09-05 2004-06-08 Sony Corporation Semiconductor thin film and method of fabricating semiconductor thin film, apparatus for fabricating single crystal semiconductor thin film, and method of fabricating single crystal thin film, single crystal thin film substrate, and semiconductor device
US6445359B1 (en) 2000-09-29 2002-09-03 Hughes Electronics Corporation Low noise block down converter adapter with built-in multi-switch for a satellite dish antenna
WO2002031871A1 (fr) 2000-10-06 2002-04-18 Mitsubishi Denki Kabushiki Kaisha Procédé et dispositif de production de film de silicium polycristallin, dispositif à semi-conducteurs, et procédé de fabrication
JP4599032B2 (ja) 2000-10-10 2010-12-15 ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク 薄い金属層を処理する方法及び装置
AU2002235144A1 (en) 2000-11-27 2002-06-03 The Trustees Of Columbia University In The City Of New York Process and mask projection system for laser crystallization processing of semiconductor film regions on a substrate
US6582827B1 (en) 2000-11-27 2003-06-24 The Trustees Of Columbia University In The City Of New York Specialized substrates for use in sequential lateral solidification processing
US7217605B2 (en) 2000-11-29 2007-05-15 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and method of manufacturing a semiconductor device
TWI313059B (zh) 2000-12-08 2009-08-01 Sony Corporatio
CN1423841A (zh) 2000-12-21 2003-06-11 皇家菲利浦电子有限公司 薄膜晶体管
KR100400510B1 (ko) 2000-12-28 2003-10-08 엘지.필립스 엘시디 주식회사 실리콘 결정화 장치와 실리콘 결정화 방법
US6621044B2 (en) 2001-01-18 2003-09-16 Anvik Corporation Dual-beam materials-processing system
JP2002222944A (ja) 2001-01-26 2002-08-09 Kitakiyuushiyuu Techno Center:Kk 半導体素子
JP4732599B2 (ja) 2001-01-26 2011-07-27 株式会社日立製作所 薄膜トランジスタ装置
DE10103670A1 (de) 2001-01-27 2002-08-01 Christiansen Jens I Erzeugung kristalliner Si-Schichten mit (100)-Textur durch Laserbeschuß amorpher Si-Schichten auf einem Substrat
US6573163B2 (en) 2001-01-29 2003-06-03 Sharp Laboratories Of America, Inc. Method of optimizing channel characteristics using multiple masks to form laterally crystallized ELA poly-Si films
US6495405B2 (en) 2001-01-29 2002-12-17 Sharp Laboratories Of America, Inc. Method of optimizing channel characteristics using laterally-crystallized ELA poly-Si films
JP4744700B2 (ja) 2001-01-29 2011-08-10 株式会社日立製作所 薄膜半導体装置及び薄膜半導体装置を含む画像表示装置
JP2002231628A (ja) 2001-02-01 2002-08-16 Sony Corp 半導体薄膜の形成方法及び半導体装置の製造方法、これらの方法の実施に使用する装置、並びに電気光学装置
TW521310B (en) 2001-02-08 2003-02-21 Toshiba Corp Laser processing method and apparatus
JP4291539B2 (ja) 2001-03-21 2009-07-08 シャープ株式会社 半導体装置およびその製造方法
JP2002353159A (ja) 2001-03-23 2002-12-06 Sumitomo Heavy Ind Ltd 処理装置及び方法
US6562701B2 (en) 2001-03-23 2003-05-13 Matsushita Electric Industrial Co., Ltd. Method of manufacturing nitride semiconductor substrate
US7167499B2 (en) 2001-04-18 2007-01-23 Tcz Pte. Ltd. Very high energy, high stability gas discharge laser surface treatment system
US7061959B2 (en) 2001-04-18 2006-06-13 Tcz Gmbh Laser thin film poly-silicon annealing system
JP2004520715A (ja) 2001-04-19 2004-07-08 ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク 単一走査、連続動作の逐次的横方向結晶化を行う方法及びシステム
WO2002086955A1 (en) 2001-04-23 2002-10-31 Koninklijke Philips Electronics N.V. Semiconductor device and method of manufacturing same
TW480735B (en) 2001-04-24 2002-03-21 United Microelectronics Corp Structure and manufacturing method of polysilicon thin film transistor
JP5025057B2 (ja) 2001-05-10 2012-09-12 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR100379361B1 (ko) 2001-05-30 2003-04-07 엘지.필립스 엘시디 주식회사 실리콘막의 결정화 방법
KR100424593B1 (ko) 2001-06-07 2004-03-27 엘지.필립스 엘시디 주식회사 실리콘 결정화방법
US6645454B2 (en) * 2001-06-28 2003-11-11 Sharp Laboratories Of America, Inc. System and method for regulating lateral growth in laser irradiated silicon films
US20030003242A1 (en) 2001-06-28 2003-01-02 Apostolos Voutsas Pulse width method for controlling lateral growth in crystallized silicon films
SG108262A1 (en) 2001-07-06 2005-01-28 Inst Data Storage Method and apparatus for cutting a multi-layer substrate by dual laser irradiation
KR100662494B1 (ko) 2001-07-10 2007-01-02 엘지.필립스 엘시디 주식회사 비정질막 결정화방법 및 이를 이용한 액정표시소자의제조방법
US6862579B2 (en) 2001-07-10 2005-03-01 The Boeing Company Systems, methods and computer program products for performing a generalized contingent claim valuation
KR100487426B1 (ko) 2001-07-11 2005-05-04 엘지.필립스 엘시디 주식회사 폴리실리콘 결정화방법 그리고, 이를 이용한 폴리실리콘박막트랜지스터의 제조방법 및 액정표시소자의 제조방법
JP4637410B2 (ja) 2001-07-17 2011-02-23 シャープ株式会社 半導体基板の製造方法及び半導体装置
JP4109026B2 (ja) 2001-07-27 2008-06-25 東芝松下ディスプレイテクノロジー株式会社 アレイ基板を製造する方法およびフォトマスク
TW556350B (en) 2001-08-27 2003-10-01 Univ Columbia A method to increase device-to-device uniformity for polycrystalline thin-film transistors by deliberately mis-aligning the microstructure relative to the channel region
TWI279052B (en) 2001-08-31 2007-04-11 Semiconductor Energy Lab Laser irradiation method, laser irradiation apparatus, and method of manufacturing a semiconductor device
TW582062B (en) 2001-09-14 2004-04-01 Sony Corp Laser irradiation apparatus and method of treating semiconductor thin film
JP2003100653A (ja) * 2001-09-26 2003-04-04 Sharp Corp 加工装置および加工方法
JP3903761B2 (ja) 2001-10-10 2007-04-11 株式会社日立製作所 レ−ザアニ−ル方法およびレ−ザアニ−ル装置
JP2003124230A (ja) * 2001-10-12 2003-04-25 Hitachi Ltd 薄膜トランジスタ装置、その製造方法及びこの装置を用いた画像表示装置
JP2002203809A (ja) 2001-10-25 2002-07-19 Hitachi Ltd 半導体装置及びその製造方法
US6767804B2 (en) 2001-11-08 2004-07-27 Sharp Laboratories Of America, Inc. 2N mask design and method of sequential lateral solidification
US6962860B2 (en) 2001-11-09 2005-11-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
AU2002219913A1 (en) 2001-11-28 2003-06-10 The Trustees Of Columbia University In The City Of New York Specialized substrates for use in sequential lateral solidification processing
US6526585B1 (en) 2001-12-21 2003-03-04 Elton E. Hill Wet smoke mask
US7002668B2 (en) 2002-03-08 2006-02-21 Rivin Eugeny I Stage positioning unit for photo lithography tool and for the like
US7119365B2 (en) 2002-03-26 2006-10-10 Sharp Kabushiki Kaisha Semiconductor device and manufacturing method thereof, SOI substrate and display device using the same, and manufacturing method of the SOI substrate
US6792029B2 (en) 2002-03-27 2004-09-14 Sharp Laboratories Of America, Inc. Method of suppressing energy spikes of a partially-coherent beam
WO2003084688A2 (en) 2002-04-01 2003-10-16 The Trustees Of Columbia University In The City Of New York Method and system for providing a thin film
US6777276B2 (en) 2002-08-29 2004-08-17 Sharp Laboratories Of America, Inc. System and method for optimized laser annealing smoothing mask
US7192479B2 (en) 2002-04-17 2007-03-20 Sharp Laboratories Of America, Inc. Laser annealing mask and method for smoothing an annealed surface
US6984573B2 (en) 2002-06-14 2006-01-10 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and apparatus
JP2004031809A (ja) 2002-06-27 2004-01-29 Toshiba Corp フォトマスク及び半導体薄膜の結晶化方法
US7300858B2 (en) 2002-08-19 2007-11-27 The Trustees Of Columbia University In The City Of New York Laser crystallization and selective patterning using multiple beamlets
US7259081B2 (en) 2002-08-19 2007-08-21 Im James S Process and system for laser crystallization processing of film regions on a substrate to provide substantial uniformity, and a structure of such film regions
US7718517B2 (en) 2002-08-19 2010-05-18 Im James S Single-shot semiconductor processing system and method having various irradiation patterns
KR101131040B1 (ko) 2002-08-19 2012-03-30 더 트러스티스 오브 콜롬비아 유니버시티 인 더 시티 오브 뉴욕 에지 영역을 최소화하도록 기판 상의 박막 영역을 레이저결정화 처리하는 방법 및 시스템, 그리고 그러한 박막 영역의 구조
JP2004087535A (ja) 2002-08-22 2004-03-18 Sony Corp 結晶質半導体材料の製造方法および半導体装置の製造方法
JP4474108B2 (ja) 2002-09-02 2010-06-02 株式会社 日立ディスプレイズ 表示装置とその製造方法および製造装置
CN1685698A (zh) 2002-09-27 2005-10-19 银河网路股份有限公司 视频电话翻译系统及视频电话翻译方法
US7067867B2 (en) 2002-09-30 2006-06-27 Nanosys, Inc. Large-area nonenabled macroelectronic substrates and uses therefor
TW569350B (en) 2002-10-31 2004-01-01 Au Optronics Corp Method for fabricating a polysilicon layer
KR100646160B1 (ko) 2002-12-31 2006-11-14 엘지.필립스 엘시디 주식회사 순차측면결정화를 위한 마스크 및 이를 이용한 실리콘결정화 방법
US7341928B2 (en) 2003-02-19 2008-03-11 The Trustees Of Columbia University In The City Of New York System and process for processing a plurality of semiconductor thin films which are crystallized using sequential lateral solidification techniques
DE602004020538D1 (de) 2003-02-28 2009-05-28 Semiconductor Energy Lab Verfahren und Vorrichtung zur Laserbestrahlung, sowie Verfahren zur Herstellung von Halbleiter.
US20040169176A1 (en) 2003-02-28 2004-09-02 Peterson Paul E. Methods of forming thin film transistors and related systems
TWI227913B (en) 2003-05-02 2005-02-11 Au Optronics Corp Method of fabricating polysilicon film by excimer laser crystallization process
JP2004335839A (ja) 2003-05-09 2004-11-25 Nec Corp 半導体薄膜、薄膜トランジスタ、それらの製造方法および半導体薄膜の製造装置
KR100956947B1 (ko) * 2003-06-12 2010-05-12 엘지디스플레이 주식회사 실리콘 결정화 방법
JP4279064B2 (ja) 2003-06-27 2009-06-17 三菱化学株式会社 多孔性シリカ膜、それを有する積層体
KR100587368B1 (ko) 2003-06-30 2006-06-08 엘지.필립스 엘시디 주식회사 Sls 결정화 장치
TWI294648B (en) 2003-07-24 2008-03-11 Au Optronics Corp Method for manufacturing polysilicon film
US7318866B2 (en) 2003-09-16 2008-01-15 The Trustees Of Columbia University In The City Of New York Systems and methods for inducing crystallization of thin films using multiple optical paths
WO2005029546A2 (en) 2003-09-16 2005-03-31 The Trustees Of Columbia University In The City Of New York Method and system for providing a continuous motion sequential lateral solidification for reducing or eliminating artifacts, and a mask for facilitating such artifact reduction/elimination
US7364952B2 (en) 2003-09-16 2008-04-29 The Trustees Of Columbia University In The City Of New York Systems and methods for processing thin films
WO2005029551A2 (en) 2003-09-16 2005-03-31 The Trustees Of Columbia University In The City Of New York Processes and systems for laser crystallization processing of film regions on a substrate utilizing a line-type beam, and structures of such film regions
WO2005029548A2 (en) 2003-09-16 2005-03-31 The Trustees Of Columbia University In The City Of New York System and process for providing multiple beam sequential lateral solidification
TWI366859B (en) 2003-09-16 2012-06-21 Univ Columbia System and method of enhancing the width of polycrystalline grains produced via sequential lateral solidification using a modified mask pattern
WO2005029550A2 (en) 2003-09-16 2005-03-31 The Trustees Of Columbia University In The City Of New York Method and system for producing crystalline thin films with a uniform crystalline orientation
WO2005029549A2 (en) 2003-09-16 2005-03-31 The Trustees Of Columbia University In The City Of New York Method and system for facilitating bi-directional growth
US7164152B2 (en) 2003-09-16 2007-01-16 The Trustees Of Columbia University In The City Of New York Laser-irradiated thin films having variable thickness
KR100971951B1 (ko) 2003-09-17 2010-07-23 엘지디스플레이 주식회사 엑시머 레이저를 이용한 비정질 실리콘 박막 결정화 방법
WO2005034193A2 (en) 2003-09-19 2005-04-14 The Trustees Of Columbia University In The City Ofnew York Single scan irradiation for crystallization of thin films
JP2005129769A (ja) 2003-10-24 2005-05-19 Hitachi Ltd 半導体薄膜の改質方法、改質した半導体薄膜とその評価方法、およびこの半導体薄膜で形成した薄膜トランジスタ、並びにこの薄膜トランジスタを用いて構成した回路を有する画像表示装置
US7226819B2 (en) 2003-10-28 2007-06-05 Semiconductor Energy Laboratory Co., Ltd. Methods for forming wiring and manufacturing thin film transistor and droplet discharging method
KR100572519B1 (ko) 2003-12-26 2006-04-19 엘지.필립스 엘시디 주식회사 레이저 결정화 공정용 마스크 및 상기 마스크를 이용한레이저 결정화 공정
KR100698056B1 (ko) 2003-12-26 2007-03-23 엘지.필립스 엘시디 주식회사 레이저 빔 패턴 마스크 및 이를 이용한 결정화 방법
US7199397B2 (en) 2004-05-05 2007-04-03 Au Optronics Corporation AMOLED circuit layout
KR100689315B1 (ko) 2004-08-10 2007-03-08 엘지.필립스 엘시디 주식회사 실리콘 박막 결정화 장치 및 이를 이용한 결정화 방법
US7645337B2 (en) 2004-11-18 2010-01-12 The Trustees Of Columbia University In The City Of New York Systems and methods for creating crystallographic-orientation controlled poly-silicon films
WO2006055003A1 (en) 2004-11-18 2006-05-26 The Trustees Of Columbia University In The City Ofnew York Systems and methods for creating crystallographic-orientation controlled poly-silicon films
JP5121118B2 (ja) 2004-12-08 2013-01-16 株式会社ジャパンディスプレイイースト 表示装置
US8221544B2 (en) 2005-04-06 2012-07-17 The Trustees Of Columbia University In The City Of New York Line scan sequential lateral solidification of thin films
US20090218577A1 (en) 2005-08-16 2009-09-03 Im James S High throughput crystallization of thin films
WO2007022234A1 (en) 2005-08-16 2007-02-22 The Trustees Of Columbia University In The City Of New York Systems and methods for uniform sequential lateral solidification of thin films using high frequency lasers
US7192818B1 (en) 2005-09-22 2007-03-20 National Taiwan University Polysilicon thin film fabrication method
JP4680850B2 (ja) 2005-11-16 2011-05-11 三星モバイルディスプレイ株式會社 薄膜トランジスタ及びその製造方法
KR101287314B1 (ko) 2005-12-05 2013-07-17 더 트러스티이스 오브 콜롬비아 유니버시티 인 더 시티 오브 뉴욕 막 처리 시스템과 방법, 및 박막
KR101191404B1 (ko) 2006-01-12 2012-10-16 삼성디스플레이 주식회사 실리콘 결정화용 마스크와 이를 이용한 실리콘 결정화 방법및 표시 장치
TWI285434B (en) 2006-03-17 2007-08-11 Ind Tech Res Inst Thin film transistor device with high symmetry
KR20070094527A (ko) 2006-03-17 2007-09-20 가부시키가이샤 에키쇼센탄 기쥬쓰 가이하쓰센타 결정화방법, 박막트랜지스터의 제조방법, 박막 트랜지스터,표시장치, 반도체장치
CN101622722B (zh) 2007-02-27 2012-11-21 卡尔蔡司激光器材有限责任公司 连续涂覆设备、生产晶态薄膜和太阳电池的方法
JP5041519B2 (ja) 2007-05-01 2012-10-03 ヤンマー株式会社 芝刈機
US8125741B2 (en) 2007-07-20 2012-02-28 Magnecomp Corporation Rotational, shear mode, piezoelectric motor integrated into a collocated, rotational, shear mode, piezoelectric micro-actuated suspension, head or head/gimbal assembly for improved tracking in disk drives and disk drive equipment
US8012861B2 (en) 2007-11-21 2011-09-06 The Trustees Of Columbia University In The City Of New York Systems and methods for preparing epitaxially textured polycrystalline films
EP2242485A4 (en) 2008-02-15 2013-05-08 Sun Pharma Advanced Res Co Ltd ORAL TABLET WITH CONTROLLED RELEASE
JP5336956B2 (ja) * 2008-07-31 2013-11-06 株式会社日立国際電気 半導体装置の製造方法及び基板処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104412361A (zh) * 2012-06-18 2015-03-11 让-保罗·泰斯 用于在异体基质上制造半导体薄层的方法

Also Published As

Publication number Publication date
TWI331803B (en) 2010-10-11
JP2006512749A (ja) 2006-04-13
AU2003258289A1 (en) 2004-03-03
KR20050047103A (ko) 2005-05-19
US7906414B2 (en) 2011-03-15
US20130071974A1 (en) 2013-03-21
TW200405575A (en) 2004-04-01
US8507368B2 (en) 2013-08-13
US7718517B2 (en) 2010-05-18
WO2004017380A3 (en) 2005-12-15
US20100197147A1 (en) 2010-08-05
WO2004017380A2 (en) 2004-02-26
US8883656B2 (en) 2014-11-11
US20130316548A1 (en) 2013-11-28
US8479681B2 (en) 2013-07-09
US20060040512A1 (en) 2006-02-23
US20110186854A1 (en) 2011-08-04

Similar Documents

Publication Publication Date Title
CN1757093A (zh) 具有多种照射图形的单步半导体处理系统和方法
US7311778B2 (en) Single scan irradiation for crystallization of thin films
CN100447941C (zh) 一种用于处理薄膜样本的方法、系统及其薄膜区域结构
CN100459041C (zh) 激光结晶处理薄膜样品以最小化边缘区域的方法和系统
KR101250629B1 (ko) 고주파 레이저를 사용하는 박막의 균일한 순차적 측면 고상화를 위한 시스템 및 방법
US6573163B2 (en) Method of optimizing channel characteristics using multiple masks to form laterally crystallized ELA poly-Si films
KR100542645B1 (ko) 반도체박막을 형성하는 방법 및 이를 위해 사용되는레이저장치
US20110121306A1 (en) Systems and Methods for Non-Periodic Pulse Sequential Lateral Solidification
KR20070064262A (ko) 레이저 결정화장치 및 결정화방법
JP2003100653A (ja) 加工装置および加工方法
CN102791328A (zh) 用于非周期性脉冲连续横向固化的系统和方法
JP2002261016A (ja) 横方向に結晶化した多結晶si膜の品質の均一性を向上させるマスクパターン設計
US20060166469A1 (en) Method of laser beam maching and laser beam machining apparatus
JP4518369B2 (ja) 半導体結晶層の製造方法、レーザ照射方法、マルチパターンマスクおよびレーザ照射システム
JP4417613B2 (ja) 半導体薄膜の結晶化方法及び結晶化装置
JPH05152313A (ja) エキシマレ−ザ−アニ−ル法及びエキシマレ−ザ−アニ−ル装置
JPH0945632A (ja) レーザーアニール方法及び半導体膜の溶融結晶化方法
KR20040076332A (ko) 규소 결정화 시스템 및 규소 결정화 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication